Coverage Report

Created: 2021-10-13 08:49

/src/botan/src/lib/block/sm4/sm4.cpp
Line
Count
Source (jump to first uncovered line)
1
/*
2
* SM4
3
* (C) 2017 Ribose Inc
4
* (C) 2018 Jack Lloyd
5
*
6
* Botan is released under the Simplified BSD License (see license.txt)
7
*/
8
9
#include <botan/internal/sm4.h>
10
#include <botan/internal/loadstor.h>
11
#include <botan/internal/rotate.h>
12
#include <botan/internal/cpuid.h>
13
14
namespace Botan {
15
16
namespace {
17
18
alignas(256) const uint8_t SM4_SBOX[256] = {
19
0xD6, 0x90, 0xE9, 0xFE, 0xCC, 0xE1, 0x3D, 0xB7, 0x16, 0xB6, 0x14, 0xC2, 0x28, 0xFB, 0x2C, 0x05,
20
0x2B, 0x67, 0x9A, 0x76, 0x2A, 0xBE, 0x04, 0xC3, 0xAA, 0x44, 0x13, 0x26, 0x49, 0x86, 0x06, 0x99,
21
0x9C, 0x42, 0x50, 0xF4, 0x91, 0xEF, 0x98, 0x7A, 0x33, 0x54, 0x0B, 0x43, 0xED, 0xCF, 0xAC, 0x62,
22
0xE4, 0xB3, 0x1C, 0xA9, 0xC9, 0x08, 0xE8, 0x95, 0x80, 0xDF, 0x94, 0xFA, 0x75, 0x8F, 0x3F, 0xA6,
23
0x47, 0x07, 0xA7, 0xFC, 0xF3, 0x73, 0x17, 0xBA, 0x83, 0x59, 0x3C, 0x19, 0xE6, 0x85, 0x4F, 0xA8,
24
0x68, 0x6B, 0x81, 0xB2, 0x71, 0x64, 0xDA, 0x8B, 0xF8, 0xEB, 0x0F, 0x4B, 0x70, 0x56, 0x9D, 0x35,
25
0x1E, 0x24, 0x0E, 0x5E, 0x63, 0x58, 0xD1, 0xA2, 0x25, 0x22, 0x7C, 0x3B, 0x01, 0x21, 0x78, 0x87,
26
0xD4, 0x00, 0x46, 0x57, 0x9F, 0xD3, 0x27, 0x52, 0x4C, 0x36, 0x02, 0xE7, 0xA0, 0xC4, 0xC8, 0x9E,
27
0xEA, 0xBF, 0x8A, 0xD2, 0x40, 0xC7, 0x38, 0xB5, 0xA3, 0xF7, 0xF2, 0xCE, 0xF9, 0x61, 0x15, 0xA1,
28
0xE0, 0xAE, 0x5D, 0xA4, 0x9B, 0x34, 0x1A, 0x55, 0xAD, 0x93, 0x32, 0x30, 0xF5, 0x8C, 0xB1, 0xE3,
29
0x1D, 0xF6, 0xE2, 0x2E, 0x82, 0x66, 0xCA, 0x60, 0xC0, 0x29, 0x23, 0xAB, 0x0D, 0x53, 0x4E, 0x6F,
30
0xD5, 0xDB, 0x37, 0x45, 0xDE, 0xFD, 0x8E, 0x2F, 0x03, 0xFF, 0x6A, 0x72, 0x6D, 0x6C, 0x5B, 0x51,
31
0x8D, 0x1B, 0xAF, 0x92, 0xBB, 0xDD, 0xBC, 0x7F, 0x11, 0xD9, 0x5C, 0x41, 0x1F, 0x10, 0x5A, 0xD8,
32
0x0A, 0xC1, 0x31, 0x88, 0xA5, 0xCD, 0x7B, 0xBD, 0x2D, 0x74, 0xD0, 0x12, 0xB8, 0xE5, 0xB4, 0xB0,
33
0x89, 0x69, 0x97, 0x4A, 0x0C, 0x96, 0x77, 0x7E, 0x65, 0xB9, 0xF1, 0x09, 0xC5, 0x6E, 0xC6, 0x84,
34
0x18, 0xF0, 0x7D, 0xEC, 0x3A, 0xDC, 0x4D, 0x20, 0x79, 0xEE, 0x5F, 0x3E, 0xD7, 0xCB, 0x39, 0x48
35
};
36
37
/*
38
* SM4_SBOX_T[j] == L(SM4_SBOX[j]).
