Coverage Report

Created: 2020-11-21 08:34

/src/botan/build/include/botan/numthry.h
Line
Count
Source (jump to first uncovered line)
1
/*
2
* Number Theory Functions
3
* (C) 1999-2007,2018 Jack Lloyd
4
*
5
* Botan is released under the Simplified BSD License (see license.txt)
6
*/
7
8
#ifndef BOTAN_NUMBER_THEORY_H_
9
#define BOTAN_NUMBER_THEORY_H_
10
11
#include <botan/bigint.h>
12
13
namespace Botan {
14
15
class RandomNumberGenerator;
16
17
/**
18
* Return the absolute value
19
* @param n an integer
20
* @return absolute value of n
21
*/
22
0
inline BigInt abs(const BigInt& n) { return n.abs(); }
23
24
/**
25
* Compute the greatest common divisor
26
* @param x a positive integer
27
* @param y a positive integer
28
* @return gcd(x,y)
29
*/
30
BigInt BOTAN_PUBLIC_API(2,0) gcd(const BigInt& x, const BigInt& y);
31
32
/**
33
* Least common multiple
34
* @param x a positive integer
35
* @param y a positive integer
36
* @return z, smallest integer such that z % x == 0 and z % y == 0
37
*/
38
BigInt BOTAN_PUBLIC_API(2,0) lcm(const BigInt& x, const BigInt& y);
39
40
/**
41
* @param x an integer
42
* @return (x*x)
43
*/
44
BigInt BOTAN_PUBLIC_API(2,0) square(const BigInt& x);
45
46
/**
47
* Modular inversion. This algorithm is const time with respect to x,
48
* as long as x is less than modulus. It also avoids leaking
49
* information about the modulus, except that it does leak which of 3
50
* categories the modulus is in: an odd integer, a power of 2, or some
51
* other even number, and if the modulus is even, leaks the power of 2
52
* which divides the modulus.
53
*
54
* @param x a positive integer
55
* @param modulus a positive integer
56
* @return y st (x*y) % modulus == 1 or 0 if no such value
57
*/
58
BigInt BOTAN_PUBLIC_API(2,0) inverse_mod(const BigInt& x,
59
                                         const BigInt& modulus);
60
61
/**
62
* Compute the Jacobi symbol. If n is prime, this is equivalent
63
* to the Legendre symbol.
64
* @see http://mathworld.wolfram.com/JacobiSymbol.html
65
*
66
* @param a is a non-negative integer
67
* @param n is an odd integer > 1
68
* @return (n / m)
69
*/
70
int32_t BOTAN_PUBLIC_API(2,0) jacobi(const BigInt& a, const BigInt& n);
71
72
/**
73
* Modular exponentation
74
* @param b an integer base
75
* @param x a positive exponent
76
* @param m a positive modulus
77
* @return (b^x) % m
78
*/
79
BigInt BOTAN_PUBLIC_API(2,0) power_mod(const BigInt& b,
80
                                       const BigInt& x,
81
                                       const BigInt& m);
82
83
/**
84
* Compute the square root of x modulo a prime using the
85
* Tonelli-Shanks algorithm
86
*
87
* @param x the input
88
* @param p the prime
89
* @return y such that (y*y)%p == x, or -1 if no such integer
90
*/
91
BigInt BOTAN_PUBLIC_API(2,0) ressol(const BigInt& x, const BigInt& p);
92
93
/**
94
* @param x an integer
95
* @return count of the low zero bits in x, or, equivalently, the
96
*         largest value of n such that 2^n divides x evenly. Returns
97
*         zero if x is equal to zero.
98
*/
99
size_t BOTAN_PUBLIC_API(2,0) low_zero_bits(const BigInt& x);
100
101
/**
102
* Check for primality
103
* @param n a positive integer to test for primality
104
* @param rng a random number generator
105
* @param prob chance of false positive is bounded by 1/2**prob
106
* @param is_random true if n was randomly chosen by us
107
* @return true if all primality tests passed, otherwise false
108
*/
109
bool BOTAN_PUBLIC_API(2,0) is_prime(const BigInt& n,
110
                                    RandomNumberGenerator& rng,
111
                                    size_t prob = 64,
112
                                    bool is_random = false);
113
114
/**
115
* Test if the positive integer x is a perfect square ie if there
116
* exists some positive integer y st y*y == x
117
* See FIPS 186-4 sec C.4
118
* @return 0 if the integer is not a perfect square, otherwise
119
*         returns the positive y st y*y == x
120
*/
121
BigInt BOTAN_PUBLIC_API(2,8) is_perfect_square(const BigInt& x);
122
123
/**
124
* Randomly generate a prime suitable for discrete logarithm parameters
125
* @param rng a random number generator
126
* @param bits how large the resulting prime should be in bits
127
* @param coprime a positive integer that (prime - 1) should be coprime to
128
* @param equiv a non-negative number that the result should be
129
               equivalent to modulo equiv_mod
130
* @param equiv_mod the modulus equiv should be checked against
131
* @param prob use test so false positive is bounded by 1/2**prob
132
* @return random prime with the specified criteria
133
*/
134
BigInt BOTAN_PUBLIC_API(2,0) random_prime(RandomNumberGenerator& rng,
135
                                          size_t bits,
136
                                          const BigInt& coprime = 0,
137
                                          size_t equiv = 1,
138
                                          size_t equiv_mod = 2,
139
                                          size_t prob = 128);
140
141
/**
142
* Generate a prime suitable for RSA p/q
143
* @param keygen_rng a random number generator
144
* @param prime_test_rng a random number generator
145
* @param bits how large the resulting prime should be in bits (must be >= 512)
146
* @param coprime a positive integer that (prime - 1) should be coprime to
147
* @param prob use test so false positive is bounded by 1/2**prob
148
* @return random prime with the specified criteria
149
*/
150
BigInt BOTAN_PUBLIC_API(2,7) generate_rsa_prime(RandomNumberGenerator& keygen_rng,
151
                                                RandomNumberGenerator& prime_test_rng,
152
                                                size_t bits,
153
                                                const BigInt& coprime,
154
                                                size_t prob = 128);
155
156
/**
157
* Return a 'safe' prime, of the form p=2*q+1 with q prime
158
* @param rng a random number generator
159
* @param bits is how long the resulting prime should be
160
* @return prime randomly chosen from safe primes of length bits
161
*/
162
BigInt BOTAN_PUBLIC_API(2,0) random_safe_prime(RandomNumberGenerator& rng,
163
                                               size_t bits);
164
165
/**
166
* The size of the PRIMES[] array
167
*/
168
const size_t PRIME_TABLE_SIZE = 6541;
169
170
/**
171
* A const array of all odd primes less than 65535
172
*/
173
extern const uint16_t BOTAN_PUBLIC_API(2,0) PRIMES[];
174
175
}
176
177
#endif