/src/botan/src/lib/math/numbertheory/primality.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * (C) 2016,2018 Jack Lloyd |
3 | | * |
4 | | * Botan is released under the Simplified BSD License (see license.txt) |
5 | | */ |
6 | | |
7 | | #include <botan/internal/primality.h> |
8 | | |
9 | | #include <botan/bigint.h> |
10 | | #include <botan/numthry.h> |
11 | | #include <botan/reducer.h> |
12 | | #include <botan/rng.h> |
13 | | #include <botan/internal/monty.h> |
14 | | #include <botan/internal/monty_exp.h> |
15 | | #include <algorithm> |
16 | | |
17 | | namespace Botan { |
18 | | |
19 | 2.17k | bool is_lucas_probable_prime(const BigInt& C, const Modular_Reducer& mod_C) { |
20 | 2.17k | if(C == 2 || C == 3 || C == 5 || C == 7 || C == 11 || C == 13) { |
21 | 18 | return true; |
22 | 18 | } |
23 | | |
24 | 2.15k | if(C <= 1 || C.is_even()) { |
25 | 0 | return false; |
26 | 0 | } |
27 | | |
28 | 2.15k | BigInt D = BigInt::from_word(5); |
29 | | |
30 | 6.86k | for(;;) { |
31 | 6.86k | int32_t j = jacobi(D, C); |
32 | 6.86k | if(j == 0) { |
33 | 0 | return false; |
34 | 0 | } |
35 | | |
36 | 6.86k | if(j == -1) { |
37 | 2.15k | break; |
38 | 2.15k | } |
39 | | |
40 | | // Check 5, -7, 9, -11, 13, -15, 17, ... |
41 | 4.71k | if(D.is_negative()) { |
42 | 1.70k | D.flip_sign(); |
43 | 1.70k | D += 2; |
44 | 3.01k | } else { |
45 | 3.01k | D += 2; |
46 | 3.01k | D.flip_sign(); |
47 | 3.01k | } |
48 | | |
49 | 4.71k | if(D == 17 && is_perfect_square(C).is_nonzero()) { |
50 | 0 | return false; |
51 | 0 | } |
52 | 4.71k | } |
53 | | |
54 | 2.15k | const BigInt K = C + 1; |
55 | 2.15k | const size_t K_bits = K.bits() - 1; |
56 | | |
57 | 2.15k | BigInt U = BigInt::one(); |
58 | 2.15k | BigInt V = BigInt::one(); |
59 | | |
60 | 2.15k | BigInt Ut, Vt, U2, V2; |
61 | | |
62 | 583k | for(size_t i = 0; i != K_bits; ++i) { |
63 | 581k | const bool k_bit = K.get_bit(K_bits - 1 - i); |
64 | | |
65 | 581k | Ut = mod_C.multiply(U, V); |
66 | | |
67 | 581k | Vt = mod_C.reduce(mod_C.square(V) + mod_C.multiply(D, mod_C.square(U))); |
68 | 581k | Vt.ct_cond_add(Vt.is_odd(), C); |
69 | 581k | Vt >>= 1; |
70 | 581k | Vt = mod_C.reduce(Vt); |
71 | | |
72 | 581k | U = Ut; |
73 | 581k | V = Vt; |
74 | | |
75 | 581k | U2 = mod_C.reduce(Ut + Vt); |
76 | 581k | U2.ct_cond_add(U2.is_odd(), C); |
77 | 581k | U2 >>= 1; |
78 | | |
79 | 581k | V2 = mod_C.reduce(Vt + Ut * D); |
80 | 581k | V2.ct_cond_add(V2.is_odd(), C); |
81 | 581k | V2 >>= 1; |
82 | | |
83 | 581k | U.ct_cond_assign(k_bit, U2); |
84 | 581k | V.ct_cond_assign(k_bit, V2); |
85 | 581k | } |
86 | | |
87 | 2.15k | return (U == 0); |
88 | 2.15k | } |
89 | | |
90 | 2.30k | bool is_bailie_psw_probable_prime(const BigInt& n, const Modular_Reducer& mod_n) { |
91 | 2.30k | if(n == 2) { |
92 | 5 | return true; |
93 | 2.30k | } else if(n <= 1 || n.is_even()) { |
94 | 6 | return false; |
95 | 6 | } |
96 | | |
97 | 2.29k | auto monty_n = std::make_shared<Montgomery_Params>(n, mod_n); |
98 | 2.29k | const auto base = BigInt::from_word(2); |
99 | 2.29k | return passes_miller_rabin_test(n, mod_n, monty_n, base) && is_lucas_probable_prime(n, mod_n); |
100 | 2.30k | } |
101 | | |
102 | | bool passes_miller_rabin_test(const BigInt& n, |
103 | | const Modular_Reducer& mod_n, |
104 | | const std::shared_ptr<Montgomery_Params>& monty_n, |
