Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/numpy/ma/core.py: 26%

2422 statements  

« prev     ^ index     » next       coverage.py v7.2.2, created at 2023-03-23 06:06 +0000

1""" 

2numpy.ma : a package to handle missing or invalid values. 

3 

4This package was initially written for numarray by Paul F. Dubois 

5at Lawrence Livermore National Laboratory. 

6In 2006, the package was completely rewritten by Pierre Gerard-Marchant 

7(University of Georgia) to make the MaskedArray class a subclass of ndarray, 

8and to improve support of structured arrays. 

9 

10 

11Copyright 1999, 2000, 2001 Regents of the University of California. 

12Released for unlimited redistribution. 

13 

14* Adapted for numpy_core 2005 by Travis Oliphant and (mainly) Paul Dubois. 

15* Subclassing of the base `ndarray` 2006 by Pierre Gerard-Marchant 

16 (pgmdevlist_AT_gmail_DOT_com) 

17* Improvements suggested by Reggie Dugard (reggie_AT_merfinllc_DOT_com) 

18 

19.. moduleauthor:: Pierre Gerard-Marchant 

20 

21""" 

22# pylint: disable-msg=E1002 

23import builtins 

24import inspect 

25import operator 

26import warnings 

27import textwrap 

28import re 

29from functools import reduce 

30 

31import numpy as np 

32import numpy.core.umath as umath 

33import numpy.core.numerictypes as ntypes 

34from numpy.core import multiarray as mu 

35from numpy import ndarray, amax, amin, iscomplexobj, bool_, _NoValue 

36from numpy import array as narray 

37from numpy.lib.function_base import angle 

38from numpy.compat import ( 

39 getargspec, formatargspec, long, unicode, bytes 

40 ) 

41from numpy import expand_dims 

42from numpy.core.numeric import normalize_axis_tuple 

43 

44 

45__all__ = [ 

46 'MAError', 'MaskError', 'MaskType', 'MaskedArray', 'abs', 'absolute', 

47 'add', 'all', 'allclose', 'allequal', 'alltrue', 'amax', 'amin', 

48 'angle', 'anom', 'anomalies', 'any', 'append', 'arange', 'arccos', 

49 'arccosh', 'arcsin', 'arcsinh', 'arctan', 'arctan2', 'arctanh', 

50 'argmax', 'argmin', 'argsort', 'around', 'array', 'asanyarray', 

51 'asarray', 'bitwise_and', 'bitwise_or', 'bitwise_xor', 'bool_', 'ceil', 

52 'choose', 'clip', 'common_fill_value', 'compress', 'compressed', 

53 'concatenate', 'conjugate', 'convolve', 'copy', 'correlate', 'cos', 'cosh', 

54 'count', 'cumprod', 'cumsum', 'default_fill_value', 'diag', 'diagonal', 

55 'diff', 'divide', 'empty', 'empty_like', 'equal', 'exp', 

56 'expand_dims', 'fabs', 'filled', 'fix_invalid', 'flatten_mask', 

57 'flatten_structured_array', 'floor', 'floor_divide', 'fmod', 

58 'frombuffer', 'fromflex', 'fromfunction', 'getdata', 'getmask', 

59 'getmaskarray', 'greater', 'greater_equal', 'harden_mask', 'hypot', 

60 'identity', 'ids', 'indices', 'inner', 'innerproduct', 'isMA', 

61 'isMaskedArray', 'is_mask', 'is_masked', 'isarray', 'left_shift', 

62 'less', 'less_equal', 'log', 'log10', 'log2', 

63 'logical_and', 'logical_not', 'logical_or', 'logical_xor', 'make_mask', 

64 'make_mask_descr', 'make_mask_none', 'mask_or', 'masked', 

65 'masked_array', 'masked_equal', 'masked_greater', 

66 'masked_greater_equal', 'masked_inside', 'masked_invalid', 

67 'masked_less', 'masked_less_equal', 'masked_not_equal', 

68 'masked_object', 'masked_outside', 'masked_print_option', 

69 'masked_singleton', 'masked_values', 'masked_where', 'max', 'maximum', 

70 'maximum_fill_value', 'mean', 'min', 'minimum', 'minimum_fill_value', 

71 'mod', 'multiply', 'mvoid', 'ndim', 'negative', 'nomask', 'nonzero', 

72 'not_equal', 'ones', 'ones_like', 'outer', 'outerproduct', 'power', 'prod', 

73 'product', 'ptp', 'put', 'putmask', 'ravel', 'remainder', 

74 'repeat', 'reshape', 'resize', 'right_shift', 'round', 'round_', 

75 'set_fill_value', 'shape', 'sin', 'sinh', 'size', 'soften_mask', 

76 'sometrue', 'sort', 'sqrt', 'squeeze', 'std', 'subtract', 'sum', 

77 'swapaxes', 'take', 'tan', 'tanh', 'trace', 'transpose', 'true_divide', 

78 'var', 'where', 'zeros', 'zeros_like', 

79 ] 

80 

81MaskType = np.bool_ 

82nomask = MaskType(0) 

83 

84class MaskedArrayFutureWarning(FutureWarning): 

85 pass 

86 

87def _deprecate_argsort_axis(arr): 

88 """ 

89 Adjust the axis passed to argsort, warning if necessary 

90 

91 Parameters 

92 ---------- 

93 arr 

94 The array which argsort was called on 

95 

96 np.ma.argsort has a long-term bug where the default of the axis argument 

97 is wrong (gh-8701), which now must be kept for backwards compatibility. 

98 Thankfully, this only makes a difference when arrays are 2- or more- 

99 dimensional, so we only need a warning then. 

100 """ 

101 if arr.ndim <= 1: 

102 # no warning needed - but switch to -1 anyway, to avoid surprising 

103 # subclasses, which are more likely to implement scalar axes. 

104 return -1 

105 else: 

106 # 2017-04-11, Numpy 1.13.0, gh-8701: warn on axis default 

107 warnings.warn( 

108 "In the future the default for argsort will be axis=-1, not the " 

109 "current None, to match its documentation and np.argsort. " 

110 "Explicitly pass -1 or None to silence this warning.", 

111 MaskedArrayFutureWarning, stacklevel=3) 

112 return None 

113 

114 

115def doc_note(initialdoc, note): 

116 """ 

117 Adds a Notes section to an existing docstring. 

118 

119 """ 

120 if initialdoc is None: 

121 return 

122 if note is None: 

123 return initialdoc 

124 

125 notesplit = re.split(r'\n\s*?Notes\n\s*?-----', inspect.cleandoc(initialdoc)) 

126 notedoc = "\n\nNotes\n-----\n%s\n" % inspect.cleandoc(note) 

127 

128 return ''.join(notesplit[:1] + [notedoc] + notesplit[1:]) 

129 

130 

131def get_object_signature(obj): 

132 """ 

133 Get the signature from obj 

134 

135 """ 

136 try: 

137 sig = formatargspec(*getargspec(obj)) 

138 except TypeError: 

139 sig = '' 

140 return sig 

141 

142 

143############################################################################### 

144# Exceptions # 

145############################################################################### 

146 

147 

148class MAError(Exception): 

149 """ 

150 Class for masked array related errors. 

151 

152 """ 

153 pass 

154 

155 

156class MaskError(MAError): 

157 """ 

158 Class for mask related errors. 

159 

160 """ 

161 pass 

162 

163 

164############################################################################### 

165# Filling options # 

166############################################################################### 

167 

168 

169# b: boolean - c: complex - f: floats - i: integer - O: object - S: string 

170default_filler = {'b': True, 

171 'c': 1.e20 + 0.0j, 

172 'f': 1.e20, 

173 'i': 999999, 

174 'O': '?', 

175 'S': b'N/A', 

176 'u': 999999, 

177 'V': b'???', 

178 'U': 'N/A' 

179 } 

180 

181# Add datetime64 and timedelta64 types 

182for v in ["Y", "M", "W", "D", "h", "m", "s", "ms", "us", "ns", "ps", 

183 "fs", "as"]: 

184 default_filler["M8[" + v + "]"] = np.datetime64("NaT", v) 

185 default_filler["m8[" + v + "]"] = np.timedelta64("NaT", v) 

186 

187float_types_list = [np.half, np.single, np.double, np.longdouble, 

188 np.csingle, np.cdouble, np.clongdouble] 

189max_filler = ntypes._minvals 

190max_filler.update([(k, -np.inf) for k in float_types_list[:4]]) 

191max_filler.update([(k, complex(-np.inf, -np.inf)) for k in float_types_list[-3:]]) 

192 

193min_filler = ntypes._maxvals 

194min_filler.update([(k, +np.inf) for k in float_types_list[:4]]) 

195min_filler.update([(k, complex(+np.inf, +np.inf)) for k in float_types_list[-3:]]) 

196 

197del float_types_list 

198 

199def _recursive_fill_value(dtype, f): 

200 """ 

201 Recursively produce a fill value for `dtype`, calling f on scalar dtypes 

202 """ 

203 if dtype.names is not None: 

204 # We wrap into `array` here, which ensures we use NumPy cast rules 

205 # for integer casts, this allows the use of 99999 as a fill value 

206 # for int8. 

207 # TODO: This is probably a mess, but should best preserve behavior? 

208 vals = tuple( 

209 np.array(_recursive_fill_value(dtype[name], f)) 

210 for name in dtype.names) 

211 return np.array(vals, dtype=dtype)[()] # decay to void scalar from 0d 

212 elif dtype.subdtype: 

213 subtype, shape = dtype.subdtype 

214 subval = _recursive_fill_value(subtype, f) 

215 return np.full(shape, subval) 

216 else: 

217 return f(dtype) 

218 

219 

220def _get_dtype_of(obj): 

221 """ Convert the argument for *_fill_value into a dtype """ 

222 if isinstance(obj, np.dtype): 

223 return obj 

224 elif hasattr(obj, 'dtype'): 

225 return obj.dtype 

226 else: 

227 return np.asanyarray(obj).dtype 

228 

229 

230def default_fill_value(obj): 

231 """ 

232 Return the default fill value for the argument object. 

233 

234 The default filling value depends on the datatype of the input 

235 array or the type of the input scalar: 

236 

237 ======== ======== 

238 datatype default 

239 ======== ======== 

240 bool True 

241 int 999999 

242 float 1.e20 

243 complex 1.e20+0j 

244 object '?' 

245 string 'N/A' 

246 ======== ======== 

247 

248 For structured types, a structured scalar is returned, with each field the 

249 default fill value for its type. 

250 

251 For subarray types, the fill value is an array of the same size containing 

252 the default scalar fill value. 

253 

254 Parameters 

255 ---------- 

256 obj : ndarray, dtype or scalar 

257 The array data-type or scalar for which the default fill value 

258 is returned. 

259 

260 Returns 

261 ------- 

262 fill_value : scalar 

263 The default fill value. 

264 

265 Examples 

266 -------- 

267 >>> np.ma.default_fill_value(1) 

268 999999 

269 >>> np.ma.default_fill_value(np.array([1.1, 2., np.pi])) 

270 1e+20 

271 >>> np.ma.default_fill_value(np.dtype(complex)) 

272 (1e+20+0j) 

273 

274 """ 

275 def _scalar_fill_value(dtype): 

276 if dtype.kind in 'Mm': 

277 return default_filler.get(dtype.str[1:], '?') 

278 else: 

279 return default_filler.get(dtype.kind, '?') 

280 

281 dtype = _get_dtype_of(obj) 

282 return _recursive_fill_value(dtype, _scalar_fill_value) 

283 

284 

285def _extremum_fill_value(obj, extremum, extremum_name): 

286 

287 def _scalar_fill_value(dtype): 

288 try: 

289 return extremum[dtype] 

290 except KeyError as e: 

291 raise TypeError( 

292 f"Unsuitable type {dtype} for calculating {extremum_name}." 

