Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/numpy/ma/core.py: 26%
2422 statements
« prev ^ index » next coverage.py v7.2.2, created at 2023-03-23 06:06 +0000
« prev ^ index » next coverage.py v7.2.2, created at 2023-03-23 06:06 +0000
1"""
2numpy.ma : a package to handle missing or invalid values.
4This package was initially written for numarray by Paul F. Dubois
5at Lawrence Livermore National Laboratory.
6In 2006, the package was completely rewritten by Pierre Gerard-Marchant
7(University of Georgia) to make the MaskedArray class a subclass of ndarray,
8and to improve support of structured arrays.
11Copyright 1999, 2000, 2001 Regents of the University of California.
12Released for unlimited redistribution.
14* Adapted for numpy_core 2005 by Travis Oliphant and (mainly) Paul Dubois.
15* Subclassing of the base `ndarray` 2006 by Pierre Gerard-Marchant
16 (pgmdevlist_AT_gmail_DOT_com)
17* Improvements suggested by Reggie Dugard (reggie_AT_merfinllc_DOT_com)
19.. moduleauthor:: Pierre Gerard-Marchant
21"""
22# pylint: disable-msg=E1002
23import builtins
24import inspect
25import operator
26import warnings
27import textwrap
28import re
29from functools import reduce
31import numpy as np
32import numpy.core.umath as umath
33import numpy.core.numerictypes as ntypes
34from numpy.core import multiarray as mu
35from numpy import ndarray, amax, amin, iscomplexobj, bool_, _NoValue
36from numpy import array as narray
37from numpy.lib.function_base import angle
38from numpy.compat import (
39 getargspec, formatargspec, long, unicode, bytes
40 )
41from numpy import expand_dims
42from numpy.core.numeric import normalize_axis_tuple
45__all__ = [
46 'MAError', 'MaskError', 'MaskType', 'MaskedArray', 'abs', 'absolute',
47 'add', 'all', 'allclose', 'allequal', 'alltrue', 'amax', 'amin',
48 'angle', 'anom', 'anomalies', 'any', 'append', 'arange', 'arccos',
49 'arccosh', 'arcsin', 'arcsinh', 'arctan', 'arctan2', 'arctanh',
50 'argmax', 'argmin', 'argsort', 'around', 'array', 'asanyarray',
51 'asarray', 'bitwise_and', 'bitwise_or', 'bitwise_xor', 'bool_', 'ceil',
52 'choose', 'clip', 'common_fill_value', 'compress', 'compressed',
53 'concatenate', 'conjugate', 'convolve', 'copy', 'correlate', 'cos', 'cosh',
54 'count', 'cumprod', 'cumsum', 'default_fill_value', 'diag', 'diagonal',
55 'diff', 'divide', 'empty', 'empty_like', 'equal', 'exp',
56 'expand_dims', 'fabs', 'filled', 'fix_invalid', 'flatten_mask',
57 'flatten_structured_array', 'floor', 'floor_divide', 'fmod',
58 'frombuffer', 'fromflex', 'fromfunction', 'getdata', 'getmask',
59 'getmaskarray', 'greater', 'greater_equal', 'harden_mask', 'hypot',
60 'identity', 'ids', 'indices', 'inner', 'innerproduct', 'isMA',
61 'isMaskedArray', 'is_mask', 'is_masked', 'isarray', 'left_shift',
62 'less', 'less_equal', 'log', 'log10', 'log2',
63 'logical_and', 'logical_not', 'logical_or', 'logical_xor', 'make_mask',
64 'make_mask_descr', 'make_mask_none', 'mask_or', 'masked',
65 'masked_array', 'masked_equal', 'masked_greater',
66 'masked_greater_equal', 'masked_inside', 'masked_invalid',
67 'masked_less', 'masked_less_equal', 'masked_not_equal',
68 'masked_object', 'masked_outside', 'masked_print_option',
69 'masked_singleton', 'masked_values', 'masked_where', 'max', 'maximum',
70 'maximum_fill_value', 'mean', 'min', 'minimum', 'minimum_fill_value',
71 'mod', 'multiply', 'mvoid', 'ndim', 'negative', 'nomask', 'nonzero',
72 'not_equal', 'ones', 'ones_like', 'outer', 'outerproduct', 'power', 'prod',
73 'product', 'ptp', 'put', 'putmask', 'ravel', 'remainder',
74 'repeat', 'reshape', 'resize', 'right_shift', 'round', 'round_',
75 'set_fill_value', 'shape', 'sin', 'sinh', 'size', 'soften_mask',
76 'sometrue', 'sort', 'sqrt', 'squeeze', 'std', 'subtract', 'sum',
77 'swapaxes', 'take', 'tan', 'tanh', 'trace', 'transpose', 'true_divide',
78 'var', 'where', 'zeros', 'zeros_like',
79 ]
81MaskType = np.bool_
82nomask = MaskType(0)
84class MaskedArrayFutureWarning(FutureWarning):
85 pass
87def _deprecate_argsort_axis(arr):
88 """
89 Adjust the axis passed to argsort, warning if necessary
91 Parameters
92 ----------
93 arr
94 The array which argsort was called on
96 np.ma.argsort has a long-term bug where the default of the axis argument
97 is wrong (gh-8701), which now must be kept for backwards compatibility.
98 Thankfully, this only makes a difference when arrays are 2- or more-
99 dimensional, so we only need a warning then.
100 """
101 if arr.ndim <= 1:
102 # no warning needed - but switch to -1 anyway, to avoid surprising
103 # subclasses, which are more likely to implement scalar axes.
104 return -1
105 else:
106 # 2017-04-11, Numpy 1.13.0, gh-8701: warn on axis default
107 warnings.warn(
108 "In the future the default for argsort will be axis=-1, not the "
109 "current None, to match its documentation and np.argsort. "
110 "Explicitly pass -1 or None to silence this warning.",
111 MaskedArrayFutureWarning, stacklevel=3)
112 return None
115def doc_note(initialdoc, note):
116 """
117 Adds a Notes section to an existing docstring.
119 """
120 if initialdoc is None:
121 return
122 if note is None:
123 return initialdoc
125 notesplit = re.split(r'\n\s*?Notes\n\s*?-----', inspect.cleandoc(initialdoc))
126 notedoc = "\n\nNotes\n-----\n%s\n" % inspect.cleandoc(note)
128 return ''.join(notesplit[:1] + [notedoc] + notesplit[1:])
131def get_object_signature(obj):
132 """
133 Get the signature from obj
135 """
136 try:
137 sig = formatargspec(*getargspec(obj))
138 except TypeError:
139 sig = ''
140 return sig
143###############################################################################
144# Exceptions #
145###############################################################################
148class MAError(Exception):
149 """
150 Class for masked array related errors.
152 """
153 pass
156class MaskError(MAError):
157 """
158 Class for mask related errors.
160 """
161 pass
164###############################################################################
165# Filling options #
166###############################################################################
169# b: boolean - c: complex - f: floats - i: integer - O: object - S: string
170default_filler = {'b': True,
171 'c': 1.e20 + 0.0j,
172 'f': 1.e20,
173 'i': 999999,
174 'O': '?',
175 'S': b'N/A',
176 'u': 999999,
177 'V': b'???',
178 'U': 'N/A'
179 }
181# Add datetime64 and timedelta64 types
182for v in ["Y", "M", "W", "D", "h", "m", "s", "ms", "us", "ns", "ps",
183 "fs", "as"]:
184 default_filler["M8[" + v + "]"] = np.datetime64("NaT", v)
185 default_filler["m8[" + v + "]"] = np.timedelta64("NaT", v)
187float_types_list = [np.half, np.single, np.double, np.longdouble,
188 np.csingle, np.cdouble, np.clongdouble]
189max_filler = ntypes._minvals
190max_filler.update([(k, -np.inf) for k in float_types_list[:4]])
191max_filler.update([(k, complex(-np.inf, -np.inf)) for k in float_types_list[-3:]])
193min_filler = ntypes._maxvals
194min_filler.update([(k, +np.inf) for k in float_types_list[:4]])
195min_filler.update([(k, complex(+np.inf, +np.inf)) for k in float_types_list[-3:]])
197del float_types_list
199def _recursive_fill_value(dtype, f):
200 """
201 Recursively produce a fill value for `dtype`, calling f on scalar dtypes
202 """
203 if dtype.names is not None:
204 # We wrap into `array` here, which ensures we use NumPy cast rules
205 # for integer casts, this allows the use of 99999 as a fill value
206 # for int8.
207 # TODO: This is probably a mess, but should best preserve behavior?
208 vals = tuple(
209 np.array(_recursive_fill_value(dtype[name], f))
210 for name in dtype.names)
211 return np.array(vals, dtype=dtype)[()] # decay to void scalar from 0d
212 elif dtype.subdtype:
213 subtype, shape = dtype.subdtype
214 subval = _recursive_fill_value(subtype, f)
215 return np.full(shape, subval)
216 else:
217 return f(dtype)
220def _get_dtype_of(obj):
221 """ Convert the argument for *_fill_value into a dtype """
222 if isinstance(obj, np.dtype):
223 return obj
224 elif hasattr(obj, 'dtype'):
225 return obj.dtype
226 else:
227 return np.asanyarray(obj).dtype
230def default_fill_value(obj):
231 """
232 Return the default fill value for the argument object.
234 The default filling value depends on the datatype of the input
235 array or the type of the input scalar:
237 ======== ========
238 datatype default
239 ======== ========
240 bool True
241 int 999999
242 float 1.e20
243 complex 1.e20+0j
244 object '?'
245 string 'N/A'
246 ======== ========
248 For structured types, a structured scalar is returned, with each field the
249 default fill value for its type.
251 For subarray types, the fill value is an array of the same size containing
252 the default scalar fill value.
254 Parameters
255 ----------
256 obj : ndarray, dtype or scalar
257 The array data-type or scalar for which the default fill value
258 is returned.
260 Returns
261 -------
262 fill_value : scalar
263 The default fill value.
265 Examples
266 --------
267 >>> np.ma.default_fill_value(1)
268 999999
269 >>> np.ma.default_fill_value(np.array([1.1, 2., np.pi]))
270 1e+20
271 >>> np.ma.default_fill_value(np.dtype(complex))
272 (1e+20+0j)
274 """
275 def _scalar_fill_value(dtype):
276 if dtype.kind in 'Mm':
277 return default_filler.get(dtype.str[1:], '?')
278 else:
279 return default_filler.get(dtype.kind, '?')
281 dtype = _get_dtype_of(obj)
282 return _recursive_fill_value(dtype, _scalar_fill_value)
285def _extremum_fill_value(obj, extremum, extremum_name):
287 def _scalar_fill_value(dtype):
288 try:
289 return extremum[dtype]
290 except KeyError as e:
291 raise TypeError(
292 f"Unsuitable type {dtype} for calculating {extremum_name}."
293 ) from None
295 dtype = _get_dtype_of(obj)
296 return _recursive_fill_value(dtype, _scalar_fill_value)
299def minimum_fill_value(obj):
300 """
301 Return the maximum value that can be represented by the dtype of an object.
303 This function is useful for calculating a fill value suitable for
304 taking the minimum of an array with a given dtype.
306 Parameters
307 ----------
308 obj : ndarray, dtype or scalar
309 An object that can be queried for it's numeric type.
311 Returns
312 -------
313 val : scalar
314 The maximum representable value.
316 Raises
317 ------
318 TypeError
319 If `obj` isn't a suitable numeric type.
321 See Also
322 --------
323 maximum_fill_value : The inverse function.
324 set_fill_value : Set the filling value of a masked array.
325 MaskedArray.fill_value : Return current fill value.
327 Examples
328 --------
329 >>> import numpy.ma as ma
330 >>> a = np.int8()
331 >>> ma.minimum_fill_value(a)
332 127
333 >>> a = np.int32()
334 >>> ma.minimum_fill_value(a)
335 2147483647
337 An array of numeric data can also be passed.
339 >>> a = np.array([1, 2, 3], dtype=np.int8)
340 >>> ma.minimum_fill_value(a)
341 127
342 >>> a = np.array([1, 2, 3], dtype=np.float32)
343 >>> ma.minimum_fill_value(a)
344 inf
346 """
347 return _extremum_fill_value(obj, min_filler, "minimum")
350def maximum_fill_value(obj):
351 """
352 Return the minimum value that can be represented by the dtype of an object.
354 This function is useful for calculating a fill value suitable for
355 taking the maximum of an array with a given dtype.
357 Parameters
358 ----------
359 obj : ndarray, dtype or scalar
360 An object that can be queried for it's numeric type.
362 Returns
363 -------
364 val : scalar
365 The minimum representable value.
367 Raises
368 ------
369 TypeError
370 If `obj` isn't a suitable numeric type.
372 See Also
373 --------
374 minimum_fill_value : The inverse function.
375 set_fill_value : Set the filling value of a masked array.
376 MaskedArray.fill_value : Return current fill value.
378 Examples
379 --------
380 >>> import numpy.ma as ma
381 >>> a = np.int8()
382 >>> ma.maximum_fill_value(a)
383 -128
384 >>> a = np.int32()
385 >>> ma.maximum_fill_value(a)
386 -2147483648
388 An array of numeric data can also be passed.
390 >>> a = np.array([1, 2, 3], dtype=np.int8)
391 >>> ma.maximum_fill_value(a)
392 -128
393 >>> a = np.array([1, 2, 3], dtype=np.float32)
394 >>> ma.maximum_fill_value(a)
395 -inf
397 """
398 return _extremum_fill_value(obj, max_filler, "maximum")
401def _recursive_set_fill_value(fillvalue, dt):
402 """
403 Create a fill value for a structured dtype.
405 Parameters
406 ----------
407 fillvalue : scalar or array_like
408 Scalar or array representing the fill value. If it is of shorter
409 length than the number of fields in dt, it will be resized.
410 dt : dtype
411 The structured dtype for which to create the fill value.
413 Returns
414 -------
415 val : tuple
416 A tuple of values corresponding to the structured fill value.
418 """
419 fillvalue = np.resize(fillvalue, len(dt.names))
420 output_value = []
421 for (fval, name) in zip(fillvalue, dt.names):
422 cdtype = dt[name]
423 if cdtype.subdtype:
424 cdtype = cdtype.subdtype[0]
426 if cdtype.names is not None:
427 output_value.append(tuple(_recursive_set_fill_value(fval, cdtype)))
428 else:
429 output_value.append(np.array(fval, dtype=cdtype).item())
430 return tuple(output_value)
433def _check_fill_value(fill_value, ndtype):
434 """
435 Private function validating the given `fill_value` for the given dtype.
437 If fill_value is None, it is set to the default corresponding to the dtype.
439 If fill_value is not None, its value is forced to the given dtype.
441 The result is always a 0d array.
443 """
444 ndtype = np.dtype(ndtype)
445 if fill_value is None:
446 fill_value = default_fill_value(ndtype)
447 elif ndtype.names is not None:
448 if isinstance(fill_value, (ndarray, np.void)):
449 try:
450 fill_value = np.array(fill_value, copy=False, dtype=ndtype)
451 except ValueError as e:
452 err_msg = "Unable to transform %s to dtype %s"
453 raise ValueError(err_msg % (fill_value, ndtype)) from e
454 else:
455 fill_value = np.asarray(fill_value, dtype=object)
456 fill_value = np.array(_recursive_set_fill_value(fill_value, ndtype),
457 dtype=ndtype)
458 else:
459 if isinstance(fill_value, str) and (ndtype.char not in 'OSVU'):
460 # Note this check doesn't work if fill_value is not a scalar
461 err_msg = "Cannot set fill value of string with array of dtype %s"
462 raise TypeError(err_msg % ndtype)
463 else:
464 # In case we want to convert 1e20 to int.
465 # Also in case of converting string arrays.
466 try:
467 fill_value = np.array(fill_value, copy=False, dtype=ndtype)
468 except (OverflowError, ValueError) as e:
469 # Raise TypeError instead of OverflowError or ValueError.
470 # OverflowError is seldom used, and the real problem here is
471 # that the passed fill_value is not compatible with the ndtype.
472 err_msg = "Cannot convert fill_value %s to dtype %s"
473 raise TypeError(err_msg % (fill_value, ndtype)) from e
474 return np.array(fill_value)
477def set_fill_value(a, fill_value):
478 """
479 Set the filling value of a, if a is a masked array.
481 This function changes the fill value of the masked array `a` in place.
482 If `a` is not a masked array, the function returns silently, without
483 doing anything.
485 Parameters
486 ----------
487 a : array_like
488 Input array.
489 fill_value : dtype
490 Filling value. A consistency test is performed to make sure
491 the value is compatible with the dtype of `a`.
493 Returns
494 -------
495 None
496 Nothing returned by this function.
498 See Also
499 --------
500 maximum_fill_value : Return the default fill value for a dtype.
501 MaskedArray.fill_value : Return current fill value.
502 MaskedArray.set_fill_value : Equivalent method.
504 Examples
505 --------
506 >>> import numpy.ma as ma
507 >>> a = np.arange(5)
508 >>> a
509 array([0, 1, 2, 3, 4])
510 >>> a = ma.masked_where(a < 3, a)
511 >>> a
512 masked_array(data=[--, --, --, 3, 4],
513 mask=[ True, True, True, False, False],
514 fill_value=999999)
515 >>> ma.set_fill_value(a, -999)
516 >>> a
517 masked_array(data=[--, --, --, 3, 4],
518 mask=[ True, True, True, False, False],
519 fill_value=-999)
521 Nothing happens if `a` is not a masked array.
523 >>> a = list(range(5))
524 >>> a
525 [0, 1, 2, 3, 4]
526 >>> ma.set_fill_value(a, 100)
527 >>> a
528 [0, 1, 2, 3, 4]
529 >>> a = np.arange(5)
530 >>> a
531 array([0, 1, 2, 3, 4])
532 >>> ma.set_fill_value(a, 100)
533 >>> a
534 array([0, 1, 2, 3, 4])
536 """
537 if isinstance(a, MaskedArray):
538 a.set_fill_value(fill_value)
539 return
542def get_fill_value(a):
543 """
544 Return the filling value of a, if any. Otherwise, returns the
545 default filling value for that type.
547 """
548 if isinstance(a, MaskedArray):
549 result = a.fill_value
550 else:
551 result = default_fill_value(a)
552 return result
555def common_fill_value(a, b):
556 """
557 Return the common filling value of two masked arrays, if any.
559 If ``a.fill_value == b.fill_value``, return the fill value,
560 otherwise return None.
562 Parameters
563 ----------
564 a, b : MaskedArray
565 The masked arrays for which to compare fill values.
567 Returns
568 -------
569 fill_value : scalar or None
570 The common fill value, or None.
572 Examples
573 --------
574 >>> x = np.ma.array([0, 1.], fill_value=3)
575 >>> y = np.ma.array([0, 1.], fill_value=3)
576 >>> np.ma.common_fill_value(x, y)
577 3.0
579 """
580 t1 = get_fill_value(a)
581 t2 = get_fill_value(b)
582 if t1 == t2:
583 return t1
584 return None
587def filled(a, fill_value=None):
588 """
589 Return input as an array with masked data replaced by a fill value.
591 If `a` is not a `MaskedArray`, `a` itself is returned.
592 If `a` is a `MaskedArray` and `fill_value` is None, `fill_value` is set to
593 ``a.fill_value``.
595 Parameters
596 ----------
597 a : MaskedArray or array_like
598 An input object.
599 fill_value : array_like, optional.
600 Can be scalar or non-scalar. If non-scalar, the
601 resulting filled array should be broadcastable
602 over input array. Default is None.
604 Returns
605 -------
606 a : ndarray
607 The filled array.
609 See Also
610 --------
611 compressed
613 Examples
614 --------
615 >>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0],
616 ... [1, 0, 0],
617 ... [0, 0, 0]])
618 >>> x.filled()
619 array([[999999, 1, 2],
620 [999999, 4, 5],
621 [ 6, 7, 8]])
622 >>> x.filled(fill_value=333)
623 array([[333, 1, 2],
624 [333, 4, 5],
625 [ 6, 7, 8]])
626 >>> x.filled(fill_value=np.arange(3))
627 array([[0, 1, 2],
628 [0, 4, 5],
629 [6, 7, 8]])
631 """
632 if hasattr(a, 'filled'):
633 return a.filled(fill_value)
635 elif isinstance(a, ndarray):
636 # Should we check for contiguity ? and a.flags['CONTIGUOUS']:
637 return a
638 elif isinstance(a, dict):
639 return np.array(a, 'O')
640 else:
641 return np.array(a)
644def get_masked_subclass(*arrays):
645 """
646 Return the youngest subclass of MaskedArray from a list of (masked) arrays.
648 In case of siblings, the first listed takes over.
650 """
651 if len(arrays) == 1:
652 arr = arrays[0]
653 if isinstance(arr, MaskedArray):
654 rcls = type(arr)
655 else:
656 rcls = MaskedArray
657 else:
658 arrcls = [type(a) for a in arrays]
659 rcls = arrcls[0]
660 if not issubclass(rcls, MaskedArray):
661 rcls = MaskedArray
662 for cls in arrcls[1:]:
663 if issubclass(cls, rcls):
664 rcls = cls
665 # Don't return MaskedConstant as result: revert to MaskedArray
666 if rcls.__name__ == 'MaskedConstant':
667 return MaskedArray
668 return rcls
671def getdata(a, subok=True):
672 """
673 Return the data of a masked array as an ndarray.
675 Return the data of `a` (if any) as an ndarray if `a` is a ``MaskedArray``,
676 else return `a` as a ndarray or subclass (depending on `subok`) if not.
678 Parameters
679 ----------
680 a : array_like
681 Input ``MaskedArray``, alternatively a ndarray or a subclass thereof.
682 subok : bool
683 Whether to force the output to be a `pure` ndarray (False) or to
684 return a subclass of ndarray if appropriate (True, default).
686 See Also
687 --------
688 getmask : Return the mask of a masked array, or nomask.
689 getmaskarray : Return the mask of a masked array, or full array of False.
691 Examples
692 --------
693 >>> import numpy.ma as ma
694 >>> a = ma.masked_equal([[1,2],[3,4]], 2)
695 >>> a
696 masked_array(
697 data=[[1, --],
698 [3, 4]],
699 mask=[[False, True],
700 [False, False]],
701 fill_value=2)
702 >>> ma.getdata(a)
703 array([[1, 2],
704 [3, 4]])
706 Equivalently use the ``MaskedArray`` `data` attribute.
708 >>> a.data
709 array([[1, 2],
710 [3, 4]])
712 """
713 try:
714 data = a._data
715 except AttributeError:
716 data = np.array(a, copy=False, subok=subok)
717 if not subok:
718 return data.view(ndarray)
719 return data
722get_data = getdata
725def fix_invalid(a, mask=nomask, copy=True, fill_value=None):
726 """
727 Return input with invalid data masked and replaced by a fill value.
729 Invalid data means values of `nan`, `inf`, etc.
731 Parameters
732 ----------
733 a : array_like
734 Input array, a (subclass of) ndarray.
735 mask : sequence, optional
736 Mask. Must be convertible to an array of booleans with the same
737 shape as `data`. True indicates a masked (i.e. invalid) data.
738 copy : bool, optional
739 Whether to use a copy of `a` (True) or to fix `a` in place (False).
740 Default is True.
741 fill_value : scalar, optional
742 Value used for fixing invalid data. Default is None, in which case
743 the ``a.fill_value`` is used.
745 Returns
746 -------
747 b : MaskedArray
748 The input array with invalid entries fixed.
750 Notes
751 -----
752 A copy is performed by default.
754 Examples
755 --------
756 >>> x = np.ma.array([1., -1, np.nan, np.inf], mask=[1] + [0]*3)
757 >>> x
758 masked_array(data=[--, -1.0, nan, inf],
759 mask=[ True, False, False, False],
760 fill_value=1e+20)
761 >>> np.ma.fix_invalid(x)
762 masked_array(data=[--, -1.0, --, --],
763 mask=[ True, False, True, True],
764 fill_value=1e+20)
766 >>> fixed = np.ma.fix_invalid(x)
767 >>> fixed.data
768 array([ 1.e+00, -1.e+00, 1.e+20, 1.e+20])
769 >>> x.data
770 array([ 1., -1., nan, inf])
772 """
773 a = masked_array(a, copy=copy, mask=mask, subok=True)
774 invalid = np.logical_not(np.isfinite(a._data))
775 if not invalid.any():
776 return a
777 a._mask |= invalid
778 if fill_value is None:
779 fill_value = a.fill_value
780 a._data[invalid] = fill_value
781 return a
783def is_string_or_list_of_strings(val):
784 return (isinstance(val, str) or
785 (isinstance(val, list) and val and
786 builtins.all(isinstance(s, str) for s in val)))
788###############################################################################
789# Ufuncs #
790###############################################################################
793ufunc_domain = {}
794ufunc_fills = {}
797class _DomainCheckInterval:
798 """
799 Define a valid interval, so that :
801 ``domain_check_interval(a,b)(x) == True`` where
802 ``x < a`` or ``x > b``.
804 """
806 def __init__(self, a, b):
807 "domain_check_interval(a,b)(x) = true where x < a or y > b"
808 if a > b:
809 (a, b) = (b, a)
810 self.a = a
811 self.b = b
813 def __call__(self, x):
814 "Execute the call behavior."
815 # nans at masked positions cause RuntimeWarnings, even though
816 # they are masked. To avoid this we suppress warnings.
817 with np.errstate(invalid='ignore'):
818 return umath.logical_or(umath.greater(x, self.b),
819 umath.less(x, self.a))
822class _DomainTan:
823 """
824 Define a valid interval for the `tan` function, so that:
826 ``domain_tan(eps) = True`` where ``abs(cos(x)) < eps``
828 """
830 def __init__(self, eps):
831 "domain_tan(eps) = true where abs(cos(x)) < eps)"
832 self.eps = eps
834 def __call__(self, x):
835 "Executes the call behavior."
836 with np.errstate(invalid='ignore'):
837 return umath.less(umath.absolute(umath.cos(x)), self.eps)
840class _DomainSafeDivide:
841 """
842 Define a domain for safe division.
844 """
846 def __init__(self, tolerance=None):
847 self.tolerance = tolerance
849 def __call__(self, a, b):
850 # Delay the selection of the tolerance to here in order to reduce numpy
851 # import times. The calculation of these parameters is a substantial
852 # component of numpy's import time.
853 if self.tolerance is None:
854 self.tolerance = np.finfo(float).tiny
855 # don't call ma ufuncs from __array_wrap__ which would fail for scalars
856 a, b = np.asarray(a), np.asarray(b)
857 with np.errstate(invalid='ignore'):
858 return umath.absolute(a) * self.tolerance >= umath.absolute(b)
861class _DomainGreater:
862 """
863 DomainGreater(v)(x) is True where x <= v.
865 """
867 def __init__(self, critical_value):
868 "DomainGreater(v)(x) = true where x <= v"
869 self.critical_value = critical_value
871 def __call__(self, x):
872 "Executes the call behavior."
873 with np.errstate(invalid='ignore'):
874 return umath.less_equal(x, self.critical_value)
877class _DomainGreaterEqual:
878 """
879 DomainGreaterEqual(v)(x) is True where x < v.
881 """
883 def __init__(self, critical_value):
884 "DomainGreaterEqual(v)(x) = true where x < v"
885 self.critical_value = critical_value
887 def __call__(self, x):
888 "Executes the call behavior."
889 with np.errstate(invalid='ignore'):
890 return umath.less(x, self.critical_value)
893class _MaskedUFunc:
894 def __init__(self, ufunc):
895 self.f = ufunc
896 self.__doc__ = ufunc.__doc__
897 self.__name__ = ufunc.__name__
899 def __str__(self):
900 return f"Masked version of {self.f}"
903class _MaskedUnaryOperation(_MaskedUFunc):
904 """
905 Defines masked version of unary operations, where invalid values are
906 pre-masked.
908 Parameters
909 ----------
910 mufunc : callable
911 The function for which to define a masked version. Made available
912 as ``_MaskedUnaryOperation.f``.
913 fill : scalar, optional
914 Filling value, default is 0.
915 domain : class instance
916 Domain for the function. Should be one of the ``_Domain*``
917 classes. Default is None.
919 """
921 def __init__(self, mufunc, fill=0, domain=None):
922 super().__init__(mufunc)
923 self.fill = fill
924 self.domain = domain
925 ufunc_domain[mufunc] = domain
926 ufunc_fills[mufunc] = fill
928 def __call__(self, a, *args, **kwargs):
929 """
930 Execute the call behavior.
932 """
933 d = getdata(a)
934 # Deal with domain
935 if self.domain is not None:
936 # Case 1.1. : Domained function
937 # nans at masked positions cause RuntimeWarnings, even though
938 # they are masked. To avoid this we suppress warnings.
939 with np.errstate(divide='ignore', invalid='ignore'):
940 result = self.f(d, *args, **kwargs)
941 # Make a mask
942 m = ~umath.isfinite(result)
943 m |= self.domain(d)
944 m |= getmask(a)
945 else:
946 # Case 1.2. : Function without a domain
947 # Get the result and the mask
948 with np.errstate(divide='ignore', invalid='ignore'):
949 result = self.f(d, *args, **kwargs)
950 m = getmask(a)
952 if not result.ndim:
953 # Case 2.1. : The result is scalarscalar
954 if m:
955 return masked
956 return result
958 if m is not nomask:
959 # Case 2.2. The result is an array
960 # We need to fill the invalid data back w/ the input Now,
961 # that's plain silly: in C, we would just skip the element and
962 # keep the original, but we do have to do it that way in Python
964 # In case result has a lower dtype than the inputs (as in
965 # equal)
966 try:
967 np.copyto(result, d, where=m)
968 except TypeError:
969 pass
970 # Transform to
971 masked_result = result.view(get_masked_subclass(a))
972 masked_result._mask = m
973 masked_result._update_from(a)
974 return masked_result
977class _MaskedBinaryOperation(_MaskedUFunc):
978 """
979 Define masked version of binary operations, where invalid
980 values are pre-masked.
982 Parameters
983 ----------
984 mbfunc : function
985 The function for which to define a masked version. Made available
986 as ``_MaskedBinaryOperation.f``.
987 domain : class instance
988 Default domain for the function. Should be one of the ``_Domain*``
989 classes. Default is None.
990 fillx : scalar, optional
991 Filling value for the first argument, default is 0.
992 filly : scalar, optional
993 Filling value for the second argument, default is 0.
995 """
997 def __init__(self, mbfunc, fillx=0, filly=0):
998 """
999 abfunc(fillx, filly) must be defined.
1001 abfunc(x, filly) = x for all x to enable reduce.
1003 """
1004 super().__init__(mbfunc)
1005 self.fillx = fillx
1006 self.filly = filly
1007 ufunc_domain[mbfunc] = None
1008 ufunc_fills[mbfunc] = (fillx, filly)
1010 def __call__(self, a, b, *args, **kwargs):
1011 """
1012 Execute the call behavior.
1014 """
1015 # Get the data, as ndarray
1016 (da, db) = (getdata(a), getdata(b))
1017 # Get the result
1018 with np.errstate():
1019 np.seterr(divide='ignore', invalid='ignore')
1020 result = self.f(da, db, *args, **kwargs)
1021 # Get the mask for the result
1022 (ma, mb) = (getmask(a), getmask(b))
1023 if ma is nomask:
1024 if mb is nomask:
1025 m = nomask
1026 else:
1027 m = umath.logical_or(getmaskarray(a), mb)
1028 elif mb is nomask:
1029 m = umath.logical_or(ma, getmaskarray(b))
1030 else:
1031 m = umath.logical_or(ma, mb)
1033 # Case 1. : scalar
1034 if not result.ndim:
1035 if m:
1036 return masked
1037 return result
1039 # Case 2. : array
1040 # Revert result to da where masked
1041 if m is not nomask and m.any():
1042 # any errors, just abort; impossible to guarantee masked values
1043 try:
1044 np.copyto(result, da, casting='unsafe', where=m)
1045 except Exception:
1046 pass
1048 # Transforms to a (subclass of) MaskedArray
1049 masked_result = result.view(get_masked_subclass(a, b))
1050 masked_result._mask = m
1051 if isinstance(a, MaskedArray):
1052 masked_result._update_from(a)
1053 elif isinstance(b, MaskedArray):
1054 masked_result._update_from(b)
1055 return masked_result
1057 def reduce(self, target, axis=0, dtype=None):
1058 """
1059 Reduce `target` along the given `axis`.
1061 """
1062 tclass = get_masked_subclass(target)
1063 m = getmask(target)
1064 t = filled(target, self.filly)
1065 if t.shape == ():
1066 t = t.reshape(1)
1067 if m is not nomask:
1068 m = make_mask(m, copy=True)
1069 m.shape = (1,)
1071 if m is nomask:
1072 tr = self.f.reduce(t, axis)
1073 mr = nomask
1074 else:
1075 tr = self.f.reduce(t, axis, dtype=dtype)
1076 mr = umath.logical_and.reduce(m, axis)
1078 if not tr.shape:
1079 if mr:
1080 return masked
1081 else:
1082 return tr
1083 masked_tr = tr.view(tclass)
1084 masked_tr._mask = mr
1085 return masked_tr
1087 def outer(self, a, b):
1088 """
1089 Return the function applied to the outer product of a and b.
1091 """
1092 (da, db) = (getdata(a), getdata(b))
1093 d = self.f.outer(da, db)
1094 ma = getmask(a)
1095 mb = getmask(b)
1096 if ma is nomask and mb is nomask:
1097 m = nomask
1098 else:
1099 ma = getmaskarray(a)
1100 mb = getmaskarray(b)
1101 m = umath.logical_or.outer(ma, mb)
1102 if (not m.ndim) and m:
1103 return masked
1104 if m is not nomask:
1105 np.copyto(d, da, where=m)
1106 if not d.shape:
1107 return d
1108 masked_d = d.view(get_masked_subclass(a, b))
1109 masked_d._mask = m
1110 return masked_d
1112 def accumulate(self, target, axis=0):
1113 """Accumulate `target` along `axis` after filling with y fill
1114 value.