39
*
40
* Each entry has the form 0xXXYYZZZZ where ZZ = XX ^ YY; can we take
41
* advantage of this to create a smaller equivalent table?
42
*
43
* Additionally YY differs from SBOX[i] by at most 3 (64x 0, 96x 1, 64x 2, 32x 3)
44
*/
45
alignas(256) const uint32_t SM4_SBOX_T[256] = {
46
   0x8ED55B5B, 0xD0924242, 0x4DEAA7A7, 0x06FDFBFB, 0xFCCF3333, 0x65E28787,
47
   0xC93DF4F4, 0x6BB5DEDE, 0x4E165858, 0x6EB4DADA, 0x44145050, 0xCAC10B0B,
48
   0x8828A0A0, 0x17F8EFEF, 0x9C2CB0B0, 0x11051414, 0x872BACAC, 0xFB669D9D,
49
   0xF2986A6A, 0xAE77D9D9, 0x822AA8A8, 0x46BCFAFA, 0x14041010, 0xCFC00F0F,
50
   0x02A8AAAA, 0x54451111, 0x5F134C4C, 0xBE269898, 0x6D482525, 0x9E841A1A,
51
   0x1E061818, 0xFD9B6666, 0xEC9E7272, 0x4A430909, 0x10514141, 0x24F7D3D3,
52
   0xD5934646, 0x53ECBFBF, 0xF89A6262, 0x927BE9E9, 0xFF33CCCC, 0x04555151,
53
   0x270B2C2C, 0x4F420D0D, 0x59EEB7B7, 0xF3CC3F3F, 0x1CAEB2B2, 0xEA638989,
54
   0x74E79393, 0x7FB1CECE, 0x6C1C7070, 0x0DABA6A6, 0xEDCA2727, 0x28082020,
55
   0x48EBA3A3, 0xC1975656, 0x80820202, 0xA3DC7F7F, 0xC4965252, 0x12F9EBEB,
56
   0xA174D5D5, 0xB38D3E3E, 0xC33FFCFC, 0x3EA49A9A, 0x5B461D1D, 0x1B071C1C,
57
   0x3BA59E9E, 0x0CFFF3F3, 0x3FF0CFCF, 0xBF72CDCD, 0x4B175C5C, 0x52B8EAEA,
58
   0x8F810E0E, 0x3D586565, 0xCC3CF0F0, 0x7D196464, 0x7EE59B9B, 0x91871616,
59
   0x734E3D3D, 0x08AAA2A2, 0xC869A1A1, 0xC76AADAD, 0x85830606, 0x7AB0CACA,
60
   0xB570C5C5, 0xF4659191, 0xB2D96B6B, 0xA7892E2E, 0x18FBE3E3, 0x47E8AFAF,
61
   0x330F3C3C, 0x674A2D2D, 0xB071C1C1, 0x0E575959, 0xE99F7676, 0xE135D4D4,
62
   0x661E7878, 0xB4249090, 0x360E3838, 0x265F7979, 0xEF628D8D, 0x38596161,
63
   0x95D24747, 0x2AA08A8A, 0xB1259494, 0xAA228888, 0x8C7DF1F1, 0xD73BECEC,
64
   0x05010404, 0xA5218484, 0x9879E1E1, 0x9B851E1E, 0x84D75353, 0x00000000,
65
   0x5E471919, 0x0B565D5D, 0xE39D7E7E, 0x9FD04F4F, 0xBB279C9C, 0x1A534949,
66
   0x7C4D3131, 0xEE36D8D8, 0x0A020808, 0x7BE49F9F, 0x20A28282, 0xD4C71313,
67
   0xE8CB2323, 0xE69C7A7A, 0x42E9ABAB, 0x43BDFEFE, 0xA2882A2A, 0x9AD14B4B,
68
   0x40410101, 0xDBC41F1F, 0xD838E0E0, 0x61B7D6D6, 0x2FA18E8E, 0x2BF4DFDF,
69
   0x3AF1CBCB, 0xF6CD3B3B, 0x1DFAE7E7, 0xE5608585, 0x41155454, 0x25A38686,
70
   0x60E38383, 0x16ACBABA, 0x295C7575, 0x34A69292, 0xF7996E6E, 0xE434D0D0,
71
   0x721A6868, 0x01545555, 0x19AFB6B6, 0xDF914E4E, 0xFA32C8C8, 0xF030C0C0,
72
   0x21F6D7D7, 0xBC8E3232, 0x75B3C6C6, 0x6FE08F8F, 0x691D7474, 0x2EF5DBDB,
73
   0x6AE18B8B, 0x962EB8B8, 0x8A800A0A, 0xFE679999, 0xE2C92B2B, 0xE0618181,
