/src/botan/build/include/internal/botan/internal/dilithium_polynomial.h
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Crystals Dilithium Polynomial Adapter |
3 | | * |
4 | | * (C) 2022-2023 Jack Lloyd |
5 | | * (C) 2022 Manuel Glaser - Rohde & Schwarz Cybersecurity |
6 | | * (C) 2022-2023 Michael Boric, René Meusel - Rohde & Schwarz Cybersecurity |
7 | | * (C) 2024 René Meusel, Rohde & Schwarz Cybersecurity |
8 | | * |
9 | | * Botan is released under the Simplified BSD License (see license.txt) |
10 | | */ |
11 | | |
12 | | #ifndef BOTAN_DILITHIUM_POLYNOMIAL_H_ |
13 | | #define BOTAN_DILITHIUM_POLYNOMIAL_H_ |
14 | | |
15 | | #include <botan/mem_ops.h> |
16 | | #include <botan/internal/dilithium_constants.h> |
17 | | #include <botan/internal/pqcrystals.h> |
18 | | #include <botan/internal/pqcrystals_helpers.h> |
19 | | |
20 | | namespace Botan { |
21 | | |
22 | | class DilithiumPolyTraits final : public CRYSTALS::Trait_Base<DilithiumConstants, DilithiumPolyTraits> { |
23 | | private: |
24 | | friend class CRYSTALS::Trait_Base<DilithiumConstants, DilithiumPolyTraits>; |
25 | | |
26 | 0 | static constexpr T montgomery_reduce_coefficient(T2 a) { |
27 | 0 | const T2 t = static_cast<T>(static_cast<T2>(static_cast<T>(a)) * Q_inverse); |
28 | 0 | return (a - static_cast<T2>(t) * Q) >> (sizeof(T) * 8); |
29 | 0 | } |
30 | | |
31 | 0 | static constexpr T barrett_reduce_coefficient(T a) { |
32 | | // 2**22 is roughly Q/2 and 2**23 is roughly Q |
33 | 0 | const T t = (a + (1 << 22)) >> 23; |
34 | 0 | a = a - t * Q; |
35 | 0 | return a; |
36 | 0 | } |
37 | | |
38 | | public: |
39 | | /** |
40 | | * NIST FIPS 204, Algorithm 41 (NTT) |
41 | | * |
42 | | * Note: ntt(), inverse_ntt() and operator* have side effects on the |
43 | | * montgomery factor of the involved coefficients! |
44 | | * It is assumed that EXACTLY ONE vector or matrix multiplication |
45 | | * is performed between transforming in and out of NTT domain. |
46 | | * |
47 | | * Produces the result of the NTT transformation without any montgomery |
48 | | * factors in the coefficients. |
49 | | */ |
50 | 0 | static constexpr void ntt(std::span<T, N> coeffs) { |
51 | 0 | size_t j; |
52 | 0 | size_t k = 0; |
53 | |
|
54 | 0 | for(size_t len = N / 2; len > 0; len >>= 1) { |
55 | 0 | for(size_t start = 0; start < N; start = j + len) { |
56 | 0 | const T zeta = zetas[++k]; |
57 | 0 | for(j = start; j < start + len; ++j) { |
58 | | // Zetas contain the montgomery parameter 2^32 mod q |
59 | 0 | T t = fqmul(zeta, coeffs[j + len]); |
60 | 0 | coeffs[j + len] = coeffs[j] - t; |
61 | 0 | coeffs[j] = coeffs[j] + t; |
62 | 0 | } |
63 | 0 | } |
64 | 0 | } |
65 | 0 | } |
66 | | |
67 | | /** |
68 | | * NIST FIPS 204, Algorithm 42 (NTT^-1). |
69 | | * |
70 | | * The output is effectively multiplied by the montgomery parameter 2^32 |
71 | | * mod q so that the input factors 2^(-32) mod q are eliminated. Note |
72 | | * that factors 2^(-32) mod q are introduced by multiplication and |
73 | | * reduction of values not in montgomery domain. |
74 | | * |
75 | | * Produces the result of the inverse NTT transformation with a montgomery |
76 | | * factor of (2^32 mod q) added (!). See above. |
77 | | */ |
78 | 0 | static constexpr void inverse_ntt(std::span<T, N> coeffs) { |
79 | 0 | size_t j; |
80 | 0 | size_t k = N; |
81 | 0 | for(size_t len = 1; len < N; len <<= 1) { |
82 | 0 | for(size_t start = 0; start < N; start = j + len) { |
83 | 0 | const T zeta = -zetas[--k]; |
84 | 0 | for(j = start; j < start + len; ++j) { |
85 | 0 | T t = coeffs[j]; |
86 | 0 | coeffs[j] = t + coeffs[j + len]; |
87 | 0 | coeffs[j + len] = t - coeffs[j + len]; |
88 | | // Zetas contain the montgomery parameter 2^32 mod q |
89 | 0 | coeffs[j + len] = fqmul(zeta, coeffs[j + len]); |
90 | 0 | } |
91 | 0 | } |
92 | 0 | } |
93 | |
|
94 | 0 | for(auto& coeff : coeffs) { |
95 | 0 | coeff = fqmul(coeff, F_WITH_MONTY_SQUARED); |
96 | 0 | } |
97 | 0 | } |
98 | | |
99 | | /** |
100 | | * Multiplication of two polynomials @p lhs and @p rhs in NTT domain. |
101 | | * |
102 | | * Produces the result of the multiplication in NTT domain, with a factor |
103 | | * of (2^-32 mod q) in each element due to montgomery reduction. |
104 | | */ |
105 | | static constexpr void poly_pointwise_montgomery(std::span<T, N> result, |
106 | | std::span<const T, N> lhs, |
107 | 0 | std::span<const T, N> rhs) { |
108 | 0 | for(size_t i = 0; i < N; ++i) { |
109 | 0 | result[i] = fqmul(lhs[i], rhs[i]); |
110 | 0 | } |
111 | 0 | } |
112 | | }; |
113 | | |
114 | | } // namespace Botan |
115 | | |
116 | | #endif |