Coverage Report

Created: 2023-06-05 07:26

/src/botan/src/lib/modes/cbc/cbc.cpp
Line
Count
Source (jump to first uncovered line)
1
/*
2
* CBC Mode
3
* (C) 1999-2007,2013,2017 Jack Lloyd
4
* (C) 2016 Daniel Neus, Rohde & Schwarz Cybersecurity
5
* (C) 2018 Ribose Inc
6
*
7
* Botan is released under the Simplified BSD License (see license.txt)
8
*/
9
10
#include <botan/internal/cbc.h>
11
12
#include <botan/internal/fmt.h>
13
#include <botan/internal/mode_pad.h>
14
#include <botan/internal/rounding.h>
15
16
namespace Botan {
17
18
CBC_Mode::CBC_Mode(std::unique_ptr<BlockCipher> cipher, std::unique_ptr<BlockCipherModePaddingMethod> padding) :
19
262
      m_cipher(std::move(cipher)), m_padding(std::move(padding)), m_block_size(m_cipher->block_size()) {
20
262
   if(m_padding && !m_padding->valid_blocksize(m_block_size)) {
21
0
      throw Invalid_Argument(fmt("Padding {} cannot be used with {} in CBC mode", m_padding->name(), m_cipher->name()));
22
0
   }
23
262
}
24
25
0
void CBC_Mode::clear() {
26
0
   m_cipher->clear();
27
0
   reset();
28
0
}
29
30
0
void CBC_Mode::reset() { m_state.clear(); }
31
32
0
std::string CBC_Mode::name() const {
33
0
   if(m_padding) {
34
0
      return fmt("{}/CBC/{}", cipher().name(), padding().name());
35
0
   } else {
36
0
      return fmt("{}/CBC/CTS", cipher().name());
37
0
   }
38
0
}
39
40
0
size_t CBC_Mode::update_granularity() const { return cipher().block_size(); }
41
42
173
size_t CBC_Mode::ideal_granularity() const { return cipher().parallel_bytes(); }
43
44
262
Key_Length_Specification CBC_Mode::key_spec() const { return cipher().key_spec(); }
45
46
0
size_t CBC_Mode::default_nonce_length() const { return block_size(); }
47
48
179
bool CBC_Mode::valid_nonce_length(size_t n) const { return (n == 0 || n == block_size()); }
49
50
0
bool CBC_Mode::has_keying_material() const { return m_cipher->has_keying_material(); }
51
52
262
void CBC_Mode::key_schedule(const uint8_t key[], size_t length) {
53
262
   m_cipher->set_key(key, length);
54
262
   m_state.clear();
55
262
}
56
57
179
void CBC_Mode::start_msg(const uint8_t nonce[], size_t nonce_len) {
58
179
   if(!valid_nonce_length(nonce_len)) {
59
0
      throw Invalid_IV_Length(name(), nonce_len);
60
0
   }
61
62
   /*
63
   * A nonce of zero length means carry the last ciphertext value over
64
   * as the new IV, as unfortunately some protocols require this. If
65
   * this is the first message then we use an IV of all zeros.
