/src/botan/src/lib/x509/x509cert.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * X.509 Certificates |
3 | | * (C) 1999-2010,2015,2017 Jack Lloyd |
4 | | * (C) 2016 René Korthaus, Rohde & Schwarz Cybersecurity |
5 | | * |
6 | | * Botan is released under the Simplified BSD License (see license.txt) |
7 | | */ |
8 | | |
9 | | #include <botan/x509cert.h> |
10 | | |
11 | | #include <botan/ber_dec.h> |
12 | | #include <botan/bigint.h> |
13 | | #include <botan/hash.h> |
14 | | #include <botan/hex.h> |
15 | | #include <botan/pk_keys.h> |
16 | | #include <botan/x509_ext.h> |
17 | | #include <botan/x509_key.h> |
18 | | #include <botan/internal/parsing.h> |
19 | | #include <algorithm> |
20 | | #include <sstream> |
21 | | |
22 | | namespace Botan { |
23 | | |
24 | | struct X509_Certificate_Data { |
25 | | std::vector<uint8_t> m_serial; |
26 | | AlgorithmIdentifier m_sig_algo_inner; |
27 | | X509_DN m_issuer_dn; |
28 | | X509_DN m_subject_dn; |
29 | | std::vector<uint8_t> m_issuer_dn_bits; |
30 | | std::vector<uint8_t> m_subject_dn_bits; |
31 | | X509_Time m_not_before; |
32 | | X509_Time m_not_after; |
33 | | std::vector<uint8_t> m_subject_public_key_bits; |
34 | | std::vector<uint8_t> m_subject_public_key_bits_seq; |
35 | | std::vector<uint8_t> m_subject_public_key_bitstring; |
36 | | std::vector<uint8_t> m_subject_public_key_bitstring_sha1; |
37 | | AlgorithmIdentifier m_subject_public_key_algid; |
38 | | |
39 | | std::vector<uint8_t> m_v2_issuer_key_id; |
40 | | std::vector<uint8_t> m_v2_subject_key_id; |
41 | | Extensions m_v3_extensions; |
42 | | |
43 | | std::vector<OID> m_extended_key_usage; |
44 | | std::vector<uint8_t> m_authority_key_id; |
45 | | std::vector<uint8_t> m_subject_key_id; |
46 | | std::vector<OID> m_cert_policies; |
47 | | |
48 | | std::vector<std::string> m_crl_distribution_points; |
49 | | std::string m_ocsp_responder; |
50 | | std::vector<std::string> m_ca_issuers; |
51 | | |
52 | | std::vector<uint8_t> m_issuer_dn_bits_sha256; |
53 | | std::vector<uint8_t> m_subject_dn_bits_sha256; |
54 | | |
55 | | std::string m_fingerprint_sha1; |
56 | | std::string m_fingerprint_sha256; |
57 | | |
58 | | AlternativeName m_subject_alt_name; |
59 | | AlternativeName m_issuer_alt_name; |
60 | | NameConstraints m_name_constraints; |
61 | | |
62 | | size_t m_version = 0; |
63 | | size_t m_path_len_constraint = 0; |
64 | | Key_Constraints m_key_constraints; |
65 | | bool m_self_signed = false; |
66 | | bool m_is_ca_certificate = false; |
67 | | bool m_serial_negative = false; |
68 | | }; |
69 | | |
70 | 15.9k | std::string X509_Certificate::PEM_label() const { |
71 | 15.9k | return "CERTIFICATE"; |
72 | 15.9k | } |
73 | | |
74 | 310 | std::vector<std::string> X509_Certificate::alternate_PEM_labels() const { |
75 | 310 | return {"X509 CERTIFICATE"}; |
76 | 310 | } |
77 | | |
78 | 24.0k | X509_Certificate::X509_Certificate(DataSource& src) { |
79 | 24.0k | load_data(src); |
80 | 24.0k | } |
81 | | |
82 | 1.68k | X509_Certificate::X509_Certificate(const std::vector<uint8_t>& vec) { |
83 | 1.68k | DataSource_Memory src(vec.data(), vec.size()); |
84 | 1.68k | load_data(src); |
85 | 1.68k | } |
86 | | |
87 | 4.51k | X509_Certificate::X509_Certificate(const uint8_t data[], size_t len) { |
88 | 4.51k | DataSource_Memory src(data, len); |
89 | 4.51k | load_data(src); |
90 | 4.51k | } |
91 | | |
92 | | #if defined(BOTAN_TARGET_OS_HAS_FILESYSTEM) |
93 | 0 | X509_Certificate::X509_Certificate(std::string_view fsname) { |
94 | 0 | DataSource_Stream src(fsname, true); |
95 | 0 | load_data(src); |
96 | 0 | } |
97 | | #endif |
98 | | |
99 | | namespace { |
100 | | |
101 | 23.2k | std::unique_ptr<X509_Certificate_Data> parse_x509_cert_body(const X509_Object& obj) { |
102 | 23.2k | auto data = std::make_unique<X509_Certificate_Data>(); |
103 | | |
104 | 23.2k | BigInt serial_bn; |
105 | 23.2k | BER_Object public_key; |
106 | 23.2k | BER_Object v3_exts_data; |
107 | | |
108 | 23.2k | BER_Decoder(obj.signed_body()) |
