/src/botan/src/lib/pk_pad/eme_oaep/oaep.cpp
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  | * OAEP  | 
3  |  | * (C) 1999-2010,2015,2018 Jack Lloyd  | 
4  |  | *  | 
5  |  | * Botan is released under the Simplified BSD License (see license.txt)  | 
6  |  | */  | 
7  |  |  | 
8  |  | #include <botan/internal/oaep.h>  | 
9  |  | #include <botan/internal/mgf1.h>  | 
10  |  | #include <botan/exceptn.h>  | 
11  |  | #include <botan/rng.h>  | 
12  |  | #include <botan/internal/ct_utils.h>  | 
13  |  |  | 
14  |  | namespace Botan { | 
15  |  |  | 
16  |  | /*  | 
17  |  | * OAEP Pad Operation  | 
18  |  | */  | 
19  |  | secure_vector<uint8_t> OAEP::pad(const uint8_t in[], size_t in_length,  | 
20  |  |                              size_t key_length,  | 
21  |  |                              RandomNumberGenerator& rng) const  | 
22  | 0  |    { | 
23  | 0  |    key_length /= 8;  | 
24  |  | 
  | 
25  | 0  |    if(in_length > maximum_input_size(key_length * 8))  | 
26  | 0  |       { | 
27  | 0  |       throw Invalid_Argument("OAEP: Input is too large"); | 
28  | 0  |       }  | 
29  |  |  | 
30  | 0  |    secure_vector<uint8_t> out(key_length);  | 
31  |  | 
  | 
32  | 0  |    rng.randomize(out.data(), m_Phash.size());  | 
33  |  | 
  | 
34  | 0  |    buffer_insert(out, m_Phash.size(), m_Phash.data(), m_Phash.size());  | 
35  | 0  |    out[out.size() - in_length - 1] = 0x01;  | 
36  | 0  |    buffer_insert(out, out.size() - in_length, in, in_length);  | 
37  |  | 
  | 
38  | 0  |    mgf1_mask(*m_mgf1_hash,  | 
39  | 0  |              out.data(), m_Phash.size(),  | 
40  | 0  |              &out[m_Phash.size()], out.size() - m_Phash.size());  | 
41  |  | 
  | 
42  | 0  |    mgf1_mask(*m_mgf1_hash,  | 
43  | 0  |              &out[m_Phash.size()], out.size() - m_Phash.size(),  | 
44  | 0  |              out.data(), m_Phash.size());  | 
45  |  | 
  | 
46  | 0  |    return out;  | 
47  | 0  |    }  | 
48  |  |  | 
49  |  | /*  | 
50  |  | * OAEP Unpad Operation  | 
51  |  | */  | 
52  |  | secure_vector<uint8_t> OAEP::unpad(uint8_t& valid_mask,  | 
53  |  |                                    const uint8_t in[], size_t in_length) const  | 
54  | 0  |    { | 
55  |  |    /*  | 
56  |  |    Must be careful about error messages here; if an attacker can  | 
57  |  |    distinguish them, it is easy to use the differences as an oracle to  | 
58  |  |    find the secret key, as described in "A Chosen Ciphertext Attack on  | 
59  |  |    RSA Optimal Asymmetric Encryption Padding (OAEP) as Standardized in  | 
60  |  |    PKCS #1 v2.0", James Manger, Crypto 2001  | 
61  |  |  | 
62  |  |    Also have to be careful about timing attacks! Pointed out by Falko  | 
63  |  |    Strenzke.  | 
64  |  |  | 
65  |  |    According to the standard (Section 7.1.1), the encryptor always  | 
66  |  |    creates a message as follows:  | 
67  |  |       i. Concatenate a single octet with hexadecimal value 0x00,  | 
68  |  |          maskedSeed, and maskedDB to form an encoded message EM of  | 
69  |  |          length k octets as  | 
70  |  |             EM = 0x00 || maskedSeed || maskedDB.  | 
71  |  |    where k is the length of the modulus N.  | 
72  |  |    Therefore, the first byte can always be skipped safely.  | 
73  |  |    */  | 
74  |  | 
  | 
75  | 0  |    const uint8_t skip_first = CT::Mask<uint8_t>::is_zero(in[0]).if_set_return(1);  | 
76  |  | 
  | 
77  | 0  |    secure_vector<uint8_t> input(in + skip_first, in + in_length);  | 
78  |  | 
  | 
79  | 0  |    const size_t hlen = m_Phash.size();  | 
80  |  | 
  | 
81  | 0  |    mgf1_mask(*m_mgf1_hash,  | 