66
   */
67
179
   if(nonce_len) {
68
179
      m_state.assign(nonce, nonce + nonce_len);
69
179
   } else if(m_state.empty()) {
70
0
      m_state.resize(m_cipher->block_size());
71
0
   }
72
   // else leave the state alone
73
179
}
74
75
0
size_t CBC_Encryption::minimum_final_size() const { return 0; }
76
77
0
size_t CBC_Encryption::output_length(size_t input_length) const {
78
0
   if(input_length == 0) {
79
0
      return block_size();
80
0
   } else {
81
0
      return round_up(input_length, block_size());
82
0
   }
83
0
}
84
85
113
size_t CBC_Encryption::process_msg(uint8_t buf[], size_t sz) {
86
113
   BOTAN_STATE_CHECK(state().empty() == false);
87
113
   const size_t BS = block_size();
88
89
113
   BOTAN_ARG_CHECK(sz % BS == 0, "CBC input is not full blocks");
90
113
   const size_t blocks = sz / BS;
91
92
113
   if(blocks > 0) {
93
113
      xor_buf(&buf[0], state_ptr(), BS);
94
113
      cipher().encrypt(&buf[0]);
95
96
419
      for(size_t i = 1; i != blocks; ++i) {
97
306
         xor_buf(&buf[BS * i], &buf[BS * (i - 1)], BS);
98
306
         cipher().encrypt(&buf[BS * i]);
99
306
      }
100
101
113
      state().assign(&buf[BS * (blocks - 1)], &buf[BS * blocks]);
102
113
   }
103
104
113
   return sz;
105
113
}
106
107
0
void CBC_Encryption::finish_msg(secure_vector<uint8_t>& buffer, size_t offset) {
108
0
   BOTAN_STATE_CHECK(state().empty() == false);
109
0
   BOTAN_ARG_CHECK(buffer.size() >= offset, "Offset is out of range");
110
111
0
   const size_t BS = block_size();
112
113
0
   const size_t bytes_in_final_block = (buffer.size() - offset) % BS;
114
115
0
   padding().add_padding(buffer, bytes_in_final_block, BS);
116
117
0
   BOTAN_ASSERT_EQUAL(buffer.size() % BS, offset % BS, "Padded to block boundary");
118
119
0
   update(buffer, offset);
120
0
}
121
122
0
bool CTS_Encryption::valid_nonce_length(size_t n) const { return (n == block_size()); }
123
124
0
size_t CTS_Encryption::minimum_final_size() const { return block_size() + 1; }
125
126
0
size_t CTS_Encryption::output_length(size_t input_length) const {
127
0
   return input_length;  // no ciphertext expansion in CTS
128
0
}
129
130
0
void CTS_Encryption::finish_msg(secure_vector<uint8_t>& buffer, size_t offset) {
131
0
   BOTAN_STATE_CHECK(state().empty() == false);
132
0
   BOTAN_ARG_CHECK(buffer.size() >= offset, "Offset is out of range");
133
0
   uint8_t* buf = buffer.data() + offset;
134
0
   const size_t sz = buffer.size() - offset;
135
136
0
   const size_t BS = block_size();
137
138
0
   if(sz < BS + 1) {
139
0
      throw Encoding_Error(name() + ": insufficient data to encrypt");
140
0
   }
141
142
0
   if(sz % BS == 0) {
143
0
      update(buffer, offset);
144
145
      // swap last two blocks
146
0
      for(size_t i = 0; i != BS; ++i) {
147
0
         std::swap(buffer[buffer.size() - BS + i], buffer[buffer.size() - 2 * BS + i]);
148
0
      }
149
0
   } else {
150
0
      const size_t full_blocks = ((sz / BS) - 1) * BS;
151
0
      const size_t final_bytes = sz - full_blocks;
152
0
      BOTAN_ASSERT(final_bytes > BS && final_bytes < 2 * BS, "Left over size in expected range");
153
154
0
      secure_vector<uint8_t> last(buf + full_blocks, buf + full_blocks + final_bytes);
155
0
      buffer.resize(full_blocks + offset);
156
0
      update(buffer, offset);
157
158
0
      xor_buf(last.data(), state_ptr(), BS);
159
0
      cipher().encrypt(last.data());
160
161
0
      for(size_t i = 0; i != final_bytes - BS; ++i) {
162
0
         last[i] ^= last[i + BS];
163
0
         last[i + BS] ^= last[i];
164
0
      }
165
166
0
      cipher().encrypt(last.data());
167
168
0
      buffer += last;
169
0
   }
170
0
}
171
172
0
size_t CBC_Decryption::output_length(size_t input_length) const {