109 | 23.2k | .decode_optional(data->m_version, ASN1_Type(0), ASN1_Class::Constructed | ASN1_Class::ContextSpecific) |
110 | 23.2k | .decode(serial_bn) |
111 | 23.2k | .decode(data->m_sig_algo_inner) |
112 | 23.2k | .decode(data->m_issuer_dn) |
113 | 23.2k | .start_sequence() |
114 | 23.2k | .decode(data->m_not_before) |
115 | 23.2k | .decode(data->m_not_after) |
116 | 23.2k | .end_cons() |
117 | 23.2k | .decode(data->m_subject_dn) |
118 | 23.2k | .get_next(public_key) |
119 | 23.2k | .decode_optional_string(data->m_v2_issuer_key_id, ASN1_Type::BitString, 1) |
120 | 23.2k | .decode_optional_string(data->m_v2_subject_key_id, ASN1_Type::BitString, 2) |
121 | 23.2k | .get_next(v3_exts_data) |
122 | 23.2k | .verify_end("TBSCertificate has extra data after extensions block"); |
123 | | |
124 | 23.2k | if(data->m_version > 2) { |
125 | 7 | throw Decoding_Error("Unknown X.509 cert version " + std::to_string(data->m_version)); |
126 | 7 | } |
127 | 23.2k | if(obj.signature_algorithm() != data->m_sig_algo_inner) { |
128 | 462 | throw Decoding_Error("X.509 Certificate had differing algorithm identifers in inner and outer ID fields"); |
129 | 462 | } |
130 | | |
131 | 22.7k | public_key.assert_is_a(ASN1_Type::Sequence, ASN1_Class::Constructed, "X.509 certificate public key"); |
132 | | |
133 | | // crude method to save the serial's sign; will get lost during decoding, otherwise |
134 | 22.7k | data->m_serial_negative = serial_bn.is_negative(); |
135 | | |
136 | | // for general sanity convert wire version (0 based) to standards version (v1 .. v3) |
137 | 22.7k | data->m_version += 1; |
138 | | |
139 | 22.7k | data->m_serial = BigInt::encode(serial_bn); |
140 | 22.7k | data->m_subject_dn_bits = ASN1::put_in_sequence(data->m_subject_dn.get_bits()); |
141 | 22.7k | data->m_issuer_dn_bits = ASN1::put_in_sequence(data->m_issuer_dn.get_bits()); |
142 | | |
143 | 22.7k | data->m_subject_public_key_bits.assign(public_key.bits(), public_key.bits() + public_key.length()); |
144 | | |
145 | 22.7k | data->m_subject_public_key_bits_seq = ASN1::put_in_sequence(data->m_subject_public_key_bits); |
146 | | |
147 | 22.7k | BER_Decoder(data->m_subject_public_key_bits) |
148 | 22.7k | .decode(data->m_subject_public_key_algid) |
149 | 22.7k | .decode(data->m_subject_public_key_bitstring, ASN1_Type::BitString); |
150 | | |
151 | 22.7k | if(v3_exts_data.is_a(3, ASN1_Class::Constructed | ASN1_Class::ContextSpecific)) { |
152 | | // Path validation will reject a v1/v2 cert with v3 extensions |
153 | 5.82k | BER_Decoder(v3_exts_data).decode(data->m_v3_extensions).verify_end(); |
154 | 16.9k | } else if(v3_exts_data.is_set()) { |
155 | 176 | throw BER_Bad_Tag("Unknown tag in X.509 cert", v3_exts_data.tagging()); |
156 | 176 | } |
157 | | |
158 | | // Now cache some fields from the extensions |
159 | 22.6k | if(auto ext = data->m_v3_extensions.get_extension_object_as<Cert_Extension::Key_Usage>()) { |
160 | 347 | data->m_key_constraints = ext->get_constraints(); |
161 | | /* |
162 | | RFC 5280: When the keyUsage extension appears in a certificate, |
163 | | at least one of the bits MUST be set to 1. |
164 | | */ |
165 | 347 | if(data->m_key_constraints.empty()) { |
166 | 3 | throw Decoding_Error("Certificate has invalid encoding for KeyUsage"); |
167 | 3 | } |
168 | 347 | } |
169 | | |
170 | 22.6k | if(auto ext = data->m_v3_extensions.get_extension_object_as<Cert_Extension::Subject_Key_ID>()) { |
171 | 392 | data->m_subject_key_id = ext->get_key_id(); |
172 | 392 | } |
173 | | |
174 | 22.6k | if(auto ext = data->m_v3_extensions.get_extension_object_as<Cert_Extension::Authority_Key_ID>()) { |
175 | 186 | data->m_authority_key_id = ext->get_key_id(); |
176 | 186 | } |
177 | | |
178 | 22.6k | if(auto ext = data->m_v3_extensions.get_extension_object_as<Cert_Extension::Name_Constraints>()) { |
179 | 73 | data->m_name_constraints = ext->get_name_constraints(); |
180 | 73 | } |
181 | | |
182 | 22.6k | if(auto ext = data->m_v3_extensions.get_extension_object_as<Cert_Extension::Basic_Constraints>()) { |
