Coverage Report

Created: 2021-06-10 10:30

/src/botan/src/lib/pubkey/ec_group/point_mul.cpp
Line
Count
Source (jump to first uncovered line)
1
/*
2
* (C) 2015,2018 Jack Lloyd
3
*
4
* Botan is released under the Simplified BSD License (see license.txt)
5
*/
6
7
#include <botan/internal/point_mul.h>
8
#include <botan/rng.h>
9
#include <botan/reducer.h>
10
#include <botan/internal/rounding.h>
11
#include <botan/internal/ct_utils.h>
12
13
namespace Botan {
14
15
namespace {
16
17
size_t blinding_size(const BigInt& group_order)
18
53.8k
   {
19
53.8k
   return (group_order.bits() + 1) / 2;
20
53.8k
   }
21
22
}
23
24
PointGFp multi_exponentiate(const PointGFp& x, const BigInt& z1,
25
                            const PointGFp& y, const BigInt& z2)
26
0
   {
27
0
   PointGFp_Multi_Point_Precompute xy_mul(x, y);
28
0
   return xy_mul.multi_exp(z1, z2);
29
0
   }
30
31
PointGFp_Base_Point_Precompute::PointGFp_Base_Point_Precompute(const PointGFp& base,
32
                                                               const Modular_Reducer& mod_order) :
33
   m_base_point(base),
34
   m_mod_order(mod_order),
35
   m_p_words(base.get_curve().get_p().sig_words())
36
1.47k
   {
37
1.47k
   std::vector<BigInt> ws(PointGFp::WORKSPACE_SIZE);
38
39
1.47k
   const size_t p_bits = base.get_curve().get_p().bits();
40
41
   /*
42
   * Some of the curves (eg secp160k1) have an order slightly larger than
43
   * the size of the prime modulus. In all cases they are at most 1 bit
44
   * longer. The +1 compensates for this.
45
   */
46
1.47k
   const size_t T_bits = round_up(p_bits + blinding_size(mod_order.get_modulus()) + 1, WINDOW_BITS) / WINDOW_BITS;
47
48
1.47k
   std::vector<PointGFp> T(WINDOW_SIZE*T_bits);
49
50
1.47k
   PointGFp g = base;
51
1.47k
   PointGFp g2, g4;
52
53
204k
   for(size_t i = 0; i != T_bits; i++)
54
203k
      {
55
203k
      g2 = g;
56
203k
      g2.mult2(ws);
57
203k
      g4 = g2;
58
203k
      g4.mult2(ws);
59
60
203k
      T[7*i+0] = g;
61
203k
      T[7*i+1] = std::move(g2);
62
203k
      T[7*i+2] = T[7*i+1].plus(T[7*i+0], ws); // g2+g
63
203k
      T[7*i+3] = g4;
64
203k
      T[7*i+4] = T[7*i+3].plus(T[7*i+0], ws); // g4+g
65
203k
      T[7*i+5] = T[7*i+3].plus(T[7*i+1], ws); // g4+g2
66
203k
      T[7*i+6] = T[7*i+3].plus(T[7*i+2], ws); // g4+g2+g
67
68
203k
      g.swap(g4);
69
203k
      g.mult2(ws);
70
203k
      }
71
72
1.47k
   PointGFp::force_all_affine(T, ws[0].get_word_vector());
73
74
1.47k
   m_W.resize(T.size() * 2 * m_p_words);
75
76
1.47k
   word* p = &m_W[0];
77
1.40M
   for(size_t i = 0; i != T.size(); ++i)
78
1.40M
      {
79
1.40M
      T[i].get_x().encode_words(p, m_p_words);
80
1.40M
      p += m_p_words;
81
1.40M
      T[i].get_y().encode_words(p, m_p_words);
82
1.40M
      p += m_p_words;
83
1.40M
      }
84
1.47k
   }
85
86
PointGFp PointGFp_Base_Point_Precompute::mul(const BigInt& k,
87
                                             RandomNumberGenerator& rng,
88
                                             const BigInt& group_order,
89
                                             std::vector<BigInt>& ws) const
90
32.5k
   {
91
32.5k
   if(k.is_negative())
92
0
      throw Invalid_Argument("PointGFp_Base_Point_Precompute scalar must be positive");
93
94
   // Instead of reducing k mod group order should we alter the mask size??
95
32.5k
   BigInt scalar = m_mod_order.reduce(k);
96
97
32.5k
   if(rng.is_seeded())
98
32.5k
      {
99
      // Choose a small mask m and use k' = k + m*order (Coron's 1st countermeasure)
100
32.5k
      const BigInt mask(rng, blinding_size(group_order));
101
32.5k
      scalar += group_order * mask;
102
32.5k
      }
103
0
   else
104
0
      {
105
      /*
106
      When we don't have an RNG we cannot do scalar blinding. Instead use the
107
      same trick as OpenSSL and add one or two copies of the order to normalize
108
      the length of the scalar at order.bits()+1. This at least ensures the loop
109
      bound does not leak information about the high bits of the scalar.