1116 """
1117 tclass = get_masked_subclass(target)
1118 t = filled(target, self.filly)
1119 result = self.f.accumulate(t, axis)
1120 masked_result = result.view(tclass)
1121 return masked_result
1125class _DomainedBinaryOperation(_MaskedUFunc):
1126 """
1127 Define binary operations that have a domain, like divide.
1129 They have no reduce, outer or accumulate.
1131 Parameters
1132 ----------
1133 mbfunc : function
1134 The function for which to define a masked version. Made available
1135 as ``_DomainedBinaryOperation.f``.
1136 domain : class instance
1137 Default domain for the function. Should be one of the ``_Domain*``
1138 classes.
1139 fillx : scalar, optional
1140 Filling value for the first argument, default is 0.
1141 filly : scalar, optional
1142 Filling value for the second argument, default is 0.
1144 """
1146 def __init__(self, dbfunc, domain, fillx=0, filly=0):
1147 """abfunc(fillx, filly) must be defined.
1148 abfunc(x, filly) = x for all x to enable reduce.
1149 """
1150 super().__init__(dbfunc)
1151 self.domain = domain
1152 self.fillx = fillx
1153 self.filly = filly
1154 ufunc_domain[dbfunc] = domain
1155 ufunc_fills[dbfunc] = (fillx, filly)
1157 def __call__(self, a, b, *args, **kwargs):
1158 "Execute the call behavior."
1159 # Get the data
1160 (da, db) = (getdata(a), getdata(b))
1161 # Get the result
1162 with np.errstate(divide='ignore', invalid='ignore'):
1163 result = self.f(da, db, *args, **kwargs)
1164 # Get the mask as a combination of the source masks and invalid
1165 m = ~umath.isfinite(result)
1166 m |= getmask(a)
1167 m |= getmask(b)
1168 # Apply the domain
1169 domain = ufunc_domain.get(self.f, None)
1170 if domain is not None:
1171 m |= domain(da, db)
1172 # Take care of the scalar case first
1173 if not m.ndim:
1174 if m:
1175 return masked
1176 else:
1177 return result
1178 # When the mask is True, put back da if possible
1179 # any errors, just abort; impossible to guarantee masked values
1180 try:
1181 np.copyto(result, 0, casting='unsafe', where=m)
1182 # avoid using "*" since this may be overlaid
1183 masked_da = umath.multiply(m, da)
1184 # only add back if it can be cast safely
1185 if np.can_cast(masked_da.dtype, result.dtype, casting='safe'):
1186 result += masked_da
1187 except Exception:
1188 pass
1190 # Transforms to a (subclass of) MaskedArray
1191 masked_result = result.view(get_masked_subclass(a, b))
1192 masked_result._mask = m
1193 if isinstance(a, MaskedArray):
1194 masked_result._update_from(a)
1195 elif isinstance(b, MaskedArray):
1196 masked_result._update_from(b)
1197 return masked_result
1200# Unary ufuncs
1201exp = _MaskedUnaryOperation(umath.exp)
1202conjugate = _MaskedUnaryOperation(umath.conjugate)
1203sin = _MaskedUnaryOperation(umath.sin)
1204cos = _MaskedUnaryOperation(umath.cos)
1205arctan = _MaskedUnaryOperation(umath.arctan)
1206arcsinh = _MaskedUnaryOperation(umath.arcsinh)
1207sinh = _MaskedUnaryOperation(umath.sinh)
1208cosh = _MaskedUnaryOperation(umath.cosh)
1209tanh = _MaskedUnaryOperation(umath.tanh)
1210abs = absolute = _MaskedUnaryOperation(umath.absolute)
1211angle = _MaskedUnaryOperation(angle) # from numpy.lib.function_base
1212fabs = _MaskedUnaryOperation(umath.fabs)
1213negative = _MaskedUnaryOperation(umath.negative)
1214floor = _MaskedUnaryOperation(umath.floor)
1215ceil = _MaskedUnaryOperation(umath.ceil)
1216around = _MaskedUnaryOperation(np.round_)
1217logical_not = _MaskedUnaryOperation(umath.logical_not)
1219# Domained unary ufuncs
1220sqrt = _MaskedUnaryOperation(umath.sqrt, 0.0,
1221 _DomainGreaterEqual(0.0))
1222log = _MaskedUnaryOperation(umath.log, 1.0,
1223 _DomainGreater(0.0))
1224log2 = _MaskedUnaryOperation(umath.log2, 1.0,
1225 _DomainGreater(0.0))
1226log10 = _MaskedUnaryOperation(umath.log10, 1.0,
1227 _DomainGreater(0.0))
1228tan = _MaskedUnaryOperation(umath.tan, 0.0,
1229 _DomainTan(1e-35))
1230arcsin = _MaskedUnaryOperation(umath.arcsin, 0.0,
1231 _DomainCheckInterval(-1.0, 1.0))
1232arccos = _MaskedUnaryOperation(umath.arccos, 0.0,
1233 _DomainCheckInterval(-1.0, 1.0))
1234arccosh = _MaskedUnaryOperation(umath.arccosh, 1.0,
1235 _DomainGreaterEqual(1.0))
1236arctanh = _MaskedUnaryOperation(umath.arctanh, 0.0,
1237 _DomainCheckInterval(-1.0 + 1e-15, 1.0 - 1e-15))
1239# Binary ufuncs
1240add = _MaskedBinaryOperation(umath.add)
1241subtract = _MaskedBinaryOperation(umath.subtract)
1242multiply = _MaskedBinaryOperation(umath.multiply, 1, 1)
1243arctan2 = _MaskedBinaryOperation(umath.arctan2, 0.0, 1.0)
1244equal = _MaskedBinaryOperation(umath.equal)
1245equal.reduce = None
1246not_equal = _MaskedBinaryOperation(umath.not_equal)
1247not_equal.reduce = None
1248less_equal = _MaskedBinaryOperation(umath.less_equal)
1249less_equal.reduce = None
1250greater_equal = _MaskedBinaryOperation(umath.greater_equal)
1251greater_equal.reduce = None
1252less = _MaskedBinaryOperation(umath.less)
1253less.reduce = None
1254greater = _MaskedBinaryOperation(umath.greater)
1255greater.reduce = None
1256logical_and = _MaskedBinaryOperation(umath.logical_and)
1257alltrue = _MaskedBinaryOperation(umath.logical_and, 1, 1).reduce
1258logical_or = _MaskedBinaryOperation(umath.logical_or)
1259sometrue = logical_or.reduce
1260logical_xor = _MaskedBinaryOperation(umath.logical_xor)
1261bitwise_and = _MaskedBinaryOperation(umath.bitwise_and)
1262bitwise_or = _MaskedBinaryOperation(umath.bitwise_or)
1263bitwise_xor = _MaskedBinaryOperation(umath.bitwise_xor)
1264hypot = _MaskedBinaryOperation(umath.hypot)
1266# Domained binary ufuncs
1267divide = _DomainedBinaryOperation(umath.divide, _DomainSafeDivide(), 0, 1)
1268true_divide = _DomainedBinaryOperation(umath.true_divide,
1269 _DomainSafeDivide(), 0, 1)
1270floor_divide = _DomainedBinaryOperation(umath.floor_divide,
1271 _DomainSafeDivide(), 0, 1)
1272remainder = _DomainedBinaryOperation(umath.remainder,
1273 _DomainSafeDivide(), 0, 1)
1274fmod = _DomainedBinaryOperation(umath.fmod, _DomainSafeDivide(), 0, 1)
1275mod = _DomainedBinaryOperation(umath.mod, _DomainSafeDivide(), 0, 1)
1278###############################################################################
1279# Mask creation functions #
1280###############################################################################
1283def _replace_dtype_fields_recursive(dtype, primitive_dtype):
1284 "Private function allowing recursion in _replace_dtype_fields."
1285 _recurse = _replace_dtype_fields_recursive
1287 # Do we have some name fields ?
1288 if dtype.names is not None:
1289 descr = []
1290 for name in dtype.names:
1291 field = dtype.fields[name]
1292 if len(field) == 3:
1293 # Prepend the title to the name
1294 name = (field[-1], name)
1295 descr.append((name, _recurse(field[0], primitive_dtype)))
1296 new_dtype = np.dtype(descr)
1298 # Is this some kind of composite a la (float,2)
1299 elif dtype.subdtype:
1300 descr = list(dtype.subdtype)
1301 descr[0] = _recurse(dtype.subdtype[0], primitive_dtype)
1302 new_dtype = np.dtype(tuple(descr))
1304 # this is a primitive type, so do a direct replacement
1305 else:
1306 new_dtype = primitive_dtype
1308 # preserve identity of dtypes
1309 if new_dtype == dtype:
1310 new_dtype = dtype
1312 return new_dtype
1315def _replace_dtype_fields(dtype, primitive_dtype):
1316 """
1317 Construct a dtype description list from a given dtype.
1319 Returns a new dtype object, with all fields and subtypes in the given type
1320 recursively replaced with `primitive_dtype`.
1322 Arguments are coerced to dtypes first.
1323 """
1324 dtype = np.dtype(dtype)
1325 primitive_dtype = np.dtype(primitive_dtype)
1326 return _replace_dtype_fields_recursive(dtype, primitive_dtype)
1329def make_mask_descr(ndtype):
1330 """
1331 Construct a dtype description list from a given dtype.
1333 Returns a new dtype object, with the type of all fields in `ndtype` to a
1334 boolean type. Field names are not altered.
1336 Parameters
1337 ----------
1338 ndtype : dtype
1339 The dtype to convert.
1341 Returns
1342 -------
1343 result : dtype
1344 A dtype that looks like `ndtype`, the type of all fields is boolean.
1346 Examples
1347 --------
1348 >>> import numpy.ma as ma
1349 >>> dtype = np.dtype({'names':['foo', 'bar'],
1350 ... 'formats':[np.float32, np.int64]})
1351 >>> dtype
1352 dtype([('foo', '<f4'), ('bar', '<i8')])
1353 >>> ma.make_mask_descr(dtype)
1354 dtype([('foo', '|b1'), ('bar', '|b1')])
1355 >>> ma.make_mask_descr(np.float32)
1356 dtype('bool')
1358 """
1359 return _replace_dtype_fields(ndtype, MaskType)
1362def getmask(a):
1363 """
1364 Return the mask of a masked array, or nomask.
1366 Return the mask of `a` as an ndarray if `a` is a `MaskedArray` and the
1367 mask is not `nomask`, else return `nomask`. To guarantee a full array
1368 of booleans of the same shape as a, use `getmaskarray`.
1370 Parameters
1371 ----------
1372 a : array_like
1373 Input `MaskedArray` for which the mask is required.
1375 See Also
1376 --------
1377 getdata : Return the data of a masked array as an ndarray.
1378 getmaskarray : Return the mask of a masked array, or full array of False.
1380 Examples
1381 --------
1382 >>> import numpy.ma as ma
1383 >>> a = ma.masked_equal([[1,2],[3,4]], 2)
1384 >>> a
1385 masked_array(
1386 data=[[1, --],
1387 [3, 4]],
1388 mask=[[False, True],
1389 [False, False]],
1390 fill_value=2)
1391 >>> ma.getmask(a)
1392 array([[False, True],
1393 [False, False]])
1395 Equivalently use the `MaskedArray` `mask` attribute.
1397 >>> a.mask
1398 array([[False, True],
1399 [False, False]])
1401 Result when mask == `nomask`
1403 >>> b = ma.masked_array([[1,2],[3,4]])
1404 >>> b
1405 masked_array(
1406 data=[[1, 2],
1407 [3, 4]],
1408 mask=False,
1409 fill_value=999999)
1410 >>> ma.nomask
1411 False
1412 >>> ma.getmask(b) == ma.nomask
1413 True
1414 >>> b.mask == ma.nomask
1415 True
1417 """
1418 return getattr(a, '_mask', nomask)
1421get_mask = getmask
1424def getmaskarray(arr):
1425 """
1426 Return the mask of a masked array, or full boolean array of False.
1428 Return the mask of `arr` as an ndarray if `arr` is a `MaskedArray` and
1429 the mask is not `nomask`, else return a full boolean array of False of
1430 the same shape as `arr`.
1432 Parameters
1433 ----------
1434 arr : array_like
1435 Input `MaskedArray` for which the mask is required.
1437 See Also
1438 --------
1439 getmask : Return the mask of a masked array, or nomask.
1440 getdata : Return the data of a masked array as an ndarray.
1442 Examples
1443 --------
1444 >>> import numpy.ma as ma
1445 >>> a = ma.masked_equal([[1,2],[3,4]], 2)
1446 >>> a
1447 masked_array(
1448 data=[[1, --],
1449 [3, 4]],
1450 mask=[[False, True],
1451 [False, False]],
1452 fill_value=2)
1453 >>> ma.getmaskarray(a)
1454 array([[False, True],
1455 [False, False]])
1457 Result when mask == ``nomask``
1459 >>> b = ma.masked_array([[1,2],[3,4]])
1460 >>> b
1461 masked_array(
1462 data=[[1, 2],
1463 [3, 4]],
1464 mask=False,
1465 fill_value=999999)
1466 >>> ma.getmaskarray(b)
1467 array([[False, False],
1468 [False, False]])
1470 """
1471 mask = getmask(arr)
1472 if mask is nomask:
1473 mask = make_mask_none(np.shape(arr), getattr(arr, 'dtype', None))
1474 return mask
1477def is_mask(m):
1478 """
1479 Return True if m is a valid, standard mask.
1481 This function does not check the contents of the input, only that the
1482 type is MaskType. In particular, this function returns False if the
1483 mask has a flexible dtype.
1485 Parameters
1486 ----------
1487 m : array_like
1488 Array to test.
1490 Returns
1491 -------
1492 result : bool
1493 True if `m.dtype.type` is MaskType, False otherwise.
1495 See Also
1496 --------
1497 ma.isMaskedArray : Test whether input is an instance of MaskedArray.
1499 Examples
1500 --------
1501 >>> import numpy.ma as ma
1502 >>> m = ma.masked_equal([0, 1, 0, 2, 3], 0)
1503 >>> m
1504 masked_array(data=[--, 1, --, 2, 3],
1505 mask=[ True, False, True, False, False],
1506 fill_value=0)
1507 >>> ma.is_mask(m)
1508 False
1509 >>> ma.is_mask(m.mask)
1510 True
1512 Input must be an ndarray (or have similar attributes)
1513 for it to be considered a valid mask.
1515 >>> m = [False, True, False]
1516 >>> ma.is_mask(m)
1517 False
1518 >>> m = np.array([False, True, False])
1519 >>> m
1520 array([False, True, False])
1521 >>> ma.is_mask(m)
1522 True
1524 Arrays with complex dtypes don't return True.
1526 >>> dtype = np.dtype({'names':['monty', 'pithon'],
1527 ... 'formats':[bool, bool]})
1528 >>> dtype
1529 dtype([('monty', '|b1'), ('pithon', '|b1')])
1530 >>> m = np.array([(True, False), (False, True), (True, False)],
1531 ... dtype=dtype)
1532 >>> m
1533 array([( True, False), (False, True), ( True, False)],
1534 dtype=[('monty', '?'), ('pithon', '?')])
1535 >>> ma.is_mask(m)
1536 False
1538 """
1539 try:
1540 return m.dtype.type is MaskType
1541 except AttributeError:
1542 return False
1545def _shrink_mask(m):
1546 """
1547 Shrink a mask to nomask if possible
1548 """
1549 if m.dtype.names is None and not m.any():
1550 return nomask
1551 else:
1552 return m
1555def make_mask(m, copy=False, shrink=True, dtype=MaskType):
1556 """
1557 Create a boolean mask from an array.
1559 Return `m` as a boolean mask, creating a copy if necessary or requested.
1560 The function can accept any sequence that is convertible to integers,
1561 or ``nomask``. Does not require that contents must be 0s and 1s, values
1562 of 0 are interpreted as False, everything else as True.
1564 Parameters
1565 ----------
1566 m : array_like
1567 Potential mask.
1568 copy : bool, optional
1569 Whether to return a copy of `m` (True) or `m` itself (False).
1570 shrink : bool, optional
1571 Whether to shrink `m` to ``nomask`` if all its values are False.
1572 dtype : dtype, optional
1573 Data-type of the output mask. By default, the output mask has a
1574 dtype of MaskType (bool). If the dtype is flexible, each field has
1575 a boolean dtype. This is ignored when `m` is ``nomask``, in which
1576 case ``nomask`` is always returned.
1578 Returns
1579 -------
1580 result : ndarray
1581 A boolean mask derived from `m`.
1583 Examples
1584 --------
1585 >>> import numpy.ma as ma
1586 >>> m = [True, False, True, True]
1587 >>> ma.make_mask(m)
1588 array([ True, False, True, True])
1589 >>> m = [1, 0, 1, 1]
1590 >>> ma.make_mask(m)
1591 array([ True, False, True, True])
1592 >>> m = [1, 0, 2, -3]
1593 >>> ma.make_mask(m)
1594 array([ True, False, True, True])
1596 Effect of the `shrink` parameter.
1598 >>> m = np.zeros(4)
1599 >>> m
1600 array([0., 0., 0., 0.])
1601 >>> ma.make_mask(m)
1602 False
1603 >>> ma.make_mask(m, shrink=False)
1604 array([False, False, False, False])
1606 Using a flexible `dtype`.
1608 >>> m = [1, 0, 1, 1]
1609 >>> n = [0, 1, 0, 0]
1610 >>> arr = []
1611 >>> for man, mouse in zip(m, n):
1612 ... arr.append((man, mouse))
1613 >>> arr
1614 [(1, 0), (0, 1), (1, 0), (1, 0)]
1615 >>> dtype = np.dtype({'names':['man', 'mouse'],
1616 ... 'formats':[np.int64, np.int64]})
1617 >>> arr = np.array(arr, dtype=dtype)
1618 >>> arr
1619 array([(1, 0), (0, 1), (1, 0), (1, 0)],
1620 dtype=[('man', '<i8'), ('mouse', '<i8')])
1621 >>> ma.make_mask(arr, dtype=dtype)
1622 array([(True, False), (False, True), (True, False), (True, False)],
1623 dtype=[('man', '|b1'), ('mouse', '|b1')])
1625 """
1626 if m is nomask:
1627 return nomask
1629 # Make sure the input dtype is valid.
1630 dtype = make_mask_descr(dtype)
1632 # legacy boolean special case: "existence of fields implies true"
1633 if isinstance(m, ndarray) and m.dtype.fields and dtype == np.bool_:
1634 return np.ones(m.shape, dtype=dtype)
1636 # Fill the mask in case there are missing data; turn it into an ndarray.
1637 result = np.array(filled(m, True), copy=copy, dtype=dtype, subok=True)
1638 # Bas les masques !
1639 if shrink:
1640 result = _shrink_mask(result)
1641 return result
1644def make_mask_none(newshape, dtype=None):
1645 """
1646 Return a boolean mask of the given shape, filled with False.
1648 This function returns a boolean ndarray with all entries False, that can
1649 be used in common mask manipulations. If a complex dtype is specified, the
1650 type of each field is converted to a boolean type.
1652 Parameters
1653 ----------
1654 newshape : tuple
1655 A tuple indicating the shape of the mask.
1656 dtype : {None, dtype}, optional
1657 If None, use a MaskType instance. Otherwise, use a new datatype with
1658 the same fields as `dtype`, converted to boolean types.
1660 Returns
1661 -------
1662 result : ndarray
1663 An ndarray of appropriate shape and dtype, filled with False.
1665 See Also
1666 --------
1667 make_mask : Create a boolean mask from an array.
1668 make_mask_descr : Construct a dtype description list from a given dtype.
1670 Examples
1671 --------
1672 >>> import numpy.ma as ma
1673 >>> ma.make_mask_none((3,))
1674 array([False, False, False])
1676 Defining a more complex dtype.
1678 >>> dtype = np.dtype({'names':['foo', 'bar'],
1679 ... 'formats':[np.float32, np.int64]})
1680 >>> dtype
1681 dtype([('foo', '<f4'), ('bar', '<i8')])
1682 >>> ma.make_mask_none((3,), dtype=dtype)
1683 array([(False, False), (False, False), (False, False)],
1684 dtype=[('foo', '|b1'), ('bar', '|b1')])
1686 """
1687 if dtype is None:
1688 result = np.zeros(newshape, dtype=MaskType)
1689 else:
1690 result = np.zeros(newshape, dtype=make_mask_descr(dtype))
1691 return result
1694def _recursive_mask_or(m1, m2, newmask):
1695 names = m1.dtype.names
1696 for name in names:
1697 current1 = m1[name]
1698 if current1.dtype.names is not None:
1699 _recursive_mask_or(current1, m2[name], newmask[name])
1700 else:
1701 umath.logical_or(current1, m2[name], newmask[name])
1704def mask_or(m1, m2, copy=False, shrink=True):
1705 """
1706 Combine two masks with the ``logical_or`` operator.
1708 The result may be a view on `m1` or `m2` if the other is `nomask`
1709 (i.e. False).
1711 Parameters
1712 ----------
1713 m1, m2 : array_like
1714 Input masks.
1715 copy : bool, optional
1716 If copy is False and one of the inputs is `nomask`, return a view
1717 of the other input mask. Defaults to False.
1718 shrink : bool, optional
1719 Whether to shrink the output to `nomask` if all its values are
1720 False. Defaults to True.
1722 Returns
1723 -------
1724 mask : output mask
1725 The result masks values that are masked in either `m1` or `m2`.
1727 Raises
1728 ------
1729 ValueError
1730 If `m1` and `m2` have different flexible dtypes.
1732 Examples
1733 --------
1734 >>> m1 = np.ma.make_mask([0, 1, 1, 0])
1735 >>> m2 = np.ma.make_mask([1, 0, 0, 0])
1736 >>> np.ma.mask_or(m1, m2)
1737 array([ True, True, True, False])
1739 """
1741 if (m1 is nomask) or (m1 is False):
1742 dtype = getattr(m2, 'dtype', MaskType)
1743 return make_mask(m2, copy=copy, shrink=shrink, dtype=dtype)
1744 if (m2 is nomask) or (m2 is False):
1745 dtype = getattr(m1, 'dtype', MaskType)
1746 return make_mask(m1, copy=copy, shrink=shrink, dtype=dtype)
1747 if m1 is m2 and is_mask(m1):
1748 return m1
1749 (dtype1, dtype2) = (getattr(m1, 'dtype', None), getattr(m2, 'dtype', None))
1750 if dtype1 != dtype2:
1751 raise ValueError("Incompatible dtypes '%s'<>'%s'" % (dtype1, dtype2))
1752 if dtype1.names is not None:
1753 # Allocate an output mask array with the properly broadcast shape.
1754 newmask = np.empty(np.broadcast(m1, m2).shape, dtype1)
1755 _recursive_mask_or(m1, m2, newmask)
1756 return newmask
1757 return make_mask(umath.logical_or(m1, m2), copy=copy, shrink=shrink)
1760def flatten_mask(mask):
1761 """
1762 Returns a completely flattened version of the mask, where nested fields
1763 are collapsed.
1765 Parameters
1766 ----------
1767 mask : array_like
1768 Input array, which will be interpreted as booleans.
1770 Returns
1771 -------
1772 flattened_mask : ndarray of bools
1773 The flattened input.
1775 Examples
1776 --------
1777 >>> mask = np.array([0, 0, 1])
1778 >>> np.ma.flatten_mask(mask)
1779 array([False, False, True])
1781 >>> mask = np.array([(0, 0), (0, 1)], dtype=[('a', bool), ('b', bool)])
1782 >>> np.ma.flatten_mask(mask)
1783 array([False, False, False, True])
1785 >>> mdtype = [('a', bool), ('b', [('ba', bool), ('bb', bool)])]
1786 >>> mask = np.array([(0, (0, 0)), (0, (0, 1))], dtype=mdtype)
1787 >>> np.ma.flatten_mask(mask)
1788 array([False, False, False, False, False, True])
1790 """
1792 def _flatmask(mask):
1793 "Flatten the mask and returns a (maybe nested) sequence of booleans."
1794 mnames = mask.dtype.names
1795 if mnames is not None:
1796 return [flatten_mask(mask[name]) for name in mnames]
1797 else:
1798 return mask
1800 def _flatsequence(sequence):
1801 "Generates a flattened version of the sequence."
1802 try:
1803 for element in sequence:
1804 if hasattr(element, '__iter__'):
1805 yield from _flatsequence(element)
1806 else:
1807 yield element
1808 except TypeError:
1809 yield sequence
1811 mask = np.asarray(mask)
1812 flattened = _flatsequence(_flatmask(mask))
1813 return np.array([_ for _ in flattened], dtype=bool)
1816def _check_mask_axis(mask, axis, keepdims=np._NoValue):
1817 "Check whether there are masked values along the given axis"
1818 kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
1819 if mask is not nomask:
1820 return mask.all(axis=axis, **kwargs)
1821 return nomask
1824###############################################################################
1825# Masking functions #
1826###############################################################################
1828def masked_where(condition, a, copy=True):
1829 """
1830 Mask an array where a condition is met.
1832 Return `a` as an array masked where `condition` is True.
1833 Any masked values of `a` or `condition` are also masked in the output.
1835 Parameters
1836 ----------
1837 condition : array_like
1838 Masking condition. When `condition` tests floating point values for
1839 equality, consider using ``masked_values`` instead.
1840 a : array_like
1841 Array to mask.
1842 copy : bool
1843 If True (default) make a copy of `a` in the result. If False modify
1844 `a` in place and return a view.
1846 Returns
1847 -------
1848 result : MaskedArray
1849 The result of masking `a` where `condition` is True.
1851 See Also
1852 --------
1853 masked_values : Mask using floating point equality.
1854 masked_equal : Mask where equal to a given value.
1855 masked_not_equal : Mask where `not` equal to a given value.
1856 masked_less_equal : Mask where less than or equal to a given value.
1857 masked_greater_equal : Mask where greater than or equal to a given value.
1858 masked_less : Mask where less than a given value.
1859 masked_greater : Mask where greater than a given value.
1860 masked_inside : Mask inside a given interval.
1861 masked_outside : Mask outside a given interval.
1862 masked_invalid : Mask invalid values (NaNs or infs).
1864 Examples
1865 --------
1866 >>> import numpy.ma as ma
1867 >>> a = np.arange(4)
1868 >>> a
1869 array([0, 1, 2, 3])
1870 >>> ma.masked_where(a <= 2, a)
1871 masked_array(data=[--, --, --, 3],
1872 mask=[ True, True, True, False],
1873 fill_value=999999)
1875 Mask array `b` conditional on `a`.
1877 >>> b = ['a', 'b', 'c', 'd']
1878 >>> ma.masked_where(a == 2, b)
1879 masked_array(data=['a', 'b', --, 'd'],
1880 mask=[False, False, True, False],
1881 fill_value='N/A',
1882 dtype='<U1')
1884 Effect of the `copy` argument.
1886 >>> c = ma.masked_where(a <= 2, a)
1887 >>> c
1888 masked_array(data=[--, --, --, 3],
1889 mask=[ True, True, True, False],
1890 fill_value=999999)
1891 >>> c[0] = 99
1892 >>> c
1893 masked_array(data=[99, --, --, 3],
1894 mask=[False, True, True, False],
1895 fill_value=999999)
1896 >>> a
1897 array([0, 1, 2, 3])
1898 >>> c = ma.masked_where(a <= 2, a, copy=False)
1899 >>> c[0] = 99
1900 >>> c
1901 masked_array(data=[99, --, --, 3],
1902 mask=[False, True, True, False],
1903 fill_value=999999)
1904 >>> a
1905 array([99, 1, 2, 3])
1907 When `condition` or `a` contain masked values.
1909 >>> a = np.arange(4)
1910 >>> a = ma.masked_where(a == 2, a)
1911 >>> a
1912 masked_array(data=[0, 1, --, 3],
1913 mask=[False, False, True, False],
1914 fill_value=999999)
1915 >>> b = np.arange(4)
1916 >>> b = ma.masked_where(b == 0, b)
1917 >>> b
1918 masked_array(data=[--, 1, 2, 3],
1919 mask=[ True, False, False, False],
1920 fill_value=999999)
1921 >>> ma.masked_where(a == 3, b)
1922 masked_array(data=[--, 1, --, --],
1923 mask=[ True, False, True, True],
1924 fill_value=999999)
1926 """
1927 # Make sure that condition is a valid standard-type mask.
1928 cond = make_mask(condition, shrink=False)
1929 a = np.array(a, copy=copy, subok=True)
1931 (cshape, ashape) = (cond.shape, a.shape)
1932 if cshape and cshape != ashape:
1933 raise IndexError("Inconsistent shape between the condition and the input"
1934 " (got %s and %s)" % (cshape, ashape))
1935 if hasattr(a, '_mask'):
1936 cond = mask_or(cond, a._mask)
1937 cls = type(a)
1938 else:
1939 cls = MaskedArray
1940 result = a.view(cls)
1941 # Assign to *.mask so that structured masks are handled correctly.
1942 result.mask = _shrink_mask(cond)
1943 # There is no view of a boolean so when 'a' is a MaskedArray with nomask
1944 # the update to the result's mask has no effect.
1945 if not copy and hasattr(a, '_mask') and getmask(a) is nomask:
1946 a._mask = result._mask.view()
1947 return result
1950def masked_greater(x, value, copy=True):
1951 """
1952 Mask an array where greater than a given value.
1954 This function is a shortcut to ``masked_where``, with
1955 `condition` = (x > value).
1957 See Also
1958 --------
1959 masked_where : Mask where a condition is met.
1961 Examples
1962 --------
1963 >>> import numpy.ma as ma
1964 >>> a = np.arange(4)
1965 >>> a
1966 array([0, 1, 2, 3])
1967 >>> ma.masked_greater(a, 2)
1968 masked_array(data=[0, 1, 2, --],
1969 mask=[False, False, False, True],
1970 fill_value=999999)
1972 """
1973 return masked_where(greater(x, value), x, copy=copy)
1976def masked_greater_equal(x, value, copy=True):
1977 """
1978 Mask an array where greater than or equal to a given value.
1980 This function is a shortcut to ``masked_where``, with
1981 `condition` = (x >= value).
1983 See Also
1984 --------
1985 masked_where : Mask where a condition is met.
1987 Examples
1988 --------
1989 >>> import numpy.ma as ma
1990 >>> a = np.arange(4)
1991 >>> a
1992 array([0, 1, 2, 3])
1993 >>> ma.masked_greater_equal(a, 2)
1994 masked_array(data=[0, 1, --, --],
1995 mask=[False, False, True, True],
1996 fill_value=999999)
1998 """
1999 return masked_where(greater_equal(x, value), x, copy=copy)
2002def masked_less(x, value, copy=True):
2003 """
2004 Mask an array where less than a given value.
2006 This function is a shortcut to ``masked_where``, with
2007 `condition` = (x < value).
2009 See Also
2010 --------
2011 masked_where : Mask where a condition is met.
2013 Examples
2014 --------
2015 >>> import numpy.ma as ma
2016 >>> a = np.arange(4)
2017 >>> a
2018 array([0, 1, 2, 3])
2019 >>> ma.masked_less(a, 2)
2020 masked_array(data=[--, --, 2, 3],
2021 mask=[ True, True, False, False],
2022 fill_value=999999)
2024 """
2025 return masked_where(less(x, value), x, copy=copy)
2028def masked_less_equal(x, value, copy=True):
2029 """
2030 Mask an array where less than or equal to a given value.
2032 This function is a shortcut to ``masked_where``, with
2033 `condition` = (x <= value).
2035 See Also
2036 --------
2037 masked_where : Mask where a condition is met.
2039 Examples
2040 --------
2041 >>> import numpy.ma as ma
2042 >>> a = np.arange(4)
2043 >>> a
2044 array([0, 1, 2, 3])
2045 >>> ma.masked_less_equal(a, 2)
2046 masked_array(data=[--, --, --, 3],
2047 mask=[ True, True, True, False],
2048 fill_value=999999)
2050 """
2051 return masked_where(less_equal(x, value), x, copy=copy)
2054def masked_not_equal(x, value, copy=True):
2055 """
2056 Mask an array where `not` equal to a given value.
2058 This function is a shortcut to ``masked_where``, with
2059 `condition` = (x != value).
2061 See Also
2062 --------
2063 masked_where : Mask where a condition is met.
2065 Examples
2066 --------
2067 >>> import numpy.ma as ma
2068 >>> a = np.arange(4)
2069 >>> a
2070 array([0, 1, 2, 3])
2071 >>> ma.masked_not_equal(a, 2)
2072 masked_array(data=[--, --, 2, --],
2073 mask=[ True, True, False, True],
2074 fill_value=999999)
2076 """
2077 return masked_where(not_equal(x, value), x, copy=copy)
2080def masked_equal(x, value, copy=True):
2081 """
2082 Mask an array where equal to a given value.
2084 Return a MaskedArray, masked where the data in array `x` are
2085 equal to `value`. The fill_value of the returned MaskedArray
2086 is set to `value`.
2088 For floating point arrays, consider using ``masked_values(x, value)``.
2090 See Also
2091 --------
2092 masked_where : Mask where a condition is met.
2093 masked_values : Mask using floating point equality.
2095 Examples
2096 --------
2097 >>> import numpy.ma as ma
2098 >>> a = np.arange(4)
2099 >>> a
2100 array([0, 1, 2, 3])
2101 >>> ma.masked_equal(a, 2)
2102 masked_array(data=[0, 1, --, 3],
2103 mask=[False, False, True, False],
2104 fill_value=2)
2106 """
2107 output = masked_where(equal(x, value), x, copy=copy)
2108 output.fill_value = value
2109 return output
2112def masked_inside(x, v1, v2, copy=True):
2113 """
2114 Mask an array inside a given interval.
2116 Shortcut to ``masked_where``, where `condition` is True for `x` inside
2117 the interval [v1,v2] (v1 <= x <= v2). The boundaries `v1` and `v2`
2118 can be given in either order.