183 | 316 | if(ext->get_is_ca() == true) { |
184 | | /* |
185 | | * RFC 5280 section 4.2.1.3 requires that CAs include KeyUsage in all |
186 | | * intermediate CA certificates they issue. Currently we accept it being |
187 | | * missing, as do most other implementations. But it may be worth |
188 | | * removing this entirely, or alternately adding a warning level |
189 | | * validation failure for it. |
190 | | */ |
191 | 163 | if(data->m_key_constraints.empty() || data->m_key_constraints.includes(Key_Constraints::KeyCertSign)) { |
192 | 149 | data->m_is_ca_certificate = true; |
193 | 149 | data->m_path_len_constraint = ext->get_path_limit(); |
194 | 149 | } |
195 | 163 | } |
196 | 316 | } |
197 | | |
198 | 22.6k | if(auto ext = data->m_v3_extensions.get_extension_object_as<Cert_Extension::Issuer_Alternative_Name>()) { |
199 | 434 | data->m_issuer_alt_name = ext->get_alt_name(); |
200 | 434 | } |
201 | | |
202 | 22.6k | if(auto ext = data->m_v3_extensions.get_extension_object_as<Cert_Extension::Subject_Alternative_Name>()) { |
203 | 500 | data->m_subject_alt_name = ext->get_alt_name(); |
204 | 500 | } |
205 | | |
206 | 22.6k | if(auto ext = data->m_v3_extensions.get_extension_object_as<Cert_Extension::Extended_Key_Usage>()) { |
207 | 100 | data->m_extended_key_usage = ext->object_identifiers(); |
208 | 100 | } |
209 | | |
210 | 22.6k | if(auto ext = data->m_v3_extensions.get_extension_object_as<Cert_Extension::Certificate_Policies>()) { |
211 | 81 | data->m_cert_policies = ext->get_policy_oids(); |
212 | 81 | } |
213 | | |
214 | 22.6k | if(auto ext = data->m_v3_extensions.get_extension_object_as<Cert_Extension::Authority_Information_Access>()) { |
215 | 120 | data->m_ocsp_responder = ext->ocsp_responder(); |
216 | 120 | data->m_ca_issuers = ext->ca_issuers(); |
217 | 120 | } |
218 | | |
219 | 22.6k | if(auto ext = data->m_v3_extensions.get_extension_object_as<Cert_Extension::CRL_Distribution_Points>()) { |
220 | 231 | data->m_crl_distribution_points = ext->crl_distribution_urls(); |
221 | 231 | } |
222 | | |
223 | | // Check for self-signed vs self-issued certificates |
224 | 22.6k | if(data->m_subject_dn == data->m_issuer_dn) { |
225 | 16.5k | if(data->m_subject_key_id.empty() == false && data->m_authority_key_id.empty() == false) { |
226 | 68 | data->m_self_signed = (data->m_subject_key_id == data->m_authority_key_id); |
227 | 16.4k | } else { |
228 | | /* |
229 | | If a parse error or unknown algorithm is encountered, default |
230 | | to assuming it is self signed. We have no way of being certain but |
231 | | that is usually the default case (self-issued is rare in practice). |
232 | | */ |
233 | 16.4k | data->m_self_signed = true; |
234 | | |
235 | 16.4k | try { |
236 | 16.4k | auto pub_key = X509::load_key(data->m_subject_public_key_bits_seq); |
237 | | |
238 | 16.4k | const auto sig_status = obj.verify_signature(*pub_key); |
239 | | |
240 | 16.4k | if(sig_status.first == Certificate_Status_Code::OK || |
241 | 16.4k | sig_status.first == Certificate_Status_Code::SIGNATURE_ALGO_UNKNOWN) { |
242 | 6.44k | data->m_self_signed = true; |
243 | 10.0k | } else { |
244 | 10.0k | data->m_self_signed = false; |
245 | 10.0k | } |
246 | 16.4k | } catch(...) { |
247 | | // ignore errors here to allow parsing to continue |
248 | 5.45k | } |
249 | 16.4k | } |
250 | 16.5k | } |
251 | | |
252 | 22.6k | const std::vector<uint8_t> full_encoding = obj.BER_encode(); |
253 | | |
254 | 22.6k | auto sha1 = HashFunction::create("SHA-1"); |
255 | 22.6k | if(sha1) { |
256 | 18.1k | sha1->update(data->m_subject_public_key_bitstring); |
257 | 18.1k | data->m_subject_public_key_bitstring_sha1 = sha1->final_stdvec(); |
258 | | // otherwise left as empty, and we will throw if subject_public_key_bitstring_sha1 is called |
259 | | |
260 | 18.1k | data->m_fingerprint_sha1 = create_hex_fingerprint(full_encoding, "SHA-1"); |
261 | 18.1k | } |
262 | | |
263 | 22.6k | auto sha256 = HashFunction::create("SHA-256"); |