293 ) from None 

294 

295 dtype = _get_dtype_of(obj) 

296 return _recursive_fill_value(dtype, _scalar_fill_value) 

297 

298 

299def minimum_fill_value(obj): 

300 """ 

301 Return the maximum value that can be represented by the dtype of an object. 

302 

303 This function is useful for calculating a fill value suitable for 

304 taking the minimum of an array with a given dtype. 

305 

306 Parameters 

307 ---------- 

308 obj : ndarray, dtype or scalar 

309 An object that can be queried for it's numeric type. 

310 

311 Returns 

312 ------- 

313 val : scalar 

314 The maximum representable value. 

315 

316 Raises 

317 ------ 

318 TypeError 

319 If `obj` isn't a suitable numeric type. 

320 

321 See Also 

322 -------- 

323 maximum_fill_value : The inverse function. 

324 set_fill_value : Set the filling value of a masked array. 

325 MaskedArray.fill_value : Return current fill value. 

326 

327 Examples 

328 -------- 

329 >>> import numpy.ma as ma 

330 >>> a = np.int8() 

331 >>> ma.minimum_fill_value(a) 

332 127 

333 >>> a = np.int32() 

334 >>> ma.minimum_fill_value(a) 

335 2147483647 

336 

337 An array of numeric data can also be passed. 

338 

339 >>> a = np.array([1, 2, 3], dtype=np.int8) 

340 >>> ma.minimum_fill_value(a) 

341 127 

342 >>> a = np.array([1, 2, 3], dtype=np.float32) 

343 >>> ma.minimum_fill_value(a) 

344 inf 

345 

346 """ 

347 return _extremum_fill_value(obj, min_filler, "minimum") 

348 

349 

350def maximum_fill_value(obj): 

351 """ 

352 Return the minimum value that can be represented by the dtype of an object. 

353 

354 This function is useful for calculating a fill value suitable for 

355 taking the maximum of an array with a given dtype. 

356 

357 Parameters 

358 ---------- 

359 obj : ndarray, dtype or scalar 

360 An object that can be queried for it's numeric type. 

361 

362 Returns 

363 ------- 

364 val : scalar 

365 The minimum representable value. 

366 

367 Raises 

368 ------ 

369 TypeError 

370 If `obj` isn't a suitable numeric type. 

371 

372 See Also 

373 -------- 

374 minimum_fill_value : The inverse function. 

375 set_fill_value : Set the filling value of a masked array. 

376 MaskedArray.fill_value : Return current fill value. 

377 

378 Examples 

379 -------- 

380 >>> import numpy.ma as ma 

381 >>> a = np.int8() 

382 >>> ma.maximum_fill_value(a) 

383 -128 

384 >>> a = np.int32() 

385 >>> ma.maximum_fill_value(a) 

386 -2147483648 

387 

388 An array of numeric data can also be passed. 

389 

390 >>> a = np.array([1, 2, 3], dtype=np.int8) 

391 >>> ma.maximum_fill_value(a) 

392 -128 

393 >>> a = np.array([1, 2, 3], dtype=np.float32) 

394 >>> ma.maximum_fill_value(a) 

395 -inf 

396 

397 """ 

398 return _extremum_fill_value(obj, max_filler, "maximum") 

399 

400 

401def _recursive_set_fill_value(fillvalue, dt): 

402 """ 

403 Create a fill value for a structured dtype. 

404 

405 Parameters 

406 ---------- 

407 fillvalue : scalar or array_like 

408 Scalar or array representing the fill value. If it is of shorter 

409 length than the number of fields in dt, it will be resized. 

410 dt : dtype 

411 The structured dtype for which to create the fill value. 

412 

413 Returns 

414 ------- 

415 val : tuple 

416 A tuple of values corresponding to the structured fill value. 

417 

418 """ 

419 fillvalue = np.resize(fillvalue, len(dt.names)) 

420 output_value = [] 

421 for (fval, name) in zip(fillvalue, dt.names): 

422 cdtype = dt[name] 

423 if cdtype.subdtype: 

424 cdtype = cdtype.subdtype[0] 

425 

426 if cdtype.names is not None: 

427 output_value.append(tuple(_recursive_set_fill_value(fval, cdtype))) 

428 else: 

429 output_value.append(np.array(fval, dtype=cdtype).item()) 

430 return tuple(output_value) 

431 

432 

433def _check_fill_value(fill_value, ndtype): 

434 """ 

435 Private function validating the given `fill_value` for the given dtype. 

436 

437 If fill_value is None, it is set to the default corresponding to the dtype. 

438 

439 If fill_value is not None, its value is forced to the given dtype. 

440 

441 The result is always a 0d array. 

442 

443 """ 

444 ndtype = np.dtype(ndtype) 

445 if fill_value is None: 

446 fill_value = default_fill_value(ndtype) 

447 elif ndtype.names is not None: 

448 if isinstance(fill_value, (ndarray, np.void)): 

449 try: 

450 fill_value = np.array(fill_value, copy=False, dtype=ndtype) 

451 except ValueError as e: 

452 err_msg = "Unable to transform %s to dtype %s" 

453 raise ValueError(err_msg % (fill_value, ndtype)) from e 

454 else: 

455 fill_value = np.asarray(fill_value, dtype=object) 

456 fill_value = np.array(_recursive_set_fill_value(fill_value, ndtype), 

457 dtype=ndtype) 

458 else: 

459 if isinstance(fill_value, str) and (ndtype.char not in 'OSVU'): 

460 # Note this check doesn't work if fill_value is not a scalar 

461 err_msg = "Cannot set fill value of string with array of dtype %s" 

462 raise TypeError(err_msg % ndtype) 

463 else: 

464 # In case we want to convert 1e20 to int. 

465 # Also in case of converting string arrays. 

466 try: 

467 fill_value = np.array(fill_value, copy=False, dtype=ndtype) 

468 except (OverflowError, ValueError) as e: 

469 # Raise TypeError instead of OverflowError or ValueError. 

470 # OverflowError is seldom used, and the real problem here is 

471 # that the passed fill_value is not compatible with the ndtype. 

472 err_msg = "Cannot convert fill_value %s to dtype %s" 

473 raise TypeError(err_msg % (fill_value, ndtype)) from e 

474 return np.array(fill_value) 

475 

476 

477def set_fill_value(a, fill_value): 

478 """ 

479 Set the filling value of a, if a is a masked array. 

480 

481 This function changes the fill value of the masked array `a` in place. 

482 If `a` is not a masked array, the function returns silently, without 

483 doing anything. 

484 

485 Parameters 

486 ---------- 

487 a : array_like 

488 Input array. 

489 fill_value : dtype 

490 Filling value. A consistency test is performed to make sure 

491 the value is compatible with the dtype of `a`. 

492 

493 Returns 

494 ------- 

495 None 

496 Nothing returned by this function. 

497 

498 See Also 

499 -------- 

500 maximum_fill_value : Return the default fill value for a dtype. 

501 MaskedArray.fill_value : Return current fill value. 

502 MaskedArray.set_fill_value : Equivalent method. 

503 

504 Examples 

505 -------- 

506 >>> import numpy.ma as ma 

507 >>> a = np.arange(5) 

508 >>> a 

509 array([0, 1, 2, 3, 4]) 

510 >>> a = ma.masked_where(a < 3, a) 

511 >>> a 

512 masked_array(data=[--, --, --, 3, 4], 

513 mask=[ True, True, True, False, False], 

514 fill_value=999999) 

515 >>> ma.set_fill_value(a, -999) 

516 >>> a 

517 masked_array(data=[--, --, --, 3, 4], 

518 mask=[ True, True, True, False, False], 

519 fill_value=-999) 

520 

521 Nothing happens if `a` is not a masked array. 

522 

523 >>> a = list(range(5)) 

524 >>> a 

525 [0, 1, 2, 3, 4] 

526 >>> ma.set_fill_value(a, 100) 

527 >>> a 

528 [0, 1, 2, 3, 4] 

529 >>> a = np.arange(5) 

530 >>> a 

531 array([0, 1, 2, 3, 4]) 

532 >>> ma.set_fill_value(a, 100) 

533 >>> a 

534 array([0, 1, 2, 3, 4]) 

535 

536 """ 

537 if isinstance(a, MaskedArray): 

538 a.set_fill_value(fill_value) 

539 return 

540 

541 

542def get_fill_value(a): 

543 """ 

544 Return the filling value of a, if any. Otherwise, returns the 

545 default filling value for that type. 

546 

547 """ 

548 if isinstance(a, MaskedArray): 

549 result = a.fill_value 

550 else: 

551 result = default_fill_value(a) 

552 return result 

553 

554 

555def common_fill_value(a, b): 

556 """ 

557 Return the common filling value of two masked arrays, if any. 

558 

559 If ``a.fill_value == b.fill_value``, return the fill value, 

560 otherwise return None. 

561 

562 Parameters 

563 ---------- 

564 a, b : MaskedArray 

565 The masked arrays for which to compare fill values. 

566 

567 Returns 

568 ------- 

569 fill_value : scalar or None 

570 The common fill value, or None. 

571 

572 Examples 

573 -------- 

574 >>> x = np.ma.array([0, 1.], fill_value=3) 

575 >>> y = np.ma.array([0, 1.], fill_value=3) 

576 >>> np.ma.common_fill_value(x, y) 

577 3.0 

578 

579 """ 

580 t1 = get_fill_value(a) 

581 t2 = get_fill_value(b) 

582 if t1 == t2: 

583 return t1 

584 return None 

585 

586 

587def filled(a, fill_value=None): 

588 """ 

589 Return input as an array with masked data replaced by a fill value. 

590 

591 If `a` is not a `MaskedArray`, `a` itself is returned. 

592 If `a` is a `MaskedArray` and `fill_value` is None, `fill_value` is set to 

593 ``a.fill_value``. 

594 

595 Parameters 

596 ---------- 

597 a : MaskedArray or array_like 

598 An input object. 

599 fill_value : array_like, optional. 

600 Can be scalar or non-scalar. If non-scalar, the 

601 resulting filled array should be broadcastable 

602 over input array. Default is None. 

603 

604 Returns 

605 ------- 

606 a : ndarray 

607 The filled array. 

608 

609 See Also 

610 -------- 

611 compressed 

612 

613 Examples 

614 -------- 

615 >>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0], 

616 ... [1, 0, 0], 

617 ... [0, 0, 0]]) 

618 >>> x.filled() 

619 array([[999999, 1, 2], 

620 [999999, 4, 5], 

621 [ 6, 7, 8]]) 

622 >>> x.filled(fill_value=333) 

623 array([[333, 1, 2], 

624 [333, 4, 5], 

625 [ 6, 7, 8]]) 

626 >>> x.filled(fill_value=np.arange(3)) 

627 array([[0, 1, 2], 

628 [0, 4, 5], 

629 [6, 7, 8]]) 

630 

631 """ 

632 if hasattr(a, 'filled'): 

633 return a.filled(fill_value) 

634 

635 elif isinstance(a, ndarray): 

636 # Should we check for contiguity ? and a.flags['CONTIGUOUS']: 

637 return a 

638 elif isinstance(a, dict): 

639 return np.array(a, 'O') 

640 else: 

641 return np.array(a) 

642 

643 

644def get_masked_subclass(*arrays): 

645 """ 

646 Return the youngest subclass of MaskedArray from a list of (masked) arrays. 

647 

648 In case of siblings, the first listed takes over. 

649 

650 """ 

651 if len(arrays) == 1: 

652 arr = arrays[0] 

653 if isinstance(arr, MaskedArray): 

654 rcls = type(arr) 

655 else: 

656 rcls = MaskedArray 

657 else: 

658 arrcls = [type(a) for a in arrays] 

659 rcls = arrcls[0] 

660 if not issubclass(rcls, MaskedArray): 

661 rcls = MaskedArray 

662 for cls in arrcls[1:]: 

663 if issubclass(cls, rcls): 

664 rcls = cls 

665 # Don't return MaskedConstant as result: revert to MaskedArray 

666 if rcls.__name__ == 'MaskedConstant': 

667 return MaskedArray 

668 return rcls 

669 

670 

671def getdata(a, subok=True): 

672 """ 

673 Return the data of a masked array as an ndarray. 

674 

675 Return the data of `a` (if any) as an ndarray if `a` is a ``MaskedArray``, 

676 else return `a` as a ndarray or subclass (depending on `subok`) if not. 