2120 See Also
2121 --------
2122 masked_where : Mask where a condition is met.
2124 Notes
2125 -----
2126 The array `x` is prefilled with its filling value.
2128 Examples
2129 --------
2130 >>> import numpy.ma as ma
2131 >>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1]
2132 >>> ma.masked_inside(x, -0.3, 0.3)
2133 masked_array(data=[0.31, 1.2, --, --, -0.4, -1.1],
2134 mask=[False, False, True, True, False, False],
2135 fill_value=1e+20)
2137 The order of `v1` and `v2` doesn't matter.
2139 >>> ma.masked_inside(x, 0.3, -0.3)
2140 masked_array(data=[0.31, 1.2, --, --, -0.4, -1.1],
2141 mask=[False, False, True, True, False, False],
2142 fill_value=1e+20)
2144 """
2145 if v2 < v1:
2146 (v1, v2) = (v2, v1)
2147 xf = filled(x)
2148 condition = (xf >= v1) & (xf <= v2)
2149 return masked_where(condition, x, copy=copy)
2152def masked_outside(x, v1, v2, copy=True):
2153 """
2154 Mask an array outside a given interval.
2156 Shortcut to ``masked_where``, where `condition` is True for `x` outside
2157 the interval [v1,v2] (x < v1)|(x > v2).
2158 The boundaries `v1` and `v2` can be given in either order.
2160 See Also
2161 --------
2162 masked_where : Mask where a condition is met.
2164 Notes
2165 -----
2166 The array `x` is prefilled with its filling value.
2168 Examples
2169 --------
2170 >>> import numpy.ma as ma
2171 >>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1]
2172 >>> ma.masked_outside(x, -0.3, 0.3)
2173 masked_array(data=[--, --, 0.01, 0.2, --, --],
2174 mask=[ True, True, False, False, True, True],
2175 fill_value=1e+20)
2177 The order of `v1` and `v2` doesn't matter.
2179 >>> ma.masked_outside(x, 0.3, -0.3)
2180 masked_array(data=[--, --, 0.01, 0.2, --, --],
2181 mask=[ True, True, False, False, True, True],
2182 fill_value=1e+20)
2184 """
2185 if v2 < v1:
2186 (v1, v2) = (v2, v1)
2187 xf = filled(x)
2188 condition = (xf < v1) | (xf > v2)
2189 return masked_where(condition, x, copy=copy)
2192def masked_object(x, value, copy=True, shrink=True):
2193 """
2194 Mask the array `x` where the data are exactly equal to value.
2196 This function is similar to `masked_values`, but only suitable
2197 for object arrays: for floating point, use `masked_values` instead.
2199 Parameters
2200 ----------
2201 x : array_like
2202 Array to mask
2203 value : object
2204 Comparison value
2205 copy : {True, False}, optional
2206 Whether to return a copy of `x`.
2207 shrink : {True, False}, optional
2208 Whether to collapse a mask full of False to nomask
2210 Returns
2211 -------
2212 result : MaskedArray
2213 The result of masking `x` where equal to `value`.
2215 See Also
2216 --------
2217 masked_where : Mask where a condition is met.
2218 masked_equal : Mask where equal to a given value (integers).
2219 masked_values : Mask using floating point equality.
2221 Examples
2222 --------
2223 >>> import numpy.ma as ma
2224 >>> food = np.array(['green_eggs', 'ham'], dtype=object)
2225 >>> # don't eat spoiled food
2226 >>> eat = ma.masked_object(food, 'green_eggs')
2227 >>> eat
2228 masked_array(data=[--, 'ham'],
2229 mask=[ True, False],
2230 fill_value='green_eggs',
2231 dtype=object)
2232 >>> # plain ol` ham is boring
2233 >>> fresh_food = np.array(['cheese', 'ham', 'pineapple'], dtype=object)
2234 >>> eat = ma.masked_object(fresh_food, 'green_eggs')
2235 >>> eat
2236 masked_array(data=['cheese', 'ham', 'pineapple'],
2237 mask=False,
2238 fill_value='green_eggs',
2239 dtype=object)
2241 Note that `mask` is set to ``nomask`` if possible.
2243 >>> eat
2244 masked_array(data=['cheese', 'ham', 'pineapple'],
2245 mask=False,
2246 fill_value='green_eggs',
2247 dtype=object)
2249 """
2250 if isMaskedArray(x):
2251 condition = umath.equal(x._data, value)
2252 mask = x._mask
2253 else:
2254 condition = umath.equal(np.asarray(x), value)
2255 mask = nomask
2256 mask = mask_or(mask, make_mask(condition, shrink=shrink))
2257 return masked_array(x, mask=mask, copy=copy, fill_value=value)
2260def masked_values(x, value, rtol=1e-5, atol=1e-8, copy=True, shrink=True):
2261 """
2262 Mask using floating point equality.
2264 Return a MaskedArray, masked where the data in array `x` are approximately
2265 equal to `value`, determined using `isclose`. The default tolerances for
2266 `masked_values` are the same as those for `isclose`.
2268 For integer types, exact equality is used, in the same way as
2269 `masked_equal`.
2271 The fill_value is set to `value` and the mask is set to ``nomask`` if
2272 possible.
2274 Parameters
2275 ----------
2276 x : array_like
2277 Array to mask.
2278 value : float
2279 Masking value.
2280 rtol, atol : float, optional
2281 Tolerance parameters passed on to `isclose`
2282 copy : bool, optional
2283 Whether to return a copy of `x`.
2284 shrink : bool, optional
2285 Whether to collapse a mask full of False to ``nomask``.
2287 Returns
2288 -------
2289 result : MaskedArray
2290 The result of masking `x` where approximately equal to `value`.
2292 See Also
2293 --------
2294 masked_where : Mask where a condition is met.
2295 masked_equal : Mask where equal to a given value (integers).
2297 Examples
2298 --------
2299 >>> import numpy.ma as ma
2300 >>> x = np.array([1, 1.1, 2, 1.1, 3])
2301 >>> ma.masked_values(x, 1.1)
2302 masked_array(data=[1.0, --, 2.0, --, 3.0],
2303 mask=[False, True, False, True, False],
2304 fill_value=1.1)
2306 Note that `mask` is set to ``nomask`` if possible.
2308 >>> ma.masked_values(x, 2.1)
2309 masked_array(data=[1. , 1.1, 2. , 1.1, 3. ],
2310 mask=False,
2311 fill_value=2.1)
2313 Unlike `masked_equal`, `masked_values` can perform approximate equalities.
2315 >>> ma.masked_values(x, 2.1, atol=1e-1)
2316 masked_array(data=[1.0, 1.1, --, 1.1, 3.0],
2317 mask=[False, False, True, False, False],
2318 fill_value=2.1)
2320 """
2321 xnew = filled(x, value)
2322 if np.issubdtype(xnew.dtype, np.floating):
2323 mask = np.isclose(xnew, value, atol=atol, rtol=rtol)
2324 else:
2325 mask = umath.equal(xnew, value)
2326 ret = masked_array(xnew, mask=mask, copy=copy, fill_value=value)
2327 if shrink:
2328 ret.shrink_mask()
2329 return ret
2332def masked_invalid(a, copy=True):
2333 """
2334 Mask an array where invalid values occur (NaNs or infs).
2336 This function is a shortcut to ``masked_where``, with
2337 `condition` = ~(np.isfinite(a)). Any pre-existing mask is conserved.
2338 Only applies to arrays with a dtype where NaNs or infs make sense
2339 (i.e. floating point types), but accepts any array_like object.
2341 See Also
2342 --------
2343 masked_where : Mask where a condition is met.
2345 Examples
2346 --------
2347 >>> import numpy.ma as ma
2348 >>> a = np.arange(5, dtype=float)
2349 >>> a[2] = np.NaN
2350 >>> a[3] = np.PINF
2351 >>> a
2352 array([ 0., 1., nan, inf, 4.])
2353 >>> ma.masked_invalid(a)
2354 masked_array(data=[0.0, 1.0, --, --, 4.0],
2355 mask=[False, False, True, True, False],
2356 fill_value=1e+20)
2358 """
2359 a = np.array(a, copy=False, subok=True)
2360 res = masked_where(~(np.isfinite(a)), a, copy=copy)
2361 # masked_invalid previously never returned nomask as a mask and doing so
2362 # threw off matplotlib (gh-22842). So use shrink=False:
2363 if res._mask is nomask:
2364 res._mask = make_mask_none(res.shape, res.dtype)
2365 return res
2367###############################################################################
2368# Printing options #
2369###############################################################################
2372class _MaskedPrintOption:
2373 """
2374 Handle the string used to represent missing data in a masked array.
2376 """
2378 def __init__(self, display):
2379 """
2380 Create the masked_print_option object.
2382 """
2383 self._display = display
2384 self._enabled = True
2386 def display(self):
2387 """
2388 Display the string to print for masked values.
2390 """
2391 return self._display
2393 def set_display(self, s):
2394 """
2395 Set the string to print for masked values.
2397 """
2398 self._display = s
2400 def enabled(self):
2401 """
2402 Is the use of the display value enabled?
2404 """
2405 return self._enabled
2407 def enable(self, shrink=1):
2408 """
2409 Set the enabling shrink to `shrink`.
2411 """
2412 self._enabled = shrink
2414 def __str__(self):
2415 return str(self._display)
2417 __repr__ = __str__
2419# if you single index into a masked location you get this object.
2420masked_print_option = _MaskedPrintOption('--')
2423def _recursive_printoption(result, mask, printopt):
2424 """
2425 Puts printoptions in result where mask is True.
2427 Private function allowing for recursion
2429 """
2430 names = result.dtype.names
2431 if names is not None:
2432 for name in names:
2433 curdata = result[name]
2434 curmask = mask[name]
2435 _recursive_printoption(curdata, curmask, printopt)
2436 else:
2437 np.copyto(result, printopt, where=mask)
2438 return
2440# For better or worse, these end in a newline
2441_legacy_print_templates = dict(
2442 long_std=textwrap.dedent("""\
2443 masked_%(name)s(data =
2444 %(data)s,
2445 %(nlen)s mask =
2446 %(mask)s,
2447 %(nlen)s fill_value = %(fill)s)
2448 """),
2449 long_flx=textwrap.dedent("""\
2450 masked_%(name)s(data =
2451 %(data)s,
2452 %(nlen)s mask =
2453 %(mask)s,
2454 %(nlen)s fill_value = %(fill)s,
2455 %(nlen)s dtype = %(dtype)s)
2456 """),
2457 short_std=textwrap.dedent("""\
2458 masked_%(name)s(data = %(data)s,
2459 %(nlen)s mask = %(mask)s,
2460 %(nlen)s fill_value = %(fill)s)
2461 """),
2462 short_flx=textwrap.dedent("""\
2463 masked_%(name)s(data = %(data)s,
2464 %(nlen)s mask = %(mask)s,
2465 %(nlen)s fill_value = %(fill)s,
2466 %(nlen)s dtype = %(dtype)s)
2467 """)
2468)
2470###############################################################################
2471# MaskedArray class #
2472###############################################################################
2475def _recursive_filled(a, mask, fill_value):
2476 """
2477 Recursively fill `a` with `fill_value`.
2479 """
2480 names = a.dtype.names
2481 for name in names:
2482 current = a[name]
2483 if current.dtype.names is not None:
2484 _recursive_filled(current, mask[name], fill_value[name])
2485 else:
2486 np.copyto(current, fill_value[name], where=mask[name])
2489def flatten_structured_array(a):
2490 """
2491 Flatten a structured array.
2493 The data type of the output is chosen such that it can represent all of the
2494 (nested) fields.
2496 Parameters
2497 ----------
2498 a : structured array
2500 Returns
2501 -------
2502 output : masked array or ndarray
2503 A flattened masked array if the input is a masked array, otherwise a
2504 standard ndarray.
2506 Examples
2507 --------
2508 >>> ndtype = [('a', int), ('b', float)]
2509 >>> a = np.array([(1, 1), (2, 2)], dtype=ndtype)
2510 >>> np.ma.flatten_structured_array(a)
2511 array([[1., 1.],
2512 [2., 2.]])
2514 """
2516 def flatten_sequence(iterable):
2517 """
2518 Flattens a compound of nested iterables.
2520 """
2521 for elm in iter(iterable):
2522 if hasattr(elm, '__iter__'):
2523 yield from flatten_sequence(elm)
2524 else:
2525 yield elm
2527 a = np.asanyarray(a)
2528 inishape = a.shape
2529 a = a.ravel()
2530 if isinstance(a, MaskedArray):
2531 out = np.array([tuple(flatten_sequence(d.item())) for d in a._data])
2532 out = out.view(MaskedArray)
2533 out._mask = np.array([tuple(flatten_sequence(d.item()))
2534 for d in getmaskarray(a)])
2535 else:
2536 out = np.array([tuple(flatten_sequence(d.item())) for d in a])
2537 if len(inishape) > 1:
2538 newshape = list(out.shape)
2539 newshape[0] = inishape
2540 out.shape = tuple(flatten_sequence(newshape))
2541 return out
2544def _arraymethod(funcname, onmask=True):
2545 """
2546 Return a class method wrapper around a basic array method.
2548 Creates a class method which returns a masked array, where the new
2549 ``_data`` array is the output of the corresponding basic method called
2550 on the original ``_data``.
2552 If `onmask` is True, the new mask is the output of the method called
2553 on the initial mask. Otherwise, the new mask is just a reference
2554 to the initial mask.
2556 Parameters
2557 ----------
2558 funcname : str
2559 Name of the function to apply on data.
2560 onmask : bool
2561 Whether the mask must be processed also (True) or left
2562 alone (False). Default is True. Make available as `_onmask`
2563 attribute.
2565 Returns
2566 -------
2567 method : instancemethod
2568 Class method wrapper of the specified basic array method.
2570 """
2571 def wrapped_method(self, *args, **params):
2572 result = getattr(self._data, funcname)(*args, **params)
2573 result = result.view(type(self))
2574 result._update_from(self)
2575 mask = self._mask
2576 if not onmask:
2577 result.__setmask__(mask)
2578 elif mask is not nomask:
2579 # __setmask__ makes a copy, which we don't want
2580 result._mask = getattr(mask, funcname)(*args, **params)
2581 return result
2582 methdoc = getattr(ndarray, funcname, None) or getattr(np, funcname, None)
2583 if methdoc is not None:
2584 wrapped_method.__doc__ = methdoc.__doc__
2585 wrapped_method.__name__ = funcname
2586 return wrapped_method
2589class MaskedIterator:
2590 """
2591 Flat iterator object to iterate over masked arrays.
2593 A `MaskedIterator` iterator is returned by ``x.flat`` for any masked array
2594 `x`. It allows iterating over the array as if it were a 1-D array,
2595 either in a for-loop or by calling its `next` method.
2597 Iteration is done in C-contiguous style, with the last index varying the
2598 fastest. The iterator can also be indexed using basic slicing or
2599 advanced indexing.
2601 See Also
2602 --------
2603 MaskedArray.flat : Return a flat iterator over an array.
2604 MaskedArray.flatten : Returns a flattened copy of an array.
2606 Notes
2607 -----
2608 `MaskedIterator` is not exported by the `ma` module. Instead of
2609 instantiating a `MaskedIterator` directly, use `MaskedArray.flat`.
2611 Examples
2612 --------
2613 >>> x = np.ma.array(arange(6).reshape(2, 3))
2614 >>> fl = x.flat
2615 >>> type(fl)
2616 <class 'numpy.ma.core.MaskedIterator'>
2617 >>> for item in fl:
2618 ... print(item)
2619 ...
2620 0
2621 1
2622 2
2623 3
2624 4
2625 5
2627 Extracting more than a single element b indexing the `MaskedIterator`
2628 returns a masked array:
2630 >>> fl[2:4]
2631 masked_array(data = [2 3],
2632 mask = False,
2633 fill_value = 999999)
2635 """
2637 def __init__(self, ma):
2638 self.ma = ma
2639 self.dataiter = ma._data.flat
2641 if ma._mask is nomask:
2642 self.maskiter = None
2643 else:
2644 self.maskiter = ma._mask.flat
2646 def __iter__(self):
2647 return self
2649 def __getitem__(self, indx):
2650 result = self.dataiter.__getitem__(indx).view(type(self.ma))
2651 if self.maskiter is not None:
2652 _mask = self.maskiter.__getitem__(indx)
2653 if isinstance(_mask, ndarray):
2654 # set shape to match that of data; this is needed for matrices
2655 _mask.shape = result.shape
2656 result._mask = _mask
2657 elif isinstance(_mask, np.void):
2658 return mvoid(result, mask=_mask, hardmask=self.ma._hardmask)
2659 elif _mask: # Just a scalar, masked
2660 return masked
2661 return result
2663 # This won't work if ravel makes a copy
2664 def __setitem__(self, index, value):
2665 self.dataiter[index] = getdata(value)
2666 if self.maskiter is not None:
2667 self.maskiter[index] = getmaskarray(value)
2669 def __next__(self):
2670 """
2671 Return the next value, or raise StopIteration.
2673 Examples
2674 --------
2675 >>> x = np.ma.array([3, 2], mask=[0, 1])
2676 >>> fl = x.flat
2677 >>> next(fl)
2678 3
2679 >>> next(fl)
2680 masked
2681 >>> next(fl)
2682 Traceback (most recent call last):
2683 ...
2684 StopIteration
2686 """
2687 d = next(self.dataiter)
2688 if self.maskiter is not None:
2689 m = next(self.maskiter)
2690 if isinstance(m, np.void):
2691 return mvoid(d, mask=m, hardmask=self.ma._hardmask)
2692 elif m: # Just a scalar, masked
2693 return masked
2694 return d
2697class MaskedArray(ndarray):
2698 """
2699 An array class with possibly masked values.
2701 Masked values of True exclude the corresponding element from any
2702 computation.
2704 Construction::
2706 x = MaskedArray(data, mask=nomask, dtype=None, copy=False, subok=True,
2707 ndmin=0, fill_value=None, keep_mask=True, hard_mask=None,
2708 shrink=True, order=None)
2710 Parameters
2711 ----------
2712 data : array_like
2713 Input data.
2714 mask : sequence, optional
2715 Mask. Must be convertible to an array of booleans with the same
2716 shape as `data`. True indicates a masked (i.e. invalid) data.
2717 dtype : dtype, optional
2718 Data type of the output.
2719 If `dtype` is None, the type of the data argument (``data.dtype``)
2720 is used. If `dtype` is not None and different from ``data.dtype``,
2721 a copy is performed.
2722 copy : bool, optional
2723 Whether to copy the input data (True), or to use a reference instead.
2724 Default is False.
2725 subok : bool, optional
2726 Whether to return a subclass of `MaskedArray` if possible (True) or a
2727 plain `MaskedArray`. Default is True.
2728 ndmin : int, optional
2729 Minimum number of dimensions. Default is 0.
2730 fill_value : scalar, optional
2731 Value used to fill in the masked values when necessary.
2732 If None, a default based on the data-type is used.
2733 keep_mask : bool, optional
2734 Whether to combine `mask` with the mask of the input data, if any
2735 (True), or to use only `mask` for the output (False). Default is True.
2736 hard_mask : bool, optional
2737 Whether to use a hard mask or not. With a hard mask, masked values
2738 cannot be unmasked. Default is False.
2739 shrink : bool, optional
2740 Whether to force compression of an empty mask. Default is True.
2741 order : {'C', 'F', 'A'}, optional
2742 Specify the order of the array. If order is 'C', then the array
2743 will be in C-contiguous order (last-index varies the fastest).
2744 If order is 'F', then the returned array will be in
2745 Fortran-contiguous order (first-index varies the fastest).
2746 If order is 'A' (default), then the returned array may be
2747 in any order (either C-, Fortran-contiguous, or even discontiguous),
2748 unless a copy is required, in which case it will be C-contiguous.
2750 Examples
2751 --------
2753 The ``mask`` can be initialized with an array of boolean values
2754 with the same shape as ``data``.
2756 >>> data = np.arange(6).reshape((2, 3))
2757 >>> np.ma.MaskedArray(data, mask=[[False, True, False],
2758 ... [False, False, True]])
2759 masked_array(
2760 data=[[0, --, 2],
2761 [3, 4, --]],
2762 mask=[[False, True, False],
2763 [False, False, True]],
2764 fill_value=999999)
2766 Alternatively, the ``mask`` can be initialized to homogeneous boolean
2767 array with the same shape as ``data`` by passing in a scalar
2768 boolean value:
2770 >>> np.ma.MaskedArray(data, mask=False)
2771 masked_array(
2772 data=[[0, 1, 2],
2773 [3, 4, 5]],
2774 mask=[[False, False, False],
2775 [False, False, False]],
2776 fill_value=999999)
2778 >>> np.ma.MaskedArray(data, mask=True)
2779 masked_array(
2780 data=[[--, --, --],
2781 [--, --, --]],
2782 mask=[[ True, True, True],
2783 [ True, True, True]],
2784 fill_value=999999,
2785 dtype=int64)
2787 .. note::
2788 The recommended practice for initializing ``mask`` with a scalar
2789 boolean value is to use ``True``/``False`` rather than
2790 ``np.True_``/``np.False_``. The reason is :attr:`nomask`
2791 is represented internally as ``np.False_``.
2793 >>> np.False_ is np.ma.nomask
2794 True
2796 """
2798 __array_priority__ = 15
2799 _defaultmask = nomask
2800 _defaulthardmask = False
2801 _baseclass = ndarray
2803 # Maximum number of elements per axis used when printing an array. The
2804 # 1d case is handled separately because we need more values in this case.
2805 _print_width = 100
2806 _print_width_1d = 1500
2808 def __new__(cls, data=None, mask=nomask, dtype=None, copy=False,
2809 subok=True, ndmin=0, fill_value=None, keep_mask=True,
2810 hard_mask=None, shrink=True, order=None):
2811 """
2812 Create a new masked array from scratch.
2814 Notes
2815 -----
2816 A masked array can also be created by taking a .view(MaskedArray).
2818 """
2819 # Process data.
2820 _data = np.array(data, dtype=dtype, copy=copy,
2821 order=order, subok=True, ndmin=ndmin)
2822 _baseclass = getattr(data, '_baseclass', type(_data))
2823 # Check that we're not erasing the mask.
2824 if isinstance(data, MaskedArray) and (data.shape != _data.shape):
2825 copy = True
2827 # Here, we copy the _view_, so that we can attach new properties to it
2828 # we must never do .view(MaskedConstant), as that would create a new
2829 # instance of np.ma.masked, which make identity comparison fail
2830 if isinstance(data, cls) and subok and not isinstance(data, MaskedConstant):
2831 _data = ndarray.view(_data, type(data))
2832 else:
2833 _data = ndarray.view(_data, cls)
2835 # Handle the case where data is not a subclass of ndarray, but
2836 # still has the _mask attribute like MaskedArrays
2837 if hasattr(data, '_mask') and not isinstance(data, ndarray):
2838 _data._mask = data._mask
2839 # FIXME: should we set `_data._sharedmask = True`?
2840 # Process mask.
2841 # Type of the mask
2842 mdtype = make_mask_descr(_data.dtype)
2844 if mask is nomask:
2845 # Case 1. : no mask in input.
2846 # Erase the current mask ?
2847 if not keep_mask:
2848 # With a reduced version
2849 if shrink:
2850 _data._mask = nomask
2851 # With full version
2852 else:
2853 _data._mask = np.zeros(_data.shape, dtype=mdtype)
2854 # Check whether we missed something
2855 elif isinstance(data, (tuple, list)):
2856 try:
2857 # If data is a sequence of masked array
2858 mask = np.array(
2859 [getmaskarray(np.asanyarray(m, dtype=_data.dtype))
2860 for m in data], dtype=mdtype)
2861 except ValueError:
2862 # If data is nested
2863 mask = nomask
2864 # Force shrinking of the mask if needed (and possible)
2865 if (mdtype == MaskType) and mask.any():
2866 _data._mask = mask
2867 _data._sharedmask = False
2868 else:
2869 _data._sharedmask = not copy
2870 if copy:
2871 _data._mask = _data._mask.copy()
2872 # Reset the shape of the original mask
2873 if getmask(data) is not nomask:
2874 data._mask.shape = data.shape
2875 else:
2876 # Case 2. : With a mask in input.
2877 # If mask is boolean, create an array of True or False
2878 if mask is True and mdtype == MaskType:
2879 mask = np.ones(_data.shape, dtype=mdtype)
2880 elif mask is False and mdtype == MaskType:
2881 mask = np.zeros(_data.shape, dtype=mdtype)
2882 else:
2883 # Read the mask with the current mdtype
2884 try:
2885 mask = np.array(mask, copy=copy, dtype=mdtype)
2886 # Or assume it's a sequence of bool/int
2887 except TypeError:
2888 mask = np.array([tuple([m] * len(mdtype)) for m in mask],
2889 dtype=mdtype)
2890 # Make sure the mask and the data have the same shape
2891 if mask.shape != _data.shape:
2892 (nd, nm) = (_data.size, mask.size)
2893 if nm == 1:
2894 mask = np.resize(mask, _data.shape)
2895 elif nm == nd:
2896 mask = np.reshape(mask, _data.shape)
2897 else:
2898 msg = "Mask and data not compatible: data size is %i, " + \
2899 "mask size is %i."
2900 raise MaskError(msg % (nd, nm))
2901 copy = True
2902 # Set the mask to the new value
2903 if _data._mask is nomask:
2904 _data._mask = mask
2905 _data._sharedmask = not copy
2906 else:
2907 if not keep_mask:
2908 _data._mask = mask
2909 _data._sharedmask = not copy
2910 else:
2911 if _data.dtype.names is not None:
2912 def _recursive_or(a, b):
2913 "do a|=b on each field of a, recursively"
2914 for name in a.dtype.names:
2915 (af, bf) = (a[name], b[name])
2916 if af.dtype.names is not None:
2917 _recursive_or(af, bf)
2918 else:
2919 af |= bf
2921 _recursive_or(_data._mask, mask)
2922 else:
2923 _data._mask = np.logical_or(mask, _data._mask)
2924 _data._sharedmask = False
2925 # Update fill_value.
2926 if fill_value is None:
2927 fill_value = getattr(data, '_fill_value', None)
2928 # But don't run the check unless we have something to check.
2929 if fill_value is not None:
2930 _data._fill_value = _check_fill_value(fill_value, _data.dtype)
2931 # Process extra options ..
2932 if hard_mask is None:
2933 _data._hardmask = getattr(data, '_hardmask', False)
2934 else:
2935 _data._hardmask = hard_mask
2936 _data._baseclass = _baseclass
2937 return _data
2940 def _update_from(self, obj):
2941 """
2942 Copies some attributes of obj to self.
2944 """
2945 if isinstance(obj, ndarray):
2946 _baseclass = type(obj)
2947 else:
2948 _baseclass = ndarray
2949 # We need to copy the _basedict to avoid backward propagation
2950 _optinfo = {}
2951 _optinfo.update(getattr(obj, '_optinfo', {}))
2952 _optinfo.update(getattr(obj, '_basedict', {}))
2953 if not isinstance(obj, MaskedArray):
2954 _optinfo.update(getattr(obj, '__dict__', {}))
2955 _dict = dict(_fill_value=getattr(obj, '_fill_value', None),
2956 _hardmask=getattr(obj, '_hardmask', False),
2957 _sharedmask=getattr(obj, '_sharedmask', False),
2958 _isfield=getattr(obj, '_isfield', False),
2959 _baseclass=getattr(obj, '_baseclass', _baseclass),
2960 _optinfo=_optinfo,
2961 _basedict=_optinfo)
2962 self.__dict__.update(_dict)
2963 self.__dict__.update(_optinfo)
2964 return
2966 def __array_finalize__(self, obj):
2967 """
2968 Finalizes the masked array.
2970 """
2971 # Get main attributes.
2972 self._update_from(obj)
2974 # We have to decide how to initialize self.mask, based on
2975 # obj.mask. This is very difficult. There might be some
2976 # correspondence between the elements in the array we are being
2977 # created from (= obj) and us. Or there might not. This method can
2978 # be called in all kinds of places for all kinds of reasons -- could
2979 # be empty_like, could be slicing, could be a ufunc, could be a view.
2980 # The numpy subclassing interface simply doesn't give us any way
2981 # to know, which means that at best this method will be based on
2982 # guesswork and heuristics. To make things worse, there isn't even any
2983 # clear consensus about what the desired behavior is. For instance,
2984 # most users think that np.empty_like(marr) -- which goes via this
2985 # method -- should return a masked array with an empty mask (see
2986 # gh-3404 and linked discussions), but others disagree, and they have
2987 # existing code which depends on empty_like returning an array that
2988 # matches the input mask.
2989 #
2990 # Historically our algorithm was: if the template object mask had the
2991 # same *number of elements* as us, then we used *it's mask object
2992 # itself* as our mask, so that writes to us would also write to the
2993 # original array. This is horribly broken in multiple ways.
2994 #
2995 # Now what we do instead is, if the template object mask has the same
2996 # number of elements as us, and we do not have the same base pointer
2997 # as the template object (b/c views like arr[...] should keep the same
2998 # mask), then we make a copy of the template object mask and use
2999 # that. This is also horribly broken but somewhat less so. Maybe.
3000 if isinstance(obj, ndarray):
3001 # XX: This looks like a bug -- shouldn't it check self.dtype
3002 # instead?
3003 if obj.dtype.names is not None:
3004 _mask = getmaskarray(obj)
3005 else:
3006 _mask = getmask(obj)
3008 # If self and obj point to exactly the same data, then probably
3009 # self is a simple view of obj (e.g., self = obj[...]), so they
3010 # should share the same mask. (This isn't 100% reliable, e.g. self
3011 # could be the first row of obj, or have strange strides, but as a
3012 # heuristic it's not bad.) In all other cases, we make a copy of
3013 # the mask, so that future modifications to 'self' do not end up
3014 # side-effecting 'obj' as well.
3015 if (_mask is not nomask and obj.__array_interface__["data"][0]
3016 != self.__array_interface__["data"][0]):
3017 # We should make a copy. But we could get here via astype,
3018 # in which case the mask might need a new dtype as well
3019 # (e.g., changing to or from a structured dtype), and the
3020 # order could have changed. So, change the mask type if
3021 # needed and use astype instead of copy.
3022 if self.dtype == obj.dtype:
3023 _mask_dtype = _mask.dtype
3024 else:
3025 _mask_dtype = make_mask_descr(self.dtype)
3027 if self.flags.c_contiguous:
3028 order = "C"
3029 elif self.flags.f_contiguous:
3030 order = "F"
3031 else:
3032 order = "K"
3034 _mask = _mask.astype(_mask_dtype, order)
3035 else:
3036 # Take a view so shape changes, etc., do not propagate back.
3037 _mask = _mask.view()
3038 else:
3039 _mask = nomask
3041 self._mask = _mask
3042 # Finalize the mask
3043 if self._mask is not nomask:
3044 try:
3045 self._mask.shape = self.shape
3046 except ValueError:
3047 self._mask = nomask
3048 except (TypeError, AttributeError):
3049 # When _mask.shape is not writable (because it's a void)
3050 pass
3052 # Finalize the fill_value
3053 if self._fill_value is not None:
3054 self._fill_value = _check_fill_value(self._fill_value, self.dtype)
3055 elif self.dtype.names is not None:
3056 # Finalize the default fill_value for structured arrays
3057 self._fill_value = _check_fill_value(None, self.dtype)
3059 def __array_wrap__(self, obj, context=None):
3060 """
3061 Special hook for ufuncs.
3063 Wraps the numpy array and sets the mask according to context.
3065 """
3066 if obj is self: # for in-place operations
3067 result = obj
3068 else:
3069 result = obj.view(type(self))
3070 result._update_from(self)
3072 if context is not None:
3073 result._mask = result._mask.copy()
3074 func, args, out_i = context
3075 # args sometimes contains outputs (gh-10459), which we don't want
3076 input_args = args[:func.nin]
3077 m = reduce(mask_or, [getmaskarray(arg) for arg in input_args])
3078 # Get the domain mask
3079 domain = ufunc_domain.get(func, None)
3080 if domain is not None:
3081 # Take the domain, and make sure it's a ndarray
3082 with np.errstate(divide='ignore', invalid='ignore'):
3083 d = filled(domain(*input_args), True)
3085 if d.any():
3086 # Fill the result where the domain is wrong
3087 try:
3088 # Binary domain: take the last value
3089 fill_value = ufunc_fills[func][-1]
3090 except TypeError:
3091 # Unary domain: just use this one
3092 fill_value = ufunc_fills[func]
3093 except KeyError:
3094 # Domain not recognized, use fill_value instead
3095 fill_value = self.fill_value
3097 np.copyto(result, fill_value, where=d)
3099 # Update the mask
3100 if m is nomask:
3101 m = d
3102 else:
3103 # Don't modify inplace, we risk back-propagation
3104 m = (m | d)
3106 # Make sure the mask has the proper size
3107 if result is not self and result.shape == () and m:
3108 return masked
3109 else:
3110 result._mask = m
3111 result._sharedmask = False
3113 return result
3115 def view(self, dtype=None, type=None, fill_value=None):
3116 """
3117 Return a view of the MaskedArray data.
3119 Parameters
3120 ----------
3121 dtype : data-type or ndarray sub-class, optional
3122 Data-type descriptor of the returned view, e.g., float32 or int16.
3123 The default, None, results in the view having the same data-type
3124 as `a`. As with ``ndarray.view``, dtype can also be specified as
3125 an ndarray sub-class, which then specifies the type of the
3126 returned object (this is equivalent to setting the ``type``
3127 parameter).
3128 type : Python type, optional
3129 Type of the returned view, either ndarray or a subclass. The
3130 default None results in type preservation.
3131 fill_value : scalar, optional
3132 The value to use for invalid entries (None by default).
3133 If None, then this argument is inferred from the passed `dtype`, or
3134 in its absence the original array, as discussed in the notes below.