264 | 22.6k | if(sha256) { |
265 | 18.1k | sha256->update(data->m_issuer_dn_bits); |
266 | 18.1k | data->m_issuer_dn_bits_sha256 = sha256->final_stdvec(); |
267 | | |
268 | 18.1k | sha256->update(data->m_subject_dn_bits); |
269 | 18.1k | data->m_subject_dn_bits_sha256 = sha256->final_stdvec(); |
270 | | |
271 | 18.1k | data->m_fingerprint_sha256 = create_hex_fingerprint(full_encoding, "SHA-256"); |
272 | 18.1k | } |
273 | | |
274 | 22.6k | return data; |
275 | 22.6k | } |
276 | | |
277 | | } // namespace |
278 | | |
279 | | /* |
280 | | * Decode the TBSCertificate data |
281 | | */ |
282 | 23.2k | void X509_Certificate::force_decode() { |
283 | 23.2k | m_data.reset(); |
284 | 23.2k | m_data = parse_x509_cert_body(*this); |
285 | 23.2k | } |
286 | | |
287 | 8.74k | const X509_Certificate_Data& X509_Certificate::data() const { |
288 | 8.74k | if(m_data == nullptr) { |
289 | 0 | throw Invalid_State("X509_Certificate uninitialized"); |
290 | 0 | } |
291 | 8.74k | return *m_data; |
292 | 8.74k | } |
293 | | |
294 | 4 | uint32_t X509_Certificate::x509_version() const { |
295 | 4 | return static_cast<uint32_t>(data().m_version); |
296 | 4 | } |
297 | | |
298 | 1.78k | bool X509_Certificate::is_self_signed() const { |
299 | 1.78k | return data().m_self_signed; |
300 | 1.78k | } |
301 | | |
302 | 2 | const X509_Time& X509_Certificate::not_before() const { |
303 | 2 | return data().m_not_before; |
304 | 2 | } |
305 | | |
306 | 2 | const X509_Time& X509_Certificate::not_after() const { |
307 | 2 | return data().m_not_after; |
308 | 2 | } |
309 | | |
310 | 0 | const AlgorithmIdentifier& X509_Certificate::subject_public_key_algo() const { |
311 | 0 | return data().m_subject_public_key_algid; |
312 | 0 | } |
313 | | |
314 | 0 | const std::vector<uint8_t>& X509_Certificate::v2_issuer_key_id() const { |
315 | 0 | return data().m_v2_issuer_key_id; |
316 | 0 | } |
317 | | |
318 | 0 | const std::vector<uint8_t>& X509_Certificate::v2_subject_key_id() const { |
319 | 0 | return data().m_v2_subject_key_id; |
320 | 0 | } |
321 | | |
322 | 0 | const std::vector<uint8_t>& X509_Certificate::subject_public_key_bits() const { |
323 | 0 | return data().m_subject_public_key_bits; |
324 | 0 | } |
325 | | |
326 | 672 | const std::vector<uint8_t>& X509_Certificate::subject_public_key_info() const { |
327 | 672 | return data().m_subject_public_key_bits_seq; |
328 | 672 | } |
329 | | |
330 | 0 | const std::vector<uint8_t>& X509_Certificate::subject_public_key_bitstring() const { |
331 | 0 | return data().m_subject_public_key_bitstring; |
332 | 0 | } |
333 | | |
334 | 0 | const std::vector<uint8_t>& X509_Certificate::subject_public_key_bitstring_sha1() const { |
335 | 0 | if(data().m_subject_public_key_bitstring_sha1.empty()) { |
336 | 0 | throw Encoding_Error("X509_Certificate::subject_public_key_bitstring_sha1 called but SHA-1 disabled in build"); |
337 | 0 | } |
338 | | |
339 | 0 | return data().m_subject_public_key_bitstring_sha1; |
340 | 0 | } |
341 | | |
342 | 1.34k | const std::vector<uint8_t>& X509_Certificate::authority_key_id() const { |
343 | 1.34k | return data().m_authority_key_id; |
344 | 1.34k | } |
345 | | |
346 | 33 | const std::vector<uint8_t>& X509_Certificate::subject_key_id() const { |
347 | 33 | return data().m_subject_key_id; |
348 | 33 | } |
349 | | |
350 | 0 | const std::vector<uint8_t>& X509_Certificate::serial_number() const { |
351 | 0 | return data().m_serial; |
352 | 0 | } |
353 | | |
354 | 2 | bool X509_Certificate::is_serial_negative() const { |
355 | 2 | return data().m_serial_negative; |
356 | 2 | } |
357 | | |
358 | 739 | const X509_DN& X509_Certificate::issuer_dn() const { |
359 | 739 | return data().m_issuer_dn; |
360 | 739 | } |
361 | | |
362 | 719 | const X509_DN& X509_Certificate::subject_dn() const { |
363 | 719 | return data().m_subject_dn; |
364 | 719 | } |
365 | | |
366 | 0 | const std::vector<uint8_t>& X509_Certificate::raw_issuer_dn() const { |
