/src/botan/src/lib/math/mp/mp_karat.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Multiplication and Squaring |
3 | | * (C) 1999-2010,2018 Jack Lloyd |
4 | | * 2016 Matthias Gierlings |
5 | | * |
6 | | * Botan is released under the Simplified BSD License (see license.txt) |
7 | | */ |
8 | | |
9 | | #include <botan/internal/mp_core.h> |
10 | | #include <botan/internal/mp_asmi.h> |
11 | | #include <botan/internal/ct_utils.h> |
12 | | #include <botan/mem_ops.h> |
13 | | #include <botan/exceptn.h> |
14 | | |
15 | | namespace Botan { |
16 | | |
17 | | namespace { |
18 | | |
19 | | const size_t KARATSUBA_MULTIPLY_THRESHOLD = 32; |
20 | | const size_t KARATSUBA_SQUARE_THRESHOLD = 32; |
21 | | |
22 | | /* |
23 | | * Simple O(N^2) Multiplication |
24 | | */ |
25 | | void basecase_mul(word z[], size_t z_size, |
26 | | const word x[], size_t x_size, |
27 | | const word y[], size_t y_size) |
28 | 6.22M | { |
29 | 6.22M | if(z_size < x_size + y_size) |
30 | 0 | throw Invalid_Argument("basecase_mul z_size too small"); |
31 | 6.22M | |
32 | 6.22M | const size_t x_size_8 = x_size - (x_size % 8); |
33 | 6.22M | |
34 | 6.22M | clear_mem(z, z_size); |
35 | 6.22M | |
36 | 78.4M | for(size_t i = 0; i != y_size; ++i) |
37 | 72.2M | { |
38 | 72.2M | const word y_i = y[i]; |
39 | 72.2M | |
40 | 72.2M | word carry = 0; |
41 | 72.2M | |
42 | 234M | for(size_t j = 0; j != x_size_8; j += 8) |
43 | 162M | carry = word8_madd3(z + i + j, x + j, y_i, carry); |
44 | 72.2M | |
45 | 345M | for(size_t j = x_size_8; j != x_size; ++j) |
46 | 273M | z[i+j] = word_madd3(x[j], y_i, z[i+j], &carry); |
47 | 72.2M | |
48 | 72.2M | z[x_size+i] = carry; |
49 | 72.2M | } |
50 | 6.22M | } |
51 | | |
52 | | void basecase_sqr(word z[], size_t z_size, |
53 | | const word x[], size_t x_size) |
54 | 1.29M | { |
55 | 1.29M | if(z_size < 2*x_size) |
56 | 0 | throw Invalid_Argument("basecase_sqr z_size too small"); |
57 | 1.29M | |
58 | 1.29M | const size_t x_size_8 = x_size - (x_size % 8); |
59 | 1.29M | |
60 | 1.29M | clear_mem(z, z_size); |
61 | 1.29M | |
62 | 23.3M | for(size_t i = 0; i != x_size; ++i) |
63 | 22.0M | { |
64 | 22.0M | const word x_i = x[i]; |
65 | 22.0M | |
66 | 22.0M | word carry = 0; |
67 | 22.0M | |
68 | 79.5M | for(size_t j = 0; j != x_size_8; j += 8) |
69 | 57.4M | carry = word8_madd3(z + i + j, x + j, x_i, carry); |
70 | 22.0M | |
71 | 126M | for(size_t j = x_size_8; j != x_size; ++j) |
72 | 104M | z[i+j] = word_madd3(x[j], x_i, z[i+j], &carry); |
73 | 22.0M | |
74 | 22.0M | z[x_size+i] = carry; |
75 | 22.0M | } |
76 | 1.29M | } |
77 | | |
78 | | /* |
79 | | * Karatsuba Multiplication Operation |
80 | | */ |
81 | | void karatsuba_mul(word z[], const word x[], const word y[], size_t N, |
82 | | word workspace[]) |
83 | 7.04M | { |
84 | 7.04M | if(N < KARATSUBA_MULTIPLY_THRESHOLD || N % 2) |
85 | 5.13M | { |
86 | 5.13M | switch(N) |
87 | 5.13M | { |
88 | 0 | case 6: |
89 | 0 | return bigint_comba_mul6(z, x, y); |