3136 See Also
3137 --------
3138 numpy.ndarray.view : Equivalent method on ndarray object.
3140 Notes
3141 -----
3143 ``a.view()`` is used two different ways:
3145 ``a.view(some_dtype)`` or ``a.view(dtype=some_dtype)`` constructs a view
3146 of the array's memory with a different data-type. This can cause a
3147 reinterpretation of the bytes of memory.
3149 ``a.view(ndarray_subclass)`` or ``a.view(type=ndarray_subclass)`` just
3150 returns an instance of `ndarray_subclass` that looks at the same array
3151 (same shape, dtype, etc.) This does not cause a reinterpretation of the
3152 memory.
3154 If `fill_value` is not specified, but `dtype` is specified (and is not
3155 an ndarray sub-class), the `fill_value` of the MaskedArray will be
3156 reset. If neither `fill_value` nor `dtype` are specified (or if
3157 `dtype` is an ndarray sub-class), then the fill value is preserved.
3158 Finally, if `fill_value` is specified, but `dtype` is not, the fill
3159 value is set to the specified value.
3161 For ``a.view(some_dtype)``, if ``some_dtype`` has a different number of
3162 bytes per entry than the previous dtype (for example, converting a
3163 regular array to a structured array), then the behavior of the view
3164 cannot be predicted just from the superficial appearance of ``a`` (shown
3165 by ``print(a)``). It also depends on exactly how ``a`` is stored in
3166 memory. Therefore if ``a`` is C-ordered versus fortran-ordered, versus
3167 defined as a slice or transpose, etc., the view may give different
3168 results.
3169 """
3171 if dtype is None:
3172 if type is None:
3173 output = ndarray.view(self)
3174 else:
3175 output = ndarray.view(self, type)
3176 elif type is None:
3177 try:
3178 if issubclass(dtype, ndarray):
3179 output = ndarray.view(self, dtype)
3180 dtype = None
3181 else:
3182 output = ndarray.view(self, dtype)
3183 except TypeError:
3184 output = ndarray.view(self, dtype)
3185 else:
3186 output = ndarray.view(self, dtype, type)
3188 # also make the mask be a view (so attr changes to the view's
3189 # mask do no affect original object's mask)
3190 # (especially important to avoid affecting np.masked singleton)
3191 if getmask(output) is not nomask:
3192 output._mask = output._mask.view()
3194 # Make sure to reset the _fill_value if needed
3195 if getattr(output, '_fill_value', None) is not None:
3196 if fill_value is None:
3197 if dtype is None:
3198 pass # leave _fill_value as is
3199 else:
3200 output._fill_value = None
3201 else:
3202 output.fill_value = fill_value
3203 return output
3205 def __getitem__(self, indx):
3206 """
3207 x.__getitem__(y) <==> x[y]
3209 Return the item described by i, as a masked array.
3211 """
3212 # We could directly use ndarray.__getitem__ on self.
3213 # But then we would have to modify __array_finalize__ to prevent the
3214 # mask of being reshaped if it hasn't been set up properly yet
3215 # So it's easier to stick to the current version
3216 dout = self.data[indx]
3217 _mask = self._mask
3219 def _is_scalar(m):
3220 return not isinstance(m, np.ndarray)
3222 def _scalar_heuristic(arr, elem):
3223 """
3224 Return whether `elem` is a scalar result of indexing `arr`, or None
3225 if undecidable without promoting nomask to a full mask
3226 """
3227 # obviously a scalar
3228 if not isinstance(elem, np.ndarray):
3229 return True
3231 # object array scalar indexing can return anything
3232 elif arr.dtype.type is np.object_:
3233 if arr.dtype is not elem.dtype:
3234 # elem is an array, but dtypes do not match, so must be
3235 # an element
3236 return True
3238 # well-behaved subclass that only returns 0d arrays when
3239 # expected - this is not a scalar
3240 elif type(arr).__getitem__ == ndarray.__getitem__:
3241 return False
3243 return None
3245 if _mask is not nomask:
3246 # _mask cannot be a subclass, so it tells us whether we should
3247 # expect a scalar. It also cannot be of dtype object.
3248 mout = _mask[indx]
3249 scalar_expected = _is_scalar(mout)
3251 else:
3252 # attempt to apply the heuristic to avoid constructing a full mask
3253 mout = nomask
3254 scalar_expected = _scalar_heuristic(self.data, dout)
3255 if scalar_expected is None:
3256 # heuristics have failed
3257 # construct a full array, so we can be certain. This is costly.
3258 # we could also fall back on ndarray.__getitem__(self.data, indx)
3259 scalar_expected = _is_scalar(getmaskarray(self)[indx])
3261 # Did we extract a single item?
3262 if scalar_expected:
3263 # A record
3264 if isinstance(dout, np.void):
3265 # We should always re-cast to mvoid, otherwise users can
3266 # change masks on rows that already have masked values, but not
3267 # on rows that have no masked values, which is inconsistent.
3268 return mvoid(dout, mask=mout, hardmask=self._hardmask)
3270 # special case introduced in gh-5962
3271 elif (self.dtype.type is np.object_ and
3272 isinstance(dout, np.ndarray) and
3273 dout is not masked):
3274 # If masked, turn into a MaskedArray, with everything masked.
3275 if mout:
3276 return MaskedArray(dout, mask=True)
3277 else:
3278 return dout
3280 # Just a scalar
3281 else:
3282 if mout:
3283 return masked
3284 else:
3285 return dout
3286 else:
3287 # Force dout to MA
3288 dout = dout.view(type(self))
3289 # Inherit attributes from self
3290 dout._update_from(self)
3291 # Check the fill_value
3292 if is_string_or_list_of_strings(indx):
3293 if self._fill_value is not None:
3294 dout._fill_value = self._fill_value[indx]
3296 # Something like gh-15895 has happened if this check fails.
3297 # _fill_value should always be an ndarray.
3298 if not isinstance(dout._fill_value, np.ndarray):
3299 raise RuntimeError('Internal NumPy error.')
3300 # If we're indexing a multidimensional field in a
3301 # structured array (such as dtype("(2,)i2,(2,)i1")),
3302 # dimensionality goes up (M[field].ndim == M.ndim +
3303 # M.dtype[field].ndim). That's fine for
3304 # M[field] but problematic for M[field].fill_value
3305 # which should have shape () to avoid breaking several
3306 # methods. There is no great way out, so set to
3307 # first element. See issue #6723.
3308 if dout._fill_value.ndim > 0:
3309 if not (dout._fill_value ==
3310 dout._fill_value.flat[0]).all():
3311 warnings.warn(
3312 "Upon accessing multidimensional field "
3313 f"{indx!s}, need to keep dimensionality "
3314 "of fill_value at 0. Discarding "
3315 "heterogeneous fill_value and setting "
3316 f"all to {dout._fill_value[0]!s}.",
3317 stacklevel=2)
3318 # Need to use `.flat[0:1].squeeze(...)` instead of just
3319 # `.flat[0]` to ensure the result is a 0d array and not
3320 # a scalar.
3321 dout._fill_value = dout._fill_value.flat[0:1].squeeze(axis=0)
3322 dout._isfield = True
3323 # Update the mask if needed
3324 if mout is not nomask:
3325 # set shape to match that of data; this is needed for matrices
3326 dout._mask = reshape(mout, dout.shape)
3327 dout._sharedmask = True
3328 # Note: Don't try to check for m.any(), that'll take too long
3329 return dout
3331 def __setitem__(self, indx, value):
3332 """
3333 x.__setitem__(i, y) <==> x[i]=y
3335 Set item described by index. If value is masked, masks those
3336 locations.
3338 """
3339 if self is masked:
3340 raise MaskError('Cannot alter the masked element.')
3341 _data = self._data
3342 _mask = self._mask
3343 if isinstance(indx, str):
3344 _data[indx] = value
3345 if _mask is nomask:
3346 self._mask = _mask = make_mask_none(self.shape, self.dtype)
3347 _mask[indx] = getmask(value)
3348 return
3350 _dtype = _data.dtype
3352 if value is masked:
3353 # The mask wasn't set: create a full version.
3354 if _mask is nomask:
3355 _mask = self._mask = make_mask_none(self.shape, _dtype)
3356 # Now, set the mask to its value.
3357 if _dtype.names is not None:
3358 _mask[indx] = tuple([True] * len(_dtype.names))
3359 else:
3360 _mask[indx] = True
3361 return
3363 # Get the _data part of the new value
3364 dval = getattr(value, '_data', value)
3365 # Get the _mask part of the new value
3366 mval = getmask(value)
3367 if _dtype.names is not None and mval is nomask:
3368 mval = tuple([False] * len(_dtype.names))
3369 if _mask is nomask:
3370 # Set the data, then the mask
3371 _data[indx] = dval
3372 if mval is not nomask:
3373 _mask = self._mask = make_mask_none(self.shape, _dtype)
3374 _mask[indx] = mval
3375 elif not self._hardmask:
3376 # Set the data, then the mask
3377 if (isinstance(indx, masked_array) and
3378 not isinstance(value, masked_array)):
3379 _data[indx.data] = dval
3380 else:
3381 _data[indx] = dval
3382 _mask[indx] = mval
3383 elif hasattr(indx, 'dtype') and (indx.dtype == MaskType):
3384 indx = indx * umath.logical_not(_mask)
3385 _data[indx] = dval
3386 else:
3387 if _dtype.names is not None:
3388 err_msg = "Flexible 'hard' masks are not yet supported."
3389 raise NotImplementedError(err_msg)
3390 mindx = mask_or(_mask[indx], mval, copy=True)
3391 dindx = self._data[indx]
3392 if dindx.size > 1:
3393 np.copyto(dindx, dval, where=~mindx)
3394 elif mindx is nomask:
3395 dindx = dval
3396 _data[indx] = dindx
3397 _mask[indx] = mindx
3398 return
3400 # Define so that we can overwrite the setter.
3401 @property
3402 def dtype(self):
3403 return super().dtype
3405 @dtype.setter
3406 def dtype(self, dtype):
3407 super(MaskedArray, type(self)).dtype.__set__(self, dtype)
3408 if self._mask is not nomask:
3409 self._mask = self._mask.view(make_mask_descr(dtype), ndarray)
3410 # Try to reset the shape of the mask (if we don't have a void).
3411 # This raises a ValueError if the dtype change won't work.
3412 try:
3413 self._mask.shape = self.shape
3414 except (AttributeError, TypeError):
3415 pass
3417 @property
3418 def shape(self):
3419 return super().shape
3421 @shape.setter
3422 def shape(self, shape):
3423 super(MaskedArray, type(self)).shape.__set__(self, shape)
3424 # Cannot use self._mask, since it may not (yet) exist when a
3425 # masked matrix sets the shape.
3426 if getmask(self) is not nomask:
3427 self._mask.shape = self.shape
3429 def __setmask__(self, mask, copy=False):
3430 """
3431 Set the mask.
3433 """
3434 idtype = self.dtype
3435 current_mask = self._mask
3436 if mask is masked:
3437 mask = True
3439 if current_mask is nomask:
3440 # Make sure the mask is set
3441 # Just don't do anything if there's nothing to do.
3442 if mask is nomask:
3443 return
3444 current_mask = self._mask = make_mask_none(self.shape, idtype)
3446 if idtype.names is None:
3447 # No named fields.
3448 # Hardmask: don't unmask the data
3449 if self._hardmask:
3450 current_mask |= mask
3451 # Softmask: set everything to False
3452 # If it's obviously a compatible scalar, use a quick update
3453 # method.
3454 elif isinstance(mask, (int, float, np.bool_, np.number)):
3455 current_mask[...] = mask
3456 # Otherwise fall back to the slower, general purpose way.
3457 else:
3458 current_mask.flat = mask
3459 else:
3460 # Named fields w/
3461 mdtype = current_mask.dtype
3462 mask = np.array(mask, copy=False)
3463 # Mask is a singleton
3464 if not mask.ndim:
3465 # It's a boolean : make a record
3466 if mask.dtype.kind == 'b':
3467 mask = np.array(tuple([mask.item()] * len(mdtype)),
3468 dtype=mdtype)
3469 # It's a record: make sure the dtype is correct
3470 else:
3471 mask = mask.astype(mdtype)
3472 # Mask is a sequence
3473 else:
3474 # Make sure the new mask is a ndarray with the proper dtype
3475 try:
3476 mask = np.array(mask, copy=copy, dtype=mdtype)
3477 # Or assume it's a sequence of bool/int
3478 except TypeError:
3479 mask = np.array([tuple([m] * len(mdtype)) for m in mask],
3480 dtype=mdtype)
3481 # Hardmask: don't unmask the data
3482 if self._hardmask:
3483 for n in idtype.names:
3484 current_mask[n] |= mask[n]
3485 # Softmask: set everything to False
3486 # If it's obviously a compatible scalar, use a quick update
3487 # method.
3488 elif isinstance(mask, (int, float, np.bool_, np.number)):
3489 current_mask[...] = mask
3490 # Otherwise fall back to the slower, general purpose way.
3491 else:
3492 current_mask.flat = mask
3493 # Reshape if needed
3494 if current_mask.shape:
3495 current_mask.shape = self.shape
3496 return
3498 _set_mask = __setmask__
3500 @property
3501 def mask(self):
3502 """ Current mask. """
3504 # We could try to force a reshape, but that wouldn't work in some
3505 # cases.
3506 # Return a view so that the dtype and shape cannot be changed in place
3507 # This still preserves nomask by identity
3508 return self._mask.view()
3510 @mask.setter
3511 def mask(self, value):
3512 self.__setmask__(value)
3514 @property
3515 def recordmask(self):
3516 """
3517 Get or set the mask of the array if it has no named fields. For
3518 structured arrays, returns a ndarray of booleans where entries are
3519 ``True`` if **all** the fields are masked, ``False`` otherwise:
3521 >>> x = np.ma.array([(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)],
3522 ... mask=[(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)],
3523 ... dtype=[('a', int), ('b', int)])
3524 >>> x.recordmask
3525 array([False, False, True, False, False])
3526 """
3528 _mask = self._mask.view(ndarray)
3529 if _mask.dtype.names is None:
3530 return _mask
3531 return np.all(flatten_structured_array(_mask), axis=-1)
3533 @recordmask.setter
3534 def recordmask(self, mask):
3535 raise NotImplementedError("Coming soon: setting the mask per records!")
3537 def harden_mask(self):
3538 """
3539 Force the mask to hard, preventing unmasking by assignment.
3541 Whether the mask of a masked array is hard or soft is determined by
3542 its `~ma.MaskedArray.hardmask` property. `harden_mask` sets
3543 `~ma.MaskedArray.hardmask` to ``True`` (and returns the modified
3544 self).
3546 See Also
3547 --------
3548 ma.MaskedArray.hardmask
3549 ma.MaskedArray.soften_mask
3551 """
3552 self._hardmask = True
3553 return self
3555 def soften_mask(self):
3556 """
3557 Force the mask to soft (default), allowing unmasking by assignment.
3559 Whether the mask of a masked array is hard or soft is determined by
3560 its `~ma.MaskedArray.hardmask` property. `soften_mask` sets
3561 `~ma.MaskedArray.hardmask` to ``False`` (and returns the modified
3562 self).
3564 See Also
3565 --------
3566 ma.MaskedArray.hardmask
3567 ma.MaskedArray.harden_mask
3569 """
3570 self._hardmask = False
3571 return self
3573 @property
3574 def hardmask(self):
3575 """
3576 Specifies whether values can be unmasked through assignments.
3578 By default, assigning definite values to masked array entries will
3579 unmask them. When `hardmask` is ``True``, the mask will not change
3580 through assignments.
3582 See Also
3583 --------
3584 ma.MaskedArray.harden_mask
3585 ma.MaskedArray.soften_mask
3587 Examples
3588 --------
3589 >>> x = np.arange(10)
3590 >>> m = np.ma.masked_array(x, x>5)
3591 >>> assert not m.hardmask
3593 Since `m` has a soft mask, assigning an element value unmasks that
3594 element:
3596 >>> m[8] = 42
3597 >>> m
3598 masked_array(data=[0, 1, 2, 3, 4, 5, --, --, 42, --],
3599 mask=[False, False, False, False, False, False,
3600 True, True, False, True],
3601 fill_value=999999)
3603 After hardening, the mask is not affected by assignments:
3605 >>> hardened = np.ma.harden_mask(m)
3606 >>> assert m.hardmask and hardened is m
3607 >>> m[:] = 23
3608 >>> m
3609 masked_array(data=[23, 23, 23, 23, 23, 23, --, --, 23, --],
3610 mask=[False, False, False, False, False, False,
3611 True, True, False, True],
3612 fill_value=999999)
3614 """
3615 return self._hardmask
3617 def unshare_mask(self):
3618 """
3619 Copy the mask and set the `sharedmask` flag to ``False``.
3621 Whether the mask is shared between masked arrays can be seen from
3622 the `sharedmask` property. `unshare_mask` ensures the mask is not
3623 shared. A copy of the mask is only made if it was shared.
3625 See Also
3626 --------
3627 sharedmask
3629 """
3630 if self._sharedmask:
3631 self._mask = self._mask.copy()
3632 self._sharedmask = False
3633 return self
3635 @property
3636 def sharedmask(self):
3637 """ Share status of the mask (read-only). """
3638 return self._sharedmask
3640 def shrink_mask(self):
3641 """
3642 Reduce a mask to nomask when possible.
3644 Parameters
3645 ----------
3646 None
3648 Returns
3649 -------
3650 None
3652 Examples
3653 --------
3654 >>> x = np.ma.array([[1,2 ], [3, 4]], mask=[0]*4)
3655 >>> x.mask
3656 array([[False, False],
3657 [False, False]])
3658 >>> x.shrink_mask()
3659 masked_array(
3660 data=[[1, 2],
3661 [3, 4]],
3662 mask=False,
3663 fill_value=999999)
3664 >>> x.mask
3665 False
3667 """
3668 self._mask = _shrink_mask(self._mask)
3669 return self
3671 @property
3672 def baseclass(self):
3673 """ Class of the underlying data (read-only). """
3674 return self._baseclass
3676 def _get_data(self):
3677 """
3678 Returns the underlying data, as a view of the masked array.
3680 If the underlying data is a subclass of :class:`numpy.ndarray`, it is
3681 returned as such.
3683 >>> x = np.ma.array(np.matrix([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]])
3684 >>> x.data
3685 matrix([[1, 2],
3686 [3, 4]])
3688 The type of the data can be accessed through the :attr:`baseclass`
3689 attribute.
3690 """
3691 return ndarray.view(self, self._baseclass)
3693 _data = property(fget=_get_data)
3694 data = property(fget=_get_data)
3696 @property
3697 def flat(self):
3698 """ Return a flat iterator, or set a flattened version of self to value. """
3699 return MaskedIterator(self)
3701 @flat.setter
3702 def flat(self, value):
3703 y = self.ravel()
3704 y[:] = value
3706 @property
3707 def fill_value(self):
3708 """
3709 The filling value of the masked array is a scalar. When setting, None
3710 will set to a default based on the data type.
3712 Examples
3713 --------
3714 >>> for dt in [np.int32, np.int64, np.float64, np.complex128]:
3715 ... np.ma.array([0, 1], dtype=dt).get_fill_value()
3716 ...
3717 999999
3718 999999
3719 1e+20
3720 (1e+20+0j)
3722 >>> x = np.ma.array([0, 1.], fill_value=-np.inf)
3723 >>> x.fill_value
3724 -inf
3725 >>> x.fill_value = np.pi
3726 >>> x.fill_value
3727 3.1415926535897931 # may vary
3729 Reset to default:
3731 >>> x.fill_value = None
3732 >>> x.fill_value
3733 1e+20
3735 """
3736 if self._fill_value is None:
3737 self._fill_value = _check_fill_value(None, self.dtype)
3739 # Temporary workaround to account for the fact that str and bytes
3740 # scalars cannot be indexed with (), whereas all other numpy
3741 # scalars can. See issues #7259 and #7267.
3742 # The if-block can be removed after #7267 has been fixed.
3743 if isinstance(self._fill_value, ndarray):
3744 return self._fill_value[()]
3745 return self._fill_value
3747 @fill_value.setter
3748 def fill_value(self, value=None):
3749 target = _check_fill_value(value, self.dtype)
3750 if not target.ndim == 0:
3751 # 2019-11-12, 1.18.0
3752 warnings.warn(
3753 "Non-scalar arrays for the fill value are deprecated. Use "
3754 "arrays with scalar values instead. The filled function "
3755 "still supports any array as `fill_value`.",
3756 DeprecationWarning, stacklevel=2)
3758 _fill_value = self._fill_value
3759 if _fill_value is None:
3760 # Create the attribute if it was undefined
3761 self._fill_value = target
3762 else:
3763 # Don't overwrite the attribute, just fill it (for propagation)
3764 _fill_value[()] = target
3766 # kept for compatibility
3767 get_fill_value = fill_value.fget
3768 set_fill_value = fill_value.fset
3770 def filled(self, fill_value=None):
3771 """
3772 Return a copy of self, with masked values filled with a given value.
3773 **However**, if there are no masked values to fill, self will be
3774 returned instead as an ndarray.
3776 Parameters
3777 ----------
3778 fill_value : array_like, optional
3779 The value to use for invalid entries. Can be scalar or non-scalar.
3780 If non-scalar, the resulting ndarray must be broadcastable over
3781 input array. Default is None, in which case, the `fill_value`
3782 attribute of the array is used instead.
3784 Returns
3785 -------
3786 filled_array : ndarray
3787 A copy of ``self`` with invalid entries replaced by *fill_value*
3788 (be it the function argument or the attribute of ``self``), or
3789 ``self`` itself as an ndarray if there are no invalid entries to
3790 be replaced.
3792 Notes
3793 -----
3794 The result is **not** a MaskedArray!
3796 Examples
3797 --------
3798 >>> x = np.ma.array([1,2,3,4,5], mask=[0,0,1,0,1], fill_value=-999)
3799 >>> x.filled()
3800 array([ 1, 2, -999, 4, -999])
3801 >>> x.filled(fill_value=1000)
3802 array([ 1, 2, 1000, 4, 1000])
3803 >>> type(x.filled())
3804 <class 'numpy.ndarray'>
3806 Subclassing is preserved. This means that if, e.g., the data part of
3807 the masked array is a recarray, `filled` returns a recarray:
3809 >>> x = np.array([(-1, 2), (-3, 4)], dtype='i8,i8').view(np.recarray)
3810 >>> m = np.ma.array(x, mask=[(True, False), (False, True)])
3811 >>> m.filled()
3812 rec.array([(999999, 2), ( -3, 999999)],
3813 dtype=[('f0', '<i8'), ('f1', '<i8')])
3814 """
3815 m = self._mask
3816 if m is nomask:
3817 return self._data
3819 if fill_value is None:
3820 fill_value = self.fill_value
3821 else:
3822 fill_value = _check_fill_value(fill_value, self.dtype)
3824 if self is masked_singleton:
3825 return np.asanyarray(fill_value)
3827 if m.dtype.names is not None:
3828 result = self._data.copy('K')
3829 _recursive_filled(result, self._mask, fill_value)
3830 elif not m.any():
3831 return self._data
3832 else:
3833 result = self._data.copy('K')
3834 try:
3835 np.copyto(result, fill_value, where=m)
3836 except (TypeError, AttributeError):
3837 fill_value = narray(fill_value, dtype=object)
3838 d = result.astype(object)
3839 result = np.choose(m, (d, fill_value))
3840 except IndexError:
3841 # ok, if scalar
3842 if self._data.shape:
3843 raise
3844 elif m:
3845 result = np.array(fill_value, dtype=self.dtype)
3846 else:
3847 result = self._data
3848 return result
3850 def compressed(self):
3851 """
3852 Return all the non-masked data as a 1-D array.
3854 Returns
3855 -------
3856 data : ndarray
3857 A new `ndarray` holding the non-masked data is returned.
3859 Notes
3860 -----
3861 The result is **not** a MaskedArray!
3863 Examples
3864 --------
3865 >>> x = np.ma.array(np.arange(5), mask=[0]*2 + [1]*3)
3866 >>> x.compressed()
3867 array([0, 1])
3868 >>> type(x.compressed())
3869 <class 'numpy.ndarray'>
3871 """
3872 data = ndarray.ravel(self._data)
3873 if self._mask is not nomask:
3874 data = data.compress(np.logical_not(ndarray.ravel(self._mask)))
3875 return data
3877 def compress(self, condition, axis=None, out=None):
3878 """
3879 Return `a` where condition is ``True``.
3881 If condition is a `~ma.MaskedArray`, missing values are considered
3882 as ``False``.
3884 Parameters
3885 ----------
3886 condition : var
3887 Boolean 1-d array selecting which entries to return. If len(condition)
3888 is less than the size of a along the axis, then output is truncated
3889 to length of condition array.
3890 axis : {None, int}, optional
3891 Axis along which the operation must be performed.
3892 out : {None, ndarray}, optional
3893 Alternative output array in which to place the result. It must have
3894 the same shape as the expected output but the type will be cast if
3895 necessary.
3897 Returns
3898 -------
3899 result : MaskedArray
3900 A :class:`~ma.MaskedArray` object.
3902 Notes
3903 -----
3904 Please note the difference with :meth:`compressed` !
3905 The output of :meth:`compress` has a mask, the output of
3906 :meth:`compressed` does not.
3908 Examples
3909 --------
3910 >>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
3911 >>> x
3912 masked_array(
3913 data=[[1, --, 3],
3914 [--, 5, --],
3915 [7, --, 9]],
3916 mask=[[False, True, False],
3917 [ True, False, True],
3918 [False, True, False]],
3919 fill_value=999999)
3920 >>> x.compress([1, 0, 1])
3921 masked_array(data=[1, 3],
3922 mask=[False, False],
3923 fill_value=999999)
3925 >>> x.compress([1, 0, 1], axis=1)
3926 masked_array(
3927 data=[[1, 3],
3928 [--, --],
3929 [7, 9]],
3930 mask=[[False, False],
3931 [ True, True],
3932 [False, False]],
3933 fill_value=999999)
3935 """
3936 # Get the basic components
3937 (_data, _mask) = (self._data, self._mask)
3939 # Force the condition to a regular ndarray and forget the missing
3940 # values.
3941 condition = np.asarray(condition)
3943 _new = _data.compress(condition, axis=axis, out=out).view(type(self))
3944 _new._update_from(self)
3945 if _mask is not nomask:
3946 _new._mask = _mask.compress(condition, axis=axis)
3947 return _new
3949 def _insert_masked_print(self):
3950 """
3951 Replace masked values with masked_print_option, casting all innermost
3952 dtypes to object.
3953 """
3954 if masked_print_option.enabled():
3955 mask = self._mask
3956 if mask is nomask:
3957 res = self._data
3958 else:
3959 # convert to object array to make filled work
3960 data = self._data
3961 # For big arrays, to avoid a costly conversion to the
3962 # object dtype, extract the corners before the conversion.
3963 print_width = (self._print_width if self.ndim > 1
3964 else self._print_width_1d)
3965 for axis in range(self.ndim):
3966 if data.shape[axis] > print_width:
3967 ind = print_width // 2
3968 arr = np.split(data, (ind, -ind), axis=axis)
3969 data = np.concatenate((arr[0], arr[2]), axis=axis)
3970 arr = np.split(mask, (ind, -ind), axis=axis)
3971 mask = np.concatenate((arr[0], arr[2]), axis=axis)
3973 rdtype = _replace_dtype_fields(self.dtype, "O")
3974 res = data.astype(rdtype)
3975 _recursive_printoption(res, mask, masked_print_option)
3976 else:
3977 res = self.filled(self.fill_value)
3978 return res
3980 def __str__(self):
3981 return str(self._insert_masked_print())
3983 def __repr__(self):
3984 """
3985 Literal string representation.
3987 """
3988 if self._baseclass is np.ndarray:
3989 name = 'array'
3990 else:
3991 name = self._baseclass.__name__
3994 # 2016-11-19: Demoted to legacy format
3995 if np.core.arrayprint._get_legacy_print_mode() <= 113:
3996 is_long = self.ndim > 1
3997 parameters = dict(
3998 name=name,
3999 nlen=" " * len(name),
4000 data=str(self),
4001 mask=str(self._mask),
4002 fill=str(self.fill_value),
4003 dtype=str(self.dtype)
4004 )
4005 is_structured = bool(self.dtype.names)
4006 key = '{}_{}'.format(
4007 'long' if is_long else 'short',
4008 'flx' if is_structured else 'std'
4009 )
4010 return _legacy_print_templates[key] % parameters
4012 prefix = f"masked_{name}("
4014 dtype_needed = (
4015 not np.core.arrayprint.dtype_is_implied(self.dtype) or
4016 np.all(self.mask) or
4017 self.size == 0
4018 )
4020 # determine which keyword args need to be shown
4021 keys = ['data', 'mask', 'fill_value']
4022 if dtype_needed:
4023 keys.append('dtype')
4025 # array has only one row (non-column)
4026 is_one_row = builtins.all(dim == 1 for dim in self.shape[:-1])
4028 # choose what to indent each keyword with
4029 min_indent = 2
4030 if is_one_row:
4031 # first key on the same line as the type, remaining keys
4032 # aligned by equals
4033 indents = {}
4034 indents[keys[0]] = prefix
4035 for k in keys[1:]:
4036 n = builtins.max(min_indent, len(prefix + keys[0]) - len(k))
4037 indents[k] = ' ' * n
4038 prefix = '' # absorbed into the first indent
4039 else:
4040 # each key on its own line, indented by two spaces
4041 indents = {k: ' ' * min_indent for k in keys}
4042 prefix = prefix + '\n' # first key on the next line
4044 # format the field values
4045 reprs = {}
4046 reprs['data'] = np.array2string(
4047 self._insert_masked_print(),
4048 separator=", ",
4049 prefix=indents['data'] + 'data=',
4050 suffix=',')
4051 reprs['mask'] = np.array2string(
4052 self._mask,
4053 separator=", ",
4054 prefix=indents['mask'] + 'mask=',
4055 suffix=',')
4056 reprs['fill_value'] = repr(self.fill_value)
4057 if dtype_needed:
4058 reprs['dtype'] = np.core.arrayprint.dtype_short_repr(self.dtype)
4060 # join keys with values and indentations
4061 result = ',\n'.join(
4062 '{}{}={}'.format(indents[k], k, reprs[k])
4063 for k in keys
4064 )
4065 return prefix + result + ')'
4067 def _delegate_binop(self, other):
4068 # This emulates the logic in
4069 # private/binop_override.h:forward_binop_should_defer
4070 if isinstance(other, type(self)):
4071 return False
4072 array_ufunc = getattr(other, "__array_ufunc__", False)
4073 if array_ufunc is False:
4074 other_priority = getattr(other, "__array_priority__", -1000000)
4075 return self.__array_priority__ < other_priority
4076 else:
4077 # If array_ufunc is not None, it will be called inside the ufunc;
4078 # None explicitly tells us to not call the ufunc, i.e., defer.
4079 return array_ufunc is None
4081 def _comparison(self, other, compare):
4082 """Compare self with other using operator.eq or operator.ne.
4084 When either of the elements is masked, the result is masked as well,
4085 but the underlying boolean data are still set, with self and other
4086 considered equal if both are masked, and unequal otherwise.
4088 For structured arrays, all fields are combined, with masked values
4089 ignored. The result is masked if all fields were masked, with self
4090 and other considered equal only if both were fully masked.
4091 """
4092 omask = getmask(other)
4093 smask = self.mask
4094 mask = mask_or(smask, omask, copy=True)
4096 odata = getdata(other)
4097 if mask.dtype.names is not None:
4098 # only == and != are reasonably defined for structured dtypes,
4099 # so give up early for all other comparisons:
4100 if compare not in (operator.eq, operator.ne):
4101 return NotImplemented
4102 # For possibly masked structured arrays we need to be careful,
4103 # since the standard structured array comparison will use all
4104 # fields, masked or not. To avoid masked fields influencing the
4105 # outcome, we set all masked fields in self to other, so they'll
4106 # count as equal. To prepare, we ensure we have the right shape.
4107 broadcast_shape = np.broadcast(self, odata).shape
4108 sbroadcast = np.broadcast_to(self, broadcast_shape, subok=True)
4109 sbroadcast._mask = mask
4110 sdata = sbroadcast.filled(odata)
4111 # Now take care of the mask; the merged mask should have an item
4112 # masked if all fields were masked (in one and/or other).
4113 mask = (mask == np.ones((), mask.dtype))
4115 else:
4116 # For regular arrays, just use the data as they come.
4117 sdata = self.data
4119 check = compare(sdata, odata)
4121 if isinstance(check, (np.bool_, bool)):
4122 return masked if mask else check
4124 if mask is not nomask and compare in (operator.eq, operator.ne):
4125 # Adjust elements that were masked, which should be treated
4126 # as equal if masked in both, unequal if masked in one.
4127 # Note that this works automatically for structured arrays too.
4128 # Ignore this for operations other than `==` and `!=`
4129 check = np.where(mask, compare(smask, omask), check)
4130 if mask.shape != check.shape:
4131 # Guarantee consistency of the shape, making a copy since the
4132 # the mask may need to get written to later.
4133 mask = np.broadcast_to(mask, check.shape).copy()
4135 check = check.view(type(self))
4136 check._update_from(self)
4137 check._mask = mask
4139 # Cast fill value to bool_ if needed. If it cannot be cast, the
4140 # default boolean fill value is used.
4141 if check._fill_value is not None:
4142 try:
4143 fill = _check_fill_value(check._fill_value, np.bool_)
4144 except (TypeError, ValueError):
4145 fill = _check_fill_value(None, np.bool_)
4146 check._fill_value = fill
4148 return check
4150 def __eq__(self, other):
4151 """Check whether other equals self elementwise.
4153 When either of the elements is masked, the result is masked as well,
4154 but the underlying boolean data are still set, with self and other
4155 considered equal if both are masked, and unequal otherwise.
