Coverage Report

Created: 2024-10-01 06:14

/src/botan/build/include/public/botan/numthry.h
Line
Count
Source
1
/*
2
* Number Theory Functions
3
* (C) 1999-2007,2018 Jack Lloyd
4
*
5
* Botan is released under the Simplified BSD License (see license.txt)
6
*/
7
8
#ifndef BOTAN_NUMBER_THEORY_H_
9
#define BOTAN_NUMBER_THEORY_H_
10
11
#include <botan/bigint.h>
12
13
namespace Botan {
14
15
class RandomNumberGenerator;
16
17
/**
18
* Return the absolute value
19
* @param n an integer
20
* @return absolute value of n
21
*/
22
256
inline BigInt abs(const BigInt& n) {
23
256
   return n.abs();
24
256
}
25
26
/**
27
* Compute the greatest common divisor
28
* @param x a positive integer
29
* @param y a positive integer
30
* @return gcd(x,y)
31
*/
32
BigInt BOTAN_PUBLIC_API(2, 0) gcd(const BigInt& x, const BigInt& y);
33
34
/**
35
* Least common multiple
36
* @param x a positive integer
37
* @param y a positive integer
38
* @return z, smallest integer such that z % x == 0 and z % y == 0
39
*/
40
BigInt BOTAN_PUBLIC_API(2, 0) lcm(const BigInt& x, const BigInt& y);
41
42
/**
43
* @param x an integer
44
* @return (x*x)
45
*/
46
BigInt BOTAN_PUBLIC_API(2, 0) square(const BigInt& x);
47
48
/**
49
* Modular inversion. This algorithm is const time with respect to x,
50
* as long as x is less than modulus. It also avoids leaking
51
* information about the modulus, except that it does leak which of 3
52
* categories the modulus is in: an odd integer, a power of 2, or some
53
* other even number, and if the modulus is even, leaks the power of 2
54
* which divides the modulus.
55
*
56
* @param x a positive integer
57
* @param modulus a positive integer
58
* @return y st (x*y) % modulus == 1 or 0 if no such value
59
*/
60
BigInt BOTAN_PUBLIC_API(2, 0) inverse_mod(const BigInt& x, const BigInt& modulus);
61
62
/**
63
* Compute the Jacobi symbol. If n is prime, this is equivalent
64
* to the Legendre symbol.
65
* @see http://mathworld.wolfram.com/JacobiSymbol.html
66
*
67
* @param a is a non-negative integer
68
* @param n is an odd integer > 1
69
* @return (n / m)
70
*/
71
int32_t BOTAN_PUBLIC_API(2, 0) jacobi(const BigInt& a, const BigInt& n);
72
73
/**
74
* Modular exponentation
75
* @param b an integer base
76
* @param x a positive exponent
77
* @param m a positive modulus
78
* @return (b^x) % m
79
*/
80
BigInt BOTAN_PUBLIC_API(2, 0) power_mod(const BigInt& b, const BigInt& x, const BigInt& m);
81
82
/**
83
* Compute the square root of x modulo a prime using the Tonelli-Shanks
84
* algorithm. This algorithm is primarily used for EC point
85
* decompression which takes only public inputs, as a consequence it is
86
* not written to be constant-time and may leak side-channel information
87
* about its arguments.
88
*
89
* @param x the input
90
* @param p the prime modulus
91
* @return y such that (y*y)%p == x, or -1 if no such integer
92
*/
93
BigInt BOTAN_PUBLIC_API(3, 0) sqrt_modulo_prime(const BigInt& x, const BigInt& p);
94
95
/**
96
* @param x an integer
97
* @return count of the low zero bits in x, or, equivalently, the
98
*         largest value of n such that 2^n divides x evenly. Returns
99
*         zero if x is equal to zero.
100
*/
101
size_t BOTAN_PUBLIC_API(2, 0) low_zero_bits(const BigInt& x);
102
103
/**
104
* Check for primality
105
*
106
* This uses probabilistic algorithms - there is some non-zero (but very low)
107
* probability that this function will return true even if *n* is actually
108
* composite.
109
*
110
* @param n a positive integer to test for primality
111
* @param rng a random number generator
112
* @param prob chance of false positive is bounded by 1/2**prob
113
* @param is_random true if n was randomly chosen by us
114
* @return true if all primality tests passed, otherwise false
115
*/
116
bool BOTAN_PUBLIC_API(2, 0)
117
   is_prime(const BigInt& n, RandomNumberGenerator& rng, size_t prob = 64, bool is_random = false);
118
119
/**
120
* Test if the positive integer x is a perfect square ie if there
121
* exists some positive integer y st y*y == x
122
* See FIPS 186-4 sec C.4
123
* @return 0 if the integer is not a perfect square, otherwise
124
*         returns the positive y st y*y == x
125
*/
126
BigInt BOTAN_PUBLIC_API(2, 8) is_perfect_square(const BigInt& x);
127
128
/**
129
* Randomly generate a prime suitable for discrete logarithm parameters
130
* @param rng a random number generator
131
* @param bits how large the resulting prime should be in bits
132
* @param coprime a positive integer that (prime - 1) should be coprime to
133
* @param equiv a non-negative number that the result should be
134
               equivalent to modulo equiv_mod
135
* @param equiv_mod the modulus equiv should be checked against
136
* @param prob use test so false positive is bounded by 1/2**prob
137
* @return random prime with the specified criteria
138
*/
139
BigInt BOTAN_PUBLIC_API(2, 0) random_prime(RandomNumberGenerator& rng,
140
                                           size_t bits,
141
                                           const BigInt& coprime = BigInt::from_u64(0),
142
                                           size_t equiv = 1,
143
                                           size_t equiv_mod = 2,
144
                                           size_t prob = 128);
145
146
/**
147
* Generate a prime suitable for RSA p/q
148
* @param keygen_rng a random number generator
149
* @param prime_test_rng a random number generator
150
* @param bits how large the resulting prime should be in bits (must be >= 512)
151
* @param coprime a positive integer that (prime - 1) should be coprime to
152
* @param prob use test so false positive is bounded by 1/2**prob
153
* @return random prime with the specified criteria
154
*/
155
BigInt BOTAN_PUBLIC_API(2, 7) generate_rsa_prime(RandomNumberGenerator& keygen_rng,
156
                                                 RandomNumberGenerator& prime_test_rng,
157
                                                 size_t bits,
158
                                                 const BigInt& coprime,
159
                                                 size_t prob = 128);
160
161
/**
162
* Return a 'safe' prime, of the form p=2*q+1 with q prime
163
* @param rng a random number generator
164
* @param bits is how long the resulting prime should be
165
* @return prime randomly chosen from safe primes of length bits
166
*/
167
BigInt BOTAN_PUBLIC_API(2, 0) random_safe_prime(RandomNumberGenerator& rng, size_t bits);
168
169
/**
170
* The size of the PRIMES[] array
171
*/
172
const size_t PRIME_TABLE_SIZE = 6541;
173
174
/**
175
* A const array of all odd primes less than 65535
176
*/
177
extern const uint16_t BOTAN_PUBLIC_API(2, 0) PRIMES[];
178
179
}  // namespace Botan
180
181
#endif