74
   0xC0C30303, 0x8D29A4A4, 0xAF238C8C, 0x07A9AEAE, 0x390D3434, 0x1F524D4D,
75
   0x764F3939, 0xD36EBDBD, 0x81D65757, 0xB7D86F6F, 0xEB37DCDC, 0x51441515,
76
   0xA6DD7B7B, 0x09FEF7F7, 0xB68C3A3A, 0x932FBCBC, 0x0F030C0C, 0x03FCFFFF,
77
   0xC26BA9A9, 0xBA73C9C9, 0xD96CB5B5, 0xDC6DB1B1, 0x375A6D6D, 0x15504545,
78
   0xB98F3636, 0x771B6C6C, 0x13ADBEBE, 0xDA904A4A, 0x57B9EEEE, 0xA9DE7777,
79
   0x4CBEF2F2, 0x837EFDFD, 0x55114444, 0xBDDA6767, 0x2C5D7171, 0x45400505,
80
   0x631F7C7C, 0x50104040, 0x325B6969, 0xB8DB6363, 0x220A2828, 0xC5C20707,
81
   0xF531C4C4, 0xA88A2222, 0x31A79696, 0xF9CE3737, 0x977AEDED, 0x49BFF6F6,
82
   0x992DB4B4, 0xA475D1D1, 0x90D34343, 0x5A124848, 0x58BAE2E2, 0x71E69797,
83
   0x64B6D2D2, 0x70B2C2C2, 0xAD8B2626, 0xCD68A5A5, 0xCB955E5E, 0x624B2929,
84
   0x3C0C3030, 0xCE945A5A, 0xAB76DDDD, 0x867FF9F9, 0xF1649595, 0x5DBBE6E6,
85
   0x35F2C7C7, 0x2D092424, 0xD1C61717, 0xD66FB9B9, 0xDEC51B1B, 0x94861212,
86
   0x78186060, 0x30F3C3C3, 0x897CF5F5, 0x5CEFB3B3, 0xD23AE8E8, 0xACDF7373,
87
   0x794C3535, 0xA0208080, 0x9D78E5E5, 0x56EDBBBB, 0x235E7D7D, 0xC63EF8F8,
88
   0x8BD45F5F, 0xE7C82F2F, 0xDD39E4E4, 0x68492121 };
89
90
inline uint32_t SM4_T_slow(uint32_t b)
91
0
   {
92
0
   const uint32_t t = make_uint32(SM4_SBOX[get_byte<0>(b)],
93
0
                                  SM4_SBOX[get_byte<1>(b)],
94
0
                                  SM4_SBOX[get_byte<2>(b)],
95
0
                                  SM4_SBOX[get_byte<3>(b)]);
96
97
   // L linear transform
98
0
   return t ^ rotl<2>(t) ^ rotl<10>(t) ^ rotl<18>(t) ^ rotl<24>(t);
99
0
   }
100
101
inline uint32_t SM4_T(uint32_t b)
102
0
   {
103
0
   return     (SM4_SBOX_T[get_byte<0>(b)]) ^
104
0
      rotr< 8>(SM4_SBOX_T[get_byte<1>(b)]) ^
105
0
      rotr<16>(SM4_SBOX_T[get_byte<2>(b)]) ^
106
0
      rotr<24>(SM4_SBOX_T[get_byte<3>(b)]);
107
0
   }
108
109
// Variant of T for key schedule
110
inline uint32_t SM4_Tp(uint32_t b)
111
0
   {
112
0
   const uint32_t t = make_uint32(SM4_SBOX[get_byte<0>(b)],
113
0
                                  SM4_SBOX[get_byte<1>(b)],
114
0
                                  SM4_SBOX[get_byte<2>(b)],
115
0
                                  SM4_SBOX[get_byte<3>(b)]);
116
117
   // L' linear transform
118
0
   return t ^ rotl<13>(t) ^ rotl<23>(t);
119
0
   }
120
121
0
#define SM4_E_RNDS(R, F) do {                      \
122
0
   B0 ^= F(B1 ^ B2 ^ B3 ^ m_RK[4*R+0]);            \