4157 For structured arrays, all fields are combined, with masked values
4158 ignored. The result is masked if all fields were masked, with self
4159 and other considered equal only if both were fully masked.
4160 """
4161 return self._comparison(other, operator.eq)
4163 def __ne__(self, other):
4164 """Check whether other does not equal self elementwise.
4166 When either of the elements is masked, the result is masked as well,
4167 but the underlying boolean data are still set, with self and other
4168 considered equal if both are masked, and unequal otherwise.
4170 For structured arrays, all fields are combined, with masked values
4171 ignored. The result is masked if all fields were masked, with self
4172 and other considered equal only if both were fully masked.
4173 """
4174 return self._comparison(other, operator.ne)
4176 # All other comparisons:
4177 def __le__(self, other):
4178 return self._comparison(other, operator.le)
4180 def __lt__(self, other):
4181 return self._comparison(other, operator.lt)
4183 def __ge__(self, other):
4184 return self._comparison(other, operator.ge)
4186 def __gt__(self, other):
4187 return self._comparison(other, operator.gt)
4189 def __add__(self, other):
4190 """
4191 Add self to other, and return a new masked array.
4193 """
4194 if self._delegate_binop(other):
4195 return NotImplemented
4196 return add(self, other)
4198 def __radd__(self, other):
4199 """
4200 Add other to self, and return a new masked array.
4202 """
4203 # In analogy with __rsub__ and __rdiv__, use original order:
4204 # we get here from `other + self`.
4205 return add(other, self)
4207 def __sub__(self, other):
4208 """
4209 Subtract other from self, and return a new masked array.
4211 """
4212 if self._delegate_binop(other):
4213 return NotImplemented
4214 return subtract(self, other)
4216 def __rsub__(self, other):
4217 """
4218 Subtract self from other, and return a new masked array.
4220 """
4221 return subtract(other, self)
4223 def __mul__(self, other):
4224 "Multiply self by other, and return a new masked array."
4225 if self._delegate_binop(other):
4226 return NotImplemented
4227 return multiply(self, other)
4229 def __rmul__(self, other):
4230 """
4231 Multiply other by self, and return a new masked array.
4233 """
4234 # In analogy with __rsub__ and __rdiv__, use original order:
4235 # we get here from `other * self`.
4236 return multiply(other, self)
4238 def __div__(self, other):
4239 """
4240 Divide other into self, and return a new masked array.
4242 """
4243 if self._delegate_binop(other):
4244 return NotImplemented
4245 return divide(self, other)
4247 def __truediv__(self, other):
4248 """
4249 Divide other into self, and return a new masked array.
4251 """
4252 if self._delegate_binop(other):
4253 return NotImplemented
4254 return true_divide(self, other)
4256 def __rtruediv__(self, other):
4257 """
4258 Divide self into other, and return a new masked array.
4260 """
4261 return true_divide(other, self)
4263 def __floordiv__(self, other):
4264 """
4265 Divide other into self, and return a new masked array.
4267 """
4268 if self._delegate_binop(other):
4269 return NotImplemented
4270 return floor_divide(self, other)
4272 def __rfloordiv__(self, other):
4273 """
4274 Divide self into other, and return a new masked array.
4276 """
4277 return floor_divide(other, self)
4279 def __pow__(self, other):
4280 """
4281 Raise self to the power other, masking the potential NaNs/Infs
4283 """
4284 if self._delegate_binop(other):
4285 return NotImplemented
4286 return power(self, other)
4288 def __rpow__(self, other):
4289 """
4290 Raise other to the power self, masking the potential NaNs/Infs
4292 """
4293 return power(other, self)
4295 def __iadd__(self, other):
4296 """
4297 Add other to self in-place.
4299 """
4300 m = getmask(other)
4301 if self._mask is nomask:
4302 if m is not nomask and m.any():
4303 self._mask = make_mask_none(self.shape, self.dtype)
4304 self._mask += m
4305 else:
4306 if m is not nomask:
4307 self._mask += m
4308 other_data = getdata(other)
4309 other_data = np.where(self._mask, other_data.dtype.type(0), other_data)
4310 self._data.__iadd__(other_data)
4311 return self
4313 def __isub__(self, other):
4314 """
4315 Subtract other from self in-place.
4317 """
4318 m = getmask(other)
4319 if self._mask is nomask:
4320 if m is not nomask and m.any():
4321 self._mask = make_mask_none(self.shape, self.dtype)
4322 self._mask += m
4323 elif m is not nomask:
4324 self._mask += m
4325 other_data = getdata(other)
4326 other_data = np.where(self._mask, other_data.dtype.type(0), other_data)
4327 self._data.__isub__(other_data)
4328 return self
4330 def __imul__(self, other):
4331 """
4332 Multiply self by other in-place.
4334 """
4335 m = getmask(other)
4336 if self._mask is nomask:
4337 if m is not nomask and m.any():
4338 self._mask = make_mask_none(self.shape, self.dtype)
4339 self._mask += m
4340 elif m is not nomask:
4341 self._mask += m
4342 other_data = getdata(other)
4343 other_data = np.where(self._mask, other_data.dtype.type(1), other_data)
4344 self._data.__imul__(other_data)
4345 return self
4347 def __idiv__(self, other):
4348 """
4349 Divide self by other in-place.
4351 """
4352 other_data = getdata(other)
4353 dom_mask = _DomainSafeDivide().__call__(self._data, other_data)
4354 other_mask = getmask(other)
4355 new_mask = mask_or(other_mask, dom_mask)
4356 # The following 4 lines control the domain filling
4357 if dom_mask.any():
4358 (_, fval) = ufunc_fills[np.divide]
4359 other_data = np.where(
4360 dom_mask, other_data.dtype.type(fval), other_data)
4361 self._mask |= new_mask
4362 other_data = np.where(self._mask, other_data.dtype.type(1), other_data)
4363 self._data.__idiv__(other_data)
4364 return self
4366 def __ifloordiv__(self, other):
4367 """
4368 Floor divide self by other in-place.
4370 """
4371 other_data = getdata(other)
4372 dom_mask = _DomainSafeDivide().__call__(self._data, other_data)
4373 other_mask = getmask(other)
4374 new_mask = mask_or(other_mask, dom_mask)
4375 # The following 3 lines control the domain filling
4376 if dom_mask.any():
4377 (_, fval) = ufunc_fills[np.floor_divide]
4378 other_data = np.where(
4379 dom_mask, other_data.dtype.type(fval), other_data)
4380 self._mask |= new_mask
4381 other_data = np.where(self._mask, other_data.dtype.type(1), other_data)
4382 self._data.__ifloordiv__(other_data)
4383 return self
4385 def __itruediv__(self, other):
4386 """
4387 True divide self by other in-place.
4389 """
4390 other_data = getdata(other)
4391 dom_mask = _DomainSafeDivide().__call__(self._data, other_data)
4392 other_mask = getmask(other)
4393 new_mask = mask_or(other_mask, dom_mask)
4394 # The following 3 lines control the domain filling
4395 if dom_mask.any():
4396 (_, fval) = ufunc_fills[np.true_divide]
4397 other_data = np.where(
4398 dom_mask, other_data.dtype.type(fval), other_data)
4399 self._mask |= new_mask
4400 other_data = np.where(self._mask, other_data.dtype.type(1), other_data)
4401 self._data.__itruediv__(other_data)
4402 return self
4404 def __ipow__(self, other):
4405 """
4406 Raise self to the power other, in place.
4408 """
4409 other_data = getdata(other)
4410 other_data = np.where(self._mask, other_data.dtype.type(1), other_data)
4411 other_mask = getmask(other)
4412 with np.errstate(divide='ignore', invalid='ignore'):
4413 self._data.__ipow__(other_data)
4414 invalid = np.logical_not(np.isfinite(self._data))
4415 if invalid.any():
4416 if self._mask is not nomask:
4417 self._mask |= invalid
4418 else:
4419 self._mask = invalid
4420 np.copyto(self._data, self.fill_value, where=invalid)
4421 new_mask = mask_or(other_mask, invalid)
4422 self._mask = mask_or(self._mask, new_mask)
4423 return self
4425 def __float__(self):
4426 """
4427 Convert to float.
4429 """
4430 if self.size > 1:
4431 raise TypeError("Only length-1 arrays can be converted "
4432 "to Python scalars")
4433 elif self._mask:
4434 warnings.warn("Warning: converting a masked element to nan.", stacklevel=2)
4435 return np.nan
4436 return float(self.item())
4438 def __int__(self):
4439 """
4440 Convert to int.
4442 """
4443 if self.size > 1:
4444 raise TypeError("Only length-1 arrays can be converted "
4445 "to Python scalars")
4446 elif self._mask:
4447 raise MaskError('Cannot convert masked element to a Python int.')
4448 return int(self.item())
4450 @property
4451 def imag(self):
4452 """
4453 The imaginary part of the masked array.
4455 This property is a view on the imaginary part of this `MaskedArray`.
4457 See Also
4458 --------
4459 real
4461 Examples
4462 --------
4463 >>> x = np.ma.array([1+1.j, -2j, 3.45+1.6j], mask=[False, True, False])
4464 >>> x.imag
4465 masked_array(data=[1.0, --, 1.6],
4466 mask=[False, True, False],
4467 fill_value=1e+20)
4469 """
4470 result = self._data.imag.view(type(self))
4471 result.__setmask__(self._mask)
4472 return result
4474 # kept for compatibility
4475 get_imag = imag.fget
4477 @property
4478 def real(self):
4479 """
4480 The real part of the masked array.
4482 This property is a view on the real part of this `MaskedArray`.
4484 See Also
4485 --------
4486 imag
4488 Examples
4489 --------
4490 >>> x = np.ma.array([1+1.j, -2j, 3.45+1.6j], mask=[False, True, False])
4491 >>> x.real
4492 masked_array(data=[1.0, --, 3.45],
4493 mask=[False, True, False],
4494 fill_value=1e+20)
4496 """
4497 result = self._data.real.view(type(self))
4498 result.__setmask__(self._mask)
4499 return result
4501 # kept for compatibility
4502 get_real = real.fget
4504 def count(self, axis=None, keepdims=np._NoValue):
4505 """
4506 Count the non-masked elements of the array along the given axis.
4508 Parameters
4509 ----------
4510 axis : None or int or tuple of ints, optional
4511 Axis or axes along which the count is performed.
4512 The default, None, performs the count over all
4513 the dimensions of the input array. `axis` may be negative, in
4514 which case it counts from the last to the first axis.
4516 .. versionadded:: 1.10.0
4518 If this is a tuple of ints, the count is performed on multiple
4519 axes, instead of a single axis or all the axes as before.
4520 keepdims : bool, optional
4521 If this is set to True, the axes which are reduced are left
4522 in the result as dimensions with size one. With this option,
4523 the result will broadcast correctly against the array.
4525 Returns
4526 -------
4527 result : ndarray or scalar
4528 An array with the same shape as the input array, with the specified
4529 axis removed. If the array is a 0-d array, or if `axis` is None, a
4530 scalar is returned.
4532 See Also
4533 --------
4534 ma.count_masked : Count masked elements in array or along a given axis.
4536 Examples
4537 --------
4538 >>> import numpy.ma as ma
4539 >>> a = ma.arange(6).reshape((2, 3))
4540 >>> a[1, :] = ma.masked
4541 >>> a
4542 masked_array(
4543 data=[[0, 1, 2],
4544 [--, --, --]],
4545 mask=[[False, False, False],
4546 [ True, True, True]],
4547 fill_value=999999)
4548 >>> a.count()
4549 3
4551 When the `axis` keyword is specified an array of appropriate size is
4552 returned.
4554 >>> a.count(axis=0)
4555 array([1, 1, 1])
4556 >>> a.count(axis=1)
4557 array([3, 0])
4559 """
4560 kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
4562 m = self._mask
4563 # special case for matrices (we assume no other subclasses modify
4564 # their dimensions)
4565 if isinstance(self.data, np.matrix):
4566 if m is nomask:
4567 m = np.zeros(self.shape, dtype=np.bool_)
4568 m = m.view(type(self.data))
4570 if m is nomask:
4571 # compare to _count_reduce_items in _methods.py
4573 if self.shape == ():
4574 if axis not in (None, 0):
4575 raise np.AxisError(axis=axis, ndim=self.ndim)
4576 return 1
4577 elif axis is None:
4578 if kwargs.get('keepdims', False):
4579 return np.array(self.size, dtype=np.intp, ndmin=self.ndim)
4580 return self.size
4582 axes = normalize_axis_tuple(axis, self.ndim)
4583 items = 1
4584 for ax in axes:
4585 items *= self.shape[ax]
4587 if kwargs.get('keepdims', False):
4588 out_dims = list(self.shape)
4589 for a in axes:
4590 out_dims[a] = 1
4591 else:
4592 out_dims = [d for n, d in enumerate(self.shape)
4593 if n not in axes]
4594 # make sure to return a 0-d array if axis is supplied
4595 return np.full(out_dims, items, dtype=np.intp)
4597 # take care of the masked singleton
4598 if self is masked:
4599 return 0
4601 return (~m).sum(axis=axis, dtype=np.intp, **kwargs)
4603 def ravel(self, order='C'):
4604 """
4605 Returns a 1D version of self, as a view.
4607 Parameters
4608 ----------
4609 order : {'C', 'F', 'A', 'K'}, optional
4610 The elements of `a` are read using this index order. 'C' means to
4611 index the elements in C-like order, with the last axis index
4612 changing fastest, back to the first axis index changing slowest.
4613 'F' means to index the elements in Fortran-like index order, with
4614 the first index changing fastest, and the last index changing
4615 slowest. Note that the 'C' and 'F' options take no account of the
4616 memory layout of the underlying array, and only refer to the order
4617 of axis indexing. 'A' means to read the elements in Fortran-like
4618 index order if `m` is Fortran *contiguous* in memory, C-like order
4619 otherwise. 'K' means to read the elements in the order they occur
4620 in memory, except for reversing the data when strides are negative.
4621 By default, 'C' index order is used.
4623 Returns
4624 -------
4625 MaskedArray
4626 Output view is of shape ``(self.size,)`` (or
4627 ``(np.ma.product(self.shape),)``).
4629 Examples
4630 --------
4631 >>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
4632 >>> x
4633 masked_array(
4634 data=[[1, --, 3],
4635 [--, 5, --],
4636 [7, --, 9]],
4637 mask=[[False, True, False],
4638 [ True, False, True],
4639 [False, True, False]],
4640 fill_value=999999)
4641 >>> x.ravel()
4642 masked_array(data=[1, --, 3, --, 5, --, 7, --, 9],
4643 mask=[False, True, False, True, False, True, False, True,
4644 False],
4645 fill_value=999999)
4647 """
4648 r = ndarray.ravel(self._data, order=order).view(type(self))
4649 r._update_from(self)
4650 if self._mask is not nomask:
4651 r._mask = ndarray.ravel(self._mask, order=order).reshape(r.shape)
4652 else:
4653 r._mask = nomask
4654 return r
4657 def reshape(self, *s, **kwargs):
4658 """
4659 Give a new shape to the array without changing its data.
4661 Returns a masked array containing the same data, but with a new shape.
4662 The result is a view on the original array; if this is not possible, a
4663 ValueError is raised.
4665 Parameters
4666 ----------
4667 shape : int or tuple of ints
4668 The new shape should be compatible with the original shape. If an
4669 integer is supplied, then the result will be a 1-D array of that
4670 length.
4671 order : {'C', 'F'}, optional
4672 Determines whether the array data should be viewed as in C
4673 (row-major) or FORTRAN (column-major) order.
4675 Returns
4676 -------
4677 reshaped_array : array
4678 A new view on the array.
4680 See Also
4681 --------
4682 reshape : Equivalent function in the masked array module.
4683 numpy.ndarray.reshape : Equivalent method on ndarray object.
4684 numpy.reshape : Equivalent function in the NumPy module.
4686 Notes
4687 -----
4688 The reshaping operation cannot guarantee that a copy will not be made,
4689 to modify the shape in place, use ``a.shape = s``
4691 Examples
4692 --------
4693 >>> x = np.ma.array([[1,2],[3,4]], mask=[1,0,0,1])
4694 >>> x
4695 masked_array(
4696 data=[[--, 2],
4697 [3, --]],
4698 mask=[[ True, False],
4699 [False, True]],
4700 fill_value=999999)
4701 >>> x = x.reshape((4,1))
4702 >>> x
4703 masked_array(
4704 data=[[--],
4705 [2],
4706 [3],
4707 [--]],
4708 mask=[[ True],
4709 [False],
4710 [False],
4711 [ True]],
4712 fill_value=999999)
4714 """
4715 kwargs.update(order=kwargs.get('order', 'C'))
4716 result = self._data.reshape(*s, **kwargs).view(type(self))
4717 result._update_from(self)
4718 mask = self._mask
4719 if mask is not nomask:
4720 result._mask = mask.reshape(*s, **kwargs)
4721 return result
4723 def resize(self, newshape, refcheck=True, order=False):
4724 """
4725 .. warning::
4727 This method does nothing, except raise a ValueError exception. A
4728 masked array does not own its data and therefore cannot safely be
4729 resized in place. Use the `numpy.ma.resize` function instead.
4731 This method is difficult to implement safely and may be deprecated in
4732 future releases of NumPy.
4734 """
4735 # Note : the 'order' keyword looks broken, let's just drop it
4736 errmsg = "A masked array does not own its data "\
4737 "and therefore cannot be resized.\n" \
4738 "Use the numpy.ma.resize function instead."
4739 raise ValueError(errmsg)
4741 def put(self, indices, values, mode='raise'):
4742 """
4743 Set storage-indexed locations to corresponding values.
4745 Sets self._data.flat[n] = values[n] for each n in indices.
4746 If `values` is shorter than `indices` then it will repeat.
4747 If `values` has some masked values, the initial mask is updated
4748 in consequence, else the corresponding values are unmasked.
4750 Parameters
4751 ----------
4752 indices : 1-D array_like
4753 Target indices, interpreted as integers.
4754 values : array_like
4755 Values to place in self._data copy at target indices.
4756 mode : {'raise', 'wrap', 'clip'}, optional
4757 Specifies how out-of-bounds indices will behave.
4758 'raise' : raise an error.
4759 'wrap' : wrap around.
4760 'clip' : clip to the range.
4762 Notes
4763 -----
4764 `values` can be a scalar or length 1 array.
4766 Examples
4767 --------
4768 >>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
4769 >>> x
4770 masked_array(
4771 data=[[1, --, 3],
4772 [--, 5, --],
4773 [7, --, 9]],
4774 mask=[[False, True, False],
4775 [ True, False, True],
4776 [False, True, False]],
4777 fill_value=999999)
4778 >>> x.put([0,4,8],[10,20,30])
4779 >>> x
4780 masked_array(
4781 data=[[10, --, 3],
4782 [--, 20, --],
4783 [7, --, 30]],
4784 mask=[[False, True, False],
4785 [ True, False, True],
4786 [False, True, False]],
4787 fill_value=999999)
4789 >>> x.put(4,999)
4790 >>> x
4791 masked_array(
4792 data=[[10, --, 3],
4793 [--, 999, --],
4794 [7, --, 30]],
4795 mask=[[False, True, False],
4796 [ True, False, True],
4797 [False, True, False]],
4798 fill_value=999999)
4800 """
4801 # Hard mask: Get rid of the values/indices that fall on masked data
4802 if self._hardmask and self._mask is not nomask:
4803 mask = self._mask[indices]
4804 indices = narray(indices, copy=False)
4805 values = narray(values, copy=False, subok=True)
4806 values.resize(indices.shape)
4807 indices = indices[~mask]
4808 values = values[~mask]
4810 self._data.put(indices, values, mode=mode)
4812 # short circuit if neither self nor values are masked
4813 if self._mask is nomask and getmask(values) is nomask:
4814 return
4816 m = getmaskarray(self)
4818 if getmask(values) is nomask:
4819 m.put(indices, False, mode=mode)
4820 else:
4821 m.put(indices, values._mask, mode=mode)
4822 m = make_mask(m, copy=False, shrink=True)
4823 self._mask = m
4824 return
4826 def ids(self):
4827 """
4828 Return the addresses of the data and mask areas.
4830 Parameters
4831 ----------
4832 None
4834 Examples
4835 --------
4836 >>> x = np.ma.array([1, 2, 3], mask=[0, 1, 1])
4837 >>> x.ids()
4838 (166670640, 166659832) # may vary
4840 If the array has no mask, the address of `nomask` is returned. This address
4841 is typically not close to the data in memory:
4843 >>> x = np.ma.array([1, 2, 3])
4844 >>> x.ids()
4845 (166691080, 3083169284) # may vary
4847 """
4848 if self._mask is nomask:
4849 return (self.ctypes.data, id(nomask))
4850 return (self.ctypes.data, self._mask.ctypes.data)
4852 def iscontiguous(self):
4853 """
4854 Return a boolean indicating whether the data is contiguous.
4856 Parameters
4857 ----------
4858 None
4860 Examples
4861 --------
4862 >>> x = np.ma.array([1, 2, 3])
4863 >>> x.iscontiguous()
4864 True
4866 `iscontiguous` returns one of the flags of the masked array:
4868 >>> x.flags
4869 C_CONTIGUOUS : True
4870 F_CONTIGUOUS : True
4871 OWNDATA : False
4872 WRITEABLE : True
4873 ALIGNED : True
4874 WRITEBACKIFCOPY : False
4876 """
4877 return self.flags['CONTIGUOUS']
4879 def all(self, axis=None, out=None, keepdims=np._NoValue):
4880 """
4881 Returns True if all elements evaluate to True.
4883 The output array is masked where all the values along the given axis
4884 are masked: if the output would have been a scalar and that all the
4885 values are masked, then the output is `masked`.
4887 Refer to `numpy.all` for full documentation.
4889 See Also
4890 --------
4891 numpy.ndarray.all : corresponding function for ndarrays
4892 numpy.all : equivalent function
4894 Examples
4895 --------
4896 >>> np.ma.array([1,2,3]).all()
4897 True
4898 >>> a = np.ma.array([1,2,3], mask=True)
4899 >>> (a.all() is np.ma.masked)
4900 True
4902 """
4903 kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
4905 mask = _check_mask_axis(self._mask, axis, **kwargs)
4906 if out is None:
4907 d = self.filled(True).all(axis=axis, **kwargs).view(type(self))
4908 if d.ndim:
4909 d.__setmask__(mask)
4910 elif mask:
4911 return masked
4912 return d
4913 self.filled(True).all(axis=axis, out=out, **kwargs)
4914 if isinstance(out, MaskedArray):
4915 if out.ndim or mask:
4916 out.__setmask__(mask)
4917 return out
4919 def any(self, axis=None, out=None, keepdims=np._NoValue):
4920 """
4921 Returns True if any of the elements of `a` evaluate to True.
4923 Masked values are considered as False during computation.
4925 Refer to `numpy.any` for full documentation.
4927 See Also
4928 --------
4929 numpy.ndarray.any : corresponding function for ndarrays
4930 numpy.any : equivalent function
4932 """
4933 kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
4935 mask = _check_mask_axis(self._mask, axis, **kwargs)
4936 if out is None:
4937 d = self.filled(False).any(axis=axis, **kwargs).view(type(self))
4938 if d.ndim:
4939 d.__setmask__(mask)
4940 elif mask:
4941 d = masked
4942 return d
4943 self.filled(False).any(axis=axis, out=out, **kwargs)
4944 if isinstance(out, MaskedArray):
4945 if out.ndim or mask:
4946 out.__setmask__(mask)
4947 return out
4949 def nonzero(self):
4950 """
4951 Return the indices of unmasked elements that are not zero.
4953 Returns a tuple of arrays, one for each dimension, containing the
4954 indices of the non-zero elements in that dimension. The corresponding
4955 non-zero values can be obtained with::
4957 a[a.nonzero()]
4959 To group the indices by element, rather than dimension, use
4960 instead::
4962 np.transpose(a.nonzero())
4964 The result of this is always a 2d array, with a row for each non-zero
4965 element.
4967 Parameters
4968 ----------
4969 None
4971 Returns
4972 -------
4973 tuple_of_arrays : tuple
4974 Indices of elements that are non-zero.
4976 See Also
4977 --------
4978 numpy.nonzero :
4979 Function operating on ndarrays.
4980 flatnonzero :
4981 Return indices that are non-zero in the flattened version of the input
4982 array.
4983 numpy.ndarray.nonzero :
4984 Equivalent ndarray method.
4985 count_nonzero :
4986 Counts the number of non-zero elements in the input array.
4988 Examples
4989 --------
4990 >>> import numpy.ma as ma
4991 >>> x = ma.array(np.eye(3))
4992 >>> x
4993 masked_array(
4994 data=[[1., 0., 0.],
4995 [0., 1., 0.],
4996 [0., 0., 1.]],
4997 mask=False,
4998 fill_value=1e+20)
4999 >>> x.nonzero()
5000 (array([0, 1, 2]), array([0, 1, 2]))
5002 Masked elements are ignored.
5004 >>> x[1, 1] = ma.masked
5005 >>> x
5006 masked_array(
5007 data=[[1.0, 0.0, 0.0],
5008 [0.0, --, 0.0],
5009 [0.0, 0.0, 1.0]],
5010 mask=[[False, False, False],
5011 [False, True, False],
5012 [False, False, False]],
5013 fill_value=1e+20)
5014 >>> x.nonzero()
5015 (array([0, 2]), array([0, 2]))
5017 Indices can also be grouped by element.
5019 >>> np.transpose(x.nonzero())
5020 array([[0, 0],
5021 [2, 2]])
5023 A common use for ``nonzero`` is to find the indices of an array, where
5024 a condition is True. Given an array `a`, the condition `a` > 3 is a
5025 boolean array and since False is interpreted as 0, ma.nonzero(a > 3)
5026 yields the indices of the `a` where the condition is true.
5028 >>> a = ma.array([[1,2,3],[4,5,6],[7,8,9]])
5029 >>> a > 3
5030 masked_array(
5031 data=[[False, False, False],
5032 [ True, True, True],
5033 [ True, True, True]],
5034 mask=False,
5035 fill_value=True)
5036 >>> ma.nonzero(a > 3)
5037 (array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))
5039 The ``nonzero`` method of the condition array can also be called.
5041 >>> (a > 3).nonzero()
5042 (array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))
5044 """
5045 return narray(self.filled(0), copy=False).nonzero()
5047 def trace(self, offset=0, axis1=0, axis2=1, dtype=None, out=None):
5048 """
5049 (this docstring should be overwritten)
5050 """
5051 #!!!: implement out + test!
5052 m = self._mask
5053 if m is nomask:
5054 result = super().trace(offset=offset, axis1=axis1, axis2=axis2,
5055 out=out)
5056 return result.astype(dtype)
5057 else:
5058 D = self.diagonal(offset=offset, axis1=axis1, axis2=axis2)
5059 return D.astype(dtype).filled(0).sum(axis=-1, out=out)
5060 trace.__doc__ = ndarray.trace.__doc__
5062 def dot(self, b, out=None, strict=False):
5063 """
5064 a.dot(b, out=None)
5066 Masked dot product of two arrays. Note that `out` and `strict` are
5067 located in different positions than in `ma.dot`. In order to
5068 maintain compatibility with the functional version, it is
5069 recommended that the optional arguments be treated as keyword only.
5070 At some point that may be mandatory.
5072 .. versionadded:: 1.10.0
5074 Parameters
5075 ----------
5076 b : masked_array_like
5077 Inputs array.
5078 out : masked_array, optional
5079 Output argument. This must have the exact kind that would be
5080 returned if it was not used. In particular, it must have the
5081 right type, must be C-contiguous, and its dtype must be the
5082 dtype that would be returned for `ma.dot(a,b)`. This is a
5083 performance feature. Therefore, if these conditions are not
5084 met, an exception is raised, instead of attempting to be
5085 flexible.
5086 strict : bool, optional
5087 Whether masked data are propagated (True) or set to 0 (False)
5088 for the computation. Default is False. Propagating the mask
5089 means that if a masked value appears in a row or column, the
5090 whole row or column is considered masked.
5092 .. versionadded:: 1.10.2
5094 See Also
5095 --------
5096 numpy.ma.dot : equivalent function
5098 """
5099 return dot(self, b, out=out, strict=strict)
5101 def sum(self, axis=None, dtype=None, out=None, keepdims=np._NoValue):
5102 """
5103 Return the sum of the array elements over the given axis.
5105 Masked elements are set to 0 internally.
5107 Refer to `numpy.sum` for full documentation.
5109 See Also
5110 --------
5111 numpy.ndarray.sum : corresponding function for ndarrays
5112 numpy.sum : equivalent function
5114 Examples
5115 --------
5116 >>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
5117 >>> x
5118 masked_array(
5119 data=[[1, --, 3],
5120 [--, 5, --],
5121 [7, --, 9]],
5122 mask=[[False, True, False],
5123 [ True, False, True],
5124 [False, True, False]],
5125 fill_value=999999)
5126 >>> x.sum()
5127 25
5128 >>> x.sum(axis=1)
5129 masked_array(data=[4, 5, 16],
5130 mask=[False, False, False],
5131 fill_value=999999)
5132 >>> x.sum(axis=0)
5133 masked_array(data=[8, 5, 12],
5134 mask=[False, False, False],
5135 fill_value=999999)
5136 >>> print(type(x.sum(axis=0, dtype=np.int64)[0]))
5137 <class 'numpy.int64'>
5139 """
5140 kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
5142 _mask = self._mask
5143 newmask = _check_mask_axis(_mask, axis, **kwargs)
5144 # No explicit output
5145 if out is None:
5146 result = self.filled(0).sum(axis, dtype=dtype, **kwargs)
5147 rndim = getattr(result, 'ndim', 0)
5148 if rndim:
5149 result = result.view(type(self))
5150 result.__setmask__(newmask)
5151 elif newmask:
5152 result = masked
5153 return result
5154 # Explicit output
5155 result = self.filled(0).sum(axis, dtype=dtype, out=out, **kwargs)
5156 if isinstance(out, MaskedArray):
5157 outmask = getmask(out)
5158 if outmask is nomask:
5159 outmask = out._mask = make_mask_none(out.shape)
5160 outmask.flat = newmask
5161 return out
5163 def cumsum(self, axis=None, dtype=None, out=None):
5164 """
5165 Return the cumulative sum of the array elements over the given axis.
5167 Masked values are set to 0 internally during the computation.
5168 However, their position is saved, and the result will be masked at
5169 the same locations.
5171 Refer to `numpy.cumsum` for full documentation.
5173 Notes
5174 -----
5175 The mask is lost if `out` is not a valid :class:`ma.MaskedArray` !
5177 Arithmetic is modular when using integer types, and no error is
5178 raised on overflow.
5180 See Also
5181 --------
5182 numpy.ndarray.cumsum : corresponding function for ndarrays
5183 numpy.cumsum : equivalent function
5185 Examples
5186 --------
5187 >>> marr = np.ma.array(np.arange(10), mask=[0,0,0,1,1,1,0,0,0,0])
5188 >>> marr.cumsum()
5189 masked_array(data=[0, 1, 3, --, --, --, 9, 16, 24, 33],
5190 mask=[False, False, False, True, True, True, False, False,
5191 False, False],
5192 fill_value=999999)
5194 """
5195 result = self.filled(0).cumsum(axis=axis, dtype=dtype, out=out)
5196 if out is not None:
5197 if isinstance(out, MaskedArray):
5198 out.__setmask__(self.mask)
5199 return out
5200 result = result.view(type(self))
5201 result.__setmask__(self._mask)
5202 return result
5204 def prod(self, axis=None, dtype=None, out=None, keepdims=np._NoValue):
5205 """
5206 Return the product of the array elements over the given axis.
5208 Masked elements are set to 1 internally for computation.
5210 Refer to `numpy.prod` for full documentation.
5212 Notes
5213 -----
5214 Arithmetic is modular when using integer types, and no error is raised
5215 on overflow.
5217 See Also
5218 --------
5219 numpy.ndarray.prod : corresponding function for ndarrays
5220 numpy.prod : equivalent function
5221 """
5222 kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
5224 _mask = self._mask
5225 newmask = _check_mask_axis(_mask, axis, **kwargs)
5226 # No explicit output
5227 if out is None:
5228 result = self.filled(1).prod(axis, dtype=dtype, **kwargs)
5229 rndim = getattr(result, 'ndim', 0)
5230 if rndim:
5231 result = result.view(type(self))
5232 result.__setmask__(newmask)
5233 elif newmask:
5234 result = masked
5235 return result
5236 # Explicit output
5237 result = self.filled(1).prod(axis, dtype=dtype, out=out, **kwargs)
5238 if isinstance(out, MaskedArray):
5239 outmask = getmask(out)
5240 if outmask is nomask:
5241 outmask = out._mask = make_mask_none(out.shape)
5242 outmask.flat = newmask
5243 return out
5244 product = prod
5246 def cumprod(self, axis=None, dtype=None, out=None):
5247 """
5248 Return the cumulative product of the array elements over the given axis.
5250 Masked values are set to 1 internally during the computation.
5251 However, their position is saved, and the result will be masked at
5252 the same locations.
5254 Refer to `numpy.cumprod` for full documentation.
5256 Notes
5257 -----
5258 The mask is lost if `out` is not a valid MaskedArray !
5260 Arithmetic is modular when using integer types, and no error is
5261 raised on overflow.
5263 See Also
5264 --------
5265 numpy.ndarray.cumprod : corresponding function for ndarrays
5266 numpy.cumprod : equivalent function
5267 """
5268 result = self.filled(1).cumprod(axis=axis, dtype=dtype, out=out)
5269 if out is not None:
5270 if isinstance(out, MaskedArray):
5271 out.__setmask__(self._mask)
5272 return out
5273 result = result.view(type(self))
5274 result.__setmask__(self._mask)
5275 return result
5277 def mean(self, axis=None, dtype=None, out=None, keepdims=np._NoValue):
5278 """
5279 Returns the average of the array elements along given axis.
5281 Masked entries are ignored, and result elements which are not
5282 finite will be masked.