90 | 0 | case 8: |
91 | 0 | return bigint_comba_mul8(z, x, y); |
92 | 0 | case 9: |
93 | 0 | return bigint_comba_mul9(z, x, y); |
94 | 4.79M | case 16: |
95 | 4.79M | return bigint_comba_mul16(z, x, y); |
96 | 335k | case 24: |
97 | 335k | return bigint_comba_mul24(z, x, y); |
98 | 9.58k | default: |
99 | 9.58k | return basecase_mul(z, 2*N, x, N, y, N); |
100 | 1.90M | } |
101 | 1.90M | } |
102 | 1.90M | |
103 | 1.90M | const size_t N2 = N / 2; |
104 | 1.90M | |
105 | 1.90M | const word* x0 = x; |
106 | 1.90M | const word* x1 = x + N2; |
107 | 1.90M | const word* y0 = y; |
108 | 1.90M | const word* y1 = y + N2; |
109 | 1.90M | word* z0 = z; |
110 | 1.90M | word* z1 = z + N; |
111 | 1.90M | |
112 | 1.90M | word* ws0 = workspace; |
113 | 1.90M | word* ws1 = workspace + N; |
114 | 1.90M | |
115 | 1.90M | clear_mem(workspace, 2*N); |
116 | 1.90M | |
117 | 1.90M | /* |
118 | 1.90M | * If either of cmp0 or cmp1 is zero then z0 or z1 resp is zero here, |
119 | 1.90M | * resulting in a no-op - z0*z1 will be equal to zero so we don't need to do |
120 | 1.90M | * anything, clear_mem above already set the correct result. |
121 | 1.90M | * |
122 | 1.90M | * However we ignore the result of the comparisons and always perform the |
123 | 1.90M | * subtractions and recursively multiply to avoid the timing channel. |
124 | 1.90M | */ |
125 | 1.90M | |
126 | 1.90M | // First compute (X_lo - X_hi)*(Y_hi - Y_lo) |
127 | 1.90M | const auto cmp0 = bigint_sub_abs(z0, x0, x1, N2, workspace); |
128 | 1.90M | const auto cmp1 = bigint_sub_abs(z1, y1, y0, N2, workspace); |
129 | 1.90M | const auto neg_mask = ~(cmp0 ^ cmp1); |
130 | 1.90M | |
131 | 1.90M | karatsuba_mul(ws0, z0, z1, N2, ws1); |
132 | 1.90M | |
133 | 1.90M | // Compute X_lo * Y_lo |
134 | 1.90M | karatsuba_mul(z0, x0, y0, N2, ws1); |
135 | 1.90M | |
136 | 1.90M | // Compute X_hi * Y_hi |
137 | 1.90M | karatsuba_mul(z1, x1, y1, N2, ws1); |
138 | 1.90M | |
139 | 1.90M | const word ws_carry = bigint_add3_nc(ws1, z0, N, z1, N); |
140 | 1.90M | word z_carry = bigint_add2_nc(z + N2, N, ws1, N); |
141 | 1.90M | |
142 | 1.90M | z_carry += bigint_add2_nc(z + N + N2, N2, &ws_carry, 1); |
143 | 1.90M | bigint_add2_nc(z + N + N2, N2, &z_carry, 1); |
144 | 1.90M | |
145 | 1.90M | clear_mem(workspace + N, N2); |
146 | 1.90M | |
147 | 1.90M | bigint_cnd_add_or_sub(neg_mask, z + N2, workspace, 2*N-N2); |
148 | 1.90M | } |
149 | | |
150 | | /* |
151 | | * Karatsuba Squaring Operation |
152 | | */ |
153 | | void karatsuba_sqr(word z[], const word x[], size_t N, word workspace[]) |
154 | 20.2M | { |
155 | 20.2M | if(N < KARATSUBA_SQUARE_THRESHOLD || N % 2) |
156 | 14.8M | { |
157 | 14.8M | switch(N) |
158 | 14.8M | { |
159 | 0 | case 6: |
160 | 0 | return bigint_comba_sqr6(z, x); |
161 | 0 | case 8: |
162 | 0 | return bigint_comba_sqr8(z, x); |
163 | 0 | case 9: |
164 | 0 | return bigint_comba_sqr9(z, x); |
165 | 13.2M | case 16: |
166 | 13.2M | return bigint_comba_sqr16(z, x); |