367 | 0 | return data().m_issuer_dn_bits; |
368 | 0 | } |
369 | | |
370 | 0 | const std::vector<uint8_t>& X509_Certificate::raw_subject_dn() const { |
371 | 0 | return data().m_subject_dn_bits; |
372 | 0 | } |
373 | | |
374 | 2 | bool X509_Certificate::is_CA_cert() const { |
375 | 2 | if(data().m_version < 3 && data().m_self_signed) { |
376 | 0 | return true; |
377 | 0 | } |
378 | | |
379 | 2 | return data().m_is_ca_certificate; |
380 | 2 | } |
381 | | |
382 | 1 | uint32_t X509_Certificate::path_limit() const { |
383 | 1 | if(data().m_version < 3 && data().m_self_signed) { |
384 | 0 | return 32; // in theory infinite, but this is more than enough |
385 | 0 | } |
386 | | |
387 | 1 | return static_cast<uint32_t>(data().m_path_len_constraint); |
388 | 1 | } |
389 | | |
390 | 1 | Key_Constraints X509_Certificate::constraints() const { |
391 | 1 | return data().m_key_constraints; |
392 | 1 | } |
393 | | |
394 | 0 | const std::vector<OID>& X509_Certificate::extended_key_usage() const { |
395 | 0 | return data().m_extended_key_usage; |
396 | 0 | } |
397 | | |
398 | 0 | const std::vector<OID>& X509_Certificate::certificate_policy_oids() const { |
399 | 0 | return data().m_cert_policies; |
400 | 0 | } |
401 | | |
402 | 0 | const NameConstraints& X509_Certificate::name_constraints() const { |
403 | 0 | return data().m_name_constraints; |
404 | 0 | } |
405 | | |
406 | 2 | const Extensions& X509_Certificate::v3_extensions() const { |
407 | 2 | return data().m_v3_extensions; |
408 | 2 | } |
409 | | |
410 | 1 | bool X509_Certificate::has_constraints(Key_Constraints usage) const { |
411 | | // Unlike allowed_usage, returns false if constraints was not set |
412 | 1 | return constraints().includes(usage); |
413 | 1 | } |
414 | | |
415 | 0 | bool X509_Certificate::allowed_usage(Key_Constraints usage) const { |
416 | 0 | if(constraints().empty()) { |
417 | 0 | return true; |
418 | 0 | } |
419 | 0 | return constraints().includes(usage); |
420 | 0 | } |
421 | | |
422 | 0 | bool X509_Certificate::allowed_extended_usage(std::string_view usage) const { |
423 | 0 | return allowed_extended_usage(OID::from_string(usage)); |
424 | 0 | } |
425 | | |
426 | 0 | bool X509_Certificate::allowed_extended_usage(const OID& usage) const { |
427 | 0 | const std::vector<OID>& ex = extended_key_usage(); |
428 | 0 | if(ex.empty()) { |
429 | 0 | return true; |
430 | 0 | } |
431 | | |
432 | 0 | if(std::find(ex.begin(), ex.end(), usage) != ex.end()) { |
433 | 0 | return true; |
434 | 0 | } |
435 | | |
436 | 0 | return false; |
437 | 0 | } |
438 | | |
439 | 1 | bool X509_Certificate::allowed_usage(Usage_Type usage) const { |
440 | | // These follow suggestions in RFC 5280 4.2.1.12 |
441 | | |
442 | 1 | switch(usage) { |
443 | 1 | case Usage_Type::UNSPECIFIED: |
444 | 1 | return true; |
445 | | |
446 | 0 | case Usage_Type::TLS_SERVER_AUTH: |
447 | 0 | return (allowed_usage(Key_Constraints::KeyAgreement) || allowed_usage(Key_Constraints::KeyEncipherment) || |
448 | 0 | allowed_usage(Key_Constraints::DigitalSignature)) && |
449 | 0 | allowed_extended_usage("PKIX.ServerAuth"); |
450 | | |
451 | 0 | case Usage_Type::TLS_CLIENT_AUTH: |
452 | 0 | return (allowed_usage(Key_Constraints::DigitalSignature) || allowed_usage(Key_Constraints::KeyAgreement)) && |
453 | 0 | allowed_extended_usage("PKIX.ClientAuth"); |
454 | | |
455 | 0 | case Usage_Type::OCSP_RESPONDER: |
456 | 0 | return (allowed_usage(Key_Constraints::DigitalSignature) || allowed_usage(Key_Constraints::NonRepudiation)) && |
457 | 0 | has_ex_constraint("PKIX.OCSPSigning"); |
458 | | |
459 | 0 | case Usage_Type::CERTIFICATE_AUTHORITY: |
460 | 0 | return is_CA_cert(); |
461 | | |
462 | 0 | case Usage_Type::ENCRYPTION: |
463 | 0 | return (allowed_usage(Key_Constraints::KeyEncipherment) || allowed_usage(Key_Constraints::DataEncipherment)); |
464 | 1 | } |
465 | | |
466 | 0 | return false; |
467 | 1 | } |
468 | | |
469 | 0 | bool X509_Certificate::has_ex_constraint(std::string_view ex_constraint) const { |