110
      */
111
0
      scalar += group_order;
112
0
      if(scalar.bits() == group_order.bits())
113
0
         scalar += group_order;
114
0
      BOTAN_DEBUG_ASSERT(scalar.bits() == group_order.bits() + 1);
115
0
      }
116
117
32.5k
   const size_t windows = round_up(scalar.bits(), WINDOW_BITS) / WINDOW_BITS;
118
119
32.5k
   const size_t elem_size = 2*m_p_words;
120
121
32.5k
   BOTAN_ASSERT(windows <= m_W.size() / (3*elem_size),
122
32.5k
                "Precomputed sufficient values for scalar mult");
123
124
32.5k
   PointGFp R = m_base_point.zero();
125
126
32.5k
   if(ws.size() < PointGFp::WORKSPACE_SIZE)
127
21.9k
      ws.resize(PointGFp::WORKSPACE_SIZE);
128
129
   // the precomputed multiples are not secret so use std::vector
130
32.5k
   std::vector<word> Wt(elem_size);
131
132
6.98M
   for(size_t i = 0; i != windows; ++i)
133
6.95M
      {
134
6.95M
      const size_t window = windows - i - 1;
135
6.95M
      const size_t base_addr = (WINDOW_SIZE*window)*elem_size;
136
137
6.95M
      const word w = scalar.get_substring(WINDOW_BITS*window, WINDOW_BITS);
138
139
6.95M
      const auto w_is_1 = CT::Mask<word>::is_equal(w, 1);
140
6.95M
      const auto w_is_2 = CT::Mask<word>::is_equal(w, 2);
141
6.95M
      const auto w_is_3 = CT::Mask<word>::is_equal(w, 3);
142
6.95M
      const auto w_is_4 = CT::Mask<word>::is_equal(w, 4);
143
6.95M
      const auto w_is_5 = CT::Mask<word>::is_equal(w, 5);
144
6.95M
      const auto w_is_6 = CT::Mask<word>::is_equal(w, 6);
145
6.95M
      const auto w_is_7 = CT::Mask<word>::is_equal(w, 7);
146
147
112M
      for(size_t j = 0; j != elem_size; ++j)
148
105M
         {
149
105M
         const word w1 = w_is_1.if_set_return(m_W[base_addr + 0*elem_size + j]);
150
105M
         const word w2 = w_is_2.if_set_return(m_W[base_addr + 1*elem_size + j]);
151
105M
         const word w3 = w_is_3.if_set_return(m_W[base_addr + 2*elem_size + j]);
152
105M
         const word w4 = w_is_4.if_set_return(m_W[base_addr + 3*elem_size + j]);
153
105M
         const word w5 = w_is_5.if_set_return(m_W[base_addr + 4*elem_size + j]);
154
105M
         const word w6 = w_is_6.if_set_return(m_W[base_addr + 5*elem_size + j]);
155
105M
         const word w7 = w_is_7.if_set_return(m_W[base_addr + 6*elem_size + j]);
156
157
105M
         Wt[j] = w1 | w2 | w3 | w4 | w5 | w6 | w7;
158
105M
         }
159
160
6.95M
      R.add_affine(&Wt[0], m_p_words, &Wt[m_p_words], m_p_words, ws);
161
162
6.95M
      if(i == 0 && rng.is_seeded())
163
32.5k
         {
164
         /*
165
         * Since we start with the top bit of the exponent we know the
166
         * first window must have a non-zero element, and thus R is
167
         * now a point other than the point at infinity.