677 

678 Parameters 

679 ---------- 

680 a : array_like 

681 Input ``MaskedArray``, alternatively a ndarray or a subclass thereof. 

682 subok : bool 

683 Whether to force the output to be a `pure` ndarray (False) or to 

684 return a subclass of ndarray if appropriate (True, default). 

685 

686 See Also 

687 -------- 

688 getmask : Return the mask of a masked array, or nomask. 

689 getmaskarray : Return the mask of a masked array, or full array of False. 

690 

691 Examples 

692 -------- 

693 >>> import numpy.ma as ma 

694 >>> a = ma.masked_equal([[1,2],[3,4]], 2) 

695 >>> a 

696 masked_array( 

697 data=[[1, --], 

698 [3, 4]], 

699 mask=[[False, True], 

700 [False, False]], 

701 fill_value=2) 

702 >>> ma.getdata(a) 

703 array([[1, 2], 

704 [3, 4]]) 

705 

706 Equivalently use the ``MaskedArray`` `data` attribute. 

707 

708 >>> a.data 

709 array([[1, 2], 

710 [3, 4]]) 

711 

712 """ 

713 try: 

714 data = a._data 

715 except AttributeError: 

716 data = np.array(a, copy=False, subok=subok) 

717 if not subok: 

718 return data.view(ndarray) 

719 return data 

720 

721 

722get_data = getdata 

723 

724 

725def fix_invalid(a, mask=nomask, copy=True, fill_value=None): 

726 """ 

727 Return input with invalid data masked and replaced by a fill value. 

728 

729 Invalid data means values of `nan`, `inf`, etc. 

730 

731 Parameters 

732 ---------- 

733 a : array_like 

734 Input array, a (subclass of) ndarray. 

735 mask : sequence, optional 

736 Mask. Must be convertible to an array of booleans with the same 

737 shape as `data`. True indicates a masked (i.e. invalid) data. 

738 copy : bool, optional 

739 Whether to use a copy of `a` (True) or to fix `a` in place (False). 

740 Default is True. 

741 fill_value : scalar, optional 

742 Value used for fixing invalid data. Default is None, in which case 

743 the ``a.fill_value`` is used. 

744 

745 Returns 

746 ------- 

747 b : MaskedArray 

748 The input array with invalid entries fixed. 

749 

750 Notes 

751 ----- 

752 A copy is performed by default. 

753 

754 Examples 

755 -------- 

756 >>> x = np.ma.array([1., -1, np.nan, np.inf], mask=[1] + [0]*3) 

757 >>> x 

758 masked_array(data=[--, -1.0, nan, inf], 

759 mask=[ True, False, False, False], 

760 fill_value=1e+20) 

761 >>> np.ma.fix_invalid(x) 

762 masked_array(data=[--, -1.0, --, --], 

763 mask=[ True, False, True, True], 

764 fill_value=1e+20) 

765 

766 >>> fixed = np.ma.fix_invalid(x) 

767 >>> fixed.data 

768 array([ 1.e+00, -1.e+00, 1.e+20, 1.e+20]) 

769 >>> x.data 

770 array([ 1., -1., nan, inf]) 

771 

772 """ 

773 a = masked_array(a, copy=copy, mask=mask, subok=True) 

774 invalid = np.logical_not(np.isfinite(a._data)) 

775 if not invalid.any(): 

776 return a 

777 a._mask |= invalid 

778 if fill_value is None: 

779 fill_value = a.fill_value 

780 a._data[invalid] = fill_value 

781 return a 

782 

783def is_string_or_list_of_strings(val): 

784 return (isinstance(val, str) or 

785 (isinstance(val, list) and val and 

786 builtins.all(isinstance(s, str) for s in val))) 

787 

788############################################################################### 

789# Ufuncs # 

790############################################################################### 

791 

792 

793ufunc_domain = {} 

794ufunc_fills = {} 

795 

796 

797class _DomainCheckInterval: 

798 """ 

799 Define a valid interval, so that : 

800 

801 ``domain_check_interval(a,b)(x) == True`` where 

802 ``x < a`` or ``x > b``. 

803 

804 """ 

805 

806 def __init__(self, a, b): 

807 "domain_check_interval(a,b)(x) = true where x < a or y > b" 

808 if a > b: 

809 (a, b) = (b, a) 

810 self.a = a 

811 self.b = b 

812 

813 def __call__(self, x): 

814 "Execute the call behavior." 

815 # nans at masked positions cause RuntimeWarnings, even though 

816 # they are masked. To avoid this we suppress warnings. 

817 with np.errstate(invalid='ignore'): 

818 return umath.logical_or(umath.greater(x, self.b), 

819 umath.less(x, self.a)) 

820 

821 

822class _DomainTan: 

823 """ 

824 Define a valid interval for the `tan` function, so that: 

825 

826 ``domain_tan(eps) = True`` where ``abs(cos(x)) < eps`` 

827 

828 """ 

829 

830 def __init__(self, eps): 

831 "domain_tan(eps) = true where abs(cos(x)) < eps)" 

832 self.eps = eps 

833 

834 def __call__(self, x): 

835 "Executes the call behavior." 

836 with np.errstate(invalid='ignore'): 

837 return umath.less(umath.absolute(umath.cos(x)), self.eps) 

838 

839 

840class _DomainSafeDivide: 

841 """ 

842 Define a domain for safe division. 

843 

844 """ 

845 

846 def __init__(self, tolerance=None): 

847 self.tolerance = tolerance 

848 

849 def __call__(self, a, b): 

850 # Delay the selection of the tolerance to here in order to reduce numpy 

851 # import times. The calculation of these parameters is a substantial 

852 # component of numpy's import time. 

853 if self.tolerance is None: 

854 self.tolerance = np.finfo(float).tiny 

855 # don't call ma ufuncs from __array_wrap__ which would fail for scalars 

856 a, b = np.asarray(a), np.asarray(b) 

857 with np.errstate(invalid='ignore'): 

858 return umath.absolute(a) * self.tolerance >= umath.absolute(b) 

859 

860 

861class _DomainGreater: 

862 """ 

863 DomainGreater(v)(x) is True where x <= v. 

864 

865 """ 

866 

867 def __init__(self, critical_value): 

868 "DomainGreater(v)(x) = true where x <= v" 

869 self.critical_value = critical_value 

870 

871 def __call__(self, x): 

872 "Executes the call behavior." 

873 with np.errstate(invalid='ignore'): 

874 return umath.less_equal(x, self.critical_value) 

875 

876 

877class _DomainGreaterEqual: 

878 """ 

879 DomainGreaterEqual(v)(x) is True where x < v. 

880 

881 """ 

882 

883 def __init__(self, critical_value): 

884 "DomainGreaterEqual(v)(x) = true where x < v" 

885 self.critical_value = critical_value 

886 

887 def __call__(self, x): 

888 "Executes the call behavior." 

889 with np.errstate(invalid='ignore'): 

890 return umath.less(x, self.critical_value) 

891 

892 

893class _MaskedUFunc: 

894 def __init__(self, ufunc): 

895 self.f = ufunc 

896 self.__doc__ = ufunc.__doc__ 

897 self.__name__ = ufunc.__name__ 

898 

899 def __str__(self): 

900 return f"Masked version of {self.f}" 

901 

902 

903class _MaskedUnaryOperation(_MaskedUFunc): 

904 """ 

905 Defines masked version of unary operations, where invalid values are 

906 pre-masked. 

907 

908 Parameters 

909 ---------- 

910 mufunc : callable 

911 The function for which to define a masked version. Made available 

912 as ``_MaskedUnaryOperation.f``. 

913 fill : scalar, optional 

914 Filling value, default is 0. 

915 domain : class instance 

916 Domain for the function. Should be one of the ``_Domain*`` 

917 classes. Default is None. 

918 

919 """ 

920 

921 def __init__(self, mufunc, fill=0, domain=None): 

922 super().__init__(mufunc) 

923 self.fill = fill 

924 self.domain = domain 

925 ufunc_domain[mufunc] = domain 

926 ufunc_fills[mufunc] = fill 

927 

928 def __call__(self, a, *args, **kwargs): 

929 """ 

930 Execute the call behavior. 

931 

932 """ 

933 d = getdata(a) 

934 # Deal with domain 

935 if self.domain is not None: 

936 # Case 1.1. : Domained function 

937 # nans at masked positions cause RuntimeWarnings, even though 

938 # they are masked. To avoid this we suppress warnings. 

939 with np.errstate(divide='ignore', invalid='ignore'): 

940 result = self.f(d, *args, **kwargs) 

941 # Make a mask 

942 m = ~umath.isfinite(result) 

943 m |= self.domain(d) 

944 m |= getmask(a) 

945 else: 

946 # Case 1.2. : Function without a domain 

947 # Get the result and the mask 

948 with np.errstate(divide='ignore', invalid='ignore'): 

949 result = self.f(d, *args, **kwargs) 

950 m = getmask(a) 

951 

952 if not result.ndim: 

953 # Case 2.1. : The result is scalarscalar 

954 if m: 

955 return masked 

956 return result 

957 

958 if m is not nomask: 

959 # Case 2.2. The result is an array 

960 # We need to fill the invalid data back w/ the input Now, 

961 # that's plain silly: in C, we would just skip the element and 

962 # keep the original, but we do have to do it that way in Python 

963 

964 # In case result has a lower dtype than the inputs (as in 

965 # equal) 

966 try: 

967 np.copyto(result, d, where=m) 

968 except TypeError: 

969 pass 

970 # Transform to 

971 masked_result = result.view(get_masked_subclass(a)) 

972 masked_result._mask = m 

973 masked_result._update_from(a) 

974 return masked_result 

975 

976 

977class _MaskedBinaryOperation(_MaskedUFunc): 

978 """ 

979 Define masked version of binary operations, where invalid 

980 values are pre-masked. 

981 

982 Parameters 

983 ---------- 

984 mbfunc : function 

985 The function for which to define a masked version. Made available 

986 as ``_MaskedBinaryOperation.f``. 

987 domain : class instance 

988 Default domain for the function. Should be one of the ``_Domain*`` 

989 classes. Default is None. 

990 fillx : scalar, optional 

991 Filling value for the first argument, default is 0. 

992 filly : scalar, optional 

993 Filling value for the second argument, default is 0. 

994 

995 """ 

996 

997 def __init__(self, mbfunc, fillx=0, filly=0): 

998 """ 

999 abfunc(fillx, filly) must be defined. 

1000 

1001 abfunc(x, filly) = x for all x to enable reduce. 

