/src/botan/build/include/internal/botan/internal/gf2m_small_m.h
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * (C) Copyright Projet SECRET, INRIA, Rocquencourt |
3 | | * (C) Bhaskar Biswas and Nicolas Sendrier |
4 | | * |
5 | | * (C) 2014 cryptosource GmbH |
6 | | * (C) 2014 Falko Strenzke fstrenzke@cryptosource.de |
7 | | * |
8 | | * Botan is released under the Simplified BSD License (see license.txt) |
9 | | * |
10 | | */ |
11 | | |
12 | | #ifndef BOTAN_GF2M_SMALL_M_H_ |
13 | | #define BOTAN_GF2M_SMALL_M_H_ |
14 | | |
15 | | #include <botan/types.h> |
16 | | #include <vector> |
17 | | |
18 | | namespace Botan { |
19 | | |
20 | | typedef uint16_t gf2m; |
21 | | |
22 | | /** |
23 | | * GF(2^m) field for m = [2...16] |
24 | | */ |
25 | | class BOTAN_TEST_API GF2m_Field { |
26 | | public: |
27 | | explicit GF2m_Field(size_t extdeg); |
28 | | |
29 | 0 | gf2m gf_mul(gf2m x, gf2m y) const { return ((x) ? gf_mul_fast(x, y) : 0); } |
30 | | |
31 | 0 | gf2m gf_square(gf2m x) const { return ((x) ? gf_exp(_gf_modq_1(gf_log(x) << 1)) : 0); } |
32 | | |
33 | 0 | gf2m square_rr(gf2m x) const { return _gf_modq_1(x << 1); } |
34 | | |
35 | 0 | gf2m gf_mul_fast(gf2m x, gf2m y) const { return ((y) ? gf_exp(_gf_modq_1(gf_log(x) + gf_log(y))) : 0); } |
36 | | |
37 | | /* |
38 | | naming convention of GF(2^m) field operations: |
39 | | l logarithmic, unreduced |
40 | | r logarithmic, reduced |
41 | | n normal, non-zero |
42 | | z normal, might be zero |
43 | | */ |
44 | | |
45 | 0 | gf2m gf_mul_lll(gf2m a, gf2m b) const { return (a + b); } |
46 | | |
47 | 0 | gf2m gf_mul_rrr(gf2m a, gf2m b) const { return (_gf_modq_1(gf_mul_lll(a, b))); } |
48 | | |
49 | 0 | gf2m gf_mul_nrr(gf2m a, gf2m b) const { return (gf_exp(gf_mul_rrr(a, b))); } |
50 | | |
51 | 0 | gf2m gf_mul_rrn(gf2m a, gf2m y) const { return _gf_modq_1(gf_mul_lll(a, gf_log(y))); } |
52 | | |
53 | 0 | gf2m gf_mul_rnr(gf2m y, gf2m a) const { return gf_mul_rrn(a, y); } |
54 | | |
55 | 0 | gf2m gf_mul_lnn(gf2m x, gf2m y) const { return (gf_log(x) + gf_log(y)); } |
56 | | |
57 | 0 | gf2m gf_mul_rnn(gf2m x, gf2m y) const { return _gf_modq_1(gf_mul_lnn(x, y)); } |
58 | | |
59 | 0 | gf2m gf_mul_nrn(gf2m a, gf2m y) const { return gf_exp(_gf_modq_1((a) + gf_log(y))); } |
60 | | |
61 | | /** |
62 | | * zero operand allowed |
63 | | */ |
64 | 0 | gf2m gf_mul_zrz(gf2m a, gf2m y) const { return ((y == 0) ? 0 : gf_mul_nrn(a, y)); } |
65 | | |
66 | 0 | gf2m gf_mul_zzr(gf2m a, gf2m y) const { return gf_mul_zrz(y, a); } |
67 | | |
68 | | /** |
69 | | * non-zero operand |
70 | | */ |
71 | 0 | gf2m gf_mul_nnr(gf2m y, gf2m a) const { return gf_mul_nrn(a, y); } |
72 | | |
73 | 0 | gf2m gf_sqrt(gf2m x) const { return ((x) ? gf_exp(_gf_modq_1(gf_log(x) << (get_extension_degree() - 1))) : 0); } |
74 | | |
75 | 0 | gf2m gf_div_rnn(gf2m x, gf2m y) const { return _gf_modq_1(gf_log(x) - gf_log(y)); } |
76 | | |
77 | 0 | gf2m gf_div_rnr(gf2m x, gf2m b) const { return _gf_modq_1(gf_log(x) - b); } |
78 | | |
79 | 0 | gf2m gf_div_nrr(gf2m a, gf2m b) const { return gf_exp(_gf_modq_1(a - b)); } |
80 | | |
81 | 0 | gf2m gf_div_zzr(gf2m x, gf2m b) const { return ((x) ? gf_exp(_gf_modq_1(gf_log(x) - b)) : 0); } |
82 | | |
83 | 0 | gf2m gf_inv(gf2m x) const { return gf_exp(gf_ord() - gf_log(x)); } |
84 | | |
85 | 0 | gf2m gf_inv_rn(gf2m x) const { return (gf_ord() - gf_log(x)); } |
86 | | |
87 | 0 | gf2m gf_square_ln(gf2m x) const { return gf_log(x) << 1; } |
88 | | |
89 | 0 | gf2m gf_square_rr(gf2m a) const { return a << 1; } |
90 | | |
91 | 0 | gf2m gf_l_from_n(gf2m x) const { return gf_log(x); } |
92 | | |
93 | | gf2m gf_div(gf2m x, gf2m y) const; |
94 | | |
95 | 0 | gf2m gf_exp(gf2m i) const { return m_gf_exp_table.at(i); /* alpha^i */ } |
96 | | |
97 | 0 | gf2m gf_log(gf2m i) const { return m_gf_log_table.at(i); /* return i when x=alpha^i */ } |
98 | | |
99 | 0 | gf2m gf_ord() const { return m_gf_multiplicative_order; } |
100 | | |
101 | 0 | size_t get_extension_degree() const { return m_gf_extension_degree; } |
102 | | |
103 | 0 | gf2m get_cardinality() const { return static_cast<gf2m>(1 << get_extension_degree()); } |
104 | | |
105 | | private: |
106 | 0 | gf2m _gf_modq_1(int32_t d) const { |
107 | | /* residual modulo q-1 |
108 | | when -q < d < 0, we get (q-1+d) |
109 | | when 0 <= d < q, we get (d) |
110 | | when q <= d < 2q-1, we get (d-q+1) |
111 | | */ |
112 | 0 | return static_cast<gf2m>(((d)&gf_ord()) + ((d) >> get_extension_degree())); |
113 | 0 | } |
114 | | |
115 | | const size_t m_gf_extension_degree; |
116 | | const gf2m m_gf_multiplicative_order; |
117 | | const std::vector<gf2m>& m_gf_log_table; |
118 | | const std::vector<gf2m>& m_gf_exp_table; |
119 | | }; |
120 | | |
121 | | uint32_t encode_gf2m(gf2m to_enc, uint8_t* mem); |
122 | | |
123 | | gf2m decode_gf2m(const uint8_t* mem); |
124 | | |
125 | | } // namespace Botan |
126 | | |
127 | | #endif |