167 | 1.10M | case 24: |
168 | 1.10M | return bigint_comba_sqr24(z, x); |
169 | 531k | default: |
170 | 531k | return basecase_sqr(z, 2*N, x, N); |
171 | 5.42M | } |
172 | 5.42M | } |
173 | 5.42M | |
174 | 5.42M | const size_t N2 = N / 2; |
175 | 5.42M | |
176 | 5.42M | const word* x0 = x; |
177 | 5.42M | const word* x1 = x + N2; |
178 | 5.42M | word* z0 = z; |
179 | 5.42M | word* z1 = z + N; |
180 | 5.42M | |
181 | 5.42M | word* ws0 = workspace; |
182 | 5.42M | word* ws1 = workspace + N; |
183 | 5.42M | |
184 | 5.42M | clear_mem(workspace, 2*N); |
185 | 5.42M | |
186 | 5.42M | // See comment in karatsuba_mul |
187 | 5.42M | bigint_sub_abs(z0, x0, x1, N2, workspace); |
188 | 5.42M | karatsuba_sqr(ws0, z0, N2, ws1); |
189 | 5.42M | |
190 | 5.42M | karatsuba_sqr(z0, x0, N2, ws1); |
191 | 5.42M | karatsuba_sqr(z1, x1, N2, ws1); |
192 | 5.42M | |
193 | 5.42M | const word ws_carry = bigint_add3_nc(ws1, z0, N, z1, N); |
194 | 5.42M | word z_carry = bigint_add2_nc(z + N2, N, ws1, N); |
195 | 5.42M | |
196 | 5.42M | z_carry += bigint_add2_nc(z + N + N2, N2, &ws_carry, 1); |
197 | 5.42M | bigint_add2_nc(z + N + N2, N2, &z_carry, 1); |
198 | 5.42M | |
199 | 5.42M | /* |
200 | 5.42M | * This is only actually required if cmp (result of bigint_sub_abs) is != 0, |
201 | 5.42M | * however if cmp==0 then ws0[0:N] == 0 and avoiding the jump hides a |
202 | 5.42M | * timing channel. |
203 | 5.42M | */ |
204 | 5.42M | bigint_sub2(z + N2, 2*N-N2, ws0, N); |
205 | 5.42M | } |
206 | | |
207 | | /* |
208 | | * Pick a good size for the Karatsuba multiply |
209 | | */ |
210 | | size_t karatsuba_size(size_t z_size, |
211 | | size_t x_size, size_t x_sw, |
212 | | size_t y_size, size_t y_sw) |
213 | 1.58M | { |
214 | 1.58M | if(x_sw > x_size || x_sw > y_size || y_sw > x_size || y_sw > y_size) |
215 | 391 | return 0; |
216 | 1.58M | |
217 | 1.58M | if(((x_size == x_sw) && (x_size % 2)) || |
218 | 1.58M | ((y_size == y_sw) && (y_size % 2))) |
219 | 0 | return 0; |
220 | 1.58M | |
221 | 1.58M | const size_t start = (x_sw > y_sw) ? x_sw : y_sw; |
222 | 1.58M | const size_t end = (x_size < y_size) ? x_size : y_size; |
223 | 1.58M | |
224 | 1.58M | if(start == end) |
225 | 995k | { |
226 | 995k | if(start % 2) |
227 | 0 | return 0; |
228 | 995k | return start; |
229 | 995k | } |
230 | 591k | |
231 | 845k | for(size_t j = start; j <= end; ++j) |
232 | 845k | { |
233 | 845k | if(j % 2) |
234 | 253k | continue; |
235 | 591k | |
236 | 591k | if(2*j > z_size) |
237 | 252k | return 0; |
238 | 339k | |
239 | 339k | if(x_sw <= j && j <= x_size && y_sw <= j && j <= y_size) |
240 | 339k | { |
241 | 339k | if(j % 4 == 2 && |
242 | 339k | (j+2) <= x_size && (j+2) <= y_size && 2*(j+2) <= z_size) |
243 | 340 | return j+2; |
244 | 338k | return j; |
245 | 338k | } |
246 | 339k | } |
247 | 591k | |
248 | 591k | return 0; |
249 | 591k | } |
250 | | |
251 | | /* |
252 | | * Pick a good size for the Karatsuba squaring |