470 | 0 | return has_ex_constraint(OID::from_string(ex_constraint)); |
471 | 0 | } |
472 | | |
473 | 0 | bool X509_Certificate::has_ex_constraint(const OID& usage) const { |
474 | 0 | const std::vector<OID>& ex = extended_key_usage(); |
475 | 0 | return (std::find(ex.begin(), ex.end(), usage) != ex.end()); |
476 | 0 | } |
477 | | |
478 | | /* |
479 | | * Return if a certificate extension is marked critical |
480 | | */ |
481 | 0 | bool X509_Certificate::is_critical(std::string_view ex_name) const { |
482 | 0 | return v3_extensions().critical_extension_set(OID::from_string(ex_name)); |
483 | 0 | } |
484 | | |
485 | 0 | std::string X509_Certificate::ocsp_responder() const { |
486 | 0 | return data().m_ocsp_responder; |
487 | 0 | } |
488 | | |
489 | 0 | std::vector<std::string> X509_Certificate::ca_issuers() const { |
490 | 0 | return data().m_ca_issuers; |
491 | 0 | } |
492 | | |
493 | 0 | std::vector<std::string> X509_Certificate::crl_distribution_points() const { |
494 | 0 | return data().m_crl_distribution_points; |
495 | 0 | } |
496 | | |
497 | 0 | std::string X509_Certificate::crl_distribution_point() const { |
498 | | // just returns the first (arbitrarily) |
499 | 0 | if(!data().m_crl_distribution_points.empty()) { |
500 | 0 | return data().m_crl_distribution_points[0]; |
501 | 0 | } |
502 | 0 | return ""; |
503 | 0 | } |
504 | | |
505 | 0 | const AlternativeName& X509_Certificate::subject_alt_name() const { |
506 | 0 | return data().m_subject_alt_name; |
507 | 0 | } |
508 | | |
509 | 0 | const AlternativeName& X509_Certificate::issuer_alt_name() const { |
510 | 0 | return data().m_issuer_alt_name; |
511 | 0 | } |
512 | | |
513 | | namespace { |
514 | | |
515 | 0 | std::vector<std::string> get_cert_user_info(std::string_view req, const X509_DN& dn, const AlternativeName& alt_name) { |
516 | 0 | auto set_to_vector = [](const std::set<std::string>& s) -> std::vector<std::string> { return {s.begin(), s.end()}; }; |
517 | |
|
518 | 0 | if(dn.has_field(req)) { |
519 | 0 | return dn.get_attribute(req); |
520 | 0 | } else if(req == "RFC822" || req == "Email") { |
521 | 0 | return set_to_vector(alt_name.email()); |
522 | 0 | } else if(req == "DNS") { |
523 | 0 | return set_to_vector(alt_name.dns()); |
524 | 0 | } else if(req == "URI") { |
525 | 0 | return set_to_vector(alt_name.uris()); |
526 | 0 | } else if(req == "IP") { |
527 | 0 | std::vector<std::string> ip_str; |
528 | 0 | for(uint32_t ipv4 : alt_name.ipv4_address()) { |
529 | 0 | ip_str.push_back(ipv4_to_string(ipv4)); |
530 | 0 | } |
531 | 0 | return ip_str; |
532 | 0 | } else { |
533 | 0 | return {}; |
534 | 0 | } |
535 | 0 | } |
536 | | |
537 | | } // namespace |
538 | | |
539 | | /* |
540 | | * Return information about the subject |
541 | | */ |
542 | 0 | std::vector<std::string> X509_Certificate::subject_info(std::string_view req) const { |
543 | 0 | return get_cert_user_info(req, subject_dn(), subject_alt_name()); |
544 | 0 | } |
545 | | |
546 | | /* |
547 | | * Return information about the issuer |
548 | | */ |
549 | 0 | std::vector<std::string> X509_Certificate::issuer_info(std::string_view req) const { |
550 | 0 | return get_cert_user_info(req, issuer_dn(), issuer_alt_name()); |
551 | 0 | } |
552 | | |
553 | | /* |
554 | | * Return the public key in this certificate |
555 | | */ |
556 | 672 | std::unique_ptr<Public_Key> X509_Certificate::subject_public_key() const { |
557 | 672 | try { |
558 | 672 | return std::unique_ptr<Public_Key>(X509::load_key(subject_public_key_info())); |
559 | 672 | } catch(std::exception& e) { |
560 | 515 | throw Decoding_Error("X509_Certificate::subject_public_key", e); |
561 | 515 | } |
562 | 672 | } |
563 | | |
564 | 0 | std::unique_ptr<Public_Key> X509_Certificate::load_subject_public_key() const { |
565 | 0 | return this->subject_public_key(); |
566 | 0 | } |
567 | | |
568 | 0 | std::vector<uint8_t> X509_Certificate::raw_issuer_dn_sha256() const { |
569 | 0 | if(data().m_issuer_dn_bits_sha256.empty()) { |