5284 Refer to `numpy.mean` for full documentation.
5286 See Also
5287 --------
5288 numpy.ndarray.mean : corresponding function for ndarrays
5289 numpy.mean : Equivalent function
5290 numpy.ma.average : Weighted average.
5292 Examples
5293 --------
5294 >>> a = np.ma.array([1,2,3], mask=[False, False, True])
5295 >>> a
5296 masked_array(data=[1, 2, --],
5297 mask=[False, False, True],
5298 fill_value=999999)
5299 >>> a.mean()
5300 1.5
5302 """
5303 kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
5304 if self._mask is nomask:
5305 result = super().mean(axis=axis, dtype=dtype, **kwargs)[()]
5306 else:
5307 is_float16_result = False
5308 if dtype is None:
5309 if issubclass(self.dtype.type, (ntypes.integer, ntypes.bool_)):
5310 dtype = mu.dtype('f8')
5311 elif issubclass(self.dtype.type, ntypes.float16):
5312 dtype = mu.dtype('f4')
5313 is_float16_result = True
5314 dsum = self.sum(axis=axis, dtype=dtype, **kwargs)
5315 cnt = self.count(axis=axis, **kwargs)
5316 if cnt.shape == () and (cnt == 0):
5317 result = masked
5318 elif is_float16_result:
5319 result = self.dtype.type(dsum * 1. / cnt)
5320 else:
5321 result = dsum * 1. / cnt
5322 if out is not None:
5323 out.flat = result
5324 if isinstance(out, MaskedArray):
5325 outmask = getmask(out)
5326 if outmask is nomask:
5327 outmask = out._mask = make_mask_none(out.shape)
5328 outmask.flat = getmask(result)
5329 return out
5330 return result
5332 def anom(self, axis=None, dtype=None):
5333 """
5334 Compute the anomalies (deviations from the arithmetic mean)
5335 along the given axis.
5337 Returns an array of anomalies, with the same shape as the input and
5338 where the arithmetic mean is computed along the given axis.
5340 Parameters
5341 ----------
5342 axis : int, optional
5343 Axis over which the anomalies are taken.
5344 The default is to use the mean of the flattened array as reference.
5345 dtype : dtype, optional
5346 Type to use in computing the variance. For arrays of integer type
5347 the default is float32; for arrays of float types it is the same as
5348 the array type.
5350 See Also
5351 --------
5352 mean : Compute the mean of the array.
5354 Examples
5355 --------
5356 >>> a = np.ma.array([1,2,3])
5357 >>> a.anom()
5358 masked_array(data=[-1., 0., 1.],
5359 mask=False,
5360 fill_value=1e+20)
5362 """
5363 m = self.mean(axis, dtype)
5364 if not axis:
5365 return self - m
5366 else:
5367 return self - expand_dims(m, axis)
5369 def var(self, axis=None, dtype=None, out=None, ddof=0,
5370 keepdims=np._NoValue):
5371 """
5372 Returns the variance of the array elements along given axis.
5374 Masked entries are ignored, and result elements which are not
5375 finite will be masked.
5377 Refer to `numpy.var` for full documentation.
5379 See Also
5380 --------
5381 numpy.ndarray.var : corresponding function for ndarrays
5382 numpy.var : Equivalent function
5383 """
5384 kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
5386 # Easy case: nomask, business as usual
5387 if self._mask is nomask:
5388 ret = super().var(axis=axis, dtype=dtype, out=out, ddof=ddof,
5389 **kwargs)[()]
5390 if out is not None:
5391 if isinstance(out, MaskedArray):
5392 out.__setmask__(nomask)
5393 return out
5394 return ret
5396 # Some data are masked, yay!
5397 cnt = self.count(axis=axis, **kwargs) - ddof
5398 danom = self - self.mean(axis, dtype, keepdims=True)
5399 if iscomplexobj(self):
5400 danom = umath.absolute(danom) ** 2
5401 else:
5402 danom *= danom
5403 dvar = divide(danom.sum(axis, **kwargs), cnt).view(type(self))
5404 # Apply the mask if it's not a scalar
5405 if dvar.ndim:
5406 dvar._mask = mask_or(self._mask.all(axis, **kwargs), (cnt <= 0))
5407 dvar._update_from(self)
5408 elif getmask(dvar):
5409 # Make sure that masked is returned when the scalar is masked.
5410 dvar = masked
5411 if out is not None:
5412 if isinstance(out, MaskedArray):
5413 out.flat = 0
5414 out.__setmask__(True)
5415 elif out.dtype.kind in 'biu':
5416 errmsg = "Masked data information would be lost in one or "\
5417 "more location."
5418 raise MaskError(errmsg)
5419 else:
5420 out.flat = np.nan
5421 return out
5422 # In case with have an explicit output
5423 if out is not None:
5424 # Set the data
5425 out.flat = dvar
5426 # Set the mask if needed
5427 if isinstance(out, MaskedArray):
5428 out.__setmask__(dvar.mask)
5429 return out
5430 return dvar
5431 var.__doc__ = np.var.__doc__
5433 def std(self, axis=None, dtype=None, out=None, ddof=0,
5434 keepdims=np._NoValue):
5435 """
5436 Returns the standard deviation of the array elements along given axis.
5438 Masked entries are ignored.
5440 Refer to `numpy.std` for full documentation.
5442 See Also
5443 --------
5444 numpy.ndarray.std : corresponding function for ndarrays
5445 numpy.std : Equivalent function
5446 """
5447 kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
5449 dvar = self.var(axis, dtype, out, ddof, **kwargs)
5450 if dvar is not masked:
5451 if out is not None:
5452 np.power(out, 0.5, out=out, casting='unsafe')
5453 return out
5454 dvar = sqrt(dvar)
5455 return dvar
5457 def round(self, decimals=0, out=None):
5458 """
5459 Return each element rounded to the given number of decimals.
5461 Refer to `numpy.around` for full documentation.
5463 See Also
5464 --------
5465 numpy.ndarray.round : corresponding function for ndarrays
5466 numpy.around : equivalent function
5467 """
5468 result = self._data.round(decimals=decimals, out=out).view(type(self))
5469 if result.ndim > 0:
5470 result._mask = self._mask
5471 result._update_from(self)
5472 elif self._mask:
5473 # Return masked when the scalar is masked
5474 result = masked
5475 # No explicit output: we're done
5476 if out is None:
5477 return result
5478 if isinstance(out, MaskedArray):
5479 out.__setmask__(self._mask)
5480 return out
5482 def argsort(self, axis=np._NoValue, kind=None, order=None,
5483 endwith=True, fill_value=None):
5484 """
5485 Return an ndarray of indices that sort the array along the
5486 specified axis. Masked values are filled beforehand to
5487 `fill_value`.
5489 Parameters
5490 ----------
5491 axis : int, optional
5492 Axis along which to sort. If None, the default, the flattened array
5493 is used.
5495 .. versionchanged:: 1.13.0
5496 Previously, the default was documented to be -1, but that was
5497 in error. At some future date, the default will change to -1, as
5498 originally intended.
5499 Until then, the axis should be given explicitly when
5500 ``arr.ndim > 1``, to avoid a FutureWarning.
5501 kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional
5502 The sorting algorithm used.
5503 order : list, optional
5504 When `a` is an array with fields defined, this argument specifies
5505 which fields to compare first, second, etc. Not all fields need be
5506 specified.
5507 endwith : {True, False}, optional
5508 Whether missing values (if any) should be treated as the largest values
5509 (True) or the smallest values (False)
5510 When the array contains unmasked values at the same extremes of the
5511 datatype, the ordering of these values and the masked values is
5512 undefined.
5513 fill_value : scalar or None, optional
5514 Value used internally for the masked values.
5515 If ``fill_value`` is not None, it supersedes ``endwith``.
5517 Returns
5518 -------
5519 index_array : ndarray, int
5520 Array of indices that sort `a` along the specified axis.
5521 In other words, ``a[index_array]`` yields a sorted `a`.
5523 See Also
5524 --------
5525 ma.MaskedArray.sort : Describes sorting algorithms used.
5526 lexsort : Indirect stable sort with multiple keys.
5527 numpy.ndarray.sort : Inplace sort.
5529 Notes
5530 -----
5531 See `sort` for notes on the different sorting algorithms.
5533 Examples
5534 --------
5535 >>> a = np.ma.array([3,2,1], mask=[False, False, True])
5536 >>> a
5537 masked_array(data=[3, 2, --],
5538 mask=[False, False, True],
5539 fill_value=999999)
5540 >>> a.argsort()
5541 array([1, 0, 2])
5543 """
5545 # 2017-04-11, Numpy 1.13.0, gh-8701: warn on axis default
5546 if axis is np._NoValue:
5547 axis = _deprecate_argsort_axis(self)
5549 if fill_value is None:
5550 if endwith:
5551 # nan > inf
5552 if np.issubdtype(self.dtype, np.floating):
5553 fill_value = np.nan
5554 else:
5555 fill_value = minimum_fill_value(self)
5556 else:
5557 fill_value = maximum_fill_value(self)
5559 filled = self.filled(fill_value)
5560 return filled.argsort(axis=axis, kind=kind, order=order)
5562 def argmin(self, axis=None, fill_value=None, out=None, *,
5563 keepdims=np._NoValue):
5564 """
5565 Return array of indices to the minimum values along the given axis.
5567 Parameters
5568 ----------
5569 axis : {None, integer}
5570 If None, the index is into the flattened array, otherwise along
5571 the specified axis
5572 fill_value : scalar or None, optional
5573 Value used to fill in the masked values. If None, the output of
5574 minimum_fill_value(self._data) is used instead.
5575 out : {None, array}, optional
5576 Array into which the result can be placed. Its type is preserved
5577 and it must be of the right shape to hold the output.
5579 Returns
5580 -------
5581 ndarray or scalar
5582 If multi-dimension input, returns a new ndarray of indices to the
5583 minimum values along the given axis. Otherwise, returns a scalar
5584 of index to the minimum values along the given axis.
5586 Examples
5587 --------
5588 >>> x = np.ma.array(np.arange(4), mask=[1,1,0,0])
5589 >>> x.shape = (2,2)
5590 >>> x
5591 masked_array(
5592 data=[[--, --],
5593 [2, 3]],
5594 mask=[[ True, True],
5595 [False, False]],
5596 fill_value=999999)
5597 >>> x.argmin(axis=0, fill_value=-1)
5598 array([0, 0])
5599 >>> x.argmin(axis=0, fill_value=9)
5600 array([1, 1])
5602 """
5603 if fill_value is None:
5604 fill_value = minimum_fill_value(self)
5605 d = self.filled(fill_value).view(ndarray)
5606 keepdims = False if keepdims is np._NoValue else bool(keepdims)
5607 return d.argmin(axis, out=out, keepdims=keepdims)
5609 def argmax(self, axis=None, fill_value=None, out=None, *,
5610 keepdims=np._NoValue):
5611 """
5612 Returns array of indices of the maximum values along the given axis.
5613 Masked values are treated as if they had the value fill_value.
5615 Parameters
5616 ----------
5617 axis : {None, integer}
5618 If None, the index is into the flattened array, otherwise along
5619 the specified axis
5620 fill_value : scalar or None, optional
5621 Value used to fill in the masked values. If None, the output of
5622 maximum_fill_value(self._data) is used instead.
5623 out : {None, array}, optional
5624 Array into which the result can be placed. Its type is preserved
5625 and it must be of the right shape to hold the output.
5627 Returns
5628 -------
5629 index_array : {integer_array}
5631 Examples
5632 --------
5633 >>> a = np.arange(6).reshape(2,3)
5634 >>> a.argmax()
5635 5
5636 >>> a.argmax(0)
5637 array([1, 1, 1])
5638 >>> a.argmax(1)
5639 array([2, 2])
5641 """
5642 if fill_value is None:
5643 fill_value = maximum_fill_value(self._data)
5644 d = self.filled(fill_value).view(ndarray)
5645 keepdims = False if keepdims is np._NoValue else bool(keepdims)
5646 return d.argmax(axis, out=out, keepdims=keepdims)
5648 def sort(self, axis=-1, kind=None, order=None,
5649 endwith=True, fill_value=None):
5650 """
5651 Sort the array, in-place
5653 Parameters
5654 ----------
5655 a : array_like
5656 Array to be sorted.
5657 axis : int, optional
5658 Axis along which to sort. If None, the array is flattened before
5659 sorting. The default is -1, which sorts along the last axis.
5660 kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional
5661 The sorting algorithm used.
5662 order : list, optional
5663 When `a` is a structured array, this argument specifies which fields
5664 to compare first, second, and so on. This list does not need to
5665 include all of the fields.
5666 endwith : {True, False}, optional
5667 Whether missing values (if any) should be treated as the largest values
5668 (True) or the smallest values (False)
5669 When the array contains unmasked values sorting at the same extremes of the
5670 datatype, the ordering of these values and the masked values is
5671 undefined.
5672 fill_value : scalar or None, optional
5673 Value used internally for the masked values.
5674 If ``fill_value`` is not None, it supersedes ``endwith``.
5676 Returns
5677 -------
5678 sorted_array : ndarray
5679 Array of the same type and shape as `a`.
5681 See Also
5682 --------
5683 numpy.ndarray.sort : Method to sort an array in-place.
5684 argsort : Indirect sort.
5685 lexsort : Indirect stable sort on multiple keys.
5686 searchsorted : Find elements in a sorted array.
5688 Notes
5689 -----
5690 See ``sort`` for notes on the different sorting algorithms.
5692 Examples
5693 --------
5694 >>> a = np.ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
5695 >>> # Default
5696 >>> a.sort()
5697 >>> a
5698 masked_array(data=[1, 3, 5, --, --],
5699 mask=[False, False, False, True, True],
5700 fill_value=999999)
5702 >>> a = np.ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
5703 >>> # Put missing values in the front
5704 >>> a.sort(endwith=False)
5705 >>> a
5706 masked_array(data=[--, --, 1, 3, 5],
5707 mask=[ True, True, False, False, False],
5708 fill_value=999999)
5710 >>> a = np.ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
5711 >>> # fill_value takes over endwith
5712 >>> a.sort(endwith=False, fill_value=3)
5713 >>> a
5714 masked_array(data=[1, --, --, 3, 5],
5715 mask=[False, True, True, False, False],
5716 fill_value=999999)
5718 """
5719 if self._mask is nomask:
5720 ndarray.sort(self, axis=axis, kind=kind, order=order)
5721 return
5723 if self is masked:
5724 return
5726 sidx = self.argsort(axis=axis, kind=kind, order=order,
5727 fill_value=fill_value, endwith=endwith)
5729 self[...] = np.take_along_axis(self, sidx, axis=axis)
5731 def min(self, axis=None, out=None, fill_value=None, keepdims=np._NoValue):
5732 """
5733 Return the minimum along a given axis.
5735 Parameters
5736 ----------
5737 axis : None or int or tuple of ints, optional
5738 Axis along which to operate. By default, ``axis`` is None and the
5739 flattened input is used.
5740 .. versionadded:: 1.7.0
5741 If this is a tuple of ints, the minimum is selected over multiple
5742 axes, instead of a single axis or all the axes as before.
5743 out : array_like, optional
5744 Alternative output array in which to place the result. Must be of
5745 the same shape and buffer length as the expected output.
5746 fill_value : scalar or None, optional
5747 Value used to fill in the masked values.
5748 If None, use the output of `minimum_fill_value`.
5749 keepdims : bool, optional
5750 If this is set to True, the axes which are reduced are left
5751 in the result as dimensions with size one. With this option,
5752 the result will broadcast correctly against the array.
5754 Returns
5755 -------
5756 amin : array_like
5757 New array holding the result.
5758 If ``out`` was specified, ``out`` is returned.
5760 See Also
5761 --------
5762 ma.minimum_fill_value
5763 Returns the minimum filling value for a given datatype.
5765 Examples
5766 --------
5767 >>> import numpy.ma as ma
5768 >>> x = [[1., -2., 3.], [0.2, -0.7, 0.1]]
5769 >>> mask = [[1, 1, 0], [0, 0, 1]]
5770 >>> masked_x = ma.masked_array(x, mask)
5771 >>> masked_x
5772 masked_array(
5773 data=[[--, --, 3.0],
5774 [0.2, -0.7, --]],
5775 mask=[[ True, True, False],
5776 [False, False, True]],
5777 fill_value=1e+20)
5778 >>> ma.min(masked_x)
5779 -0.7
5780 >>> ma.min(masked_x, axis=-1)
5781 masked_array(data=[3.0, -0.7],
5782 mask=[False, False],
5783 fill_value=1e+20)
5784 >>> ma.min(masked_x, axis=0, keepdims=True)
5785 masked_array(data=[[0.2, -0.7, 3.0]],
5786 mask=[[False, False, False]],
5787 fill_value=1e+20)
5788 >>> mask = [[1, 1, 1,], [1, 1, 1]]
5789 >>> masked_x = ma.masked_array(x, mask)
5790 >>> ma.min(masked_x, axis=0)
5791 masked_array(data=[--, --, --],
5792 mask=[ True, True, True],
5793 fill_value=1e+20,
5794 dtype=float64)
5795 """
5796 kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
5798 _mask = self._mask
5799 newmask = _check_mask_axis(_mask, axis, **kwargs)
5800 if fill_value is None:
5801 fill_value = minimum_fill_value(self)
5802 # No explicit output
5803 if out is None:
5804 result = self.filled(fill_value).min(
5805 axis=axis, out=out, **kwargs).view(type(self))
5806 if result.ndim:
5807 # Set the mask
5808 result.__setmask__(newmask)
5809 # Get rid of Infs
5810 if newmask.ndim:
5811 np.copyto(result, result.fill_value, where=newmask)
5812 elif newmask:
5813 result = masked
5814 return result
5815 # Explicit output
5816 result = self.filled(fill_value).min(axis=axis, out=out, **kwargs)
5817 if isinstance(out, MaskedArray):
5818 outmask = getmask(out)
5819 if outmask is nomask:
5820 outmask = out._mask = make_mask_none(out.shape)
5821 outmask.flat = newmask
5822 else:
5823 if out.dtype.kind in 'biu':
5824 errmsg = "Masked data information would be lost in one or more"\
5825 " location."
5826 raise MaskError(errmsg)
5827 np.copyto(out, np.nan, where=newmask)
5828 return out
5830 def max(self, axis=None, out=None, fill_value=None, keepdims=np._NoValue):
5831 """
5832 Return the maximum along a given axis.
5834 Parameters
5835 ----------
5836 axis : None or int or tuple of ints, optional
5837 Axis along which to operate. By default, ``axis`` is None and the
5838 flattened input is used.
5839 .. versionadded:: 1.7.0
5840 If this is a tuple of ints, the maximum is selected over multiple
5841 axes, instead of a single axis or all the axes as before.
5842 out : array_like, optional
5843 Alternative output array in which to place the result. Must
5844 be of the same shape and buffer length as the expected output.
5845 fill_value : scalar or None, optional
5846 Value used to fill in the masked values.
5847 If None, use the output of maximum_fill_value().
5848 keepdims : bool, optional
5849 If this is set to True, the axes which are reduced are left
5850 in the result as dimensions with size one. With this option,
5851 the result will broadcast correctly against the array.
5853 Returns
5854 -------
5855 amax : array_like
5856 New array holding the result.
5857 If ``out`` was specified, ``out`` is returned.
5859 See Also
5860 --------
5861 ma.maximum_fill_value
5862 Returns the maximum filling value for a given datatype.
5864 Examples
5865 --------
5866 >>> import numpy.ma as ma
5867 >>> x = [[-1., 2.5], [4., -2.], [3., 0.]]
5868 >>> mask = [[0, 0], [1, 0], [1, 0]]
5869 >>> masked_x = ma.masked_array(x, mask)
5870 >>> masked_x
5871 masked_array(
5872 data=[[-1.0, 2.5],
5873 [--, -2.0],
5874 [--, 0.0]],
5875 mask=[[False, False],
5876 [ True, False],
5877 [ True, False]],
5878 fill_value=1e+20)
5879 >>> ma.max(masked_x)
5880 2.5
5881 >>> ma.max(masked_x, axis=0)
5882 masked_array(data=[-1.0, 2.5],
5883 mask=[False, False],
5884 fill_value=1e+20)
5885 >>> ma.max(masked_x, axis=1, keepdims=True)
5886 masked_array(
5887 data=[[2.5],
5888 [-2.0],
5889 [0.0]],
5890 mask=[[False],
5891 [False],
5892 [False]],
5893 fill_value=1e+20)
5894 >>> mask = [[1, 1], [1, 1], [1, 1]]
5895 >>> masked_x = ma.masked_array(x, mask)
5896 >>> ma.max(masked_x, axis=1)
5897 masked_array(data=[--, --, --],
5898 mask=[ True, True, True],
5899 fill_value=1e+20,
5900 dtype=float64)
5901 """
5902 kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
5904 _mask = self._mask
5905 newmask = _check_mask_axis(_mask, axis, **kwargs)
5906 if fill_value is None:
5907 fill_value = maximum_fill_value(self)
5908 # No explicit output
5909 if out is None:
5910 result = self.filled(fill_value).max(
5911 axis=axis, out=out, **kwargs).view(type(self))
5912 if result.ndim:
5913 # Set the mask
5914 result.__setmask__(newmask)
5915 # Get rid of Infs
5916 if newmask.ndim:
5917 np.copyto(result, result.fill_value, where=newmask)
5918 elif newmask:
5919 result = masked
5920 return result
5921 # Explicit output
5922 result = self.filled(fill_value).max(axis=axis, out=out, **kwargs)
5923 if isinstance(out, MaskedArray):
5924 outmask = getmask(out)
5925 if outmask is nomask:
5926 outmask = out._mask = make_mask_none(out.shape)
5927 outmask.flat = newmask
5928 else:
5930 if out.dtype.kind in 'biu':
5931 errmsg = "Masked data information would be lost in one or more"\
5932 " location."
5933 raise MaskError(errmsg)
5934 np.copyto(out, np.nan, where=newmask)
5935 return out
5937 def ptp(self, axis=None, out=None, fill_value=None, keepdims=False):
5938 """
5939 Return (maximum - minimum) along the given dimension
5940 (i.e. peak-to-peak value).
5942 .. warning::
5943 `ptp` preserves the data type of the array. This means the
5944 return value for an input of signed integers with n bits
5945 (e.g. `np.int8`, `np.int16`, etc) is also a signed integer
5946 with n bits. In that case, peak-to-peak values greater than
5947 ``2**(n-1)-1`` will be returned as negative values. An example
5948 with a work-around is shown below.
5950 Parameters
5951 ----------
5952 axis : {None, int}, optional
5953 Axis along which to find the peaks. If None (default) the
5954 flattened array is used.
5955 out : {None, array_like}, optional
5956 Alternative output array in which to place the result. It must
5957 have the same shape and buffer length as the expected output
5958 but the type will be cast if necessary.
5959 fill_value : scalar or None, optional
5960 Value used to fill in the masked values.
5961 keepdims : bool, optional
5962 If this is set to True, the axes which are reduced are left
5963 in the result as dimensions with size one. With this option,
5964 the result will broadcast correctly against the array.
5966 Returns
5967 -------
5968 ptp : ndarray.
5969 A new array holding the result, unless ``out`` was
5970 specified, in which case a reference to ``out`` is returned.
5972 Examples
5973 --------
5974 >>> x = np.ma.MaskedArray([[4, 9, 2, 10],
5975 ... [6, 9, 7, 12]])
5977 >>> x.ptp(axis=1)
5978 masked_array(data=[8, 6],
5979 mask=False,
5980 fill_value=999999)
5982 >>> x.ptp(axis=0)
5983 masked_array(data=[2, 0, 5, 2],
5984 mask=False,
5985 fill_value=999999)
5987 >>> x.ptp()
5988 10
5990 This example shows that a negative value can be returned when
5991 the input is an array of signed integers.
5993 >>> y = np.ma.MaskedArray([[1, 127],
5994 ... [0, 127],
5995 ... [-1, 127],
5996 ... [-2, 127]], dtype=np.int8)
5997 >>> y.ptp(axis=1)
5998 masked_array(data=[ 126, 127, -128, -127],
5999 mask=False,
6000 fill_value=999999,
6001 dtype=int8)
6003 A work-around is to use the `view()` method to view the result as
6004 unsigned integers with the same bit width:
6006 >>> y.ptp(axis=1).view(np.uint8)
6007 masked_array(data=[126, 127, 128, 129],
6008 mask=False,
6009 fill_value=999999,
6010 dtype=uint8)
6011 """
6012 if out is None:
6013 result = self.max(axis=axis, fill_value=fill_value,
6014 keepdims=keepdims)
6015 result -= self.min(axis=axis, fill_value=fill_value,
6016 keepdims=keepdims)
6017 return result
6018 out.flat = self.max(axis=axis, out=out, fill_value=fill_value,
6019 keepdims=keepdims)
6020 min_value = self.min(axis=axis, fill_value=fill_value,
6021 keepdims=keepdims)
6022 np.subtract(out, min_value, out=out, casting='unsafe')
6023 return out
6025 def partition(self, *args, **kwargs):
6026 warnings.warn("Warning: 'partition' will ignore the 'mask' "
6027 f"of the {self.__class__.__name__}.",
6028 stacklevel=2)
6029 return super().partition(*args, **kwargs)
6031 def argpartition(self, *args, **kwargs):
6032 warnings.warn("Warning: 'argpartition' will ignore the 'mask' "
6033 f"of the {self.__class__.__name__}.",
6034 stacklevel=2)
6035 return super().argpartition(*args, **kwargs)
6037 def take(self, indices, axis=None, out=None, mode='raise'):
6038 """
6039 """
6040 (_data, _mask) = (self._data, self._mask)
6041 cls = type(self)
6042 # Make sure the indices are not masked
6043 maskindices = getmask(indices)
6044 if maskindices is not nomask:
6045 indices = indices.filled(0)
6046 # Get the data, promoting scalars to 0d arrays with [...] so that
6047 # .view works correctly
6048 if out is None:
6049 out = _data.take(indices, axis=axis, mode=mode)[...].view(cls)
6050 else:
6051 np.take(_data, indices, axis=axis, mode=mode, out=out)
6052 # Get the mask
6053 if isinstance(out, MaskedArray):
6054 if _mask is nomask:
6055 outmask = maskindices
6056 else:
6057 outmask = _mask.take(indices, axis=axis, mode=mode)
6058 outmask |= maskindices
6059 out.__setmask__(outmask)
6060 # demote 0d arrays back to scalars, for consistency with ndarray.take
6061 return out[()]
6063 # Array methods
6064 copy = _arraymethod('copy')
6065 diagonal = _arraymethod('diagonal')
6066 flatten = _arraymethod('flatten')
6067 repeat = _arraymethod('repeat')
6068 squeeze = _arraymethod('squeeze')
6069 swapaxes = _arraymethod('swapaxes')
6070 T = property(fget=lambda self: self.transpose())
6071 transpose = _arraymethod('transpose')
6073 def tolist(self, fill_value=None):
6074 """
6075 Return the data portion of the masked array as a hierarchical Python list.
6077 Data items are converted to the nearest compatible Python type.
6078 Masked values are converted to `fill_value`. If `fill_value` is None,
6079 the corresponding entries in the output list will be ``None``.
6081 Parameters
6082 ----------
6083 fill_value : scalar, optional
6084 The value to use for invalid entries. Default is None.
6086 Returns
6087 -------
6088 result : list
6089 The Python list representation of the masked array.
6091 Examples
6092 --------
6093 >>> x = np.ma.array([[1,2,3], [4,5,6], [7,8,9]], mask=[0] + [1,0]*4)
6094 >>> x.tolist()
6095 [[1, None, 3], [None, 5, None], [7, None, 9]]
6096 >>> x.tolist(-999)
6097 [[1, -999, 3], [-999, 5, -999], [7, -999, 9]]
6099 """
6100 _mask = self._mask
6101 # No mask ? Just return .data.tolist ?
6102 if _mask is nomask:
6103 return self._data.tolist()
6104 # Explicit fill_value: fill the array and get the list
6105 if fill_value is not None:
6106 return self.filled(fill_value).tolist()
6107 # Structured array.
6108 names = self.dtype.names
6109 if names:
6110 result = self._data.astype([(_, object) for _ in names])
6111 for n in names:
6112 result[n][_mask[n]] = None
6113 return result.tolist()
6114 # Standard arrays.
6115 if _mask is nomask:
6116 return [None]
6117 # Set temps to save time when dealing w/ marrays.
6118 inishape = self.shape
6119 result = np.array(self._data.ravel(), dtype=object)
6120 result[_mask.ravel()] = None
6121 result.shape = inishape
6122 return result.tolist()
6124 def tostring(self, fill_value=None, order='C'):
6125 r"""
6126 A compatibility alias for `tobytes`, with exactly the same behavior.
6128 Despite its name, it returns `bytes` not `str`\ s.
6130 .. deprecated:: 1.19.0
6131 """
6132 # 2020-03-30, Numpy 1.19.0
6133 warnings.warn(
6134 "tostring() is deprecated. Use tobytes() instead.",
6135 DeprecationWarning, stacklevel=2)
6137 return self.tobytes(fill_value, order=order)
6139 def tobytes(self, fill_value=None, order='C'):
6140 """
6141 Return the array data as a string containing the raw bytes in the array.
6143 The array is filled with a fill value before the string conversion.
6145 .. versionadded:: 1.9.0
6147 Parameters
6148 ----------
6149 fill_value : scalar, optional
6150 Value used to fill in the masked values. Default is None, in which
6151 case `MaskedArray.fill_value` is used.
6152 order : {'C','F','A'}, optional
6153 Order of the data item in the copy. Default is 'C'.
6155 - 'C' -- C order (row major).
6156 - 'F' -- Fortran order (column major).
6157 - 'A' -- Any, current order of array.
6158 - None -- Same as 'A'.
6160 See Also
6161 --------
6162 numpy.ndarray.tobytes
6163 tolist, tofile
6165 Notes
6166 -----
6167 As for `ndarray.tobytes`, information about the shape, dtype, etc.,
6168 but also about `fill_value`, will be lost.
6170 Examples
6171 --------
6172 >>> x = np.ma.array(np.array([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]])
6173 >>> x.tobytes()
6174 b'\\x01\\x00\\x00\\x00\\x00\\x00\\x00\\x00?B\\x0f\\x00\\x00\\x00\\x00\\x00?B\\x0f\\x00\\x00\\x00\\x00\\x00\\x04\\x00\\x00\\x00\\x00\\x00\\x00\\x00'
6176 """
6177 return self.filled(fill_value).tobytes(order=order)
6179 def tofile(self, fid, sep="", format="%s"):
6180 """
6181 Save a masked array to a file in binary format.
6183 .. warning::
6184 This function is not implemented yet.
6186 Raises
6187 ------
6188 NotImplementedError
6189 When `tofile` is called.
6191 """
6192 raise NotImplementedError("MaskedArray.tofile() not implemented yet.")
6194 def toflex(self):
6195 """
6196 Transforms a masked array into a flexible-type array.
6198 The flexible type array that is returned will have two fields:
6200 * the ``_data`` field stores the ``_data`` part of the array.
6201 * the ``_mask`` field stores the ``_mask`` part of the array.
6203 Parameters
6204 ----------
6205 None
6207 Returns
6208 -------
6209 record : ndarray
6210 A new flexible-type `ndarray` with two fields: the first element
6211 containing a value, the second element containing the corresponding
6212 mask boolean. The returned record shape matches self.shape.
6214 Notes
6215 -----
6216 A side-effect of transforming a masked array into a flexible `ndarray` is
6217 that meta information (``fill_value``, ...) will be lost.
6219 Examples
6220 --------
6221 >>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
6222 >>> x
6223 masked_array(
6224 data=[[1, --, 3],
6225 [--, 5, --],
6226 [7, --, 9]],
6227 mask=[[False, True, False],
6228 [ True, False, True],
6229 [False, True, False]],
6230 fill_value=999999)
6231 >>> x.toflex()
6232 array([[(1, False), (2, True), (3, False)],
6233 [(4, True), (5, False), (6, True)],
6234 [(7, False), (8, True), (9, False)]],
6235 dtype=[('_data', '<i8'), ('_mask', '?')])
6237 """
6238 # Get the basic dtype.
6239 ddtype = self.dtype
6240 # Make sure we have a mask
6241 _mask = self._mask
6242 if _mask is None:
6243 _mask = make_mask_none(self.shape, ddtype)
6244 # And get its dtype
6245 mdtype = self._mask.dtype
6247 record = np.ndarray(shape=self.shape,
6248 dtype=[('_data', ddtype), ('_mask', mdtype)])
6249 record['_data'] = self._data
6250 record['_mask'] = self._mask
6251 return record
6252 torecords = toflex
6254 # Pickling
6255 def __getstate__(self):
6256 """Return the internal state of the masked array, for pickling
6257 purposes.
6259 """
6260 cf = 'CF'[self.flags.fnc]
6261 data_state = super().__reduce__()[2]
6262 return data_state + (getmaskarray(self).tobytes(cf), self._fill_value)
6264 def __setstate__(self, state):
6265 """Restore the internal state of the masked array, for
6266 pickling purposes. ``state`` is typically the output of the
6267 ``__getstate__`` output, and is a 5-tuple:
6269 - class name
6270 - a tuple giving the shape of the data
6271 - a typecode for the data
6272 - a binary string for the data
6273 - a binary string for the mask.
6275 """
6276 (_, shp, typ, isf, raw, msk, flv) = state
6277 super().__setstate__((shp, typ, isf, raw))
6278 self._mask.__setstate__((shp, make_mask_descr(typ), isf, msk))
6279 self.fill_value = flv
6281 def __reduce__(self):
6282 """Return a 3-tuple for pickling a MaskedArray.
