Coverage Report

Created: 2020-11-21 08:34

/src/botan/src/lib/math/numbertheory/primality.cpp
Line
Count
Source (jump to first uncovered line)
1
/*
2
* (C) 2016,2018 Jack Lloyd
3
*
4
* Botan is released under the Simplified BSD License (see license.txt)
5
*/
6
7
#include <botan/internal/primality.h>
8
#include <botan/internal/monty_exp.h>
9
#include <botan/bigint.h>
10
#include <botan/internal/monty.h>
11
#include <botan/reducer.h>
12
#include <botan/rng.h>
13
#include <algorithm>
14
15
namespace Botan {
16
17
bool is_lucas_probable_prime(const BigInt& C, const Modular_Reducer& mod_C)
18
627
   {
19
627
   if(C <= 1)
20
0
      return false;
21
627
   else if(C == 2)
22
0
      return true;
23
627
   else if(C.is_even())
24
0
      return false;
25
627
   else if(C == 3 || C == 5 || C == 7 || C == 11 || C == 13)
26
5
      return true;
27
28
622
   BigInt D = 5;
29
30
622
   for(;;)
31
2.44k
      {
32
2.44k
      int32_t j = jacobi(D, C);
33
2.44k
      if(j == 0)
34
0
         return false;
35
36
2.44k
      if(j == -1)
37
622
         break;
38
39
      // Check 5, -7, 9, -11, 13, -15, 17, ...
40
1.82k
      if(D.is_negative())
41
753
         {
42
753
         D.flip_sign();
43
753
         D += 2;
44
753
         }
45
1.07k
      else
46
1.07k
         {
47
1.07k
         D += 2;
48
1.07k
         D.flip_sign();
49
1.07k
         }
50
51
1.82k
      if(D == 17 && is_perfect_square(C).is_nonzero())
52
0
         return false;
53
1.82k
      }
54
55
622
   const BigInt K = C + 1;
56
622
   const size_t K_bits = K.bits() - 1;
57
58
622
   BigInt U = 1;
59
622
   BigInt V = 1;
60
61
622
   BigInt Ut, Vt, U2, V2;
62
63
295k
   for(size_t i = 0; i != K_bits; ++i)
64
294k
      {
65
294k
      const bool k_bit = K.get_bit(K_bits - 1 - i);
66
67
294k
      Ut = mod_C.multiply(U, V);
68
69
294k
      Vt = mod_C.reduce(mod_C.square(V) + mod_C.multiply(D, mod_C.square(U)));
70
294k
      Vt.ct_cond_add(Vt.is_odd(), C);
71
294k
      Vt >>= 1;
72
294k
      Vt = mod_C.reduce(Vt);
73
74
294k
      U = Ut;
75
294k
      V = Vt;
76
77
294k
      U2 = mod_C.reduce(Ut + Vt);
78
294k
      U2.ct_cond_add(U2.is_odd(), C);
79
294k
      U2 >>= 1;
80
81
294k
      V2 = mod_C.reduce(Vt + Ut*D);
82
294k
      V2.ct_cond_add(V2.is_odd(), C);
83
294k
      V2 >>= 1;
84
85
294k
      U.ct_cond_assign(k_bit, U2);
86
294k
      V.ct_cond_assign(k_bit, V2);
87
294k
      }
88
89
622
   return (U == 0);
90
622
   }
91
92
bool is_bailie_psw_probable_prime(const BigInt& n, const Modular_Reducer& mod_n)
93
583
   {
94
583
   auto monty_n = std::make_shared<Montgomery_Params>(n, mod_n);
95
583
   return passes_miller_rabin_test(n, mod_n, monty_n, 2) && is_lucas_probable_prime(n, mod_n);
96
583
   }
97
98
bool is_bailie_psw_probable_prime(const BigInt& n)
99
583
   {
100
583
   Modular_Reducer mod_n(n);
101
583
   return is_bailie_psw_probable_prime(n, mod_n);
102
583
   }
103
104
bool passes_miller_rabin_test(const BigInt& n,
105
                              const Modular_Reducer& mod_n,
106
                              const std::shared_ptr<Montgomery_Params>& monty_n,
107
                              const BigInt& a)
108
7.67k
   {
109
7.67k
   BOTAN_ASSERT_NOMSG(n > 1);
110
111
7.67k
   const BigInt n_minus_1 = n - 1;
112
7.67k
   const size_t s = low_zero_bits(n_minus_1);
113
7.67k
   const BigInt nm1_s = n_minus_1 >> s;
114
7.67k
   const size_t n_bits = n.bits();
115
116
7.67k
   const size_t powm_window = 4;
117
118
7.67k
   auto powm_a_n = monty_precompute(monty_n, a, powm_window);
119
120
7.67k
   BigInt y = monty_execute(*powm_a_n, nm1_s, n_bits);
121
122
7.67k
   if(y == 1 || y == n_minus_1)
123
1.16k
      return true;
124
125
201k
   for(size_t i = 1; i != s; ++i)
126
201k
      {
127
201k
      y = mod_n.square(y);
128
129
201k
      if(y == 1) // found a non-trivial square root
130
1
         return false;
131
132
      /*
133
      -1 is the trivial square root of unity, so ``a`` is not a
134
      witness for this number - give up
135
      */
136
201k
      if(y == n_minus_1)
137
6.33k
         return true;
138
201k
      }
139
140
175
   return false;
141
6.51k
   }
142
143
bool is_miller_rabin_probable_prime(const BigInt& n,
144
                                    const Modular_Reducer& mod_n,
145
                                    RandomNumberGenerator& rng,
146
                                    size_t test_iterations)
147
225
   {
148
225
   BOTAN_ASSERT_NOMSG(n > 1);
149
150
225
   auto monty_n = std::make_shared<Montgomery_Params>(n, mod_n);
151
152
7.20k
   for(size_t i = 0; i != test_iterations; ++i)
153
7.10k
      {
154
7.10k
      const BigInt a = BigInt::random_integer(rng, 2, n);
155
156
7.10k
      if(!passes_miller_rabin_test(n, mod_n, monty_n, a))
157
117
         return false;
158
7.10k
      }
159
160
   // Failed to find a counterexample
161
108
   return true;
162
225
   }
163
164
165
size_t miller_rabin_test_iterations(size_t n_bits, size_t prob, bool random)
166
211
   {
167
211
   const size_t base = (prob + 2) / 2; // worst case 4^-t error rate
168
169
   /*
170
   * If the candidate prime was maliciously constructed, we can't rely
171
   * on arguments based on p being random.
172
   */
173
211
   if(random == false)
174
210
      return base;
175
176
   /*
177
   * For randomly chosen numbers we can use the estimates from
178
   * http://www.math.dartmouth.edu/~carlp/PDF/paper88.pdf
179
   *
180
   * These values are derived from the inequality for p(k,t) given on
181
   * the second page.
182
   */
183
1
   if(prob <= 128)
184
1
      {
185
1
      if(n_bits >= 1536)
186
0
         return 4; // < 2^-133
187
1
      if(n_bits >= 1024)
188
0
         return 6; // < 2^-133
189
1
      if(n_bits >= 512)
190
0
         return 12; // < 2^-129
191
1
      if(n_bits >= 256)
192
1
         return 29; // < 2^-128
193
0
      }
194
195
   /*
196
   If the user desires a smaller error probability than we have
197
   precomputed error estimates for, just fall back to using the worst
198
   case error rate.
199
   */
200
0
   return base;
201
0
   }
202
203
}