168
         */
169
32.5k
         BOTAN_DEBUG_ASSERT(w != 0);
170
32.5k
         R.randomize_repr(rng, ws[0].get_word_vector());
171
32.5k
         }
172
6.95M
      }
173
174
32.5k
   BOTAN_DEBUG_ASSERT(R.on_the_curve());
175
176
32.5k
   return R;
177
32.5k
   }
178
179
PointGFp_Var_Point_Precompute::PointGFp_Var_Point_Precompute(const PointGFp& point,
180
                                                             RandomNumberGenerator& rng,
181
                                                             std::vector<BigInt>& ws) :
182
   m_curve(point.get_curve()),
183
   m_p_words(m_curve.get_p().sig_words()),
184
   m_window_bits(4)
185
19.9k
   {
186
19.9k
   if(ws.size() < PointGFp::WORKSPACE_SIZE)
187
7.43k
      ws.resize(PointGFp::WORKSPACE_SIZE);
188
189
19.9k
   std::vector<PointGFp> U(static_cast<size_t>(1) << m_window_bits);
190
19.9k
   U[0] = point.zero();
191
19.9k
   U[1] = point;
192
193
159k
   for(size_t i = 2; i < U.size(); i += 2)
194
139k
      {
195
139k
      U[i] = U[i/2].double_of(ws);
196
139k
      U[i+1] = U[i].plus(point, ws);
197
139k
      }
198
199
   // Hack to handle Blinded_Point_Multiply
200
19.9k
   if(rng.is_seeded())
201
19.9k
      {
202
19.9k
      BigInt& mask = ws[0];
203
19.9k
      BigInt& mask2 = ws[1];
204
19.9k
      BigInt& mask3 = ws[2];
205
19.9k
      BigInt& new_x = ws[3];
206
19.9k
      BigInt& new_y = ws[4];
207
19.9k
      BigInt& new_z = ws[5];
208
19.9k
      secure_vector<word>& tmp = ws[6].get_word_vector();
209
210
19.9k
      const CurveGFp& curve = U[0].get_curve();
211
212
19.9k
      const size_t p_bits = curve.get_p().bits();
213
214
      // Skipping zero point since it can't be randomized
215
318k
      for(size_t i = 1; i != U.size(); ++i)
216
298k
         {
217
298k
         mask.randomize(rng, p_bits - 1, false);
218
         // Easy way of ensuring mask != 0
219
298k
         mask.set_bit(0);
220
221
298k
         curve.sqr(mask2, mask, tmp);
222
298k
         curve.mul(mask3, mask, mask2, tmp);
223
224
298k
         curve.mul(new_x, U[i].get_x(), mask2, tmp);
225
298k
         curve.mul(new_y, U[i].get_y(), mask3, tmp);
226
298k
         curve.mul(new_z, U[i].get_z(), mask, tmp);
227
228
298k
         U[i].swap_coords(new_x, new_y, new_z);
229
298k
         }
230
19.9k
      }
231
232
19.9k
   m_T.resize(U.size() * 3 * m_p_words);
233
234
19.9k
   word* p = &m_T[0];
235
338k
   for(size_t i = 0; i != U.size(); ++i)
236
318k
      {
237
318k
      U[i].get_x().encode_words(p              , m_p_words);
238
318k
      U[i].get_y().encode_words(p +   m_p_words, m_p_words);
239
318k
      U[i].get_z().encode_words(p + 2*m_p_words, m_p_words);
240
318k
      p += 3*m_p_words;
241
318k
      }
242
19.9k
   }
243
244
PointGFp PointGFp_Var_Point_Precompute::mul(const BigInt& k,
245
                                            RandomNumberGenerator& rng,
246
                                            const BigInt& group_order,
247
                                            std::vector<BigInt>& ws) const
248
19.9k
   {
249
19.9k
   if(k.is_negative())
250
0
      throw Invalid_Argument("PointGFp_Var_Point_Precompute scalar must be positive");
251
19.9k
   if(ws.size() < PointGFp::WORKSPACE_SIZE)
252
0
      ws.resize(PointGFp::WORKSPACE_SIZE);
253
254
   // Choose a small mask m and use k' = k + m*order (Coron's 1st countermeasure)
255
19.9k
   const BigInt mask(rng, blinding_size(group_order), false);
256
19.9k
   const BigInt scalar = k + group_order * mask;
257
258
19.9k
   const size_t elem_size = 3*m_p_words;
259
19.9k
   const size_t window_elems = static_cast<size_t>(1) << m_window_bits;
260
261
19.9k
   size_t windows = round_up(scalar.bits(), m_window_bits) / m_window_bits;
262
19.9k
   PointGFp R(m_curve);
263
19.9k
   secure_vector<word> e(elem_size);
264
265
19.9k
   if(windows > 0)
266
19.9k
      {
267
19.9k
      windows--;
268
269
19.9k
      const uint32_t w = scalar.get_substring(windows*m_window_bits, m_window_bits);
270
271
19.9k
      clear_mem(e.data(), e.size());
272
318k
      for(size_t i = 1; i != window_elems; ++i)
273
298k
         {
274
298k
         const auto wmask = CT::Mask<word>::is_equal(w, i);
275
276
6.20M
         for(size_t j = 0; j != elem_size; ++j)
277
5.90M
            {
278
5.90M
            e[j] |= wmask.if_set_return(m_T[i * elem_size + j]);
279
5.90M
            }
280
298k
         }
281
282
19.9k
      R.add(&e[0], m_p_words, &e[m_p_words], m_p_words, &e[2*m_p_words], m_p_words, ws);
283
284
      /*
285
      Randomize after adding the first nibble as before the addition R
286
      is zero, and we cannot effectively randomize the point
287
      representation of the zero point.