6284 """
6285 return (_mareconstruct,
6286 (self.__class__, self._baseclass, (0,), 'b',),
6287 self.__getstate__())
6289 def __deepcopy__(self, memo=None):
6290 from copy import deepcopy
6291 copied = MaskedArray.__new__(type(self), self, copy=True)
6292 if memo is None:
6293 memo = {}
6294 memo[id(self)] = copied
6295 for (k, v) in self.__dict__.items():
6296 copied.__dict__[k] = deepcopy(v, memo)
6297 return copied
6300def _mareconstruct(subtype, baseclass, baseshape, basetype,):
6301 """Internal function that builds a new MaskedArray from the
6302 information stored in a pickle.
6304 """
6305 _data = ndarray.__new__(baseclass, baseshape, basetype)
6306 _mask = ndarray.__new__(ndarray, baseshape, make_mask_descr(basetype))
6307 return subtype.__new__(subtype, _data, mask=_mask, dtype=basetype,)
6310class mvoid(MaskedArray):
6311 """
6312 Fake a 'void' object to use for masked array with structured dtypes.
6313 """
6315 def __new__(self, data, mask=nomask, dtype=None, fill_value=None,
6316 hardmask=False, copy=False, subok=True):
6317 _data = np.array(data, copy=copy, subok=subok, dtype=dtype)
6318 _data = _data.view(self)
6319 _data._hardmask = hardmask
6320 if mask is not nomask:
6321 if isinstance(mask, np.void):
6322 _data._mask = mask
6323 else:
6324 try:
6325 # Mask is already a 0D array
6326 _data._mask = np.void(mask)
6327 except TypeError:
6328 # Transform the mask to a void
6329 mdtype = make_mask_descr(dtype)
6330 _data._mask = np.array(mask, dtype=mdtype)[()]
6331 if fill_value is not None:
6332 _data.fill_value = fill_value
6333 return _data
6335 @property
6336 def _data(self):
6337 # Make sure that the _data part is a np.void
6338 return super()._data[()]
6340 def __getitem__(self, indx):
6341 """
6342 Get the index.
6344 """
6345 m = self._mask
6346 if isinstance(m[indx], ndarray):
6347 # Can happen when indx is a multi-dimensional field:
6348 # A = ma.masked_array(data=[([0,1],)], mask=[([True,
6349 # False],)], dtype=[("A", ">i2", (2,))])
6350 # x = A[0]; y = x["A"]; then y.mask["A"].size==2
6351 # and we can not say masked/unmasked.
6352 # The result is no longer mvoid!
6353 # See also issue #6724.
6354 return masked_array(
6355 data=self._data[indx], mask=m[indx],
6356 fill_value=self._fill_value[indx],
6357 hard_mask=self._hardmask)
6358 if m is not nomask and m[indx]:
6359 return masked
6360 return self._data[indx]
6362 def __setitem__(self, indx, value):
6363 self._data[indx] = value
6364 if self._hardmask:
6365 self._mask[indx] |= getattr(value, "_mask", False)
6366 else:
6367 self._mask[indx] = getattr(value, "_mask", False)
6369 def __str__(self):
6370 m = self._mask
6371 if m is nomask:
6372 return str(self._data)
6374 rdtype = _replace_dtype_fields(self._data.dtype, "O")
6375 data_arr = super()._data
6376 res = data_arr.astype(rdtype)
6377 _recursive_printoption(res, self._mask, masked_print_option)
6378 return str(res)
6380 __repr__ = __str__
6382 def __iter__(self):
6383 "Defines an iterator for mvoid"
6384 (_data, _mask) = (self._data, self._mask)
6385 if _mask is nomask:
6386 yield from _data
6387 else:
6388 for (d, m) in zip(_data, _mask):
6389 if m:
6390 yield masked
6391 else:
6392 yield d
6394 def __len__(self):
6395 return self._data.__len__()
6397 def filled(self, fill_value=None):
6398 """
6399 Return a copy with masked fields filled with a given value.
6401 Parameters
6402 ----------
6403 fill_value : array_like, optional
6404 The value to use for invalid entries. Can be scalar or
6405 non-scalar. If latter is the case, the filled array should
6406 be broadcastable over input array. Default is None, in
6407 which case the `fill_value` attribute is used instead.
6409 Returns
6410 -------
6411 filled_void
6412 A `np.void` object
6414 See Also
6415 --------
6416 MaskedArray.filled
6418 """
6419 return asarray(self).filled(fill_value)[()]
6421 def tolist(self):
6422 """
6423 Transforms the mvoid object into a tuple.
6425 Masked fields are replaced by None.
6427 Returns
6428 -------
6429 returned_tuple
6430 Tuple of fields
6431 """
6432 _mask = self._mask
6433 if _mask is nomask:
6434 return self._data.tolist()
6435 result = []
6436 for (d, m) in zip(self._data, self._mask):
6437 if m:
6438 result.append(None)
6439 else:
6440 # .item() makes sure we return a standard Python object
6441 result.append(d.item())
6442 return tuple(result)
6445##############################################################################
6446# Shortcuts #
6447##############################################################################
6450def isMaskedArray(x):
6451 """
6452 Test whether input is an instance of MaskedArray.
6454 This function returns True if `x` is an instance of MaskedArray
6455 and returns False otherwise. Any object is accepted as input.
6457 Parameters
6458 ----------
6459 x : object
6460 Object to test.
6462 Returns
6463 -------
6464 result : bool
6465 True if `x` is a MaskedArray.
6467 See Also
6468 --------
6469 isMA : Alias to isMaskedArray.
6470 isarray : Alias to isMaskedArray.
6472 Examples
6473 --------
6474 >>> import numpy.ma as ma
6475 >>> a = np.eye(3, 3)
6476 >>> a
6477 array([[ 1., 0., 0.],
6478 [ 0., 1., 0.],
6479 [ 0., 0., 1.]])
6480 >>> m = ma.masked_values(a, 0)
6481 >>> m
6482 masked_array(
6483 data=[[1.0, --, --],
6484 [--, 1.0, --],
6485 [--, --, 1.0]],
6486 mask=[[False, True, True],
6487 [ True, False, True],
6488 [ True, True, False]],
6489 fill_value=0.0)
6490 >>> ma.isMaskedArray(a)
6491 False
6492 >>> ma.isMaskedArray(m)
6493 True
6494 >>> ma.isMaskedArray([0, 1, 2])
6495 False
6497 """
6498 return isinstance(x, MaskedArray)
6501isarray = isMaskedArray
6502isMA = isMaskedArray # backward compatibility
6505class MaskedConstant(MaskedArray):
6506 # the lone np.ma.masked instance
6507 __singleton = None
6509 @classmethod
6510 def __has_singleton(cls):
6511 # second case ensures `cls.__singleton` is not just a view on the
6512 # superclass singleton
6513 return cls.__singleton is not None and type(cls.__singleton) is cls
6515 def __new__(cls):
6516 if not cls.__has_singleton():
6517 # We define the masked singleton as a float for higher precedence.
6518 # Note that it can be tricky sometimes w/ type comparison
6519 data = np.array(0.)
6520 mask = np.array(True)
6522 # prevent any modifications
6523 data.flags.writeable = False
6524 mask.flags.writeable = False
6526 # don't fall back on MaskedArray.__new__(MaskedConstant), since
6527 # that might confuse it - this way, the construction is entirely
6528 # within our control
6529 cls.__singleton = MaskedArray(data, mask=mask).view(cls)
6531 return cls.__singleton
6533 def __array_finalize__(self, obj):
6534 if not self.__has_singleton():
6535 # this handles the `.view` in __new__, which we want to copy across
6536 # properties normally
6537 return super().__array_finalize__(obj)
6538 elif self is self.__singleton:
6539 # not clear how this can happen, play it safe
6540 pass
6541 else:
6542 # everywhere else, we want to downcast to MaskedArray, to prevent a
6543 # duplicate maskedconstant.
6544 self.__class__ = MaskedArray
6545 MaskedArray.__array_finalize__(self, obj)
6547 def __array_prepare__(self, obj, context=None):
6548 return self.view(MaskedArray).__array_prepare__(obj, context)
6550 def __array_wrap__(self, obj, context=None):
6551 return self.view(MaskedArray).__array_wrap__(obj, context)
6553 def __str__(self):
6554 return str(masked_print_option._display)
6556 def __repr__(self):
6557 if self is MaskedConstant.__singleton:
6558 return 'masked'
6559 else:
6560 # it's a subclass, or something is wrong, make it obvious
6561 return object.__repr__(self)
6563 def __format__(self, format_spec):
6564 # Replace ndarray.__format__ with the default, which supports no format characters.
6565 # Supporting format characters is unwise here, because we do not know what type
6566 # the user was expecting - better to not guess.
6567 try:
6568 return object.__format__(self, format_spec)
6569 except TypeError:
6570 # 2020-03-23, NumPy 1.19.0
6571 warnings.warn(
6572 "Format strings passed to MaskedConstant are ignored, but in future may "
6573 "error or produce different behavior",
6574 FutureWarning, stacklevel=2
6575 )
6576 return object.__format__(self, "")
6578 def __reduce__(self):
6579 """Override of MaskedArray's __reduce__.
6580 """
6581 return (self.__class__, ())
6583 # inplace operations have no effect. We have to override them to avoid
6584 # trying to modify the readonly data and mask arrays
6585 def __iop__(self, other):
6586 return self
6587 __iadd__ = \
6588 __isub__ = \
6589 __imul__ = \
6590 __ifloordiv__ = \
6591 __itruediv__ = \
6592 __ipow__ = \
6593 __iop__
6594 del __iop__ # don't leave this around
6596 def copy(self, *args, **kwargs):
6597 """ Copy is a no-op on the maskedconstant, as it is a scalar """
6598 # maskedconstant is a scalar, so copy doesn't need to copy. There's
6599 # precedent for this with `np.bool_` scalars.
6600 return self
6602 def __copy__(self):
6603 return self
6605 def __deepcopy__(self, memo):
6606 return self
6608 def __setattr__(self, attr, value):
6609 if not self.__has_singleton():
6610 # allow the singleton to be initialized
6611 return super().__setattr__(attr, value)
6612 elif self is self.__singleton:
6613 raise AttributeError(
6614 f"attributes of {self!r} are not writeable")
6615 else:
6616 # duplicate instance - we can end up here from __array_finalize__,
6617 # where we set the __class__ attribute
6618 return super().__setattr__(attr, value)
6621masked = masked_singleton = MaskedConstant()
6622masked_array = MaskedArray
6625def array(data, dtype=None, copy=False, order=None,
6626 mask=nomask, fill_value=None, keep_mask=True,
6627 hard_mask=False, shrink=True, subok=True, ndmin=0):
6628 """
6629 Shortcut to MaskedArray.
6631 The options are in a different order for convenience and backwards
6632 compatibility.
6634 """
6635 return MaskedArray(data, mask=mask, dtype=dtype, copy=copy,
6636 subok=subok, keep_mask=keep_mask,
6637 hard_mask=hard_mask, fill_value=fill_value,
6638 ndmin=ndmin, shrink=shrink, order=order)
6639array.__doc__ = masked_array.__doc__
6642def is_masked(x):
6643 """
6644 Determine whether input has masked values.
6646 Accepts any object as input, but always returns False unless the
6647 input is a MaskedArray containing masked values.
6649 Parameters
6650 ----------
6651 x : array_like
6652 Array to check for masked values.
6654 Returns
6655 -------
6656 result : bool
6657 True if `x` is a MaskedArray with masked values, False otherwise.
6659 Examples
6660 --------
6661 >>> import numpy.ma as ma
6662 >>> x = ma.masked_equal([0, 1, 0, 2, 3], 0)
6663 >>> x
6664 masked_array(data=[--, 1, --, 2, 3],
6665 mask=[ True, False, True, False, False],
6666 fill_value=0)
6667 >>> ma.is_masked(x)
6668 True
6669 >>> x = ma.masked_equal([0, 1, 0, 2, 3], 42)
6670 >>> x
6671 masked_array(data=[0, 1, 0, 2, 3],
6672 mask=False,
6673 fill_value=42)
6674 >>> ma.is_masked(x)
6675 False
6677 Always returns False if `x` isn't a MaskedArray.
6679 >>> x = [False, True, False]
6680 >>> ma.is_masked(x)
6681 False
6682 >>> x = 'a string'
6683 >>> ma.is_masked(x)
6684 False
6686 """
6687 m = getmask(x)
6688 if m is nomask:
6689 return False
6690 elif m.any():
6691 return True
6692 return False
6695##############################################################################
6696# Extrema functions #
6697##############################################################################
6700class _extrema_operation(_MaskedUFunc):
6701 """
6702 Generic class for maximum/minimum functions.
6704 .. note::
6705 This is the base class for `_maximum_operation` and
6706 `_minimum_operation`.
6708 """
6709 def __init__(self, ufunc, compare, fill_value):
6710 super().__init__(ufunc)
6711 self.compare = compare
6712 self.fill_value_func = fill_value
6714 def __call__(self, a, b):
6715 "Executes the call behavior."
6717 return where(self.compare(a, b), a, b)
6719 def reduce(self, target, axis=np._NoValue):
6720 "Reduce target along the given axis."
6721 target = narray(target, copy=False, subok=True)
6722 m = getmask(target)
6724 if axis is np._NoValue and target.ndim > 1:
6725 # 2017-05-06, Numpy 1.13.0: warn on axis default
6726 warnings.warn(
6727 f"In the future the default for ma.{self.__name__}.reduce will be axis=0, "
6728 f"not the current None, to match np.{self.__name__}.reduce. "
6729 "Explicitly pass 0 or None to silence this warning.",
6730 MaskedArrayFutureWarning, stacklevel=2)
6731 axis = None
6733 if axis is not np._NoValue:
6734 kwargs = dict(axis=axis)
6735 else:
6736 kwargs = dict()
6738 if m is nomask:
6739 t = self.f.reduce(target, **kwargs)
6740 else:
6741 target = target.filled(
6742 self.fill_value_func(target)).view(type(target))
6743 t = self.f.reduce(target, **kwargs)
6744 m = umath.logical_and.reduce(m, **kwargs)
6745 if hasattr(t, '_mask'):
6746 t._mask = m
6747 elif m:
6748 t = masked
6749 return t
6751 def outer(self, a, b):
6752 "Return the function applied to the outer product of a and b."
6753 ma = getmask(a)
6754 mb = getmask(b)
6755 if ma is nomask and mb is nomask:
6756 m = nomask
6757 else:
6758 ma = getmaskarray(a)
6759 mb = getmaskarray(b)
6760 m = logical_or.outer(ma, mb)
6761 result = self.f.outer(filled(a), filled(b))
6762 if not isinstance(result, MaskedArray):
6763 result = result.view(MaskedArray)
6764 result._mask = m
6765 return result
6767def min(obj, axis=None, out=None, fill_value=None, keepdims=np._NoValue):
6768 kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
6770 try:
6771 return obj.min(axis=axis, fill_value=fill_value, out=out, **kwargs)
6772 except (AttributeError, TypeError):
6773 # If obj doesn't have a min method, or if the method doesn't accept a
6774 # fill_value argument
6775 return asanyarray(obj).min(axis=axis, fill_value=fill_value,
6776 out=out, **kwargs)
6777min.__doc__ = MaskedArray.min.__doc__
6779def max(obj, axis=None, out=None, fill_value=None, keepdims=np._NoValue):
6780 kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
6782 try:
6783 return obj.max(axis=axis, fill_value=fill_value, out=out, **kwargs)
6784 except (AttributeError, TypeError):
6785 # If obj doesn't have a max method, or if the method doesn't accept a
6786 # fill_value argument
6787 return asanyarray(obj).max(axis=axis, fill_value=fill_value,
6788 out=out, **kwargs)
6789max.__doc__ = MaskedArray.max.__doc__
6792def ptp(obj, axis=None, out=None, fill_value=None, keepdims=np._NoValue):
6793 kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
6794 try:
6795 return obj.ptp(axis, out=out, fill_value=fill_value, **kwargs)
6796 except (AttributeError, TypeError):
6797 # If obj doesn't have a ptp method or if the method doesn't accept
6798 # a fill_value argument
6799 return asanyarray(obj).ptp(axis=axis, fill_value=fill_value,
6800 out=out, **kwargs)
6801ptp.__doc__ = MaskedArray.ptp.__doc__
6804##############################################################################
6805# Definition of functions from the corresponding methods #
6806##############################################################################
6809class _frommethod:
6810 """
6811 Define functions from existing MaskedArray methods.
6813 Parameters
6814 ----------
6815 methodname : str
6816 Name of the method to transform.
6818 """
6820 def __init__(self, methodname, reversed=False):
6821 self.__name__ = methodname
6822 self.__doc__ = self.getdoc()
6823 self.reversed = reversed
6825 def getdoc(self):
6826 "Return the doc of the function (from the doc of the method)."
6827 meth = getattr(MaskedArray, self.__name__, None) or\
6828 getattr(np, self.__name__, None)
6829 signature = self.__name__ + get_object_signature(meth)
6830 if meth is not None:
6831 doc = """ %s\n%s""" % (
6832 signature, getattr(meth, '__doc__', None))
6833 return doc
6835 def __call__(self, a, *args, **params):
6836 if self.reversed:
6837 args = list(args)
6838 a, args[0] = args[0], a
6840 marr = asanyarray(a)
6841 method_name = self.__name__
6842 method = getattr(type(marr), method_name, None)
6843 if method is None:
6844 # use the corresponding np function
6845 method = getattr(np, method_name)
6847 return method(marr, *args, **params)
6850all = _frommethod('all')
6851anomalies = anom = _frommethod('anom')
6852any = _frommethod('any')
6853compress = _frommethod('compress', reversed=True)
6854cumprod = _frommethod('cumprod')
6855cumsum = _frommethod('cumsum')
6856copy = _frommethod('copy')
6857diagonal = _frommethod('diagonal')
6858harden_mask = _frommethod('harden_mask')
6859ids = _frommethod('ids')
6860maximum = _extrema_operation(umath.maximum, greater, maximum_fill_value)
6861mean = _frommethod('mean')
6862minimum = _extrema_operation(umath.minimum, less, minimum_fill_value)
6863nonzero = _frommethod('nonzero')
6864prod = _frommethod('prod')
6865product = _frommethod('prod')
6866ravel = _frommethod('ravel')
6867repeat = _frommethod('repeat')
6868shrink_mask = _frommethod('shrink_mask')
6869soften_mask = _frommethod('soften_mask')
6870std = _frommethod('std')
6871sum = _frommethod('sum')
6872swapaxes = _frommethod('swapaxes')
6873#take = _frommethod('take')
6874trace = _frommethod('trace')
6875var = _frommethod('var')
6877count = _frommethod('count')
6879def take(a, indices, axis=None, out=None, mode='raise'):
6880 """
6881 """
6882 a = masked_array(a)
6883 return a.take(indices, axis=axis, out=out, mode=mode)
6886def power(a, b, third=None):
6887 """
6888 Returns element-wise base array raised to power from second array.
6890 This is the masked array version of `numpy.power`. For details see
6891 `numpy.power`.
6893 See Also
6894 --------
6895 numpy.power
6897 Notes
6898 -----
6899 The *out* argument to `numpy.power` is not supported, `third` has to be
6900 None.
6902 Examples
6903 --------
6904 >>> import numpy.ma as ma
6905 >>> x = [11.2, -3.973, 0.801, -1.41]
6906 >>> mask = [0, 0, 0, 1]
6907 >>> masked_x = ma.masked_array(x, mask)
6908 >>> masked_x
6909 masked_array(data=[11.2, -3.973, 0.801, --],
6910 mask=[False, False, False, True],
6911 fill_value=1e+20)
6912 >>> ma.power(masked_x, 2)
6913 masked_array(data=[125.43999999999998, 15.784728999999999,
6914 0.6416010000000001, --],
6915 mask=[False, False, False, True],
6916 fill_value=1e+20)
6917 >>> y = [-0.5, 2, 0, 17]
6918 >>> masked_y = ma.masked_array(y, mask)
6919 >>> masked_y
6920 masked_array(data=[-0.5, 2.0, 0.0, --],
6921 mask=[False, False, False, True],
6922 fill_value=1e+20)
6923 >>> ma.power(masked_x, masked_y)
6924 masked_array(data=[0.29880715233359845, 15.784728999999999, 1.0, --],
6925 mask=[False, False, False, True],
6926 fill_value=1e+20)
6928 """
6929 if third is not None:
6930 raise MaskError("3-argument power not supported.")
6931 # Get the masks
6932 ma = getmask(a)
6933 mb = getmask(b)
6934 m = mask_or(ma, mb)
6935 # Get the rawdata
6936 fa = getdata(a)
6937 fb = getdata(b)
6938 # Get the type of the result (so that we preserve subclasses)
6939 if isinstance(a, MaskedArray):
6940 basetype = type(a)
6941 else:
6942 basetype = MaskedArray
6943 # Get the result and view it as a (subclass of) MaskedArray
6944 with np.errstate(divide='ignore', invalid='ignore'):
6945 result = np.where(m, fa, umath.power(fa, fb)).view(basetype)
6946 result._update_from(a)
6947 # Find where we're in trouble w/ NaNs and Infs
6948 invalid = np.logical_not(np.isfinite(result.view(ndarray)))
6949 # Add the initial mask
6950 if m is not nomask:
6951 if not result.ndim:
6952 return masked
6953 result._mask = np.logical_or(m, invalid)
6954 # Fix the invalid parts
6955 if invalid.any():
6956 if not result.ndim:
6957 return masked
6958 elif result._mask is nomask:
6959 result._mask = invalid
6960 result._data[invalid] = result.fill_value
6961 return result
6963argmin = _frommethod('argmin')
6964argmax = _frommethod('argmax')
6966def argsort(a, axis=np._NoValue, kind=None, order=None, endwith=True, fill_value=None):
6967 "Function version of the eponymous method."
6968 a = np.asanyarray(a)
6970 # 2017-04-11, Numpy 1.13.0, gh-8701: warn on axis default
6971 if axis is np._NoValue:
6972 axis = _deprecate_argsort_axis(a)
6974 if isinstance(a, MaskedArray):
6975 return a.argsort(axis=axis, kind=kind, order=order,
6976 endwith=endwith, fill_value=fill_value)
6977 else:
6978 return a.argsort(axis=axis, kind=kind, order=order)
6979argsort.__doc__ = MaskedArray.argsort.__doc__
6981def sort(a, axis=-1, kind=None, order=None, endwith=True, fill_value=None):
6982 """
6983 Return a sorted copy of the masked array.
6985 Equivalent to creating a copy of the array
6986 and applying the MaskedArray ``sort()`` method.
6988 Refer to ``MaskedArray.sort`` for the full documentation
6990 See Also
6991 --------
6992 MaskedArray.sort : equivalent method
6993 """
6994 a = np.array(a, copy=True, subok=True)
6995 if axis is None:
6996 a = a.flatten()
6997 axis = 0
6999 if isinstance(a, MaskedArray):
7000 a.sort(axis=axis, kind=kind, order=order,
7001 endwith=endwith, fill_value=fill_value)
7002 else:
7003 a.sort(axis=axis, kind=kind, order=order)
7004 return a
7007def compressed(x):
7008 """
7009 Return all the non-masked data as a 1-D array.
7011 This function is equivalent to calling the "compressed" method of a
7012 `ma.MaskedArray`, see `ma.MaskedArray.compressed` for details.
7014 See Also
7015 --------
7016 ma.MaskedArray.compressed : Equivalent method.
7018 """
7019 return asanyarray(x).compressed()
7022def concatenate(arrays, axis=0):
7023 """
7024 Concatenate a sequence of arrays along the given axis.
7026 Parameters
7027 ----------
7028 arrays : sequence of array_like
7029 The arrays must have the same shape, except in the dimension
7030 corresponding to `axis` (the first, by default).
7031 axis : int, optional
7032 The axis along which the arrays will be joined. Default is 0.
7034 Returns
7035 -------
7036 result : MaskedArray
7037 The concatenated array with any masked entries preserved.
7039 See Also
7040 --------
7041 numpy.concatenate : Equivalent function in the top-level NumPy module.
7043 Examples
7044 --------
7045 >>> import numpy.ma as ma
7046 >>> a = ma.arange(3)
7047 >>> a[1] = ma.masked
7048 >>> b = ma.arange(2, 5)
7049 >>> a
7050 masked_array(data=[0, --, 2],
7051 mask=[False, True, False],
7052 fill_value=999999)
7053 >>> b
7054 masked_array(data=[2, 3, 4],
7055 mask=False,
7056 fill_value=999999)
7057 >>> ma.concatenate([a, b])
7058 masked_array(data=[0, --, 2, 2, 3, 4],
7059 mask=[False, True, False, False, False, False],
7060 fill_value=999999)
7062 """
7063 d = np.concatenate([getdata(a) for a in arrays], axis)
7064 rcls = get_masked_subclass(*arrays)
7065 data = d.view(rcls)
7066 # Check whether one of the arrays has a non-empty mask.
7067 for x in arrays:
7068 if getmask(x) is not nomask:
7069 break
7070 else:
7071 return data
7072 # OK, so we have to concatenate the masks
7073 dm = np.concatenate([getmaskarray(a) for a in arrays], axis)
7074 dm = dm.reshape(d.shape)
7076 # If we decide to keep a '_shrinkmask' option, we want to check that
7077 # all of them are True, and then check for dm.any()
7078 data._mask = _shrink_mask(dm)
7079 return data
7082def diag(v, k=0):
7083 """
7084 Extract a diagonal or construct a diagonal array.
7086 This function is the equivalent of `numpy.diag` that takes masked
7087 values into account, see `numpy.diag` for details.
7089 See Also
7090 --------
7091 numpy.diag : Equivalent function for ndarrays.
7093 """
7094 output = np.diag(v, k).view(MaskedArray)
7095 if getmask(v) is not nomask:
7096 output._mask = np.diag(v._mask, k)
7097 return output
7100def left_shift(a, n):
7101 """
7102 Shift the bits of an integer to the left.
7104 This is the masked array version of `numpy.left_shift`, for details
7105 see that function.
7107 See Also
7108 --------
7109 numpy.left_shift
7111 """
7112 m = getmask(a)
7113 if m is nomask:
7114 d = umath.left_shift(filled(a), n)
7115 return masked_array(d)
7116 else:
7117 d = umath.left_shift(filled(a, 0), n)
7118 return masked_array(d, mask=m)
7121def right_shift(a, n):
7122 """
7123 Shift the bits of an integer to the right.
7125 This is the masked array version of `numpy.right_shift`, for details
7126 see that function.
7128 See Also
7129 --------
7130 numpy.right_shift
7132 """
7133 m = getmask(a)
7134 if m is nomask:
7135 d = umath.right_shift(filled(a), n)
7136 return masked_array(d)
7137 else:
7138 d = umath.right_shift(filled(a, 0), n)
7139 return masked_array(d, mask=m)
7142def put(a, indices, values, mode='raise'):
7143 """
7144 Set storage-indexed locations to corresponding values.
7146 This function is equivalent to `MaskedArray.put`, see that method
7147 for details.
7149 See Also
7150 --------
7151 MaskedArray.put
7153 """
7154 # We can't use 'frommethod', the order of arguments is different
7155 try:
7156 return a.put(indices, values, mode=mode)
7157 except AttributeError:
7158 return narray(a, copy=False).put(indices, values, mode=mode)
7161def putmask(a, mask, values): # , mode='raise'):
7162 """
7163 Changes elements of an array based on conditional and input values.
7165 This is the masked array version of `numpy.putmask`, for details see
7166 `numpy.putmask`.
7168 See Also
7169 --------
7170 numpy.putmask
7172 Notes
7173 -----
7174 Using a masked array as `values` will **not** transform a `ndarray` into
7175 a `MaskedArray`.
7177 """
7178 # We can't use 'frommethod', the order of arguments is different
7179 if not isinstance(a, MaskedArray):
7180 a = a.view(MaskedArray)
7181 (valdata, valmask) = (getdata(values), getmask(values))
7182 if getmask(a) is nomask:
7183 if valmask is not nomask:
7184 a._sharedmask = True
7185 a._mask = make_mask_none(a.shape, a.dtype)
7186 np.copyto(a._mask, valmask, where=mask)
7187 elif a._hardmask:
7188 if valmask is not nomask:
7189 m = a._mask.copy()
7190 np.copyto(m, valmask, where=mask)
7191 a.mask |= m
7192 else:
7193 if valmask is nomask:
7194 valmask = getmaskarray(values)
7195 np.copyto(a._mask, valmask, where=mask)
7196 np.copyto(a._data, valdata, where=mask)
7197 return
7200def transpose(a, axes=None):
7201 """
7202 Permute the dimensions of an array.
7204 This function is exactly equivalent to `numpy.transpose`.
7206 See Also
7207 --------
7208 numpy.transpose : Equivalent function in top-level NumPy module.
7210 Examples
7211 --------
7212 >>> import numpy.ma as ma
7213 >>> x = ma.arange(4).reshape((2,2))
7214 >>> x[1, 1] = ma.masked
7215 >>> x
7216 masked_array(
7217 data=[[0, 1],
7218 [2, --]],
7219 mask=[[False, False],
7220 [False, True]],
7221 fill_value=999999)
7223 >>> ma.transpose(x)
7224 masked_array(
7225 data=[[0, 2],
7226 [1, --]],
7227 mask=[[False, False],
7228 [False, True]],
7229 fill_value=999999)
7230 """
7231 # We can't use 'frommethod', as 'transpose' doesn't take keywords
7232 try:
7233 return a.transpose(axes)
7234 except AttributeError:
7235 return narray(a, copy=False).transpose(axes).view(MaskedArray)
7238def reshape(a, new_shape, order='C'):
7239 """
7240 Returns an array containing the same data with a new shape.
7242 Refer to `MaskedArray.reshape` for full documentation.
7244 See Also
7245 --------
7246 MaskedArray.reshape : equivalent function
7248 """
7249 # We can't use 'frommethod', it whine about some parameters. Dmmit.
7250 try:
7251 return a.reshape(new_shape, order=order)
7252 except AttributeError:
7253 _tmp = narray(a, copy=False).reshape(new_shape, order=order)
7254 return _tmp.view(MaskedArray)
7257def resize(x, new_shape):
7258 """
7259 Return a new masked array with the specified size and shape.
7261 This is the masked equivalent of the `numpy.resize` function. The new
7262 array is filled with repeated copies of `x` (in the order that the
7263 data are stored in memory). If `x` is masked, the new array will be
7264 masked, and the new mask will be a repetition of the old one.
7266 See Also
7267 --------
7268 numpy.resize : Equivalent function in the top level NumPy module.
7270 Examples
7271 --------
7272 >>> import numpy.ma as ma
7273 >>> a = ma.array([[1, 2] ,[3, 4]])
7274 >>> a[0, 1] = ma.masked
7275 >>> a
7276 masked_array(
7277 data=[[1, --],
7278 [3, 4]],
7279 mask=[[False, True],
7280 [False, False]],
7281 fill_value=999999)
7282 >>> np.resize(a, (3, 3))
7283 masked_array(
7284 data=[[1, 2, 3],
7285 [4, 1, 2],
7286 [3, 4, 1]],
7287 mask=False,
7288 fill_value=999999)
7289 >>> ma.resize(a, (3, 3))
7290 masked_array(
7291 data=[[1, --, 3],
7292 [4, 1, --],
7293 [3, 4, 1]],
7294 mask=[[False, True, False],
7295 [False, False, True],
7296 [False, False, False]],
7297 fill_value=999999)
7299 A MaskedArray is always returned, regardless of the input type.
7301 >>> a = np.array([[1, 2] ,[3, 4]])
7302 >>> ma.resize(a, (3, 3))
7303 masked_array(
7304 data=[[1, 2, 3],
7305 [4, 1, 2],
7306 [3, 4, 1]],
7307 mask=False,
7308 fill_value=999999)
7310 """
7311 # We can't use _frommethods here, as N.resize is notoriously whiny.
7312 m = getmask(x)
7313 if m is not nomask:
7314 m = np.resize(m, new_shape)
7315 result = np.resize(x, new_shape).view(get_masked_subclass(x))
7316 if result.ndim:
7317 result._mask = m
7318 return result
7321def ndim(obj):
7322 """
7323 maskedarray version of the numpy function.
7325 """
7326 return np.ndim(getdata(obj))
7328ndim.__doc__ = np.ndim.__doc__
7331def shape(obj):
7332 "maskedarray version of the numpy function."
7333 return np.shape(getdata(obj))
7334shape.__doc__ = np.shape.__doc__
7337def size(obj, axis=None):
7338 "maskedarray version of the numpy function."
7339 return np.size(getdata(obj), axis)
7340size.__doc__ = np.size.__doc__
7343##############################################################################
7344# Extra functions #
7345##############################################################################
7348def where(condition, x=_NoValue, y=_NoValue):
7349 """
7350 Return a masked array with elements from `x` or `y`, depending on condition.
7352 .. note::
7353 When only `condition` is provided, this function is identical to
7354 `nonzero`. The rest of this documentation covers only the case where
7355 all three arguments are provided.
7357 Parameters
7358 ----------
7359 condition : array_like, bool
7360 Where True, yield `x`, otherwise yield `y`.
7361 x, y : array_like, optional
7362 Values from which to choose. `x`, `y` and `condition` need to be
7363 broadcastable to some shape.
7365 Returns
7366 -------
7367 out : MaskedArray
7368 An masked array with `masked` elements where the condition is masked,
7369 elements from `x` where `condition` is True, and elements from `y`
7370 elsewhere.
7372 See Also
7373 --------
7374 numpy.where : Equivalent function in the top-level NumPy module.