253 | | */ |
254 | | size_t karatsuba_size(size_t z_size, size_t x_size, size_t x_sw) |
255 | 4.23M | { |
256 | 4.23M | if(x_sw == x_size) |
257 | 13.6k | { |
258 | 13.6k | if(x_sw % 2) |
259 | 0 | return 0; |
260 | 13.6k | return x_sw; |
261 | 13.6k | } |
262 | 4.21M | |
263 | 4.83M | for(size_t j = x_sw; j <= x_size; ++j) |
264 | 4.83M | { |
265 | 4.83M | if(j % 2) |
266 | 618k | continue; |
267 | 4.21M | |
268 | 4.21M | if(2*j > z_size) |
269 | 212k | return 0; |
270 | 4.00M | |
271 | 4.00M | if(j % 4 == 2 && (j+2) <= x_size && 2*(j+2) <= z_size) |
272 | 66 | return j+2; |
273 | 4.00M | return j; |
274 | 4.00M | } |
275 | 4.21M | |
276 | 4.21M | return 0; |
277 | 4.21M | } |
278 | | |
279 | | template<size_t SZ> |
280 | | inline bool sized_for_comba_mul(size_t x_sw, size_t x_size, |
281 | | size_t y_sw, size_t y_size, |
282 | | size_t z_size) |
283 | 436M | { |
284 | 436M | return (x_sw <= SZ && x_size >= SZ && |
285 | 436M | y_sw <= SZ && y_size >= SZ && |
286 | 436M | z_size >= 2*SZ); |
287 | 436M | } mp_karat.cpp:bool Botan::(anonymous namespace)::sized_for_comba_mul<4ul>(unsigned long, unsigned long, unsigned long, unsigned long, unsigned long) Line | Count | Source | 283 | 151M | { | 284 | 151M | return (x_sw <= SZ && x_size >= SZ && | 285 | 151M | y_sw <= SZ && y_size >= SZ && | 286 | 151M | z_size >= 2*SZ); | 287 | 151M | } |
mp_karat.cpp:bool Botan::(anonymous namespace)::sized_for_comba_mul<6ul>(unsigned long, unsigned long, unsigned long, unsigned long, unsigned long) Line | Count | Source | 283 | 111M | { | 284 | 111M | return (x_sw <= SZ && x_size >= SZ && | 285 | 111M | y_sw <= SZ && y_size >= SZ && | 286 | 111M | z_size >= 2*SZ); | 287 | 111M | } |
mp_karat.cpp:bool Botan::(anonymous namespace)::sized_for_comba_mul<8ul>(unsigned long, unsigned long, unsigned long, unsigned long, unsigned long) Line | Count | Source | 283 | 82.7M | { | 284 | 82.7M | return (x_sw <= SZ && x_size >= SZ && | 285 | 82.7M | y_sw <= SZ && y_size >= SZ && | 286 | 82.7M | z_size >= 2*SZ); | 287 | 82.7M | } |
mp_karat.cpp:bool Botan::(anonymous namespace)::sized_for_comba_mul<9ul>(unsigned long, unsigned long, unsigned long, unsigned long, unsigned long) Line | Count | Source | 283 | 75.7M | { | 284 | 75.7M | return (x_sw <= SZ && x_size >= SZ && | 285 | 75.7M | y_sw <= SZ && y_size >= SZ && | 286 | 75.7M | z_size >= 2*SZ); | 287 | 75.7M | } |
mp_karat.cpp:bool Botan::(anonymous namespace)::sized_for_comba_mul<16ul>(unsigned long, unsigned long, unsigned long, unsigned long, unsigned long) Line | Count | Source | 283 | 7.89M | { | 284 | 7.89M | return (x_sw <= SZ && x_size >= SZ && | 285 | 7.89M | y_sw <= SZ && y_size >= SZ && | 286 | 7.89M | z_size >= 2*SZ); | 287 | 7.89M | } |
mp_karat.cpp:bool Botan::(anonymous namespace)::sized_for_comba_mul<24ul>(unsigned long, unsigned long, unsigned long, unsigned long, unsigned long) Line | Count | Source | 283 | 7.70M | { | 284 | 7.70M | return (x_sw <= SZ && x_size >= SZ && | 285 | 7.70M | y_sw <= SZ && y_size >= SZ && | 286 | 7.70M | z_size >= 2*SZ); | 287 | 7.70M | } |