173
0
   return input_length;  // precise for CTS, worst case otherwise
174
0
}
175
176
0
size_t CBC_Decryption::minimum_final_size() const { return block_size(); }
177
178
66
size_t CBC_Decryption::process_msg(uint8_t buf[], size_t sz) {
179
66
   BOTAN_STATE_CHECK(state().empty() == false);
180
181
66
   const size_t BS = block_size();
182
183
66
   BOTAN_ARG_CHECK(sz % BS == 0, "Input is not full blocks");
184
66
   size_t blocks = sz / BS;
185
186
1.17k
   while(blocks) {
187
1.11k
      const size_t to_proc = std::min(BS * blocks, m_tempbuf.size());
188
189
1.11k
      cipher().decrypt_n(buf, m_tempbuf.data(), to_proc / BS);
190
191
1.11k
      xor_buf(m_tempbuf.data(), state_ptr(), BS);
192
1.11k
      xor_buf(&m_tempbuf[BS], buf, to_proc - BS);
193
1.11k
      copy_mem(state_ptr(), buf + (to_proc - BS), BS);
194
195
1.11k
      copy_mem(buf, m_tempbuf.data(), to_proc);
196
197
1.11k
      buf += to_proc;
198
1.11k
      blocks -= to_proc / BS;
199
1.11k
   }
200
201
66
   return sz;
202
66
}
203
204
0
void CBC_Decryption::finish_msg(secure_vector<uint8_t>& buffer, size_t offset) {
205
0
   BOTAN_STATE_CHECK(state().empty() == false);
206
0
   BOTAN_ARG_CHECK(buffer.size() >= offset, "Offset is out of range");
207
0
   const size_t sz = buffer.size() - offset;
208
209
0
   const size_t BS = block_size();
210
211
0
   if(sz == 0 || sz % BS) {
212
0
      throw Decoding_Error(name() + ": Ciphertext not a multiple of block size");
213
0
   }
214
215
0
   update(buffer, offset);
216
217
0
   const size_t pad_bytes = BS - padding().unpad(&buffer[buffer.size() - BS], BS);
218
0
   buffer.resize(buffer.size() - pad_bytes);  // remove padding
219
0
   if(pad_bytes == 0 && padding().name() != "NoPadding") {
220
0
      throw Decoding_Error("Invalid CBC padding");
221
0
   }
222
0
}
223
224
0
void CBC_Decryption::reset() {
225
0
   CBC_Mode::reset();
226
0
   zeroise(m_tempbuf);
227
0
}
228
229
0
bool CTS_Decryption::valid_nonce_length(size_t n) const { return (n == block_size()); }
230
231
0
size_t CTS_Decryption::minimum_final_size() const { return block_size() + 1; }
232
233
0
void CTS_Decryption::finish_msg(secure_vector<uint8_t>& buffer, size_t offset) {
234
0
   BOTAN_STATE_CHECK(state().empty() == false);
235
0
   BOTAN_ARG_CHECK(buffer.size() >= offset, "Offset is out of range");
236
0
   const size_t sz = buffer.size() - offset;
237
0
   uint8_t* buf = buffer.data() + offset;
238
239
0
   const size_t BS = block_size();
240
241
0
   if(sz < BS + 1) {
242
0
      throw Encoding_Error(name() + ": insufficient data to decrypt");
243
0
   }
244
245
0
   if(sz % BS == 0) {
246
      // swap last two blocks
247
248
0
      for(size_t i = 0; i != BS; ++i) {
249
0
         std::swap(buffer[buffer.size() - BS + i], buffer[buffer.size() - 2 * BS + i]);
250
0
      }
251
252
0
      update(buffer, offset);
253
0
   } else {
254
0
      const size_t full_blocks = ((sz / BS) - 1) * BS;
255
0
      const size_t final_bytes = sz - full_blocks;
256
0
      BOTAN_ASSERT(final_bytes > BS && final_bytes < 2 * BS, "Left over size in expected range");
257
258
0
      secure_vector<uint8_t> last(buf + full_blocks, buf + full_blocks + final_bytes);
259
0
      buffer.resize(full_blocks + offset);
260
0
      update(buffer, offset);
261
262
0
      cipher().decrypt(last.data());
263
264
0
      xor_buf(last.data(), &last[BS], final_bytes - BS);
265
266
0
      for(size_t i = 0; i != final_bytes - BS; ++i) {
267
0
         std::swap(last[i], last[i + BS]);
268
0
      }
269
270
0
      cipher().decrypt(last.data());
271
0
      xor_buf(last.data(), state_ptr(), BS);
272
273
0
      buffer += last;
274
0
   }
275
0
}
276
277
}  // namespace Botan