123
0
   B1 ^= F(B2 ^ B3 ^ B0 ^ m_RK[4*R+1]);            \
124
0
   B2 ^= F(B3 ^ B0 ^ B1 ^ m_RK[4*R+2]);            \
125
0
   B3 ^= F(B0 ^ B1 ^ B2 ^ m_RK[4*R+3]);            \
126
0
   } while(0)
127
128
0
#define SM4_Ex2_RNDS(R, F) do {                    \
129
0
   B0 ^= F(B1 ^ B2 ^ B3 ^ m_RK[4*R+0]);            \
130
0
   C0 ^= F(C1 ^ C2 ^ C3 ^ m_RK[4*R+0]);            \
131
0
   B1 ^= F(B2 ^ B3 ^ B0 ^ m_RK[4*R+1]);            \
132
0
   C1 ^= F(C2 ^ C3 ^ C0 ^ m_RK[4*R+1]);            \
133
0
   B2 ^= F(B3 ^ B0 ^ B1 ^ m_RK[4*R+2]);            \
134
0
   C2 ^= F(C3 ^ C0 ^ C1 ^ m_RK[4*R+2]);            \
135
0
   B3 ^= F(B0 ^ B1 ^ B2 ^ m_RK[4*R+3]);            \
136
0
   C3 ^= F(C0 ^ C1 ^ C2 ^ m_RK[4*R+3]);            \
137
0
} while(0)
138
139
0
#define SM4_D_RNDS(R, F) do {                      \
140
0
   B0 ^= F(B1 ^ B2 ^ B3 ^ m_RK[4*R+3]);            \
141
0
   B1 ^= F(B2 ^ B3 ^ B0 ^ m_RK[4*R+2]);            \
142
0
   B2 ^= F(B3 ^ B0 ^ B1 ^ m_RK[4*R+1]);            \
143
0
   B3 ^= F(B0 ^ B1 ^ B2 ^ m_RK[4*R+0]);            \
144
0
   } while(0)
145
146
0
#define SM4_Dx2_RNDS(R, F) do {                    \
147
0
   B0 ^= F(B1 ^ B2 ^ B3 ^ m_RK[4*R+3]);            \
148
0
   C0 ^= F(C1 ^ C2 ^ C3 ^ m_RK[4*R+3]);            \
149
0
   B1 ^= F(B2 ^ B3 ^ B0 ^ m_RK[4*R+2]);            \
150
0
   C1 ^= F(C2 ^ C3 ^ C0 ^ m_RK[4*R+2]);            \
151
0
   B2 ^= F(B3 ^ B0 ^ B1 ^ m_RK[4*R+1]);            \
152
0
   C2 ^= F(C3 ^ C0 ^ C1 ^ m_RK[4*R+1]);            \
153
0
   B3 ^= F(B0 ^ B1 ^ B2 ^ m_RK[4*R+0]);            \
154
0
   C3 ^= F(C0 ^ C1 ^ C2 ^ m_RK[4*R+0]);            \
155
0
} while(0)
156
157
}
158
159
/*
160
* SM4 Encryption
161
*/
162
void SM4::encrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const
163
0
   {
164
0
   verify_key_set(m_RK.empty() == false);
165
166
#if defined(BOTAN_HAS_SM4_ARMV8)
167
   if(CPUID::has_arm_sm4())
168
      return sm4_armv8_encrypt(in, out, blocks);
169
#endif
170
171
0
   while(blocks >= 2)
172
0
      {
173
0
      uint32_t B0 = load_be<uint32_t>(in, 0);
174
0
      uint32_t B1 = load_be<uint32_t>(in, 1);
175
0
      uint32_t B2 = load_be<uint32_t>(in, 2);
176
0
      uint32_t B3 = load_be<uint32_t>(in, 3);
177
178
0
      uint32_t C0 = load_be<uint32_t>(in, 4);
179
0
      uint32_t C1 = load_be<uint32_t>(in, 5);
180
0
      uint32_t C2 = load_be<uint32_t>(in, 6);
181
0
      uint32_t C3 = load_be<uint32_t>(in, 7);
182
183
0