|
288 | | |
289 | | template<size_t SZ> |
290 | | inline bool sized_for_comba_sqr(size_t x_sw, size_t x_size, |
291 | | size_t z_size) |
292 | 396M | { |
293 | 396M | return (x_sw <= SZ && x_size >= SZ && z_size >= 2*SZ); |
294 | 396M | } mp_karat.cpp:bool Botan::(anonymous namespace)::sized_for_comba_sqr<4ul>(unsigned long, unsigned long, unsigned long) Line | Count | Source | 292 | 136M | { | 293 | 136M | return (x_sw <= SZ && x_size >= SZ && z_size >= 2*SZ); | 294 | 136M | } |
mp_karat.cpp:bool Botan::(anonymous namespace)::sized_for_comba_sqr<6ul>(unsigned long, unsigned long, unsigned long) Line | Count | Source | 292 | 104M | { | 293 | 104M | return (x_sw <= SZ && x_size >= SZ && z_size >= 2*SZ); | 294 | 104M | } |
mp_karat.cpp:bool Botan::(anonymous namespace)::sized_for_comba_sqr<8ul>(unsigned long, unsigned long, unsigned long) Line | Count | Source | 292 | 75.5M | { | 293 | 75.5M | return (x_sw <= SZ && x_size >= SZ && z_size >= 2*SZ); | 294 | 75.5M | } |
mp_karat.cpp:bool Botan::(anonymous namespace)::sized_for_comba_sqr<9ul>(unsigned long, unsigned long, unsigned long) Line | Count | Source | 292 | 69.7M | { | 293 | 69.7M | return (x_sw <= SZ && x_size >= SZ && z_size >= 2*SZ); | 294 | 69.7M | } |
mp_karat.cpp:bool Botan::(anonymous namespace)::sized_for_comba_sqr<16ul>(unsigned long, unsigned long, unsigned long) Line | Count | Source | 292 | 5.08M | { | 293 | 5.08M | return (x_sw <= SZ && x_size >= SZ && z_size >= 2*SZ); | 294 | 5.08M | } |
mp_karat.cpp:bool Botan::(anonymous namespace)::sized_for_comba_sqr<24ul>(unsigned long, unsigned long, unsigned long) Line | Count | Source | 292 | 4.91M | { | 293 | 4.91M | return (x_sw <= SZ && x_size >= SZ && z_size >= 2*SZ); | 294 | 4.91M | } |
|
295 | | |
296 | | } |
297 | | |
298 | | void bigint_mul(word z[], size_t z_size, |
299 | | const word x[], size_t x_size, size_t x_sw, |
300 | | const word y[], size_t y_size, size_t y_sw, |
301 | | word workspace[], size_t ws_size) |
302 | 151M | { |
303 | 151M | clear_mem(z, z_size); |
304 | 151M | |
305 | 151M | if(x_sw == 1) |
306 | 222k | { |
307 | 222k | bigint_linmul3(z, y, y_sw, x[0]); |
308 | 222k | } |
309 | 151M | else if(y_sw == 1) |
310 | 1.27k | { |
311 | 1.27k | bigint_linmul3(z, x, x_sw, y[0]); |
312 | 1.27k | } |
313 | 151M | else if(sized_for_comba_mul<4>(x_sw, x_size, y_sw, y_size, z_size)) |
314 | 40.2M | { |
315 | 40.2M | bigint_comba_mul4(z, x, y); |
316 | 40.2M | } |
317 | 111M | else if(sized_for_comba_mul<6>(x_sw, x_size, y_sw, y_size, z_size)) |
318 | 28.4M | { |
319 | 28.4M | bigint_comba_mul6(z, x, y); |
320 | 28.4M | } |
321 | 82.7M | else if(sized_for_comba_mul<8>(x_sw, x_size, y_sw, y_size, z_size)) |
322 | 7.00M | { |
323 | 7.00M | bigint_comba_mul8(z, x, y); |
324 | 7.00M | } |
325 | 75.7M | else if(sized_for_comba_mul<9>(x_sw, x_size, y_sw, y_size, z_size)) |
