Coverage Report

Created: 2025-04-11 06:34

/src/botan/src/lib/block/shacal2/shacal2.cpp
Line
Count
Source (jump to first uncovered line)
1
/*
2
* SHACAL-2
3
* (C) 2017,2020 Jack Lloyd
4
*
5
* Botan is released under the Simplified BSD License (see license.txt)
6
*/
7
8
#include <botan/internal/shacal2.h>
9
10
#include <botan/internal/bit_ops.h>
11
#include <botan/internal/loadstor.h>
12
#include <botan/internal/rotate.h>
13
14
#if defined(BOTAN_HAS_CPUID)
15
   #include <botan/internal/cpuid.h>
16
#endif
17
18
namespace Botan {
19
20
namespace {
21
22
inline void SHACAL2_Fwd(
23
0
   uint32_t A, uint32_t B, uint32_t C, uint32_t& D, uint32_t E, uint32_t F, uint32_t G, uint32_t& H, uint32_t RK) {
24
0
   const uint32_t A_rho = rho<2, 13, 22>(A);
25
0
   const uint32_t E_rho = rho<6, 11, 25>(E);
26
27
0
   H += E_rho + choose(E, F, G) + RK;
28
0
   D += H;
29
0
   H += A_rho + majority(A, B, C);
30
0
}
31
32
inline void SHACAL2_Rev(
33
0
   uint32_t A, uint32_t B, uint32_t C, uint32_t& D, uint32_t E, uint32_t F, uint32_t G, uint32_t& H, uint32_t RK) {
34
0
   const uint32_t A_rho = rho<2, 13, 22>(A);
35
0
   const uint32_t E_rho = rho<6, 11, 25>(E);
36
37
0
   H -= A_rho + majority(A, B, C);
38
0
   D -= H;
39
0
   H -= E_rho + choose(E, F, G) + RK;
40
0
}
41
42
}  // namespace
43
44
/*
45
* SHACAL2 Encryption
46
*/
47
0
void SHACAL2::encrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const {
48
0
   assert_key_material_set();
49
50
0
#if defined(BOTAN_HAS_SHACAL2_X86)
51
0
   if(CPUID::has(CPUID::Feature::SHA)) {
52
0
      return x86_encrypt_blocks(in, out, blocks);
53
0
   }
54
0
#endif
55
56
#if defined(BOTAN_HAS_SHACAL2_ARMV8)
57
   if(CPUID::has(CPUID::Feature::SHA2)) {
58
      return armv8_encrypt_blocks(in, out, blocks);
59
   }
60
#endif
61
62
0
#if defined(BOTAN_HAS_SHACAL2_AVX2)
63
0
   if(CPUID::has(CPUID::Feature::AVX2)) {
64
0
      while(blocks >= 8) {
65
0
         avx2_encrypt_8(in, out);
66
0
         in += 8 * BLOCK_SIZE;
67
0
         out += 8 * BLOCK_SIZE;
68
0
         blocks -= 8;
69
0
      }
70
0
   }
71
0
#endif
72
73
0
#if defined(BOTAN_HAS_SHACAL2_SIMD)
74
0
   if(CPUID::has_simd_4x32()) {
75
0
      while(blocks >= 4) {
76
0
         simd_encrypt_4(in, out);
77
0
         in += 4 * BLOCK_SIZE;
78
0
         out += 4 * BLOCK_SIZE;
79
0
         blocks -= 4;
80
0
      }
81
0
   }
82
0
#endif
83
84
0
   for(size_t i = 0; i != blocks; ++i) {
85
0
      uint32_t A = load_be<uint32_t>(in, 0);
86
0
      uint32_t B = load_be<uint32_t>(in, 1);
87
0
      uint32_t C = load_be<uint32_t>(in, 2);
88
0
      uint32_t D = load_be<uint32_t>(in, 3);
89
0
      uint32_t E = load_be<uint32_t>(in, 4);
90
0
      uint32_t F = load_be<uint32_t>(in, 5);
91
0
      uint32_t G = load_be<uint32_t>(in, 6);