      SM4_Ex2_RNDS(0, SM4_T_slow);
184
0
      SM4_Ex2_RNDS(1, SM4_T);
185
0
      SM4_Ex2_RNDS(2, SM4_T);
186
0
      SM4_Ex2_RNDS(3, SM4_T);
187
0
      SM4_Ex2_RNDS(4, SM4_T);
188
0
      SM4_Ex2_RNDS(5, SM4_T);
189
0
      SM4_Ex2_RNDS(6, SM4_T);
190
0
      SM4_Ex2_RNDS(7, SM4_T_slow);
191
192
0
      store_be(out, B3, B2, B1, B0, C3, C2, C1, C0);
193
194
0
      in += 2*BLOCK_SIZE;
195
0
      out += 2*BLOCK_SIZE;
196
0
      blocks -= 2;
197
0
      }
198
199
0
   for(size_t i = 0; i != blocks; ++i)
200
0
      {
201
0
      uint32_t B0 = load_be<uint32_t>(in, 0);
202
0
      uint32_t B1 = load_be<uint32_t>(in, 1);
203
0
      uint32_t B2 = load_be<uint32_t>(in, 2);
204
0
      uint32_t B3 = load_be<uint32_t>(in, 3);
205
206
0
      SM4_E_RNDS(0, SM4_T_slow);
207
0
      SM4_E_RNDS(1, SM4_T);
208
0
      SM4_E_RNDS(2, SM4_T);
209
0
      SM4_E_RNDS(3, SM4_T);
210
0
      SM4_E_RNDS(4, SM4_T);
211
0
      SM4_E_RNDS(5, SM4_T);
212
0
      SM4_E_RNDS(6, SM4_T);
213
0
      SM4_E_RNDS(7, SM4_T_slow);
214
215
0
      store_be(out, B3, B2, B1, B0);
216
217
0
      in += BLOCK_SIZE;
218
0
      out += BLOCK_SIZE;
219
0
      }
220
0
   }
221
222
/*
223
* SM4 Decryption
224
*/
225
void SM4::decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const
226
0
   {
227
0
   verify_key_set(m_RK.empty() == false);
228
229
#if defined(BOTAN_HAS_SM4_ARMV8)
230
   if(CPUID::has_arm_sm4())
231
      return sm4_armv8_decrypt(in, out, blocks);
232
#endif
233
234
0
   while(blocks >= 2)
235
0
      {
236
0
      uint32_t B0 = load_be<uint32_t>(in, 0);
237
0
      uint32_t B1 = load_be<uint32_t>(in, 1);
238
0
      uint32_t B2 = load_be<uint32_t>(in, 2);
239
0
      uint32_t B3 = load_be<uint32_t>(in, 3);
240
241
0
      uint32_t C0 = load_be<uint32_t>(in, 4);
242
0
      uint32_t C1 = load_be<uint32_t>(in, 5);
243
0
      uint32_t C2 = load_be<uint32_t>(in, 6);
244
0
      uint32_t C3 = load_be<uint32_t>(in, 7);
245
246
0
      SM4_Dx2_RNDS(7, SM4_T_slow);
247
0
      SM4_Dx2_RNDS(6, SM4_T);
248
0
      SM4_Dx2_RNDS(5, SM4_T);
249
0
      SM4_Dx2_RNDS(4, SM4_T);
250
0
      SM4_Dx2_RNDS(3, SM4_T);
251
0
      SM4_Dx2_RNDS(2, SM4_T);
252
0
      SM4_Dx2_RNDS(1, SM4_T);
253
0
      SM4_Dx2_RNDS(0, SM4_T_slow);
254
255
0
      store_be(out, B3, B2, B1, B0, C3, C2, C1, C0);
256
257
0
      in += 2*BLOCK_SIZE;
258
0
      out += 2*BLOCK_SIZE;
259
0
      blocks -= 2;
260
0
      }
261
262
0
   for(size_t i = 0; i != blocks; ++i)