326 | 67.8M | { |
327 | 67.8M | bigint_comba_mul9(z, x, y); |
328 | 67.8M | } |
329 | 7.89M | else if(sized_for_comba_mul<16>(x_sw, x_size, y_sw, y_size, z_size)) |
330 | 190k | { |
331 | 190k | bigint_comba_mul16(z, x, y); |
332 | 190k | } |
333 | 7.70M | else if(sized_for_comba_mul<24>(x_sw, x_size, y_sw, y_size, z_size)) |
334 | 156k | { |
335 | 156k | bigint_comba_mul24(z, x, y); |
336 | 156k | } |
337 | 7.54M | else if(x_sw < KARATSUBA_MULTIPLY_THRESHOLD || |
338 | 7.54M | y_sw < KARATSUBA_MULTIPLY_THRESHOLD || |
339 | 7.54M | !workspace) |
340 | 5.95M | { |
341 | 5.95M | basecase_mul(z, z_size, x, x_sw, y, y_sw); |
342 | 5.95M | } |
343 | 1.58M | else |
344 | 1.58M | { |
345 | 1.58M | const size_t N = karatsuba_size(z_size, x_size, x_sw, y_size, y_sw); |
346 | 1.58M | |
347 | 1.58M | if(N && z_size >= 2*N && ws_size >= 2*N) |
348 | 1.33M | karatsuba_mul(z, x, y, N, workspace); |
349 | 254k | else |
350 | 254k | basecase_mul(z, z_size, x, x_sw, y, y_sw); |
351 | 1.58M | } |
352 | 151M | } |
353 | | |
354 | | /* |
355 | | * Squaring Algorithm Dispatcher |
356 | | */ |
357 | | void bigint_sqr(word z[], size_t z_size, |
358 | | const word x[], size_t x_size, size_t x_sw, |
359 | | word workspace[], size_t ws_size) |
360 | 136M | { |
361 | 136M | clear_mem(z, z_size); |
362 | 136M | |
363 | 136M | BOTAN_ASSERT(z_size/2 >= x_sw, "Output size is sufficient"); |
364 | 136M | |
365 | 136M | if(x_sw == 1) |
366 | 216k | { |
367 | 216k | bigint_linmul3(z, x, x_sw, x[0]); |
368 | 216k | } |
369 | 136M | else if(sized_for_comba_sqr<4>(x_sw, x_size, z_size)) |
370 | 32.5M | { |
371 | 32.5M | bigint_comba_sqr4(z, x); |
372 | 32.5M | } |
373 | 104M | else if(sized_for_comba_sqr<6>(x_sw, x_size, z_size)) |
374 | 28.6M | { |
375 | 28.6M | bigint_comba_sqr6(z, x); |
376 | 28.6M | } |
377 | 75.5M | else if(sized_for_comba_sqr<8>(x_sw, x_size, z_size)) |
378 | 5.83M | { |
379 | 5.83M | bigint_comba_sqr8(z, x); |
380 | 5.83M | } |
381 | 69.7M | else if(sized_for_comba_sqr<9>(x_sw, x_size, z_size)) |
382 | 64.6M | { |
383 | 64.6M | bigint_comba_sqr9(z, x); |
384 | 64.6M | } |
385 | 5.08M | else if(sized_for_comba_sqr<16>(x_sw, x_size, z_size)) |
386 | 176k | { |
387 | 176k | bigint_comba_sqr16(z, x); |
388 | 176k | } |
389 | 4.91M | else if(sized_for_comba_sqr<24>(x_sw, x_size, z_size)) |
390 | 130k | { |
391 | 130k | bigint_comba_sqr24(z, x); |
392 | 130k | } |
393 | 4.77M | else if(x_size < KARATSUBA_SQUARE_THRESHOLD || !workspace) |
394 | 546k | { |
395 | 546k | basecase_sqr(z, z_size, x, x_sw); |
396 | 546k | } |
397 | 4.23M | else |
398 | 4.23M | { |
399 | 4.23M | const size_t N = karatsuba_size(z_size, x_size, x_sw); |
400 | 4.23M | |
401 | 4.23M | if(N && z_size >= 2*N && ws_size >= 2*N) |
402 | 4.02M | karatsuba_sqr(z, x, N, workspace); |
403 | 212k | else |
404 | 212k | basecase_sqr(z, z_size, x, x_sw); |
405 | 4.23M | } |
406 | 136M | } |
407 | | |
408 | | } |