105 | 2.33k | const BigInt& a) { |
106 | 2.33k | if(n < 3 || n.is_even()) { |
107 | 0 | return false; |
108 | 0 | } |
109 | | |
110 | 2.33k | BOTAN_ASSERT_NOMSG(n > 1); |
111 | | |
112 | 2.33k | const BigInt n_minus_1 = n - 1; |
113 | 2.33k | const size_t s = low_zero_bits(n_minus_1); |
114 | 2.33k | const BigInt nm1_s = n_minus_1 >> s; |
115 | 2.33k | const size_t n_bits = n.bits(); |
116 | | |
117 | 2.33k | const size_t powm_window = 4; |
118 | | |
119 | 2.33k | auto powm_a_n = monty_precompute(monty_n, a, powm_window); |
120 | | |
121 | 2.33k | BigInt y = monty_execute(*powm_a_n, nm1_s, n_bits).value(); |
122 | | |
123 | 2.33k | if(y == 1 || y == n_minus_1) { |
124 | 915 | return true; |
125 | 915 | } |
126 | | |
127 | 37.5k | for(size_t i = 1; i != s; ++i) { |
128 | 37.3k | y = mod_n.square(y); |
129 | | |
130 | 37.3k | if(y == 1) { // found a non-trivial square root |
131 | 2 | return false; |
132 | 2 | } |
133 | | |
134 | | /* |
135 | | -1 is the trivial square root of unity, so ``a`` is not a |
136 | | witness for this number - give up |
137 | | */ |
138 | 37.3k | if(y == n_minus_1) { |
139 | 1.28k | return true; |
140 | 1.28k | } |
141 | 37.3k | } |
142 | | |
143 | 139 | return false; |
144 | 1.42k | } |
145 | | |
146 | | bool is_miller_rabin_probable_prime(const BigInt& n, |
147 | | const Modular_Reducer& mod_n, |
148 | | RandomNumberGenerator& rng, |
149 | 15 | size_t test_iterations) { |
150 | 15 | if(n < 3 || n.is_even()) { |
151 | 0 | return false; |
152 | 0 | } |
153 | | |
154 | 15 | auto monty_n = std::make_shared<Montgomery_Params>(n, mod_n); |
155 | | |
156 | 44 | for(size_t i = 0; i != test_iterations; ++i) { |
157 | 43 | const BigInt a = BigInt::random_integer(rng, BigInt::from_word(2), n); |
158 | | |
159 | 43 | if(!passes_miller_rabin_test(n, mod_n, monty_n, a)) { |
160 | 14 | return false; |
161 | 14 | } |
162 | 43 | } |
163 | | |
164 | | // Failed to find a counterexample |
165 | 1 | return true; |
166 | 15 | } |
167 | | |
168 | 1 | size_t miller_rabin_test_iterations(size_t n_bits, size_t prob, bool random) { |
169 | 1 | const size_t base = (prob + 2) / 2; // worst case 4^-t error rate |
170 | | |
171 | | /* |
172 | | * If the candidate prime was maliciously constructed, we can't rely |
173 | | * on arguments based on p being random. |
174 | | */ |
175 | 1 | if(random == false) { |
176 | 0 | return base; |
177 | 0 | } |
178 | | |
179 | | /* |
180 | | * For randomly chosen numbers we can use the estimates from |
181 | | * http://www.math.dartmouth.edu/~carlp/PDF/paper88.pdf |
182 | | * |
183 | | * These values are derived from the inequality for p(k,t) given on |
184 | | * the second page. |
185 | | */ |
186 | 1 | if(prob <= 128) { |
187 | 1 | if(n_bits >= 1536) { |
188 | 0 | return 4; // < 2^-133 |
189 | 0 | } |
190 | 1 | if(n_bits >= 1024) { |
191 | 0 | return 6; // < 2^-133 |
192 | 0 | } |
193 | 1 | if(n_bits >= 512) { |
194 | 0 | return 12; // < 2^-129 |
195 | 0 | } |
196 | 1 | if(n_bits >= 256) { |
197 | 1 | return 29; // < 2^-128 |
198 | 1 | } |
199 | 1 | } |
200 | | |
201 | | /* |
202 | | If the user desires a smaller error probability than we have |
203 | | precomputed error estimates for, just fall back to using the worst |
204 | | case error rate. |
205 | | */ |
206 | 0 | return base; |
207 | 1 | } |
208 | | |
209 | | } // namespace Botan |