263
0
      {
264
0
      uint32_t B0 = load_be<uint32_t>(in, 0);
265
0
      uint32_t B1 = load_be<uint32_t>(in, 1);
266
0
      uint32_t B2 = load_be<uint32_t>(in, 2);
267
0
      uint32_t B3 = load_be<uint32_t>(in, 3);
268
269
0
      SM4_D_RNDS(7, SM4_T_slow);
270
0
      SM4_D_RNDS(6, SM4_T);
271
0
      SM4_D_RNDS(5, SM4_T);
272
0
      SM4_D_RNDS(4, SM4_T);
273
0
      SM4_D_RNDS(3, SM4_T);
274
0
      SM4_D_RNDS(2, SM4_T);
275
0
      SM4_D_RNDS(1, SM4_T);
276
0
      SM4_D_RNDS(0, SM4_T_slow);
277
278
0
      store_be(out, B3, B2, B1, B0);
279
280
0
      in += BLOCK_SIZE;
281
0
      out += BLOCK_SIZE;
282
0
      }
283
0
   }
284
285
#undef SM4_E_RNDS
286
#undef SM4_D_RNDS
287
288
/*
289
* SM4 Key Schedule
290
*/
291
void SM4::key_schedule(const uint8_t key[], size_t)
292
0
   {
293
   // System parameter or family key
294
0
   const uint32_t FK[4] = { 0xa3b1bac6, 0x56aa3350, 0x677d9197, 0xb27022dc };
295
296
0
   const uint32_t CK[32] = {
297
0
      0x00070E15, 0x1C232A31, 0x383F464D, 0x545B6269,
298
0
      0x70777E85, 0x8C939AA1, 0xA8AFB6BD, 0xC4CBD2D9,
299
0
      0xE0E7EEF5, 0xFC030A11, 0x181F262D, 0x343B4249,
300
0
      0x50575E65, 0x6C737A81, 0x888F969D, 0xA4ABB2B9,
301
0
      0xC0C7CED5, 0xDCE3EAF1, 0xF8FF060D, 0x141B2229,
302
0
      0x30373E45, 0x4C535A61, 0x686F767D, 0x848B9299,
303
0
      0xA0A7AEB5, 0xBCC3CAD1, 0xD8DFE6ED, 0xF4FB0209,
304
0
      0x10171E25, 0x2C333A41, 0x484F565D, 0x646B7279
305
0
   };
306
307
0
   secure_vector<uint32_t> K(4);
308
0
   K[0] = load_be<uint32_t>(key, 0) ^ FK[0];
309
0
   K[1] = load_be<uint32_t>(key, 1) ^ FK[1];
310
0
   K[2] = load_be<uint32_t>(key, 2) ^ FK[2];
311
0
   K[3] = load_be<uint32_t>(key, 3) ^ FK[3];
312
313
0
   m_RK.resize(32);
314
0
   for(size_t i = 0; i != 32; ++i)
315
0
      {
316
0
      K[i % 4] ^= SM4_Tp(K[(i+1)%4] ^ K[(i+2)%4] ^ K[(i+3)%4] ^ CK[i]);
317
0
      m_RK[i] = K[i % 4];
318
0
      }
319
0
   }
320
321
void SM4::clear()
322
0
   {
323
0
   zap(m_RK);
324
0
   }
325
326
size_t SM4::parallelism() const
327
0
   {
328
#if defined(BOTAN_HAS_SM4_ARMV8)
329
   if(CPUID::has_arm_sm4())
330
      {
331
      return 4;
332
      }
333
#endif
334
335
0
   return 1;
336
0
   }
337
338
std::string SM4::provider() const
339
0
   {
340
#if defined(BOTAN_HAS_SM4_ARMV8)
341
   if(CPUID::has_arm_sm4())
342
      {
343
      return "armv8";
344
      }
345
#endif
346
347
0
   return "base";
348
0
   }
349
350
}