92
0
      uint32_t H = load_be<uint32_t>(in, 7);
93
94
0
      for(size_t r = 0; r != 64; r += 8) {
95
0
         SHACAL2_Fwd(A, B, C, D, E, F, G, H, m_RK[r + 0]);
96
0
         SHACAL2_Fwd(H, A, B, C, D, E, F, G, m_RK[r + 1]);
97
0
         SHACAL2_Fwd(G, H, A, B, C, D, E, F, m_RK[r + 2]);
98
0
         SHACAL2_Fwd(F, G, H, A, B, C, D, E, m_RK[r + 3]);
99
0
         SHACAL2_Fwd(E, F, G, H, A, B, C, D, m_RK[r + 4]);
100
0
         SHACAL2_Fwd(D, E, F, G, H, A, B, C, m_RK[r + 5]);
101
0
         SHACAL2_Fwd(C, D, E, F, G, H, A, B, m_RK[r + 6]);
102
0
         SHACAL2_Fwd(B, C, D, E, F, G, H, A, m_RK[r + 7]);
103
0
      }
104
105
0
      store_be(out, A, B, C, D, E, F, G, H);
106
107
0
      in += BLOCK_SIZE;
108
0
      out += BLOCK_SIZE;
109
0
   }
110
0
}
111
112
/*
113
* SHACAL2 Encryption
114
*/
115
0
void SHACAL2::decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const {
116
0
   assert_key_material_set();
117
118
0
#if defined(BOTAN_HAS_SHACAL2_AVX2)
119
0
   if(CPUID::has(CPUID::Feature::AVX2)) {
120
0
      while(blocks >= 8) {
121
0
         avx2_decrypt_8(in, out);
122
0
         in += 8 * BLOCK_SIZE;
123
0
         out += 8 * BLOCK_SIZE;
124
0
         blocks -= 8;
125
0
      }
126
0
   }
127
0
#endif
128
129
0
#if defined(BOTAN_HAS_SHACAL2_SIMD)
130
0
   if(CPUID::has_simd_4x32()) {
131
0
      while(blocks >= 4) {
132
0
         simd_decrypt_4(in, out);
133
0
         in += 4 * BLOCK_SIZE;
134
0
         out += 4 * BLOCK_SIZE;
135
0
         blocks -= 4;
136
0
      }
137
0
   }
138
0
#endif
139
140
0
   for(size_t i = 0; i != blocks; ++i) {
141
0
      uint32_t A = load_be<uint32_t>(in, 0);
142
0
      uint32_t B = load_be<uint32_t>(in, 1);
143
0
      uint32_t C = load_be<uint32_t>(in, 2);
144
0
      uint32_t D = load_be<uint32_t>(in, 3);
145
0
      uint32_t E = load_be<uint32_t>(in, 4);
146
0
      uint32_t F = load_be<uint32_t>(in, 5);
147
0
      uint32_t G = load_be<uint32_t>(in, 6);
148
0
      uint32_t H = load_be<uint32_t>(in, 7);
149
150
0
      for(size_t r = 0; r != 64; r += 8) {
151
0
         SHACAL2_Rev(B, C, D, E, F, G, H, A, m_RK[63 - r]);
152
0
         SHACAL2_Rev(C, D, E, F, G, H, A, B, m_RK[62 - r]);
153
0
         SHACAL2_Rev(D, E, F, G, H, A, B, C, m_RK[61 - r]);
154
0
         SHACAL2_Rev(E, F, G, H, A, B, C, D, m_RK[60 - r]);
155
0
         SHACAL2_Rev(F, G, H, A, B, C, D, E, m_RK[59 - r]);
156
0
         SHACAL2_Rev(G, H, A, B, C, D, E, F, m_RK[58 - r]);
157
0
         SHACAL2_Rev(H, A, B, C, D, E, F, G, m_RK[57 - r]);
158
0
         SHACAL2_Rev(A, B, C, D, E, F, G, H, m_RK[56 - r]);
159
0
      }
160
161
0
      store_be(out, A, B, C, D, E, F, G, H);
162
163
0
      in += BLOCK_SIZE;
164
0
      out += BLOCK_SIZE;
165
0
   }
166
0
}
167