82  | 0  |              &input[hlen], input.size() - hlen,  | 
83  | 0  |              input.data(), hlen);  | 
84  |  | 
  | 
85  | 0  |    mgf1_mask(*m_mgf1_hash,  | 
86  | 0  |              input.data(), hlen,  | 
87  | 0  |              &input[hlen], input.size() - hlen);  | 
88  |  | 
  | 
89  | 0  |    return oaep_find_delim(valid_mask, input.data(), input.size(), m_Phash);  | 
90  | 0  |    }  | 
91  |  |  | 
92  |  | secure_vector<uint8_t>  | 
93  |  | oaep_find_delim(uint8_t& valid_mask,  | 
94  |  |                 const uint8_t input[], size_t input_len,  | 
95  |  |                 const secure_vector<uint8_t>& Phash)  | 
96  | 225  |    { | 
97  | 225  |    const size_t hlen = Phash.size();  | 
98  |  |  | 
99  |  |    // Too short to be valid, reject immediately  | 
100  | 225  |    if(input_len < 1 + 2*hlen)  | 
101  | 6  |       { | 
102  | 6  |       return secure_vector<uint8_t>();  | 
103  | 6  |       }  | 
104  |  |  | 
105  | 219  |    CT::poison(input, input_len);  | 
106  |  |  | 
107  | 219  |    size_t delim_idx = 2 * hlen;  | 
108  | 219  |    CT::Mask<uint8_t> waiting_for_delim = CT::Mask<uint8_t>::set();  | 
109  | 219  |    CT::Mask<uint8_t> bad_input_m = CT::Mask<uint8_t>::cleared();  | 
110  |  |  | 
111  | 202k  |    for(size_t i = delim_idx; i < input_len; ++i)  | 
112  | 202k  |       { | 
113  | 202k  |       const auto zero_m = CT::Mask<uint8_t>::is_zero(input[i]);  | 
114  | 202k  |       const auto one_m = CT::Mask<uint8_t>::is_equal(input[i], 1);  | 
115  |  |  | 
116  | 202k  |       const auto add_m = waiting_for_delim & zero_m;  | 
117  |  |  | 
118  | 202k  |       bad_input_m |= waiting_for_delim & ~(zero_m | one_m);  | 
119  |  |  | 
120  | 202k  |       delim_idx += add_m.if_set_return(1);  | 
121  |  |  | 
122  | 202k  |       waiting_for_delim &= zero_m;  | 
123  | 202k  |       }  | 
124  |  |  | 
125  |  |    // If we never saw any non-zero byte, then it's not valid input  | 
126  | 219  |    bad_input_m |= waiting_for_delim;  | 
127  | 219  |    bad_input_m |= CT::Mask<uint8_t>::is_zero(ct_compare_u8(&input[hlen], Phash.data(), hlen));  | 
128  |  |  | 
129  | 219  |    delim_idx += 1;  | 
130  |  |  | 
131  | 219  |    valid_mask = (~bad_input_m).unpoisoned_value();  | 
132  | 219  |    const secure_vector<uint8_t> output = CT::copy_output(bad_input_m, input, input_len, delim_idx);  | 
133  |  |  | 
134  | 219  |    CT::unpoison(input, input_len);  | 
135  |  |  | 
136  | 219  |    return output;  | 
137  | 219  |    }  | 
138  |  |  | 
139  |  | /*  | 
140  |  | * Return the max input size for a given key size  | 
141  |  | */  | 
142  |  | size_t OAEP::maximum_input_size(size_t keybits) const  | 
143  | 0  |    { | 
144  | 0  |    if(keybits / 8 > 2*m_Phash.size() + 1)  | 
145  | 0  |       return ((keybits / 8) - 2*m_Phash.size() - 1);  | 
146  | 0  |    else  | 
147  | 0  |       return 0;  | 
148  | 0  |    }  | 
149  |  |  | 
150  |  | /*  | 
151  |  | * OAEP Constructor  | 
152  |  | */  | 
153  |  | OAEP::OAEP(HashFunction* hash, const std::string& P) : m_mgf1_hash(hash)  | 
154  | 0  |    { | 
155  | 0  |    m_Phash = m_mgf1_hash->process(P);  | 
156  | 0  |    }  | 
157  |  |  | 
158  |  | OAEP::OAEP(HashFunction* hash,  | 
159  |  |            HashFunction* mgf1_hash,  | 
160  |  |            const std::string& P) : m_mgf1_hash(mgf1_hash)  | 
161  | 0  |    { | 
162  | 0  |    std::unique_ptr<HashFunction> phash(hash); // takes ownership  | 
163  | 0  |    m_Phash = phash->process(P);  | 
164  | 0  |    }  | 
165  |  |  | 
166  |  | }  |