1002 

1003 """ 

1004 super().__init__(mbfunc) 

1005 self.fillx = fillx 

1006 self.filly = filly 

1007 ufunc_domain[mbfunc] = None 

1008 ufunc_fills[mbfunc] = (fillx, filly) 

1009 

1010 def __call__(self, a, b, *args, **kwargs): 

1011 """ 

1012 Execute the call behavior. 

1013 

1014 """ 

1015 # Get the data, as ndarray 

1016 (da, db) = (getdata(a), getdata(b)) 

1017 # Get the result 

1018 with np.errstate(): 

1019 np.seterr(divide='ignore', invalid='ignore') 

1020 result = self.f(da, db, *args, **kwargs) 

1021 # Get the mask for the result 

1022 (ma, mb) = (getmask(a), getmask(b)) 

1023 if ma is nomask: 

1024 if mb is nomask: 

1025 m = nomask 

1026 else: 

1027 m = umath.logical_or(getmaskarray(a), mb) 

1028 elif mb is nomask: 

1029 m = umath.logical_or(ma, getmaskarray(b)) 

1030 else: 

1031 m = umath.logical_or(ma, mb) 

1032 

1033 # Case 1. : scalar 

1034 if not result.ndim: 

1035 if m: 

1036 return masked 

1037 return result 

1038 

1039 # Case 2. : array 

1040 # Revert result to da where masked 

1041 if m is not nomask and m.any(): 

1042 # any errors, just abort; impossible to guarantee masked values 

1043 try: 

1044 np.copyto(result, da, casting='unsafe', where=m) 

1045 except Exception: 

1046 pass 

1047 

1048 # Transforms to a (subclass of) MaskedArray 

1049 masked_result = result.view(get_masked_subclass(a, b)) 

1050 masked_result._mask = m 

1051 if isinstance(a, MaskedArray): 

1052 masked_result._update_from(a) 

1053 elif isinstance(b, MaskedArray): 

1054 masked_result._update_from(b) 

1055 return masked_result 

1056 

1057 def reduce(self, target, axis=0, dtype=None): 

1058 """ 

1059 Reduce `target` along the given `axis`. 

1060 

1061 """ 

1062 tclass = get_masked_subclass(target) 

1063 m = getmask(target) 

1064 t = filled(target, self.filly) 

1065 if t.shape == (): 

1066 t = t.reshape(1) 

1067 if m is not nomask: 

1068 m = make_mask(m, copy=True) 

1069 m.shape = (1,) 

1070 

1071 if m is nomask: 

1072 tr = self.f.reduce(t, axis) 

1073 mr = nomask 

1074 else: 

1075 tr = self.f.reduce(t, axis, dtype=dtype) 

1076 mr = umath.logical_and.reduce(m, axis) 

1077 

1078 if not tr.shape: 

1079 if mr: 

1080 return masked 

1081 else: 

1082 return tr 

1083 masked_tr = tr.view(tclass) 

1084 masked_tr._mask = mr 

1085 return masked_tr 

1086 

1087 def outer(self, a, b): 

1088 """ 

1089 Return the function applied to the outer product of a and b. 

1090 

1091 """ 

1092 (da, db) = (getdata(a), getdata(b)) 

1093 d = self.f.outer(da, db) 

1094 ma = getmask(a) 

1095 mb = getmask(b) 

1096 if ma is nomask and mb is nomask: 

1097 m = nomask 

1098 else: 

1099 ma = getmaskarray(a) 

1100 mb = getmaskarray(b) 

1101 m = umath.logical_or.outer(ma, mb) 

1102 if (not m.ndim) and m: 

1103 return masked 

1104 if m is not nomask: 

1105 np.copyto(d, da, where=m) 

1106 if not d.shape: 

1107 return d 

1108 masked_d = d.view(get_masked_subclass(a, b)) 

1109 masked_d._mask = m 

1110 return masked_d 

1111 

1112 def accumulate(self, target, axis=0): 

1113 """Accumulate `target` along `axis` after filling with y fill 

1114 value. 

1115 

1116 """ 

1117 tclass = get_masked_subclass(target) 

1118 t = filled(target, self.filly) 

1119 result = self.f.accumulate(t, axis) 

1120 masked_result = result.view(tclass) 

1121 return masked_result 

1122 

1123 

1124 

1125class _DomainedBinaryOperation(_MaskedUFunc): 

1126 """ 

1127 Define binary operations that have a domain, like divide. 

1128 

1129 They have no reduce, outer or accumulate. 

1130 

1131 Parameters 

1132 ---------- 

1133 mbfunc : function 

1134 The function for which to define a masked version. Made available 

1135 as ``_DomainedBinaryOperation.f``. 

1136 domain : class instance 

1137 Default domain for the function. Should be one of the ``_Domain*`` 

1138 classes. 

1139 fillx : scalar, optional 

1140 Filling value for the first argument, default is 0. 

1141 filly : scalar, optional 

1142 Filling value for the second argument, default is 0. 

1143 

1144 """ 

1145 

1146 def __init__(self, dbfunc, domain, fillx=0, filly=0): 

1147 """abfunc(fillx, filly) must be defined. 

1148 abfunc(x, filly) = x for all x to enable reduce. 

1149 """ 

1150 super().__init__(dbfunc) 

1151 self.domain = domain 

1152 self.fillx = fillx 

1153 self.filly = filly 

1154 ufunc_domain[dbfunc] = domain 

1155 ufunc_fills[dbfunc] = (fillx, filly) 

1156 

1157 def __call__(self, a, b, *args, **kwargs): 

1158 "Execute the call behavior." 

1159 # Get the data 

1160 (da, db) = (getdata(a), getdata(b)) 

1161 # Get the result 

1162 with np.errstate(divide='ignore', invalid='ignore'): 

1163 result = self.f(da, db, *args, **kwargs) 

1164 # Get the mask as a combination of the source masks and invalid 

1165 m = ~umath.isfinite(result) 

1166 m |= getmask(a) 

1167 m |= getmask(b) 

1168 # Apply the domain 

1169 domain = ufunc_domain.get(self.f, None) 

1170 if domain is not None: 

1171 m |= domain(da, db) 

1172 # Take care of the scalar case first 

1173 if not m.ndim: 

1174 if m: 

1175 return masked 

1176 else: 

1177 return result 

1178 # When the mask is True, put back da if possible 

1179 # any errors, just abort; impossible to guarantee masked values 

1180 try: 

1181 np.copyto(result, 0, casting='unsafe', where=m) 

1182 # avoid using "*" since this may be overlaid 

1183 masked_da = umath.multiply(m, da) 

1184 # only add back if it can be cast safely 

1185 if np.can_cast(masked_da.dtype, result.dtype, casting='safe'): 

1186 result += masked_da 

1187 except Exception: 

1188 pass 

1189 

1190 # Transforms to a (subclass of) MaskedArray 

1191 masked_result = result.view(get_masked_subclass(a, b)) 

1192 masked_result._mask = m 

1193 if isinstance(a, MaskedArray): 

1194 masked_result._update_from(a) 

1195 elif isinstance(b, MaskedArray): 

1196 masked_result._update_from(b) 

1197 return masked_result 

1198 

1199 

1200# Unary ufuncs 

1201exp = _MaskedUnaryOperation(umath.exp) 

1202conjugate = _MaskedUnaryOperation(umath.conjugate) 

1203sin = _MaskedUnaryOperation(umath.sin) 

1204cos = _MaskedUnaryOperation(umath.cos) 

1205arctan = _MaskedUnaryOperation(umath.arctan) 

1206arcsinh = _MaskedUnaryOperation(umath.arcsinh) 

1207sinh = _MaskedUnaryOperation(umath.sinh) 

1208cosh = _MaskedUnaryOperation(umath.cosh) 

1209tanh = _MaskedUnaryOperation(umath.tanh) 

1210abs = absolute = _MaskedUnaryOperation(umath.absolute) 

1211angle = _MaskedUnaryOperation(angle) # from numpy.lib.function_base 

1212fabs = _MaskedUnaryOperation(umath.fabs) 

1213negative = _MaskedUnaryOperation(umath.negative) 

1214floor = _MaskedUnaryOperation(umath.floor) 

1215ceil = _MaskedUnaryOperation(umath.ceil) 

1216around = _MaskedUnaryOperation(np.round_) 

1217logical_not = _MaskedUnaryOperation(umath.logical_not) 

1218 

1219# Domained unary ufuncs 

1220sqrt = _MaskedUnaryOperation(umath.sqrt, 0.0, 

1221 _DomainGreaterEqual(0.0)) 

1222log = _MaskedUnaryOperation(umath.log, 1.0, 

1223 _DomainGreater(0.0)) 

1224log2 = _MaskedUnaryOperation(umath.log2, 1.0, 

1225 _DomainGreater(0.0)) 

1226log10 = _MaskedUnaryOperation(umath.log10, 1.0, 

1227 _DomainGreater(0.0)) 

1228tan = _MaskedUnaryOperation(umath.tan, 0.0, 

1229 _DomainTan(1e-35)) 

1230arcsin = _MaskedUnaryOperation(umath.arcsin, 0.0, 

1231 _DomainCheckInterval(-1.0, 1.0)) 

1232arccos = _MaskedUnaryOperation(umath.arccos, 0.0, 

1233 _DomainCheckInterval(-1.0, 1.0)) 

1234arccosh = _MaskedUnaryOperation(umath.arccosh, 1.0, 

1235 _DomainGreaterEqual(1.0)) 

1236arctanh = _MaskedUnaryOperation(umath.arctanh, 0.0, 

1237 _DomainCheckInterval(-1.0 + 1e-15, 1.0 - 1e-15)) 

1238 

1239# Binary ufuncs 

1240add = _MaskedBinaryOperation(umath.add) 

1241subtract = _MaskedBinaryOperation(umath.subtract) 

1242multiply = _MaskedBinaryOperation(umath.multiply, 1, 1) 

1243arctan2 = _MaskedBinaryOperation(umath.arctan2, 0.0, 1.0) 

1244equal = _MaskedBinaryOperation(umath.equal) 

1245equal.reduce = None 

1246not_equal = _MaskedBinaryOperation(umath.not_equal) 

1247not_equal.reduce = None 

1248less_equal = _MaskedBinaryOperation(umath.less_equal) 

1249less_equal.reduce = None 

1250greater_equal = _MaskedBinaryOperation(umath.greater_equal) 

1251greater_equal.reduce = None 

1252less = _MaskedBinaryOperation(umath.less) 

1253less.reduce = None 

1254greater = _MaskedBinaryOperation(umath.greater) 

1255greater.reduce = None 

1256logical_and = _MaskedBinaryOperation(umath.logical_and) 

1257alltrue = _MaskedBinaryOperation(umath.logical_and, 1, 1).reduce 

1258logical_or = _MaskedBinaryOperation(umath.logical_or) 

1259sometrue = logical_or.reduce 

1260logical_xor = _MaskedBinaryOperation(umath.logical_xor) 

1261bitwise_and = _MaskedBinaryOperation(umath.bitwise_and) 

1262bitwise_or = _MaskedBinaryOperation(umath.bitwise_or) 

1263bitwise_xor = _MaskedBinaryOperation(umath.bitwise_xor) 

1264hypot = _MaskedBinaryOperation(umath.hypot) 

1265 

1266# Domained binary ufuncs 

1267divide = _DomainedBinaryOperation(umath.divide, _DomainSafeDivide(), 0, 1) 

1268true_divide = _DomainedBinaryOperation(umath.true_divide, 

1269 _DomainSafeDivide(), 0, 1) 

1270floor_divide = _DomainedBinaryOperation(umath.floor_divide, 

1271 _DomainSafeDivide(), 0, 1) 

1272remainder = _DomainedBinaryOperation(umath.remainder, 

1273 _DomainSafeDivide(), 0, 1) 

1274fmod = _DomainedBinaryOperation(umath.fmod, _DomainSafeDivide(), 0, 1) 

1275mod = _DomainedBinaryOperation(umath.mod, _DomainSafeDivide(), 0, 1) 

1276 

1277 

1278############################################################################### 

1279# Mask creation functions # 

1280############################################################################### 

1281 

1282 

1283def _replace_dtype_fields_recursive(dtype, primitive_dtype): 

1284 "Private function allowing recursion in _replace_dtype_fields." 

1285 _recurse = _replace_dtype_fields_recursive 

1286 

1287 # Do we have some name fields ? 