288
      */
289
19.9k
      R.randomize_repr(rng, ws[0].get_word_vector());
290
19.9k
      }
291
292
3.00M
   while(windows)
293
2.98M
      {
294
2.98M
      R.mult2i(m_window_bits, ws);
295
296
2.98M
      const uint32_t w = scalar.get_substring((windows-1)*m_window_bits, m_window_bits);
297
298
2.98M
      clear_mem(e.data(), e.size());
299
47.7M
      for(size_t i = 1; i != window_elems; ++i)
300
44.7M
         {
301
44.7M
         const auto wmask = CT::Mask<word>::is_equal(w, i);
302
303
1.01G
         for(size_t j = 0; j != elem_size; ++j)
304
968M
            {
305
968M
            e[j] |= wmask.if_set_return(m_T[i * elem_size + j]);
306
968M
            }
307
44.7M
         }
308
309
2.98M
      R.add(&e[0], m_p_words, &e[m_p_words], m_p_words, &e[2*m_p_words], m_p_words, ws);
310
311
2.98M
      windows--;
312
2.98M
      }
313
314
19.9k
   BOTAN_DEBUG_ASSERT(R.on_the_curve());
315
316
19.9k
   return R;
317
19.9k
   }
318
319
320
PointGFp_Multi_Point_Precompute::PointGFp_Multi_Point_Precompute(const PointGFp& x,
321
                                                                 const PointGFp& y)
322
274
   {
323
274
   if(x.on_the_curve() == false || y.on_the_curve() == false)
324
0
      {
325
0
      m_M.push_back(x.zero());
326
0
      return;
327
0
      }
328
329
274
   std::vector<BigInt> ws(PointGFp::WORKSPACE_SIZE);
330
331
274
   PointGFp x2 = x;
332
274
   x2.mult2(ws);
333
334
274
   const PointGFp x3(x2.plus(x, ws));
335
336
274
   PointGFp y2 = y;
337
274
   y2.mult2(ws);
338
339
274
   const PointGFp y3(y2.plus(y, ws));
340
341
274
   m_M.reserve(15);
342
343
274
   m_M.push_back(x);
344
274
   m_M.push_back(x2);
345
274
   m_M.push_back(x3);
346
347
274
   m_M.push_back(y);
348
274
   m_M.push_back(y.plus(x, ws));
349
274
   m_M.push_back(y.plus(x2, ws));
350
274
   m_M.push_back(y.plus(x3, ws));
351
352
274
   m_M.push_back(y2);
353
274
   m_M.push_back(y2.plus(x, ws));
354
274
   m_M.push_back(y2.plus(x2, ws));
355
274
   m_M.push_back(y2.plus(x3, ws));
356
357
274
   m_M.push_back(y3);
358
274
   m_M.push_back(y3.plus(x, ws));
359
274
   m_M.push_back(y3.plus(x2, ws));
360
274
   m_M.push_back(y3.plus(x3, ws));
361
362
274
   bool no_infinity = true;
363
274
   for(auto& pt : m_M)
364
4.11k
      {
365
4.11k
      if(pt.is_zero())
366
285
         no_infinity = false;
367
4.11k
      }
368
369
274
   if(no_infinity)
370
179
      {
371
179
      PointGFp::force_all_affine(m_M, ws[0].get_word_vector());
372
179
      }
373
374
274
   m_no_infinity = no_infinity;
375
274
   }
376
377
PointGFp PointGFp_Multi_Point_Precompute::multi_exp(const BigInt& z1,
378
                                                    const BigInt& z2) const
379
196
   {
380
196
   if(m_M.size() == 1)
381
0
      return m_M[0];
382
383
196
   std::vector<BigInt> ws(PointGFp::WORKSPACE_SIZE);
384
385
196
   const size_t z_bits = round_up(std::max(z1.bits(), z2.bits()), 2);
386
387
196
   PointGFp H = m_M[0].zero();
388
389
34.4k
   for(size_t i = 0; i != z_bits; i += 2)
390
34.2k
      {
391
34.2k
      if(i > 0)
392
34.0k
         {
393
34.0k
         H.mult2i(2, ws);
394
34.0k
         }
395
396
34.2k
      const uint32_t z1_b = z1.get_substring(z_bits - i - 2, 2);
397
34.2k
      const uint32_t z2_b = z2.get_substring(z_bits - i - 2, 2);
398
399
34.2k
      const uint32_t z12 = (4*z2_b) + z1_b;
400
401
      // This function is not intended to be const time
402
34.2k
      if(z12)
403
28.1k
         {
404
28.1k
         if(m_no_infinity)
405
15.8k
            H.add_affine(m_M[z12-1], ws);
406
12.3k
         else
407
12.3k
            H.add(m_M[z12-1], ws);
408
28.1k
         }
409
34.2k
      }
410
411
196
   if(z1.is_negative() != z2.is_negative())
412
0
      H.negate();
413
414
196
   return H;
415
196
   }
416
417
}