168
0
bool SHACAL2::has_keying_material() const {
169
0
   return !m_RK.empty();
170
0
}
171
172
/*
173
* SHACAL2 Key Schedule
174
*/
175
0
void SHACAL2::key_schedule(std::span<const uint8_t> key) {
176
0
   const uint32_t RC[64] = {
177
0
      0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
178
0
      0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
179
0
      0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
180
0
      0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
181
0
      0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
182
0
      0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
183
0
      0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
184
0
      0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2};
185
186
0
   if(m_RK.empty()) {
187
0
      m_RK.resize(64);
188
0
   } else {
189
0
      clear_mem(m_RK.data(), m_RK.size());
190
0
   }
191
192
0
   load_be(m_RK.data(), key.data(), key.size() / 4);
193
194
0
   for(size_t i = 16; i != 64; ++i) {
195
0
      const uint32_t sigma0_15 = sigma<7, 18, 3>(m_RK[i - 15]);
196
0
      const uint32_t sigma1_2 = sigma<17, 19, 10>(m_RK[i - 2]);
197
0
      m_RK[i] = m_RK[i - 16] + sigma0_15 + m_RK[i - 7] + sigma1_2;
198
0
   }
199
200
0
   for(size_t i = 0; i != 64; ++i) {
201
0
      m_RK[i] += RC[i];
202
0
   }
203
0
}
204
205
0
size_t SHACAL2::parallelism() const {
206
0
#if defined(BOTAN_HAS_SHACAL2_X86)
207
0
   if(CPUID::has(CPUID::Feature::SHA)) {
208
0
      return 2;
209
0
   }
210
0
#endif
211
212
#if defined(BOTAN_HAS_SHACAL2_ARMV8)
213
   if(CPUID::has(CPUID::Feature::SHA2)) {
214
      return 2;
215
   }
216
#endif
217
218
0
#if defined(BOTAN_HAS_SHACAL2_AVX2)
219
0
   if(CPUID::has(CPUID::Feature::AVX2)) {
220
0
      return 8;
221
0
   }
222
0
#endif
223
224
0
#if defined(BOTAN_HAS_SHACAL2_SIMD)
225
0
   if(CPUID::has_simd_4x32()) {
226
0
      return 4;
227
0
   }
228
0
#endif
229
230
0
   return 1;
231
0
}
232
233
0
std::string SHACAL2::provider() const {
234
0
#if defined(BOTAN_HAS_SHACAL2_X86)
235
0
   if(CPUID::has(CPUID::Feature::SHA)) {
236
0
      return "intel_sha";
237
0
   }
238
0
#endif
239
240
#if defined(BOTAN_HAS_SHACAL2_ARMV8)
241
   if(CPUID::has(CPUID::Feature::SHA2)) {
242
      return "armv8_sha2";
243
   }
244
#endif
245
246
0
#if defined(BOTAN_HAS_SHACAL2_AVX2)
247
0
   if(CPUID::has(CPUID::Feature::AVX2)) {
248
0
      return "avx2";
249
0
   }
250
0
#endif
251
252
0
#if defined(BOTAN_HAS_SHACAL2_SIMD)
253
0
   if(CPUID::has_simd_4x32()) {
254
0
      return "simd";
255
0
   }
256
0
#endif
257
258
0
   return "base";
259
0
}
260
261
/*
262
* Clear memory of sensitive data
263
*/
264
0
void SHACAL2::clear() {
265
0
   zap(m_RK);
266
0
}
267
268
}  // namespace Botan