570 | 0 | throw Encoding_Error("X509_Certificate::raw_issuer_dn_sha256 called but SHA-256 disabled in build"); |
571 | 0 | } |
572 | 0 | return data().m_issuer_dn_bits_sha256; |
573 | 0 | } |
574 | | |
575 | 0 | std::vector<uint8_t> X509_Certificate::raw_subject_dn_sha256() const { |
576 | 0 | if(data().m_subject_dn_bits_sha256.empty()) { |
577 | 0 | throw Encoding_Error("X509_Certificate::raw_subject_dn_sha256 called but SHA-256 disabled in build"); |
578 | 0 | } |
579 | 0 | return data().m_subject_dn_bits_sha256; |
580 | 0 | } |
581 | | |
582 | 1.71k | std::string X509_Certificate::fingerprint(std::string_view hash_name) const { |
583 | | /* |
584 | | * The SHA-1 and SHA-256 fingerprints are precomputed since these |
585 | | * are the most commonly used. Especially, SHA-256 fingerprints are |
586 | | * used for cycle detection during path construction. |
587 | | * |
588 | | * If SHA-1 or SHA-256 was missing at parsing time the vectors are |
589 | | * left empty in which case we fall back to create_hex_fingerprint |
590 | | * which will throw if the hash is unavailable. |
591 | | */ |
592 | 1.71k | if(hash_name == "SHA-256" && !data().m_fingerprint_sha256.empty()) { |
593 | 1.71k | return data().m_fingerprint_sha256; |
594 | 1.71k | } else if(hash_name == "SHA-1" && !data().m_fingerprint_sha1.empty()) { |
595 | 0 | return data().m_fingerprint_sha1; |
596 | 0 | } else { |
597 | 0 | return create_hex_fingerprint(this->BER_encode(), hash_name); |
598 | 0 | } |
599 | 1.71k | } |
600 | | |
601 | 0 | bool X509_Certificate::matches_dns_name(std::string_view name) const { |
602 | 0 | if(name.empty()) { |
603 | 0 | return false; |
604 | 0 | } |
605 | | |
606 | 0 | auto issued_names = subject_info("DNS"); |
607 | | |
608 | | // Fall back to CN only if no DNS names are set (RFC 6125 sec 6.4.4) |
609 | 0 | if(issued_names.empty()) { |
610 | 0 | issued_names = subject_info("Name"); |
611 | 0 | } |
612 | |
|
613 | 0 | for(const auto& issued_name : issued_names) { |
614 | 0 | if(host_wildcard_match(issued_name, name)) { |
615 | 0 | return true; |
616 | 0 | } |
617 | 0 | } |
618 | | |
619 | 0 | return false; |
620 | 0 | } |
621 | | |
622 | | /* |
623 | | * Compare two certificates for equality |
624 | | */ |
625 | 0 | bool X509_Certificate::operator==(const X509_Certificate& other) const { |
626 | 0 | return (this->signature() == other.signature() && this->signature_algorithm() == other.signature_algorithm() && |
627 | 0 | this->signed_body() == other.signed_body()); |
628 | 0 | } |
629 | | |
630 | 0 | bool X509_Certificate::operator<(const X509_Certificate& other) const { |
631 | | /* If signature values are not equal, sort by lexicographic ordering of that */ |
632 | 0 | if(this->signature() != other.signature()) { |
633 | 0 | return (this->signature() < other.signature()); |
634 | 0 | } |
635 | | |
636 | | // Then compare the signed contents |
637 | 0 | return this->signed_body() < other.signed_body(); |
638 | 0 | } |
639 | | |
640 | | /* |
641 | | * X.509 Certificate Comparison |
642 | | */ |
643 | 0 | bool operator!=(const X509_Certificate& cert1, const X509_Certificate& cert2) { |
644 | 0 | return !(cert1 == cert2); |
645 | 0 | } |
646 | | |
647 | 0 | std::string X509_Certificate::to_string() const { |
648 | 0 | std::ostringstream out; |
649 | |
|
650 | 0 | out << "Version: " << this->x509_version() << "\n"; |
651 | 0 | out << "Subject: " << subject_dn() << "\n"; |
652 | 0 | out << "Issuer: " << issuer_dn() << "\n"; |
653 | 0 | out << "Issued: " << this->not_before().readable_string() << "\n"; |
654 | 0 | out << "Expires: " << this->not_after().readable_string() << "\n"; |
655 | |
|
656 | 0 | out << "Constraints:\n"; |
657 | 0 | Key_Constraints constraints = this->constraints(); |
658 | 0 | if(constraints.empty()) { |
659 | 0 | out << " None\n"; |
660 | 0 | } else { |
661 | 0 | if(constraints.includes(Key_Constraints::DigitalSignature)) { |
662 | 0 | out << " Digital Signature\n"; |
663 | 0 | } |