7375 nonzero : The function that is called when x and y are omitted
7377 Examples
7378 --------
7379 >>> x = np.ma.array(np.arange(9.).reshape(3, 3), mask=[[0, 1, 0],
7380 ... [1, 0, 1],
7381 ... [0, 1, 0]])
7382 >>> x
7383 masked_array(
7384 data=[[0.0, --, 2.0],
7385 [--, 4.0, --],
7386 [6.0, --, 8.0]],
7387 mask=[[False, True, False],
7388 [ True, False, True],
7389 [False, True, False]],
7390 fill_value=1e+20)
7391 >>> np.ma.where(x > 5, x, -3.1416)
7392 masked_array(
7393 data=[[-3.1416, --, -3.1416],
7394 [--, -3.1416, --],
7395 [6.0, --, 8.0]],
7396 mask=[[False, True, False],
7397 [ True, False, True],
7398 [False, True, False]],
7399 fill_value=1e+20)
7401 """
7403 # handle the single-argument case
7404 missing = (x is _NoValue, y is _NoValue).count(True)
7405 if missing == 1:
7406 raise ValueError("Must provide both 'x' and 'y' or neither.")
7407 if missing == 2:
7408 return nonzero(condition)
7410 # we only care if the condition is true - false or masked pick y
7411 cf = filled(condition, False)
7412 xd = getdata(x)
7413 yd = getdata(y)
7415 # we need the full arrays here for correct final dimensions
7416 cm = getmaskarray(condition)
7417 xm = getmaskarray(x)
7418 ym = getmaskarray(y)
7420 # deal with the fact that masked.dtype == float64, but we don't actually
7421 # want to treat it as that.
7422 if x is masked and y is not masked:
7423 xd = np.zeros((), dtype=yd.dtype)
7424 xm = np.ones((), dtype=ym.dtype)
7425 elif y is masked and x is not masked:
7426 yd = np.zeros((), dtype=xd.dtype)
7427 ym = np.ones((), dtype=xm.dtype)
7429 data = np.where(cf, xd, yd)
7430 mask = np.where(cf, xm, ym)
7431 mask = np.where(cm, np.ones((), dtype=mask.dtype), mask)
7433 # collapse the mask, for backwards compatibility
7434 mask = _shrink_mask(mask)
7436 return masked_array(data, mask=mask)
7439def choose(indices, choices, out=None, mode='raise'):
7440 """
7441 Use an index array to construct a new array from a list of choices.
7443 Given an array of integers and a list of n choice arrays, this method
7444 will create a new array that merges each of the choice arrays. Where a
7445 value in `index` is i, the new array will have the value that choices[i]
7446 contains in the same place.
7448 Parameters
7449 ----------
7450 indices : ndarray of ints
7451 This array must contain integers in ``[0, n-1]``, where n is the
7452 number of choices.
7453 choices : sequence of arrays
7454 Choice arrays. The index array and all of the choices should be
7455 broadcastable to the same shape.
7456 out : array, optional
7457 If provided, the result will be inserted into this array. It should
7458 be of the appropriate shape and `dtype`.
7459 mode : {'raise', 'wrap', 'clip'}, optional
7460 Specifies how out-of-bounds indices will behave.
7462 * 'raise' : raise an error
7463 * 'wrap' : wrap around
7464 * 'clip' : clip to the range
7466 Returns
7467 -------
7468 merged_array : array
7470 See Also
7471 --------
7472 choose : equivalent function
7474 Examples
7475 --------
7476 >>> choice = np.array([[1,1,1], [2,2,2], [3,3,3]])
7477 >>> a = np.array([2, 1, 0])
7478 >>> np.ma.choose(a, choice)
7479 masked_array(data=[3, 2, 1],
7480 mask=False,
7481 fill_value=999999)
7483 """
7484 def fmask(x):
7485 "Returns the filled array, or True if masked."
7486 if x is masked:
7487 return True
7488 return filled(x)
7490 def nmask(x):
7491 "Returns the mask, True if ``masked``, False if ``nomask``."
7492 if x is masked:
7493 return True
7494 return getmask(x)
7495 # Get the indices.
7496 c = filled(indices, 0)
7497 # Get the masks.
7498 masks = [nmask(x) for x in choices]
7499 data = [fmask(x) for x in choices]
7500 # Construct the mask
7501 outputmask = np.choose(c, masks, mode=mode)
7502 outputmask = make_mask(mask_or(outputmask, getmask(indices)),
7503 copy=False, shrink=True)
7504 # Get the choices.
7505 d = np.choose(c, data, mode=mode, out=out).view(MaskedArray)
7506 if out is not None:
7507 if isinstance(out, MaskedArray):
7508 out.__setmask__(outputmask)
7509 return out
7510 d.__setmask__(outputmask)
7511 return d
7514def round_(a, decimals=0, out=None):
7515 """
7516 Return a copy of a, rounded to 'decimals' places.
7518 When 'decimals' is negative, it specifies the number of positions
7519 to the left of the decimal point. The real and imaginary parts of
7520 complex numbers are rounded separately. Nothing is done if the
7521 array is not of float type and 'decimals' is greater than or equal
7522 to 0.
7524 Parameters
7525 ----------
7526 decimals : int
7527 Number of decimals to round to. May be negative.
7528 out : array_like
7529 Existing array to use for output.
7530 If not given, returns a default copy of a.
7532 Notes
7533 -----
7534 If out is given and does not have a mask attribute, the mask of a
7535 is lost!
7537 Examples
7538 --------
7539 >>> import numpy.ma as ma
7540 >>> x = [11.2, -3.973, 0.801, -1.41]
7541 >>> mask = [0, 0, 0, 1]
7542 >>> masked_x = ma.masked_array(x, mask)
7543 >>> masked_x
7544 masked_array(data=[11.2, -3.973, 0.801, --],
7545 mask=[False, False, False, True],
7546 fill_value=1e+20)
7547 >>> ma.round_(masked_x)
7548 masked_array(data=[11.0, -4.0, 1.0, --],
7549 mask=[False, False, False, True],
7550 fill_value=1e+20)
7551 >>> ma.round(masked_x, decimals=1)
7552 masked_array(data=[11.2, -4.0, 0.8, --],
7553 mask=[False, False, False, True],
7554 fill_value=1e+20)
7555 >>> ma.round_(masked_x, decimals=-1)
7556 masked_array(data=[10.0, -0.0, 0.0, --],
7557 mask=[False, False, False, True],
7558 fill_value=1e+20)
7559 """
7560 if out is None:
7561 return np.round_(a, decimals, out)
7562 else:
7563 np.round_(getdata(a), decimals, out)
7564 if hasattr(out, '_mask'):
7565 out._mask = getmask(a)
7566 return out
7567round = round_
7570# Needed by dot, so move here from extras.py. It will still be exported
7571# from extras.py for compatibility.
7572def mask_rowcols(a, axis=None):
7573 """
7574 Mask rows and/or columns of a 2D array that contain masked values.
7576 Mask whole rows and/or columns of a 2D array that contain
7577 masked values. The masking behavior is selected using the
7578 `axis` parameter.
7580 - If `axis` is None, rows *and* columns are masked.
7581 - If `axis` is 0, only rows are masked.
7582 - If `axis` is 1 or -1, only columns are masked.
7584 Parameters
7585 ----------
7586 a : array_like, MaskedArray
7587 The array to mask. If not a MaskedArray instance (or if no array
7588 elements are masked). The result is a MaskedArray with `mask` set
7589 to `nomask` (False). Must be a 2D array.
7590 axis : int, optional
7591 Axis along which to perform the operation. If None, applies to a
7592 flattened version of the array.
7594 Returns
7595 -------
7596 a : MaskedArray
7597 A modified version of the input array, masked depending on the value
7598 of the `axis` parameter.
7600 Raises
7601 ------
7602 NotImplementedError
7603 If input array `a` is not 2D.
7605 See Also
7606 --------
7607 mask_rows : Mask rows of a 2D array that contain masked values.
7608 mask_cols : Mask cols of a 2D array that contain masked values.
7609 masked_where : Mask where a condition is met.
7611 Notes
7612 -----
7613 The input array's mask is modified by this function.
7615 Examples
7616 --------
7617 >>> import numpy.ma as ma
7618 >>> a = np.zeros((3, 3), dtype=int)
7619 >>> a[1, 1] = 1
7620 >>> a
7621 array([[0, 0, 0],
7622 [0, 1, 0],
7623 [0, 0, 0]])
7624 >>> a = ma.masked_equal(a, 1)
7625 >>> a
7626 masked_array(
7627 data=[[0, 0, 0],
7628 [0, --, 0],
7629 [0, 0, 0]],
7630 mask=[[False, False, False],
7631 [False, True, False],
7632 [False, False, False]],
7633 fill_value=1)
7634 >>> ma.mask_rowcols(a)
7635 masked_array(
7636 data=[[0, --, 0],
7637 [--, --, --],
7638 [0, --, 0]],
7639 mask=[[False, True, False],
7640 [ True, True, True],
7641 [False, True, False]],
7642 fill_value=1)
7644 """
7645 a = array(a, subok=False)
7646 if a.ndim != 2:
7647 raise NotImplementedError("mask_rowcols works for 2D arrays only.")
7648 m = getmask(a)
7649 # Nothing is masked: return a
7650 if m is nomask or not m.any():
7651 return a
7652 maskedval = m.nonzero()
7653 a._mask = a._mask.copy()
7654 if not axis:
7655 a[np.unique(maskedval[0])] = masked
7656 if axis in [None, 1, -1]:
7657 a[:, np.unique(maskedval[1])] = masked
7658 return a
7661# Include masked dot here to avoid import problems in getting it from
7662# extras.py. Note that it is not included in __all__, but rather exported
7663# from extras in order to avoid backward compatibility problems.
7664def dot(a, b, strict=False, out=None):
7665 """
7666 Return the dot product of two arrays.
7668 This function is the equivalent of `numpy.dot` that takes masked values
7669 into account. Note that `strict` and `out` are in different position
7670 than in the method version. In order to maintain compatibility with the
7671 corresponding method, it is recommended that the optional arguments be
7672 treated as keyword only. At some point that may be mandatory.
7674 .. note::
7675 Works only with 2-D arrays at the moment.
7678 Parameters
7679 ----------
7680 a, b : masked_array_like
7681 Inputs arrays.
7682 strict : bool, optional
7683 Whether masked data are propagated (True) or set to 0 (False) for
7684 the computation. Default is False. Propagating the mask means that
7685 if a masked value appears in a row or column, the whole row or
7686 column is considered masked.
7687 out : masked_array, optional
7688 Output argument. This must have the exact kind that would be returned
7689 if it was not used. In particular, it must have the right type, must be
7690 C-contiguous, and its dtype must be the dtype that would be returned
7691 for `dot(a,b)`. This is a performance feature. Therefore, if these
7692 conditions are not met, an exception is raised, instead of attempting
7693 to be flexible.
7695 .. versionadded:: 1.10.2
7697 See Also
7698 --------
7699 numpy.dot : Equivalent function for ndarrays.
7701 Examples
7702 --------
7703 >>> a = np.ma.array([[1, 2, 3], [4, 5, 6]], mask=[[1, 0, 0], [0, 0, 0]])
7704 >>> b = np.ma.array([[1, 2], [3, 4], [5, 6]], mask=[[1, 0], [0, 0], [0, 0]])
7705 >>> np.ma.dot(a, b)
7706 masked_array(
7707 data=[[21, 26],
7708 [45, 64]],
7709 mask=[[False, False],
7710 [False, False]],
7711 fill_value=999999)
7712 >>> np.ma.dot(a, b, strict=True)
7713 masked_array(
7714 data=[[--, --],
7715 [--, 64]],
7716 mask=[[ True, True],
7717 [ True, False]],
7718 fill_value=999999)
7720 """
7721 # !!!: Works only with 2D arrays. There should be a way to get it to run
7722 # with higher dimension
7723 if strict and (a.ndim == 2) and (b.ndim == 2):
7724 a = mask_rowcols(a, 0)
7725 b = mask_rowcols(b, 1)
7726 am = ~getmaskarray(a)
7727 bm = ~getmaskarray(b)
7729 if out is None:
7730 d = np.dot(filled(a, 0), filled(b, 0))
7731 m = ~np.dot(am, bm)
7732 if d.ndim == 0:
7733 d = np.asarray(d)
7734 r = d.view(get_masked_subclass(a, b))
7735 r.__setmask__(m)
7736 return r
7737 else:
7738 d = np.dot(filled(a, 0), filled(b, 0), out._data)
7739 if out.mask.shape != d.shape:
7740 out._mask = np.empty(d.shape, MaskType)
7741 np.dot(am, bm, out._mask)
7742 np.logical_not(out._mask, out._mask)
7743 return out
7746def inner(a, b):
7747 """
7748 Returns the inner product of a and b for arrays of floating point types.
7750 Like the generic NumPy equivalent the product sum is over the last dimension
7751 of a and b. The first argument is not conjugated.
7753 """
7754 fa = filled(a, 0)
7755 fb = filled(b, 0)
7756 if fa.ndim == 0:
7757 fa.shape = (1,)
7758 if fb.ndim == 0:
7759 fb.shape = (1,)
7760 return np.inner(fa, fb).view(MaskedArray)
7761inner.__doc__ = doc_note(np.inner.__doc__,
7762 "Masked values are replaced by 0.")
7763innerproduct = inner
7766def outer(a, b):
7767 "maskedarray version of the numpy function."
7768 fa = filled(a, 0).ravel()
7769 fb = filled(b, 0).ravel()
7770 d = np.outer(fa, fb)
7771 ma = getmask(a)
7772 mb = getmask(b)
7773 if ma is nomask and mb is nomask:
7774 return masked_array(d)
7775 ma = getmaskarray(a)
7776 mb = getmaskarray(b)
7777 m = make_mask(1 - np.outer(1 - ma, 1 - mb), copy=False)
7778 return masked_array(d, mask=m)
7779outer.__doc__ = doc_note(np.outer.__doc__,
7780 "Masked values are replaced by 0.")
7781outerproduct = outer
7784def _convolve_or_correlate(f, a, v, mode, propagate_mask):
7785 """
7786 Helper function for ma.correlate and ma.convolve
7787 """
7788 if propagate_mask:
7789 # results which are contributed to by either item in any pair being invalid
7790 mask = (
7791 f(getmaskarray(a), np.ones(np.shape(v), dtype=bool), mode=mode)
7792 | f(np.ones(np.shape(a), dtype=bool), getmaskarray(v), mode=mode)
7793 )
7794 data = f(getdata(a), getdata(v), mode=mode)
7795 else:
7796 # results which are not contributed to by any pair of valid elements
7797 mask = ~f(~getmaskarray(a), ~getmaskarray(v))
7798 data = f(filled(a, 0), filled(v, 0), mode=mode)
7800 return masked_array(data, mask=mask)
7803def correlate(a, v, mode='valid', propagate_mask=True):
7804 """
7805 Cross-correlation of two 1-dimensional sequences.
7807 Parameters
7808 ----------
7809 a, v : array_like
7810 Input sequences.
7811 mode : {'valid', 'same', 'full'}, optional
7812 Refer to the `np.convolve` docstring. Note that the default
7813 is 'valid', unlike `convolve`, which uses 'full'.
7814 propagate_mask : bool
7815 If True, then a result element is masked if any masked element contributes towards it.
7816 If False, then a result element is only masked if no non-masked element
7817 contribute towards it
7819 Returns
7820 -------
7821 out : MaskedArray
7822 Discrete cross-correlation of `a` and `v`.
7824 See Also
7825 --------
7826 numpy.correlate : Equivalent function in the top-level NumPy module.
7827 """
7828 return _convolve_or_correlate(np.correlate, a, v, mode, propagate_mask)
7831def convolve(a, v, mode='full', propagate_mask=True):
7832 """
7833 Returns the discrete, linear convolution of two one-dimensional sequences.
7835 Parameters
7836 ----------
7837 a, v : array_like
7838 Input sequences.
7839 mode : {'valid', 'same', 'full'}, optional
7840 Refer to the `np.convolve` docstring.
7841 propagate_mask : bool
7842 If True, then if any masked element is included in the sum for a result
7843 element, then the result is masked.
7844 If False, then the result element is only masked if no non-masked cells
7845 contribute towards it
7847 Returns
7848 -------
7849 out : MaskedArray
7850 Discrete, linear convolution of `a` and `v`.
7852 See Also
7853 --------
7854 numpy.convolve : Equivalent function in the top-level NumPy module.
7855 """
7856 return _convolve_or_correlate(np.convolve, a, v, mode, propagate_mask)
7859def allequal(a, b, fill_value=True):
7860 """
7861 Return True if all entries of a and b are equal, using
7862 fill_value as a truth value where either or both are masked.
7864 Parameters
7865 ----------
7866 a, b : array_like
7867 Input arrays to compare.
7868 fill_value : bool, optional
7869 Whether masked values in a or b are considered equal (True) or not
7870 (False).
7872 Returns
7873 -------
7874 y : bool
7875 Returns True if the two arrays are equal within the given
7876 tolerance, False otherwise. If either array contains NaN,
7877 then False is returned.
7879 See Also
7880 --------
7881 all, any
7882 numpy.ma.allclose
7884 Examples
7885 --------
7886 >>> a = np.ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1])
7887 >>> a
7888 masked_array(data=[10000000000.0, 1e-07, --],
7889 mask=[False, False, True],
7890 fill_value=1e+20)
7892 >>> b = np.array([1e10, 1e-7, -42.0])
7893 >>> b
7894 array([ 1.00000000e+10, 1.00000000e-07, -4.20000000e+01])
7895 >>> np.ma.allequal(a, b, fill_value=False)
7896 False
7897 >>> np.ma.allequal(a, b)
7898 True
7900 """
7901 m = mask_or(getmask(a), getmask(b))
7902 if m is nomask:
7903 x = getdata(a)
7904 y = getdata(b)
7905 d = umath.equal(x, y)
7906 return d.all()
7907 elif fill_value:
7908 x = getdata(a)
7909 y = getdata(b)
7910 d = umath.equal(x, y)
7911 dm = array(d, mask=m, copy=False)
7912 return dm.filled(True).all(None)
7913 else:
7914 return False
7917def allclose(a, b, masked_equal=True, rtol=1e-5, atol=1e-8):
7918 """
7919 Returns True if two arrays are element-wise equal within a tolerance.
7921 This function is equivalent to `allclose` except that masked values
7922 are treated as equal (default) or unequal, depending on the `masked_equal`
7923 argument.
7925 Parameters
7926 ----------
7927 a, b : array_like
7928 Input arrays to compare.
7929 masked_equal : bool, optional
7930 Whether masked values in `a` and `b` are considered equal (True) or not
7931 (False). They are considered equal by default.
7932 rtol : float, optional
7933 Relative tolerance. The relative difference is equal to ``rtol * b``.
7934 Default is 1e-5.
7935 atol : float, optional
7936 Absolute tolerance. The absolute difference is equal to `atol`.
7937 Default is 1e-8.
7939 Returns
7940 -------
7941 y : bool
7942 Returns True if the two arrays are equal within the given
7943 tolerance, False otherwise. If either array contains NaN, then
7944 False is returned.
7946 See Also
7947 --------
7948 all, any
7949 numpy.allclose : the non-masked `allclose`.
7951 Notes
7952 -----
7953 If the following equation is element-wise True, then `allclose` returns
7954 True::
7956 absolute(`a` - `b`) <= (`atol` + `rtol` * absolute(`b`))
7958 Return True if all elements of `a` and `b` are equal subject to
7959 given tolerances.
7961 Examples
7962 --------
7963 >>> a = np.ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1])
7964 >>> a
7965 masked_array(data=[10000000000.0, 1e-07, --],
7966 mask=[False, False, True],
7967 fill_value=1e+20)
7968 >>> b = np.ma.array([1e10, 1e-8, -42.0], mask=[0, 0, 1])
7969 >>> np.ma.allclose(a, b)
7970 False
7972 >>> a = np.ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1])
7973 >>> b = np.ma.array([1.00001e10, 1e-9, -42.0], mask=[0, 0, 1])
7974 >>> np.ma.allclose(a, b)
7975 True
7976 >>> np.ma.allclose(a, b, masked_equal=False)
7977 False
7979 Masked values are not compared directly.
7981 >>> a = np.ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1])
7982 >>> b = np.ma.array([1.00001e10, 1e-9, 42.0], mask=[0, 0, 1])
7983 >>> np.ma.allclose(a, b)
7984 True
7985 >>> np.ma.allclose(a, b, masked_equal=False)
7986 False
7988 """
7989 x = masked_array(a, copy=False)
7990 y = masked_array(b, copy=False)
7992 # make sure y is an inexact type to avoid abs(MIN_INT); will cause
7993 # casting of x later.
7994 # NOTE: We explicitly allow timedelta, which used to work. This could
7995 # possibly be deprecated. See also gh-18286.
7996 # timedelta works if `atol` is an integer or also a timedelta.
7997 # Although, the default tolerances are unlikely to be useful
7998 if y.dtype.kind != "m":
7999 dtype = np.result_type(y, 1.)
8000 if y.dtype != dtype:
8001 y = masked_array(y, dtype=dtype, copy=False)
8003 m = mask_or(getmask(x), getmask(y))
8004 xinf = np.isinf(masked_array(x, copy=False, mask=m)).filled(False)
8005 # If we have some infs, they should fall at the same place.
8006 if not np.all(xinf == filled(np.isinf(y), False)):
8007 return False
8008 # No infs at all
8009 if not np.any(xinf):
8010 d = filled(less_equal(absolute(x - y), atol + rtol * absolute(y)),
8011 masked_equal)
8012 return np.all(d)
8014 if not np.all(filled(x[xinf] == y[xinf], masked_equal)):
8015 return False
8016 x = x[~xinf]
8017 y = y[~xinf]
8019 d = filled(less_equal(absolute(x - y), atol + rtol * absolute(y)),
8020 masked_equal)
8022 return np.all(d)
8025def asarray(a, dtype=None, order=None):
8026 """
8027 Convert the input to a masked array of the given data-type.
8029 No copy is performed if the input is already an `ndarray`. If `a` is
8030 a subclass of `MaskedArray`, a base class `MaskedArray` is returned.
8032 Parameters
8033 ----------
8034 a : array_like
8035 Input data, in any form that can be converted to a masked array. This
8036 includes lists, lists of tuples, tuples, tuples of tuples, tuples
8037 of lists, ndarrays and masked arrays.
8038 dtype : dtype, optional
8039 By default, the data-type is inferred from the input data.
8040 order : {'C', 'F'}, optional
8041 Whether to use row-major ('C') or column-major ('FORTRAN') memory
8042 representation. Default is 'C'.
8044 Returns
8045 -------
8046 out : MaskedArray
8047 Masked array interpretation of `a`.
8049 See Also
8050 --------
8051 asanyarray : Similar to `asarray`, but conserves subclasses.
8053 Examples
8054 --------
8055 >>> x = np.arange(10.).reshape(2, 5)
8056 >>> x
8057 array([[0., 1., 2., 3., 4.],
8058 [5., 6., 7., 8., 9.]])
8059 >>> np.ma.asarray(x)
8060 masked_array(
8061 data=[[0., 1., 2., 3., 4.],
8062 [5., 6., 7., 8., 9.]],
8063 mask=False,
8064 fill_value=1e+20)
8065 >>> type(np.ma.asarray(x))
8066 <class 'numpy.ma.core.MaskedArray'>
8068 """
8069 order = order or 'C'
8070 return masked_array(a, dtype=dtype, copy=False, keep_mask=True,
8071 subok=False, order=order)
8074def asanyarray(a, dtype=None):
8075 """
8076 Convert the input to a masked array, conserving subclasses.
8078 If `a` is a subclass of `MaskedArray`, its class is conserved.
8079 No copy is performed if the input is already an `ndarray`.
8081 Parameters
8082 ----------
8083 a : array_like
8084 Input data, in any form that can be converted to an array.
8085 dtype : dtype, optional
8086 By default, the data-type is inferred from the input data.
8087 order : {'C', 'F'}, optional
8088 Whether to use row-major ('C') or column-major ('FORTRAN') memory
8089 representation. Default is 'C'.
8091 Returns
8092 -------
8093 out : MaskedArray
8094 MaskedArray interpretation of `a`.
8096 See Also
8097 --------
8098 asarray : Similar to `asanyarray`, but does not conserve subclass.
8100 Examples
8101 --------
8102 >>> x = np.arange(10.).reshape(2, 5)
8103 >>> x
8104 array([[0., 1., 2., 3., 4.],
8105 [5., 6., 7., 8., 9.]])
8106 >>> np.ma.asanyarray(x)
8107 masked_array(
8108 data=[[0., 1., 2., 3., 4.],
8109 [5., 6., 7., 8., 9.]],
8110 mask=False,
8111 fill_value=1e+20)
8112 >>> type(np.ma.asanyarray(x))
8113 <class 'numpy.ma.core.MaskedArray'>
8115 """
8116 # workaround for #8666, to preserve identity. Ideally the bottom line
8117 # would handle this for us.
8118 if isinstance(a, MaskedArray) and (dtype is None or dtype == a.dtype):
8119 return a
8120 return masked_array(a, dtype=dtype, copy=False, keep_mask=True, subok=True)
8123##############################################################################
8124# Pickling #
8125##############################################################################
8128def fromfile(file, dtype=float, count=-1, sep=''):
8129 raise NotImplementedError(
8130 "fromfile() not yet implemented for a MaskedArray.")
8133def fromflex(fxarray):
8134 """
8135 Build a masked array from a suitable flexible-type array.
8137 The input array has to have a data-type with ``_data`` and ``_mask``
8138 fields. This type of array is output by `MaskedArray.toflex`.
8140 Parameters
8141 ----------
8142 fxarray : ndarray
8143 The structured input array, containing ``_data`` and ``_mask``
8144 fields. If present, other fields are discarded.
8146 Returns
8147 -------
8148 result : MaskedArray
8149 The constructed masked array.
8151 See Also
8152 --------
8153 MaskedArray.toflex : Build a flexible-type array from a masked array.
8155 Examples
8156 --------
8157 >>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[0] + [1, 0] * 4)
8158 >>> rec = x.toflex()
8159 >>> rec
8160 array([[(0, False), (1, True), (2, False)],
8161 [(3, True), (4, False), (5, True)],
8162 [(6, False), (7, True), (8, False)]],
8163 dtype=[('_data', '<i8'), ('_mask', '?')])
8164 >>> x2 = np.ma.fromflex(rec)
8165 >>> x2
8166 masked_array(
8167 data=[[0, --, 2],
8168 [--, 4, --],
8169 [6, --, 8]],
8170 mask=[[False, True, False],
8171 [ True, False, True],
8172 [False, True, False]],
8173 fill_value=999999)
8175 Extra fields can be present in the structured array but are discarded:
8177 >>> dt = [('_data', '<i4'), ('_mask', '|b1'), ('field3', '<f4')]
8178 >>> rec2 = np.zeros((2, 2), dtype=dt)
8179 >>> rec2
8180 array([[(0, False, 0.), (0, False, 0.)],
8181 [(0, False, 0.), (0, False, 0.)]],
8182 dtype=[('_data', '<i4'), ('_mask', '?'), ('field3', '<f4')])
8183 >>> y = np.ma.fromflex(rec2)
8184 >>> y
8185 masked_array(
8186 data=[[0, 0],
8187 [0, 0]],
8188 mask=[[False, False],
8189 [False, False]],
8190 fill_value=999999,
8191 dtype=int32)
8193 """
8194 return masked_array(fxarray['_data'], mask=fxarray['_mask'])
8197class _convert2ma:
8199 """
8200 Convert functions from numpy to numpy.ma.
8202 Parameters
8203 ----------
8204 _methodname : string
8205 Name of the method to transform.
8207 """
8208 __doc__ = None
8210 def __init__(self, funcname, np_ret, np_ma_ret, params=None):
8211 self._func = getattr(np, funcname)
8212 self.__doc__ = self.getdoc(np_ret, np_ma_ret)
8213 self._extras = params or {}
8215 def getdoc(self, np_ret, np_ma_ret):
8216 "Return the doc of the function (from the doc of the method)."
8217 doc = getattr(self._func, '__doc__', None)
8218 sig = get_object_signature(self._func)
8219 if doc:
8220 doc = self._replace_return_type(doc, np_ret, np_ma_ret)
8221 # Add the signature of the function at the beginning of the doc
8222 if sig:
8223 sig = "%s%s\n" % (self._func.__name__, sig)
8224 doc = sig + doc
8225 return doc
8227 def _replace_return_type(self, doc, np_ret, np_ma_ret):
8228 """
8229 Replace documentation of ``np`` function's return type.
8231 Replaces it with the proper type for the ``np.ma`` function.
8233 Parameters
8234 ----------
8235 doc : str
8236 The documentation of the ``np`` method.
8237 np_ret : str
8238 The return type string of the ``np`` method that we want to
8239 replace. (e.g. "out : ndarray")
8240 np_ma_ret : str
8241 The return type string of the ``np.ma`` method.
8242 (e.g. "out : MaskedArray")
8243 """
8244 if np_ret not in doc:
8245 raise RuntimeError(
8246 f"Failed to replace `{np_ret}` with `{np_ma_ret}`. "
8247 f"The documentation string for return type, {np_ret}, is not "
8248 f"found in the docstring for `np.{self._func.__name__}`. "
8249 f"Fix the docstring for `np.{self._func.__name__}` or "
8250 "update the expected string for return type."
8251 )
8253 return doc.replace(np_ret, np_ma_ret)
8255 def __call__(self, *args, **params):
8256 # Find the common parameters to the call and the definition
8257 _extras = self._extras
8258 common_params = set(params).intersection(_extras)
8259 # Drop the common parameters from the call
8260 for p in common_params:
8261 _extras[p] = params.pop(p)
8262 # Get the result
8263 result = self._func.__call__(*args, **params).view(MaskedArray)
8264 if "fill_value" in common_params:
8265 result.fill_value = _extras.get("fill_value", None)
8266 if "hardmask" in common_params:
8267 result._hardmask = bool(_extras.get("hard_mask", False))
8268 return result
8271arange = _convert2ma(
8272 'arange',
8273 params=dict(fill_value=None, hardmask=False),
8274 np_ret='arange : ndarray',
8275 np_ma_ret='arange : MaskedArray',
8276)
8277clip = _convert2ma(
8278 'clip',
8279 params=dict(fill_value=None, hardmask=False),
8280 np_ret='clipped_array : ndarray',
8281 np_ma_ret='clipped_array : MaskedArray',
8282)
8283diff = _convert2ma(
8284 'diff',
8285 params=dict(fill_value=None, hardmask=False),
8286 np_ret='diff : ndarray',
8287 np_ma_ret='diff : MaskedArray',
8288)
8289empty = _convert2ma(
8290 'empty',
8291 params=dict(fill_value=None, hardmask=False),
8292 np_ret='out : ndarray',
8293 np_ma_ret='out : MaskedArray',
8294)
8295empty_like = _convert2ma(
8296 'empty_like',
8297 np_ret='out : ndarray',
8298 np_ma_ret='out : MaskedArray',
8299)
8300frombuffer = _convert2ma(
8301 'frombuffer',
8302 np_ret='out : ndarray',
8303 np_ma_ret='out: MaskedArray',
8304)
8305fromfunction = _convert2ma(
8306 'fromfunction',
8307 np_ret='fromfunction : any',
8308 np_ma_ret='fromfunction: MaskedArray',
8309)
8310identity = _convert2ma(
8311 'identity',
8312 params=dict(fill_value=None, hardmask=False),
8313 np_ret='out : ndarray',
8314 np_ma_ret='out : MaskedArray',
8315)
8316indices = _convert2ma(
8317 'indices',
8318 params=dict(fill_value=None, hardmask=False),
8319 np_ret='grid : one ndarray or tuple of ndarrays',
8320 np_ma_ret='grid : one MaskedArray or tuple of MaskedArrays',
8321)
8322ones = _convert2ma(
8323 'ones',
8324 params=dict(fill_value=None, hardmask=False),
8325 np_ret='out : ndarray',
8326 np_ma_ret='out : MaskedArray',
8327)
8328ones_like = _convert2ma(
8329 'ones_like',
8330 np_ret='out : ndarray',
8331 np_ma_ret='out : MaskedArray',
8332)
8333squeeze = _convert2ma(
8334 'squeeze',
8335 params=dict(fill_value=None, hardmask=False),
8336 np_ret='squeezed : ndarray',
8337 np_ma_ret='squeezed : MaskedArray',
8338)
8339zeros = _convert2ma(
8340 'zeros',
8341 params=dict(fill_value=None, hardmask=False),
8342 np_ret='out : ndarray',
8343 np_ma_ret='out : MaskedArray',
8344)
8345zeros_like = _convert2ma(
8346 'zeros_like',
8347 np_ret='out : ndarray',
8348 np_ma_ret='out : MaskedArray',
8349)
8352def append(a, b, axis=None):
8353 """Append values to the end of an array.
8355 .. versionadded:: 1.9.0
8357 Parameters
8358 ----------
8359 a : array_like
8360 Values are appended to a copy of this array.
8361 b : array_like
8362 These values are appended to a copy of `a`. It must be of the
8363 correct shape (the same shape as `a`, excluding `axis`). If `axis`
8364 is not specified, `b` can be any shape and will be flattened
8365 before use.
8366 axis : int, optional
8367 The axis along which `v` are appended. If `axis` is not given,
8368 both `a` and `b` are flattened before use.
8370 Returns
8371 -------
8372 append : MaskedArray
8373 A copy of `a` with `b` appended to `axis`. Note that `append`
8374 does not occur in-place: a new array is allocated and filled. If
8375 `axis` is None, the result is a flattened array.
8377 See Also
8378 --------
8379 numpy.append : Equivalent function in the top-level NumPy module.
8381 Examples
8382 --------
8383 >>> import numpy.ma as ma
8384 >>> a = ma.masked_values([1, 2, 3], 2)
8385 >>> b = ma.masked_values([[4, 5, 6], [7, 8, 9]], 7)
8386 >>> ma.append(a, b)
8387 masked_array(data=[1, --, 3, 4, 5, 6, --, 8, 9],
8388 mask=[False, True, False, False, False, False, True, False,
8389 False],
8390 fill_value=999999)
8391 """
8392 return concatenate([a, b], axis)