1288 if dtype.names is not None: 

1289 descr = [] 

1290 for name in dtype.names: 

1291 field = dtype.fields[name] 

1292 if len(field) == 3: 

1293 # Prepend the title to the name 

1294 name = (field[-1], name) 

1295 descr.append((name, _recurse(field[0], primitive_dtype))) 

1296 new_dtype = np.dtype(descr) 

1297 

1298 # Is this some kind of composite a la (float,2) 

1299 elif dtype.subdtype: 

1300 descr = list(dtype.subdtype) 

1301 descr[0] = _recurse(dtype.subdtype[0], primitive_dtype) 

1302 new_dtype = np.dtype(tuple(descr)) 

1303 

1304 # this is a primitive type, so do a direct replacement 

1305 else: 

1306 new_dtype = primitive_dtype 

1307 

1308 # preserve identity of dtypes 

1309 if new_dtype == dtype: 

1310 new_dtype = dtype 

1311 

1312 return new_dtype 

1313 

1314 

1315def _replace_dtype_fields(dtype, primitive_dtype): 

1316 """ 

1317 Construct a dtype description list from a given dtype. 

1318 

1319 Returns a new dtype object, with all fields and subtypes in the given type 

1320 recursively replaced with `primitive_dtype`. 

1321 

1322 Arguments are coerced to dtypes first. 

1323 """ 

1324 dtype = np.dtype(dtype) 

1325 primitive_dtype = np.dtype(primitive_dtype) 

1326 return _replace_dtype_fields_recursive(dtype, primitive_dtype) 

1327 

1328 

1329def make_mask_descr(ndtype): 

1330 """ 

1331 Construct a dtype description list from a given dtype. 

1332 

1333 Returns a new dtype object, with the type of all fields in `ndtype` to a 

1334 boolean type. Field names are not altered. 

1335 

1336 Parameters 

1337 ---------- 

1338 ndtype : dtype 

1339 The dtype to convert. 

1340 

1341 Returns 

1342 ------- 

1343 result : dtype 

1344 A dtype that looks like `ndtype`, the type of all fields is boolean. 

1345 

1346 Examples 

1347 -------- 

1348 >>> import numpy.ma as ma 

1349 >>> dtype = np.dtype({'names':['foo', 'bar'], 

1350 ... 'formats':[np.float32, np.int64]}) 

1351 >>> dtype 

1352 dtype([('foo', '<f4'), ('bar', '<i8')]) 

1353 >>> ma.make_mask_descr(dtype) 

1354 dtype([('foo', '|b1'), ('bar', '|b1')]) 

1355 >>> ma.make_mask_descr(np.float32) 

1356 dtype('bool') 

1357 

1358 """ 

1359 return _replace_dtype_fields(ndtype, MaskType) 

1360 

1361 

1362def getmask(a): 

1363 """ 

1364 Return the mask of a masked array, or nomask. 

1365 

1366 Return the mask of `a` as an ndarray if `a` is a `MaskedArray` and the 

1367 mask is not `nomask`, else return `nomask`. To guarantee a full array 

1368 of booleans of the same shape as a, use `getmaskarray`. 

1369 

1370 Parameters 

1371 ---------- 

1372 a : array_like 

1373 Input `MaskedArray` for which the mask is required. 

1374 

1375 See Also 

1376 -------- 

1377 getdata : Return the data of a masked array as an ndarray. 

1378 getmaskarray : Return the mask of a masked array, or full array of False. 

1379 

1380 Examples 

1381 -------- 

1382 >>> import numpy.ma as ma 

1383 >>> a = ma.masked_equal([[1,2],[3,4]], 2) 

1384 >>> a 

1385 masked_array( 

1386 data=[[1, --], 

1387 [3, 4]], 

1388 mask=[[False, True], 

1389 [False, False]], 

1390 fill_value=2) 

1391 >>> ma.getmask(a) 

1392 array([[False, True], 

1393 [False, False]]) 

1394 

1395 Equivalently use the `MaskedArray` `mask` attribute. 

1396 

1397 >>> a.mask 

1398 array([[False, True], 

1399 [False, False]]) 

1400 

1401 Result when mask == `nomask` 

1402 

1403 >>> b = ma.masked_array([[1,2],[3,4]]) 

1404 >>> b 

1405 masked_array( 

1406 data=[[1, 2], 

1407 [3, 4]], 

1408 mask=False, 

1409 fill_value=999999) 

1410 >>> ma.nomask 

1411 False 

1412 >>> ma.getmask(b) == ma.nomask 

1413 True 

1414 >>> b.mask == ma.nomask 

1415 True 

1416 

1417 """ 

1418 return getattr(a, '_mask', nomask) 

1419 

1420 

1421get_mask = getmask 

1422 

1423 

1424def getmaskarray(arr): 

1425 """ 

1426 Return the mask of a masked array, or full boolean array of False. 

1427 

1428 Return the mask of `arr` as an ndarray if `arr` is a `MaskedArray` and 

1429 the mask is not `nomask`, else return a full boolean array of False of 

1430 the same shape as `arr`. 

1431 

1432 Parameters 

1433 ---------- 

1434 arr : array_like 

1435 Input `MaskedArray` for which the mask is required. 

1436 

1437 See Also 

1438 -------- 

1439 getmask : Return the mask of a masked array, or nomask. 

1440 getdata : Return the data of a masked array as an ndarray. 

1441 

1442 Examples 

1443 -------- 

1444 >>> import numpy.ma as ma 

1445 >>> a = ma.masked_equal([[1,2],[3,4]], 2) 

1446 >>> a 

1447 masked_array( 

1448 data=[[1, --], 

1449 [3, 4]], 

1450 mask=[[False, True], 

1451 [False, False]], 

1452 fill_value=2) 

1453 >>> ma.getmaskarray(a) 

1454 array([[False, True], 

1455 [False, False]]) 

1456 

1457 Result when mask == ``nomask`` 

1458 

1459 >>> b = ma.masked_array([[1,2],[3,4]]) 

1460 >>> b 

1461 masked_array( 

1462 data=[[1, 2], 

1463 [3, 4]], 

1464 mask=False, 

1465 fill_value=999999) 

1466 >>> ma.getmaskarray(b) 

1467 array([[False, False], 

1468 [False, False]]) 

1469 

1470 """ 

1471 mask = getmask(arr) 

1472 if mask is nomask: 

1473 mask = make_mask_none(np.shape(arr), getattr(arr, 'dtype', None)) 

1474 return mask 

1475 

1476 

1477def is_mask(m): 

1478 """ 

1479 Return True if m is a valid, standard mask. 

1480 

1481 This function does not check the contents of the input, only that the 

1482 type is MaskType. In particular, this function returns False if the 

1483 mask has a flexible dtype. 

1484 

1485 Parameters 

1486 ---------- 

1487 m : array_like 

1488 Array to test. 

1489 

1490 Returns 

1491 ------- 

1492 result : bool 

1493 True if `m.dtype.type` is MaskType, False otherwise. 

1494 

1495 See Also 

1496 -------- 

1497 ma.isMaskedArray : Test whether input is an instance of MaskedArray. 

1498 

1499 Examples 

1500 -------- 

1501 >>> import numpy.ma as ma 

1502 >>> m = ma.masked_equal([0, 1, 0, 2, 3], 0) 

1503 >>> m 

1504 masked_array(data=[--, 1, --, 2, 3], 

1505 mask=[ True, False, True, False, False], 

1506 fill_value=0) 

1507 >>> ma.is_mask(m) 

1508 False 

1509 >>> ma.is_mask(m.mask) 

1510 True 

1511 

1512 Input must be an ndarray (or have similar attributes) 

1513 for it to be considered a valid mask. 

1514 

1515 >>> m = [False, True, False] 

1516 >>> ma.is_mask(m) 

1517 False 

1518 >>> m = np.array([False, True, False]) 

1519 >>> m 

1520 array([False, True, False]) 

1521 >>> ma.is_mask(m) 

1522 True 

1523 

1524 Arrays with complex dtypes don't return True. 

1525 

1526 >>> dtype = np.dtype({'names':['monty', 'pithon'], 

1527 ... 'formats':[bool, bool]}) 

1528 >>> dtype 

1529 dtype([('monty', '|b1'), ('pithon', '|b1')]) 

1530 >>> m = np.array([(True, False), (False, True), (True, False)], 

1531 ... dtype=dtype) 

1532 >>> m 

1533 array([( True, False), (False, True), ( True, False)], 

1534 dtype=[('monty', '?'), ('pithon', '?')]) 

1535 >>> ma.is_mask(m) 

1536 False 

1537 

1538 """ 

1539 try: 

1540 return m.dtype.type is MaskType 

1541 except AttributeError: 

1542 return False 

1543 

1544 

1545def _shrink_mask(m): 

1546 """ 

1547 Shrink a mask to nomask if possible 

1548 """ 

1549 if m.dtype.names is None and not m.any(): 

1550 return nomask 

1551 else: 

1552 return m 

1553 

1554 

1555def make_mask(m, copy=False, shrink=True, dtype=MaskType): 

1556 """ 

1557 Create a boolean mask from an array. 

1558 

1559 Return `m` as a boolean mask, creating a copy if necessary or requested. 

1560 The function can accept any sequence that is convertible to integers, 

1561 or ``nomask``. Does not require that contents must be 0s and 1s, values 

1562 of 0 are interpreted as False, everything else as True. 

1563 

1564 Parameters 

1565 ---------- 

1566 m : array_like 

1567 Potential mask. 

1568 copy : bool, optional 

1569 Whether to return a copy of `m` (True) or `m` itself (False). 

1570 shrink : bool, optional 

1571 Whether to shrink `m` to ``nomask`` if all its values are False. 

1572 dtype : dtype, optional 

1573 Data-type of the output mask. By default, the output mask has a 

1574 dtype of MaskType (bool). If the dtype is flexible, each field has 

1575 a boolean dtype. This is ignored when `m` is ``nomask``, in which 

1576 case ``nomask`` is always returned. 

1577 

1578 Returns 

1579 ------- 

1580 result : ndarray 

1581 A boolean mask derived from `m`. 

1582 

1583 Examples 

1584 -------- 

1585 >>> import numpy.ma as ma 

1586 >>> m = [True, False, True, True] 

1587 >>> ma.make_mask(m) 

1588 array([ True, False, True, True]) 

1589 >>> m = [1, 0, 1, 1] 

1590 >>> ma.make_mask(m) 

1591 array([ True, False, True, True]) 

1592 >>> m = [1, 0, 2, -3] 

1593 >>> ma.make_mask(m) 

1594 array([ True, False, True, True]) 

1595 

1596 Effect of the `shrink` parameter. 

1597 

1598 >>> m = np.zeros(4) 

1599 >>> m 

1600 array([0., 0., 0., 0.]) 

1601 >>> ma.make_mask(m) 

1602 False 

1603 >>> ma.make_mask(m, shrink=False) 

1604 array([False, False, False, False]) 

1605 

1606 Using a flexible `dtype`. 

1607 

1608 >>> m = [1, 0, 1, 1] 

1609 >>> n = [0, 1, 0, 0] 

1610 >>> arr = [] 

1611 >>> for man, mouse in zip(m, n): 

1612 ... arr.append((man, mouse)) 

1613 >>> arr 

1614 [(1, 0), (0, 1), (1, 0), (1, 0)] 

1615 >>> dtype = np.dtype({'names':['man', 'mouse'], 

1616 ... 'formats':[np.int64, np.int64]}) 

1617 >>> arr = np.array(arr, dtype=dtype) 

1618 >>> arr 

1619 array([(1, 0), (0, 1), (1, 0), (1, 0)], 

1620 dtype=[('man', '<i8'), ('mouse', '<i8')]) 

1621 >>> ma.make_mask(arr, dtype=dtype) 

1622 array([(True, False), (False, True), (True, False), (True, False)], 

1623 dtype=[('man', '|b1'), ('mouse', '|b1')]) 

1624 

1625 """ 

1626 if m is nomask: 

1627 return nomask 

1628 

1629 # Make sure the input dtype is valid. 

