/src/botan/src/lib/block/noekeon/noekeon.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Noekeon |
3 | | * (C) 1999-2008 Jack Lloyd |
4 | | * |
5 | | * Botan is released under the Simplified BSD License (see license.txt) |
6 | | */ |
7 | | |
8 | | #include <botan/internal/noekeon.h> |
9 | | |
10 | | #include <botan/internal/cpuid.h> |
11 | | #include <botan/internal/loadstor.h> |
12 | | #include <botan/internal/rotate.h> |
13 | | |
14 | | namespace Botan { |
15 | | |
16 | | namespace { |
17 | | |
18 | | /* |
19 | | * Noekeon's Theta Operation |
20 | | */ |
21 | 0 | inline void theta(uint32_t& A0, uint32_t& A1, uint32_t& A2, uint32_t& A3, const uint32_t EK[4]) { |
22 | 0 | uint32_t T = A0 ^ A2; |
23 | 0 | T ^= rotl<8>(T) ^ rotr<8>(T); |
24 | 0 | A1 ^= T; |
25 | 0 | A3 ^= T; |
26 | |
|
27 | 0 | A0 ^= EK[0]; |
28 | 0 | A1 ^= EK[1]; |
29 | 0 | A2 ^= EK[2]; |
30 | 0 | A3 ^= EK[3]; |
31 | |
|
32 | 0 | T = A1 ^ A3; |
33 | 0 | T ^= rotl<8>(T) ^ rotr<8>(T); |
34 | 0 | A0 ^= T; |
35 | 0 | A2 ^= T; |
36 | 0 | } |
37 | | |
38 | | /* |
39 | | * Theta With Null Key |
40 | | */ |
41 | 0 | inline void theta(uint32_t& A0, uint32_t& A1, uint32_t& A2, uint32_t& A3) { |
42 | 0 | uint32_t T = A0 ^ A2; |
43 | 0 | T ^= rotl<8>(T) ^ rotr<8>(T); |
44 | 0 | A1 ^= T; |
45 | 0 | A3 ^= T; |
46 | |
|
47 | 0 | T = A1 ^ A3; |
48 | 0 | T ^= rotl<8>(T) ^ rotr<8>(T); |
49 | 0 | A0 ^= T; |
50 | 0 | A2 ^= T; |
51 | 0 | } |
52 | | |
53 | | /* |
54 | | * Noekeon's Gamma S-Box Layer |
55 | | */ |
56 | 0 | inline void gamma(uint32_t& A0, uint32_t& A1, uint32_t& A2, uint32_t& A3) { |
57 | 0 | A1 ^= ~(A2 | A3); |
58 | 0 | A0 ^= A2 & A1; |
59 | |
|
60 | 0 | uint32_t T = A3; |
61 | 0 | A3 = A0; |
62 | 0 | A0 = T; |
63 | |
|
64 | 0 | A2 ^= A0 ^ A1 ^ A3; |
65 | |
|
66 | 0 | A1 ^= ~(A2 | A3); |
67 | 0 | A0 ^= A2 & A1; |
68 | 0 | } |
69 | | |
70 | | } // namespace |
71 | | |
72 | 0 | size_t Noekeon::parallelism() const { |
73 | 0 | #if defined(BOTAN_HAS_NOEKEON_SIMD) |
74 | 0 | if(CPUID::has_simd_32()) { |
75 | 0 | return 4; |
76 | 0 | } |
77 | 0 | #endif |
78 | | |
79 | 0 | return 1; |
80 | 0 | } |
81 | | |
82 | 0 | std::string Noekeon::provider() const { |
83 | 0 | #if defined(BOTAN_HAS_NOEKEON_SIMD) |
84 | 0 | if(CPUID::has_simd_32()) { |
85 | 0 | return "simd"; |
86 | 0 | } |
87 | 0 | #endif |
88 | | |
89 | 0 | return "base"; |
90 | 0 | } |
91 | | |
92 | | /* |
93 | | * Noekeon Round Constants |
94 | | */ |
95 | | const uint8_t Noekeon::RC[] = { |
96 | | 0x80, 0x1B, 0x36, 0x6C, 0xD8, 0xAB, 0x4D, 0x9A, 0x2F, 0x5E, 0xBC, 0x63, 0xC6, 0x97, 0x35, 0x6A, 0xD4}; |
97 | | |
98 | | /* |
99 | | * Noekeon Encryption |
100 | | */ |
101 | 0 | void Noekeon::encrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const { |
102 | 0 | assert_key_material_set(); |
103 | |
|
104 | 0 | #if defined(BOTAN_HAS_NOEKEON_SIMD) |
105 | 0 | if(CPUID::has_simd_32()) { |
106 | 0 | while(blocks >= 4) { |
107 | 0 | simd_encrypt_4(in, out); |
108 | 0 | in += 4 * BLOCK_SIZE; |
109 | 0 | out += 4 * BLOCK_SIZE; |
110 | 0 | blocks -= 4; |
111 | 0 | } |
112 | 0 | } |
113 | 0 | #endif |
114 | |
|
115 | 0 | for(size_t i = 0; i != blocks; ++i) { |
116 | 0 | uint32_t A0 = load_be<uint32_t>(in, 0); |
117 | 0 | uint32_t A1 = load_be<uint32_t>(in, 1); |
118 | 0 | uint32_t A2 = load_be<uint32_t>(in, 2); |
119 | 0 | uint32_t A3 = load_be<uint32_t>(in, 3); |
120 | |
|
121 | 0 | for(size_t j = 0; j != 16; ++j) { |
122 | 0 | A0 ^= RC[j]; |