664 | 0 | if(constraints.includes(Key_Constraints::NonRepudiation)) { |
665 | 0 | out << " Non-Repudiation\n"; |
666 | 0 | } |
667 | 0 | if(constraints.includes(Key_Constraints::KeyEncipherment)) { |
668 | 0 | out << " Key Encipherment\n"; |
669 | 0 | } |
670 | 0 | if(constraints.includes(Key_Constraints::DataEncipherment)) { |
671 | 0 | out << " Data Encipherment\n"; |
672 | 0 | } |
673 | 0 | if(constraints.includes(Key_Constraints::KeyAgreement)) { |
674 | 0 | out << " Key Agreement\n"; |
675 | 0 | } |
676 | 0 | if(constraints.includes(Key_Constraints::KeyCertSign)) { |
677 | 0 | out << " Cert Sign\n"; |
678 | 0 | } |
679 | 0 | if(constraints.includes(Key_Constraints::CrlSign)) { |
680 | 0 | out << " CRL Sign\n"; |
681 | 0 | } |
682 | 0 | if(constraints.includes(Key_Constraints::EncipherOnly)) { |
683 | 0 | out << " Encipher Only\n"; |
684 | 0 | } |
685 | 0 | if(constraints.includes(Key_Constraints::DecipherOnly)) { |
686 | 0 | out << " Decipher Only\n"; |
687 | 0 | } |
688 | 0 | } |
689 | |
|
690 | 0 | const std::vector<OID>& policies = this->certificate_policy_oids(); |
691 | 0 | if(!policies.empty()) { |
692 | 0 | out << "Policies: " |
693 | 0 | << "\n"; |
694 | 0 | for(const auto& oid : policies) { |
695 | 0 | out << " " << oid.to_string() << "\n"; |
696 | 0 | } |
697 | 0 | } |
698 | |
|
699 | 0 | const std::vector<OID>& ex_constraints = this->extended_key_usage(); |
700 | 0 | if(!ex_constraints.empty()) { |
701 | 0 | out << "Extended Constraints:\n"; |
702 | 0 | for(auto&& oid : ex_constraints) { |
703 | 0 | out << " " << oid.to_formatted_string() << "\n"; |
704 | 0 | } |
705 | 0 | } |
706 | |
|
707 | 0 | const NameConstraints& name_constraints = this->name_constraints(); |
708 | |
|
709 | 0 | if(!name_constraints.permitted().empty() || !name_constraints.excluded().empty()) { |
710 | 0 | out << "Name Constraints:\n"; |
711 | |
|
712 | 0 | if(!name_constraints.permitted().empty()) { |
713 | 0 | out << " Permit"; |
714 | 0 | for(const auto& st : name_constraints.permitted()) { |
715 | 0 | out << " " << st.base(); |
716 | 0 | } |
717 | 0 | out << "\n"; |
718 | 0 | } |
719 | |
|
720 | 0 | if(!name_constraints.excluded().empty()) { |
721 | 0 | out << " Exclude"; |
722 | 0 | for(const auto& st : name_constraints.excluded()) { |
723 | 0 | out << " " << st.base(); |
724 | 0 | } |
725 | 0 | out << "\n"; |
726 | 0 | } |
727 | 0 | } |
728 | |
|
729 | 0 | if(!ocsp_responder().empty()) { |
730 | 0 | out << "OCSP responder " << ocsp_responder() << "\n"; |
731 | 0 | } |
732 | |
|
733 | 0 | const std::vector<std::string> ca_issuers = this->ca_issuers(); |
734 | 0 | if(!ca_issuers.empty()) { |
735 | 0 | out << "CA Issuers:\n"; |
736 | 0 | for(const auto& ca_issuer : ca_issuers) { |
737 | 0 | out << " URI: " << ca_issuer << "\n"; |
738 | 0 | } |
739 | 0 | } |
740 | |
|
741 | 0 | for(const auto& cdp : crl_distribution_points()) { |
742 | 0 | out << "CRL " << cdp << "\n"; |
743 | 0 | } |
744 | |
|
745 | 0 | out << "Signature algorithm: " << this->signature_algorithm().oid().to_formatted_string() << "\n"; |
746 | |
|
747 | 0 | out << "Serial number: " << hex_encode(this->serial_number()) << "\n"; |
748 | |
|
749 | 0 | if(!this->authority_key_id().empty()) { |
750 | 0 | out << "Authority keyid: " << hex_encode(this->authority_key_id()) << "\n"; |
751 | 0 | } |
752 | |
|
753 | 0 | if(!this->subject_key_id().empty()) { |
754 | 0 | out << "Subject keyid: " << hex_encode(this->subject_key_id()) << "\n"; |
755 | 0 | } |
756 | |
|
757 | 0 | try { |
758 | 0 | auto pubkey = this->subject_public_key(); |
759 | 0 | out << "Public Key [" << pubkey->algo_name() << "-" << pubkey->key_length() << "]\n\n"; |
760 | 0 | out << X509::PEM_encode(*pubkey); |
761 | 0 | } catch(Decoding_Error&) { |
762 | 0 | const AlgorithmIdentifier& alg_id = this->subject_public_key_algo(); |
763 | 0 | out << "Failed to decode key with oid " << alg_id.oid().to_string() << "\n"; |
764 | 0 | } |
765 | |
|
766 | 0 | return out.str(); |
767 | 0 | } |
768 | | |
769 | | } // namespace Botan |