1630 dtype = make_mask_descr(dtype) 

1631 

1632 # legacy boolean special case: "existence of fields implies true" 

1633 if isinstance(m, ndarray) and m.dtype.fields and dtype == np.bool_: 

1634 return np.ones(m.shape, dtype=dtype) 

1635 

1636 # Fill the mask in case there are missing data; turn it into an ndarray. 

1637 result = np.array(filled(m, True), copy=copy, dtype=dtype, subok=True) 

1638 # Bas les masques ! 

1639 if shrink: 

1640 result = _shrink_mask(result) 

1641 return result 

1642 

1643 

1644def make_mask_none(newshape, dtype=None): 

1645 """ 

1646 Return a boolean mask of the given shape, filled with False. 

1647 

1648 This function returns a boolean ndarray with all entries False, that can 

1649 be used in common mask manipulations. If a complex dtype is specified, the 

1650 type of each field is converted to a boolean type. 

1651 

1652 Parameters 

1653 ---------- 

1654 newshape : tuple 

1655 A tuple indicating the shape of the mask. 

1656 dtype : {None, dtype}, optional 

1657 If None, use a MaskType instance. Otherwise, use a new datatype with 

1658 the same fields as `dtype`, converted to boolean types. 

1659 

1660 Returns 

1661 ------- 

1662 result : ndarray 

1663 An ndarray of appropriate shape and dtype, filled with False. 

1664 

1665 See Also 

1666 -------- 

1667 make_mask : Create a boolean mask from an array. 

1668 make_mask_descr : Construct a dtype description list from a given dtype. 

1669 

1670 Examples 

1671 -------- 

1672 >>> import numpy.ma as ma 

1673 >>> ma.make_mask_none((3,)) 

1674 array([False, False, False]) 

1675 

1676 Defining a more complex dtype. 

1677 

1678 >>> dtype = np.dtype({'names':['foo', 'bar'], 

1679 ... 'formats':[np.float32, np.int64]}) 

1680 >>> dtype 

1681 dtype([('foo', '<f4'), ('bar', '<i8')]) 

1682 >>> ma.make_mask_none((3,), dtype=dtype) 

1683 array([(False, False), (False, False), (False, False)], 

1684 dtype=[('foo', '|b1'), ('bar', '|b1')]) 

1685 

1686 """ 

1687 if dtype is None: 

1688 result = np.zeros(newshape, dtype=MaskType) 

1689 else: 

1690 result = np.zeros(newshape, dtype=make_mask_descr(dtype)) 

1691 return result 

1692 

1693 

1694def _recursive_mask_or(m1, m2, newmask): 

1695 names = m1.dtype.names 

1696 for name in names: 

1697 current1 = m1[name] 

1698 if current1.dtype.names is not None: 

1699 _recursive_mask_or(current1, m2[name], newmask[name]) 

1700 else: 

1701 umath.logical_or(current1, m2[name], newmask[name]) 

1702 

1703 

1704def mask_or(m1, m2, copy=False, shrink=True): 

1705 """ 

1706 Combine two masks with the ``logical_or`` operator. 

1707 

1708 The result may be a view on `m1` or `m2` if the other is `nomask` 

1709 (i.e. False). 

1710 

1711 Parameters 

1712 ---------- 

1713 m1, m2 : array_like 

1714 Input masks. 

1715 copy : bool, optional 

1716 If copy is False and one of the inputs is `nomask`, return a view 

1717 of the other input mask. Defaults to False. 

1718 shrink : bool, optional 

1719 Whether to shrink the output to `nomask` if all its values are 

1720 False. Defaults to True. 

1721 

1722 Returns 

1723 ------- 

1724 mask : output mask 

1725 The result masks values that are masked in either `m1` or `m2`. 

1726 

1727 Raises 

1728 ------ 

1729 ValueError 

1730 If `m1` and `m2` have different flexible dtypes. 

1731 

1732 Examples 

1733 -------- 

1734 >>> m1 = np.ma.make_mask([0, 1, 1, 0]) 

1735 >>> m2 = np.ma.make_mask([1, 0, 0, 0]) 

1736 >>> np.ma.mask_or(m1, m2) 

1737 array([ True, True, True, False]) 

1738 

1739 """ 

1740 

1741 if (m1 is nomask) or (m1 is False): 

1742 dtype = getattr(m2, 'dtype', MaskType) 

1743 return make_mask(m2, copy=copy, shrink=shrink, dtype=dtype) 

1744 if (m2 is nomask) or (m2 is False): 

1745 dtype = getattr(m1, 'dtype', MaskType) 

1746 return make_mask(m1, copy=copy, shrink=shrink, dtype=dtype) 

1747 if m1 is m2 and is_mask(m1): 

1748 return m1 

1749 (dtype1, dtype2) = (getattr(m1, 'dtype', None), getattr(m2, 'dtype', None)) 

1750 if dtype1 != dtype2: 

1751 raise ValueError("Incompatible dtypes '%s'<>'%s'" % (dtype1, dtype2)) 

1752 if dtype1.names is not None: 

1753 # Allocate an output mask array with the properly broadcast shape. 

1754 newmask = np.empty(np.broadcast(m1, m2).shape, dtype1) 

1755 _recursive_mask_or(m1, m2, newmask) 

1756 return newmask 

1757 return make_mask(umath.logical_or(m1, m2), copy=copy, shrink=shrink) 

1758 

1759 

1760def flatten_mask(mask): 

1761 """ 

1762 Returns a completely flattened version of the mask, where nested fields 

1763 are collapsed. 

1764 

1765 Parameters 

1766 ---------- 

1767 mask : array_like 

1768 Input array, which will be interpreted as booleans. 

1769 

1770 Returns 

1771 ------- 

1772 flattened_mask : ndarray of bools 

1773 The flattened input. 

1774 

1775 Examples 

1776 -------- 

1777 >>> mask = np.array([0, 0, 1]) 

1778 >>> np.ma.flatten_mask(mask) 

1779 array([False, False, True]) 

1780 

1781 >>> mask = np.array([(0, 0), (0, 1)], dtype=[('a', bool), ('b', bool)]) 

1782 >>> np.ma.flatten_mask(mask) 

1783 array([False, False, False, True]) 

1784 

1785 >>> mdtype = [('a', bool), ('b', [('ba', bool), ('bb', bool)])] 

1786 >>> mask = np.array([(0, (0, 0)), (0, (0, 1))], dtype=mdtype) 

1787 >>> np.ma.flatten_mask(mask) 

1788 array([False, False, False, False, False, True]) 

1789 

1790 """ 

1791 

1792 def _flatmask(mask): 

1793 "Flatten the mask and returns a (maybe nested) sequence of booleans." 

1794 mnames = mask.dtype.names 

1795 if mnames is not None: 

1796 return [flatten_mask(mask[name]) for name in mnames] 

1797 else: 

1798 return mask 

1799 

1800 def _flatsequence(sequence): 

1801 "Generates a flattened version of the sequence." 

1802 try: 

1803 for element in sequence: 

1804 if hasattr(element, '__iter__'): 

1805 yield from _flatsequence(element) 

1806 else: 

1807 yield element 

1808 except TypeError: 

1809 yield sequence 

1810 

1811 mask = np.asarray(mask) 

1812 flattened = _flatsequence(_flatmask(mask)) 

1813 return np.array([_ for _ in flattened], dtype=bool) 

1814 

1815 

1816def _check_mask_axis(mask, axis, keepdims=np._NoValue): 

1817 "Check whether there are masked values along the given axis" 

1818 kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} 

1819 if mask is not nomask: 

1820 return mask.all(axis=axis, **kwargs) 

1821 return nomask 

1822 

1823 

1824############################################################################### 

1825# Masking functions # 

1826############################################################################### 

1827 

1828def masked_where(condition, a, copy=True): 

1829 """ 

1830 Mask an array where a condition is met. 

1831 

1832 Return `a` as an array masked where `condition` is True. 

1833 Any masked values of `a` or `condition` are also masked in the output. 

1834 

1835 Parameters 

1836 ---------- 

1837 condition : array_like 

1838 Masking condition. When `condition` tests floating point values for 

1839 equality, consider using ``masked_values`` instead. 

1840 a : array_like 

1841 Array to mask. 

1842 copy : bool 

1843 If True (default) make a copy of `a` in the result. If False modify 

1844 `a` in place and return a view. 

1845 

1846 Returns 

1847 ------- 

1848 result : MaskedArray 

1849 The result of masking `a` where `condition` is True. 

1850 

1851 See Also 

1852 -------- 

1853 masked_values : Mask using floating point equality. 

1854 masked_equal : Mask where equal to a given value. 

1855 masked_not_equal : Mask where `not` equal to a given value. 

1856 masked_less_equal : Mask where less than or equal to a given value. 

1857 masked_greater_equal : Mask where greater than or equal to a given value. 

1858 masked_less : Mask where less than a given value. 

1859 masked_greater : Mask where greater than a given value. 

1860 masked_inside : Mask inside a given interval. 

1861 masked_outside : Mask outside a given interval. 

1862 masked_invalid : Mask invalid values (NaNs or infs). 

1863 

1864 Examples 

1865 -------- 

1866 >>> import numpy.ma as ma 

1867 >>> a = np.arange(4) 

1868 >>> a 

1869 array([0, 1, 2, 3]) 

1870 >>> ma.masked_where(a <= 2, a) 

1871 masked_array(data=[--, --, --, 3], 

1872 mask=[ True, True, True, False], 

1873 fill_value=999999) 

1874 

1875 Mask array `b` conditional on `a`. 

1876 

1877 >>> b = ['a', 'b', 'c', 'd'] 

1878 >>> ma.masked_where(a == 2, b) 

1879 masked_array(data=['a', 'b', --, 'd'], 

1880 mask=[False, False, True, False], 

1881 fill_value='N/A', 

1882 dtype='<U1') 

1883 

1884 Effect of the `copy` argument. 

1885 

1886 >>> c = ma.masked_where(a <= 2, a) 

1887 >>> c 

1888 masked_array(data=[--, --, --, 3], 

1889 mask=[ True, True, True, False], 

1890 fill_value=999999) 

1891 >>> c[0] = 99 

1892 >>> c 

1893 masked_array(data=[99, --, --, 3], 

1894 mask=[False, True, True, False], 

1895 fill_value=999999) 

1896 >>> a 

1897 array([0, 1, 2, 3]) 

1898 >>> c = ma.masked_where(a <= 2, a, copy=False) 

1899 >>> c[0] = 99 

1900 >>> c 

1901 masked_array(data=[99, --, --, 3], 

1902 mask=[False, True, True, False], 

1903 fill_value=999999) 

1904 >>> a 

1905 array([99, 1, 2, 3]) 

1906 

1907 When `condition` or `a` contain masked values. 

1908 

1909 >>> a = np.arange(4) 

1910 >>> a = ma.masked_where(a == 2, a) 

1911 >>> a 

1912 masked_array(data=[0, 1, --, 3], 

1913 mask=[False, False, True, False], 

1914 fill_value=999999) 

1915 >>> b = np.arange(4) 

1916 >>> b = ma.masked_where(b == 0, b) 

1917 >>> b 

1918 masked_array(data=[--, 1, 2, 3], 

1919 mask=[ True, False, False, False], 

1920 fill_value=999999) 

1921 >>> ma.masked_where(a == 3, b) 

1922 masked_array(data=[--, 1, --, --], 

1923 mask=[ True, False, True, True], 

1924 fill_value=999999) 

1925 

1926 """ 

1927 # Make sure that condition is a valid standard-type mask. 