123 | 0 | theta(A0, A1, A2, A3, m_EK.data()); |
124 | |
|
125 | 0 | A1 = rotl<1>(A1); |
126 | 0 | A2 = rotl<5>(A2); |
127 | 0 | A3 = rotl<2>(A3); |
128 | |
|
129 | 0 | gamma(A0, A1, A2, A3); |
130 | |
|
131 | 0 | A1 = rotr<1>(A1); |
132 | 0 | A2 = rotr<5>(A2); |
133 | 0 | A3 = rotr<2>(A3); |
134 | 0 | } |
135 | |
|
136 | 0 | A0 ^= RC[16]; |
137 | 0 | theta(A0, A1, A2, A3, m_EK.data()); |
138 | |
|
139 | 0 | store_be(out, A0, A1, A2, A3); |
140 | |
|
141 | 0 | in += BLOCK_SIZE; |
142 | 0 | out += BLOCK_SIZE; |
143 | 0 | } |
144 | 0 | } |
145 | | |
146 | | /* |
147 | | * Noekeon Encryption |
148 | | */ |
149 | 0 | void Noekeon::decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const { |
150 | 0 | assert_key_material_set(); |
151 | |
|
152 | 0 | #if defined(BOTAN_HAS_NOEKEON_SIMD) |
153 | 0 | if(CPUID::has_simd_32()) { |
154 | 0 | while(blocks >= 4) { |
155 | 0 | simd_decrypt_4(in, out); |
156 | 0 | in += 4 * BLOCK_SIZE; |
157 | 0 | out += 4 * BLOCK_SIZE; |
158 | 0 | blocks -= 4; |
159 | 0 | } |
160 | 0 | } |
161 | 0 | #endif |
162 | |
|
163 | 0 | for(size_t i = 0; i != blocks; ++i) { |
164 | 0 | uint32_t A0 = load_be<uint32_t>(in, 0); |
165 | 0 | uint32_t A1 = load_be<uint32_t>(in, 1); |
166 | 0 | uint32_t A2 = load_be<uint32_t>(in, 2); |
167 | 0 | uint32_t A3 = load_be<uint32_t>(in, 3); |
168 | |
|
169 | 0 | for(size_t j = 16; j != 0; --j) { |
170 | 0 | theta(A0, A1, A2, A3, m_DK.data()); |
171 | 0 | A0 ^= RC[j]; |
172 | |
|
173 | 0 | A1 = rotl<1>(A1); |
174 | 0 | A2 = rotl<5>(A2); |
175 | 0 | A3 = rotl<2>(A3); |
176 | |
|
177 | 0 | gamma(A0, A1, A2, A3); |
178 | |
|
179 | 0 | A1 = rotr<1>(A1); |
180 | 0 | A2 = rotr<5>(A2); |
181 | 0 | A3 = rotr<2>(A3); |
182 | 0 | } |
183 | |
|
184 | 0 | theta(A0, A1, A2, A3, m_DK.data()); |
185 | 0 | A0 ^= RC[0]; |
186 | |
|
187 | 0 | store_be(out, A0, A1, A2, A3); |
188 | |
|
189 | 0 | in += BLOCK_SIZE; |
190 | 0 | out += BLOCK_SIZE; |
191 | 0 | } |
192 | 0 | } |
193 | | |
194 | 0 | bool Noekeon::has_keying_material() const { |
195 | 0 | return !m_EK.empty(); |
196 | 0 | } |
197 | | |
198 | | /* |
199 | | * Noekeon Key Schedule |
200 | | */ |
201 | 0 | void Noekeon::key_schedule(std::span<const uint8_t> key) { |
202 | 0 | uint32_t A0 = load_be<uint32_t>(key.data(), 0); |
203 | 0 | uint32_t A1 = load_be<uint32_t>(key.data(), 1); |
204 | 0 | uint32_t A2 = load_be<uint32_t>(key.data(), 2); |
205 | 0 | uint32_t A3 = load_be<uint32_t>(key.data(), 3); |
206 | |
|
207 | 0 | for(size_t i = 0; i != 16; ++i) { |
208 | 0 | A0 ^= RC[i]; |
209 | 0 | theta(A0, A1, A2, A3); |
210 | |
|
211 | 0 | A1 = rotl<1>(A1); |
212 | 0 | A2 = rotl<5>(A2); |
213 | 0 | A3 = rotl<2>(A3); |
214 | |
|
215 | 0 | gamma(A0, A1, A2, A3); |
216 | |
|
217 | 0 | A1 = rotr<1>(A1); |
218 | 0 | A2 = rotr<5>(A2); |
219 | 0 | A3 = rotr<2>(A3); |
220 | 0 | } |
221 | |
|
222 | 0 | A0 ^= RC[16]; |
223 | |
|
224 | 0 | m_DK.resize(4); |
225 | 0 | m_DK[0] = A0; |
226 | 0 | m_DK[1] = A1; |
227 | 0 | m_DK[2] = A2; |
228 | 0 | m_DK[3] = A3; |
229 | |
|
230 | 0 | theta(A0, A1, A2, A3); |
231 | |
|
232 | 0 | m_EK.resize(4); |
233 | 0 | m_EK[0] = A0; |
234 | 0 | m_EK[1] = A1; |
235 | 0 | m_EK[2] = A2; |
236 | 0 | m_EK[3] = A3; |
237 | 0 | } |
238 | | |
239 | | /* |
240 | | * Clear memory of sensitive data |
241 | | */ |
242 | 0 | void Noekeon::clear() { |
243 | 0 | zap(m_EK); |
244 | 0 | zap(m_DK); |
245 | 0 | } |
246 | | |
247 | | } // namespace Botan |