1928 cond = make_mask(condition, shrink=False) 

1929 a = np.array(a, copy=copy, subok=True) 

1930 

1931 (cshape, ashape) = (cond.shape, a.shape) 

1932 if cshape and cshape != ashape: 

1933 raise IndexError("Inconsistent shape between the condition and the input" 

1934 " (got %s and %s)" % (cshape, ashape)) 

1935 if hasattr(a, '_mask'): 

1936 cond = mask_or(cond, a._mask) 

1937 cls = type(a) 

1938 else: 

1939 cls = MaskedArray 

1940 result = a.view(cls) 

1941 # Assign to *.mask so that structured masks are handled correctly. 

1942 result.mask = _shrink_mask(cond) 

1943 # There is no view of a boolean so when 'a' is a MaskedArray with nomask 

1944 # the update to the result's mask has no effect. 

1945 if not copy and hasattr(a, '_mask') and getmask(a) is nomask: 

1946 a._mask = result._mask.view() 

1947 return result 

1948 

1949 

1950def masked_greater(x, value, copy=True): 

1951 """ 

1952 Mask an array where greater than a given value. 

1953 

1954 This function is a shortcut to ``masked_where``, with 

1955 `condition` = (x > value). 

1956 

1957 See Also 

1958 -------- 

1959 masked_where : Mask where a condition is met. 

1960 

1961 Examples 

1962 -------- 

1963 >>> import numpy.ma as ma 

1964 >>> a = np.arange(4) 

1965 >>> a 

1966 array([0, 1, 2, 3]) 

1967 >>> ma.masked_greater(a, 2) 

1968 masked_array(data=[0, 1, 2, --], 

1969 mask=[False, False, False, True], 

1970 fill_value=999999) 

1971 

1972 """ 

1973 return masked_where(greater(x, value), x, copy=copy) 

1974 

1975 

1976def masked_greater_equal(x, value, copy=True): 

1977 """ 

1978 Mask an array where greater than or equal to a given value. 

1979 

1980 This function is a shortcut to ``masked_where``, with 

1981 `condition` = (x >= value). 

1982 

1983 See Also 

1984 -------- 

1985 masked_where : Mask where a condition is met. 

1986 

1987 Examples 

1988 -------- 

1989 >>> import numpy.ma as ma 

1990 >>> a = np.arange(4) 

1991 >>> a 

1992 array([0, 1, 2, 3]) 

1993 >>> ma.masked_greater_equal(a, 2) 

1994 masked_array(data=[0, 1, --, --], 

1995 mask=[False, False, True, True], 

1996 fill_value=999999) 

1997 

1998 """ 

1999 return masked_where(greater_equal(x, value), x, copy=copy) 

2000 

2001 

2002def masked_less(x, value, copy=True): 

2003 """ 

2004 Mask an array where less than a given value. 

2005 

2006 This function is a shortcut to ``masked_where``, with 

2007 `condition` = (x < value). 

2008 

2009 See Also 

2010 -------- 

2011 masked_where : Mask where a condition is met. 

2012 

2013 Examples 

2014 -------- 

2015 >>> import numpy.ma as ma 

2016 >>> a = np.arange(4) 

2017 >>> a 

2018 array([0, 1, 2, 3]) 

2019 >>> ma.masked_less(a, 2) 

2020 masked_array(data=[--, --, 2, 3], 

2021 mask=[ True, True, False, False], 

2022 fill_value=999999) 

2023 

2024 """ 

2025 return masked_where(less(x, value), x, copy=copy) 

2026 

2027 

2028def masked_less_equal(x, value, copy=True): 

2029 """ 

2030 Mask an array where less than or equal to a given value. 

2031 

2032 This function is a shortcut to ``masked_where``, with 

2033 `condition` = (x <= value). 

2034 

2035 See Also 

2036 -------- 

2037 masked_where : Mask where a condition is met. 

2038 

2039 Examples 

2040 -------- 

2041 >>> import numpy.ma as ma 

2042 >>> a = np.arange(4) 

2043 >>> a 

2044 array([0, 1, 2, 3]) 

2045 >>> ma.masked_less_equal(a, 2) 

2046 masked_array(data=[--, --, --, 3], 

2047 mask=[ True, True, True, False], 

2048 fill_value=999999) 

2049 

2050 """ 

2051 return masked_where(less_equal(x, value), x, copy=copy) 

2052 

2053 

2054def masked_not_equal(x, value, copy=True): 

2055 """ 

2056 Mask an array where `not` equal to a given value. 

2057 

2058 This function is a shortcut to ``masked_where``, with 

2059 `condition` = (x != value). 

2060 

2061 See Also 

2062 -------- 

2063 masked_where : Mask where a condition is met. 

2064 

2065 Examples 

2066 -------- 

2067 >>> import numpy.ma as ma 

2068 >>> a = np.arange(4) 

2069 >>> a 

2070 array([0, 1, 2, 3]) 

2071 >>> ma.masked_not_equal(a, 2) 

2072 masked_array(data=[--, --, 2, --], 

2073 mask=[ True, True, False, True], 

2074 fill_value=999999) 

2075 

2076 """ 

2077 return masked_where(not_equal(x, value), x, copy=copy) 

2078 

2079 

2080def masked_equal(x, value, copy=True): 

2081 """ 

2082 Mask an array where equal to a given value. 

2083 

2084 Return a MaskedArray, masked where the data in array `x` are 

2085 equal to `value`. The fill_value of the returned MaskedArray 

2086 is set to `value`. 

2087 

2088 For floating point arrays, consider using ``masked_values(x, value)``. 

2089 

2090 See Also 

2091 -------- 

2092 masked_where : Mask where a condition is met. 

2093 masked_values : Mask using floating point equality. 

2094 

2095 Examples 

2096 -------- 

2097 >>> import numpy.ma as ma 

2098 >>> a = np.arange(4) 

2099 >>> a 

2100 array([0, 1, 2, 3]) 

2101 >>> ma.masked_equal(a, 2) 

2102 masked_array(data=[0, 1, --, 3], 

2103 mask=[False, False, True, False], 

2104 fill_value=2) 

2105 

2106 """ 

2107 output = masked_where(equal(x, value), x, copy=copy) 

2108 output.fill_value = value 

2109 return output 

2110 

2111 

2112def masked_inside(x, v1, v2, copy=True): 

2113 """ 

2114 Mask an array inside a given interval. 

2115 

2116 Shortcut to ``masked_where``, where `condition` is True for `x` inside 

2117 the interval [v1,v2] (v1 <= x <= v2). The boundaries `v1` and `v2` 

2118 can be given in either order. 

2119 

2120 See Also 

2121 -------- 

2122 masked_where : Mask where a condition is met. 

2123 

2124 Notes 

2125 ----- 

2126 The array `x` is prefilled with its filling value. 

2127 

2128 Examples 

2129 -------- 

2130 >>> import numpy.ma as ma 

2131 >>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1] 

2132 >>> ma.masked_inside(x, -0.3, 0.3) 

2133 masked_array(data=[0.31, 1.2, --, --, -0.4, -1.1], 

2134 mask=[False, False, True, True, False, False], 

2135 fill_value=1e+20) 

2136 

2137 The order of `v1` and `v2` doesn't matter. 

2138 

2139 >>> ma.masked_inside(x, 0.3, -0.3) 

2140 masked_array(data=[0.31, 1.2, --, --, -0.4, -1.1], 

2141 mask=[False, False, True, True, False, False], 

2142 fill_value=1e+20) 

2143 

2144 """ 

2145 if v2 < v1: 

2146 (v1, v2) = (v2, v1) 

2147 xf = filled(x) 

2148 condition = (xf >= v1) & (xf <= v2) 

2149 return masked_where(condition, x, copy=copy) 

2150 

2151 

2152def masked_outside(x, v1, v2, copy=True): 

2153 """ 

2154 Mask an array outside a given interval. 

2155 

2156 Shortcut to ``masked_where``, where `condition` is True for `x` outside 

2157 the interval [v1,v2] (x < v1)|(x > v2). 

2158 The boundaries `v1` and `v2` can be given in either order. 

2159 

2160 See Also 

2161 -------- 

2162 masked_where : Mask where a condition is met. 

2163 

2164 Notes 

2165 ----- 

2166 The array `x` is prefilled with its filling value. 

2167 

2168 Examples 

2169 -------- 

2170 >>> import numpy.ma as ma 

2171 >>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1] 

2172 >>> ma.masked_outside(x, -0.3, 0.3) 

2173 masked_array(data=[--, --, 0.01, 0.2, --, --], 

2174 mask=[ True, True, False, False, True, True], 

2175 fill_value=1e+20) 

2176 

2177 The order of `v1` and `v2` doesn't matter. 

2178 

2179 >>> ma.masked_outside(x, 0.3, -0.3) 

2180 masked_array(data=[--, --, 0.01, 0.2, --, --], 

2181 mask=[ True, True, False, False, True, True], 

2182 fill_value=1e+20) 

2183 

2184 """ 

2185 if v2 < v1: 

2186 (v1, v2) = (v2, v1) 

2187 xf = filled(x) 

2188 condition = (xf < v1) | (xf > v2) 

2189 return masked_where(condition, x, copy=copy) 

2190 

2191 

2192def masked_object(x, value, copy=True, shrink=True): 

2193 """ 

2194 Mask the array `x` where the data are exactly equal to value. 

2195 

2196 This function is similar to `masked_values`, but only suitable 

2197 for object arrays: for floating point, use `masked_values` instead. 

2198 

2199 Parameters 

2200 ---------- 

2201 x : array_like 

2202 Array to mask 

2203 value : object 

2204 Comparison value 

2205 copy : {True, False}, optional 

2206 Whether to return a copy of `x`. 

2207 shrink : {True, False}, optional 

2208 Whether to collapse a mask full of False to nomask 

2209 

2210 Returns 

2211 ------- 

2212 result : MaskedArray 

2213 The result of masking `x` where equal to `value`. 

2214 

2215 See Also 

2216 -------- 

2217 masked_where : Mask where a condition is met. 

2218 masked_equal : Mask where equal to a given value (integers). 

2219 masked_values : Mask using floating point equality. 

2220 

2221 Examples 

2222 -------- 

2223 >>> import numpy.ma as ma 

2224 >>> food = np.array(['green_eggs', 'ham'], dtype=object) 

2225 >>> # don't eat spoiled food 

2226 >>> eat = ma.masked_object(food, 'green_eggs') 

2227 >>> eat 

2228 masked_array(data=[--, 'ham'], 

2229 mask=[ True, False], 

2230 fill_value='green_eggs', 

2231 dtype=object) 

2232 >>> # plain ol` ham is boring 

2233 >>> fresh_food = np.array(['cheese', 'ham', 'pineapple'], dtype=object) 

2234 >>> eat = ma.masked_object(fresh_food, 'green_eggs') 

2235 >>> eat 

2236 masked_array(data=['cheese', 'ham', 'pineapple'], 

2237 mask=False, 

2238 fill_value='green_eggs', 

2239 dtype=object) 

2240 

2241 Note that `mask` is set to ``nomask`` if possible. 

2242 

2243 >>> eat 

2244 masked_array(data=['cheese', 'ham', 'pineapple'], 

2245 mask=False, 

2246 fill_value='green_eggs', 

2247 dtype=object) 

2248 

2249 """ 

2250 if isMaskedArray(x): 

2251 condition = umath.equal(x._data, value) 

2252 mask = x._mask 

2253 else: 

2254 condition = umath.equal(np.asarray(x), value) 

2255 mask = nomask 

2256 mask = mask_or(mask, make_mask(condition, shrink=shrink)) 

2257 return masked_array(x, mask=mask, copy=copy, fill_value=value) 

2258 

2259 

2260def masked_values(x, value, rtol=1e-5, atol=1e-8, copy=True, shrink=True): 

2261 """ 

2262 Mask using floating point equality. 

2263 

2264 Return a MaskedArray, masked where the data in array `x` are approximately 

2265 equal to `value`, determined using `isclose`. The default tolerances for 

2266 `masked_values` are the same as those for `isclose`. 

2267 

2268 For integer types, exact equality is used, in the same way as 

2269 `masked_equal`. 

2270 

2271 The fill_value is set to `value` and the mask is set to ``nomask`` if 

2272 possible. 

2273 

2274 Parameters 

2275 ---------- 

2276 x : array_like 

2277 Array to mask. 

2278 value : float 

2279 Masking value. 

2280 rtol, atol : float, optional 

2281 Tolerance parameters passed on to `isclose` 

2282 copy : bool, optional 

2283 Whether to return a copy of `x`. 

2284 shrink : bool, optional 

2285 Whether to collapse a mask full of False to ``nomask``. 

2286 

2287 Returns 

2288 ------- 

2289 result : MaskedArray 

2290 The result of masking `x` where approximately equal to `value`. 

2291 

2292 See Also 

2293 -------- 

2294 masked_where : Mask where a condition is met. 

2295 masked_equal : Mask where equal to a given value (integers). 

2296 

2297 Examples 

2298 -------- 

2299 >>> import numpy.ma as ma 

2300 >>> x = np.array([1, 1.1, 2, 1.1, 3]) 

2301 >>> ma.masked_values(x, 1.1) 

2302 masked_array(data=[1.0, --, 2.0, --, 3.0], 

2303 mask=[False, True, False, True, False], 

2304 fill_value=1.1) 

2305 

2306 Note that `mask` is set to ``nomask`` if possible. 

2307 

2308 >>> ma.masked_values(x, 2.1) 

2309 masked_array(data=[1. , 1.1, 2. , 1.1, 3. ], 

2310 mask=False, 

2311 fill_value=2.1) 

2312 

2313 Unlike `masked_equal`, `masked_values` can perform approximate equalities.  

2314 

2315 >>> ma.masked_values(x, 2.1, atol=1e-1) 

2316 masked_array(data=[1.0, 1.1, --, 1.1, 3.0], 

2317 mask=[False, False, True, False, False], 

2318 fill_value=2.1) 

2319 

2320 """ 

2321 xnew = filled(x, value) 

2322 if np.issubdtype(xnew.dtype, np.floating): 

2323 mask = np.isclose(xnew, value, atol=atol, rtol=rtol) 

2324 else: 

2325 mask = umath.equal(xnew, value) 

2326 ret = masked_array(xnew, mask=mask, copy=copy, fill_value=value) 

2327 if shrink: 

2328 ret.shrink_mask() 

2329 return ret 

2330 

2331 

2332def masked_invalid(a, copy=True): 

2333 """ 

2334 Mask an array where invalid values occur (NaNs or infs). 

2335 

2336 This function is a shortcut to ``masked_where``, with 

2337 `condition` = ~(np.isfinite(a)). Any pre-existing mask is conserved. 

2338 Only applies to arrays with a dtype where NaNs or infs make sense 

2339 (i.e. floating point types), but accepts any array_like object. 

2340 

2341 See Also 

2342 -------- 

2343 masked_where : Mask where a condition is met. 

2344 

2345 Examples 

2346 -------- 

2347 >>> import numpy.ma as ma 

2348 >>> a = np.arange(5, dtype=float) 

2349 >>> a[2] = np.NaN 

2350 >>> a[3] = np.PINF 

2351 >>> a 

2352 array([ 0., 1., nan, inf, 4.]) 

2353 >>> ma.masked_invalid(a) 

2354 masked_array(data=[0.0, 1.0, --, --, 4.0], 

2355 mask=[False, False, True, True, False], 

2356 fill_value=1e+20) 

2357 

2358 """ 

2359 a = np.array(a, copy=False, subok=True) 

2360 res = masked_where(~(np.isfinite(a)), a, copy=copy) 

2361 # masked_invalid previously never returned nomask as a mask and doing so 

2362 # threw off matplotlib (gh-22842). So use shrink=False: 

2363 if res._mask is nomask: 

2364 res._mask = make_mask_none(res.shape, res.dtype) 

2365 return res 

2366 

2367############################################################################### 

2368# Printing options # 

2369############################################################################### 

2370 

2371 

2372class _MaskedPrintOption: 

2373 """ 

2374 Handle the string used to represent missing data in a masked array. 

2375 

2376 """ 

2377 

2378 def __init__(self, display): 

2379 """ 

2380 Create the masked_print_option object. 

2381 

2382 """ 

2383 self._display = display 

2384 self._enabled = True 

2385 

2386 def display(self): 

2387 """ 

2388 Display the string to print for masked values. 

2389 

2390 """ 

2391 return self._display 

2392 

2393 def set_display(self, s): 

2394 """ 

2395 Set the string to print for masked values. 

2396 

2397 """ 

2398 self._display = s 

2399 

2400 def enabled(self): 

2401 """ 

2402 Is the use of the display value enabled? 

2403 

2404 """ 

2405 return self._enabled 

2406 

2407 def enable(self, shrink=1): 

2408 """ 

2409 Set the enabling shrink to `shrink`. 

2410 

2411 """ 

2412 self._enabled = shrink 

2413 

2414 def __str__(self): 

2415 return str(self._display) 

2416 

2417 __repr__ = __str__ 

2418 

2419# if you single index into a masked location you get this object. 

2420masked_print_option = _MaskedPrintOption('--') 

2421 

2422 

2423def _recursive_printoption(result, mask, printopt): 

2424 """ 

2425 Puts printoptions in result where mask is True. 

2426 

2427 Private function allowing for recursion 

2428 

2429 """ 

2430 names = result.dtype.names 

2431 if names is not None: 

2432 for name in names: 

2433 curdata = result[name] 

2434 curmask = mask[name] 

2435 _recursive_printoption(curdata, curmask, printopt) 

2436 else: 

2437 np.copyto(result, printopt, where=mask) 

2438 return 

2439 

2440# For better or worse, these end in a newline 

2441_legacy_print_templates = dict( 

2442 long_std=textwrap.dedent("""\ 

2443 masked_%(name)s(data = 

2444 %(data)s, 

2445 %(nlen)s mask = 

2446 %(mask)s, 

2447 %(nlen)s fill_value = %(fill)s) 

2448 """), 

2449 long_flx=textwrap.dedent("""\ 

2450 masked_%(name)s(data = 

2451 %(data)s, 

2452 %(nlen)s mask = 

2453 %(mask)s, 

2454 %(nlen)s fill_value = %(fill)s, 

2455 %(nlen)s dtype = %(dtype)s) 

2456 """), 

2457 short_std=textwrap.dedent("""\ 

2458 masked_%(name)s(data = %(data)s, 

2459 %(nlen)s mask = %(mask)s, 

2460 %(nlen)s fill_value = %(fill)s) 

2461 """), 

2462 short_flx=textwrap.dedent("""\ 

2463 masked_%(name)s(data = %(data)s, 

2464 %(nlen)s mask = %(mask)s, 

2465 %(nlen)s fill_value = %(fill)s, 

2466 %(nlen)s dtype = %(dtype)s) 

2467 """) 

2468) 

2469 

2470############################################################################### 

2471# MaskedArray class # 

2472############################################################################### 

2473 

2474 

2475def _recursive_filled(a, mask, fill_value): 

2476 """ 

2477 Recursively fill `a` with `fill_value`. 

2478 

2479 """ 

2480 names = a.dtype.names 

2481 for name in names: 

2482 current = a[name] 

2483 if current.dtype.names is not None: 

2484 _recursive_filled(current, mask[name], fill_value[name]) 

2485 else: 

2486 np.copyto(current, fill_value[name], where=mask[name]) 

2487 

2488 

2489def flatten_structured_array(a): 

2490 """ 

2491 Flatten a structured array. 

2492 

2493 The data type of the output is chosen such that it can represent all of the 

2494 (nested) fields. 

2495 

2496 Parameters 

2497 ---------- 

2498 a : structured array 

2499 

2500 Returns 

2501 ------- 

2502 output : masked array or ndarray 

2503 A flattened masked array if the input is a masked array, otherwise a 

2504 standard ndarray. 

2505 

2506 Examples 

2507 -------- 

2508 >>> ndtype = [('a', int), ('b', float)] 

2509 >>> a = np.array([(1, 1), (2, 2)], dtype=ndtype) 

2510 >>> np.ma.flatten_structured_array(a) 

2511 array([[1., 1.], 

2512 [2., 2.]]) 

2513 

2514 """ 

2515 

2516 def flatten_sequence(iterable): 

2517 """ 

2518 Flattens a compound of nested iterables. 

2519 

2520 """ 

2521 for elm in iter(iterable): 

2522 if hasattr(elm, '__iter__'): 

2523 yield from flatten_sequence(elm) 

2524 else: 

2525 yield elm 

2526 

2527 a = np.asanyarray(a) 

2528 inishape = a.shape 

2529 a = a.ravel() 

2530 if isinstance(a, MaskedArray): 

2531 out = np.array([tuple(flatten_sequence(d.item())) for d in a._data]) 

2532 out = out.view(MaskedArray) 

2533 out._mask = np.array([tuple(flatten_sequence(d.item())) 

2534 for d in getmaskarray(a)]) 

2535 else: 

2536 out = np.array([tuple(flatten_sequence(d.item())) for d in a]) 

2537 if len(inishape) > 1: 

2538 newshape = list(out.shape) 

2539 newshape[0] = inishape 

2540 out.shape = tuple(flatten_sequence(newshape)) 

2541 return out 

2542 

2543 

2544def _arraymethod(funcname, onmask=True): 

2545 """ 

2546 Return a class method wrapper around a basic array method. 

2547 

2548 Creates a class method which returns a masked array, where the new 

2549 ``_data`` array is the output of the corresponding basic method called 

2550 on the original ``_data``. 

2551 

2552 If `onmask` is True, the new mask is the output of the method called 

2553 on the initial mask. Otherwise, the new mask is just a reference 

2554 to the initial mask. 

2555 

2556 Parameters 

2557 ---------- 

2558 funcname : str 

2559 Name of the function to apply on data. 

2560 onmask : bool 

2561 Whether the mask must be processed also (True) or left 

2562 alone (False). Default is True. Make available as `_onmask` 

2563 attribute. 

2564 

2565 Returns 

2566 ------- 

2567 method : instancemethod 

2568 Class method wrapper of the specified basic array method. 

2569 

2570 """ 

2571 def wrapped_method(self, *args, **params): 

2572 result = getattr(self._data, funcname)(*args, **params) 

2573 result = result.view(type(self)) 

2574 result._update_from(self) 

2575 mask = self._mask 

2576 if not onmask: 

2577 result.__setmask__(mask) 

2578 elif mask is not nomask: 

2579 # __setmask__ makes a copy, which we don't want 

2580 result._mask = getattr(mask, funcname)(*args, **params) 

2581 return result 

2582 methdoc = getattr(ndarray, funcname, None) or getattr(np, funcname, None) 

2583 if methdoc is not None: 

2584 wrapped_method.__doc__ = methdoc.__doc__ 

2585 wrapped_method.__name__ = funcname 

2586 return wrapped_method 

2587 

2588 

2589class MaskedIterator: 

2590 """ 

2591 Flat iterator object to iterate over masked arrays. 

2592 

2593 A `MaskedIterator` iterator is returned by ``x.flat`` for any masked array 

2594 `x`. It allows iterating over the array as if it were a 1-D array, 

2595 either in a for-loop or by calling its `next` method. 

2596 

2597 Iteration is done in C-contiguous style, with the last index varying the 

2598 fastest. The iterator can also be indexed using basic slicing or 

2599 advanced indexing. 

2600 

2601 See Also 

2602 -------- 

2603 MaskedArray.flat : Return a flat iterator over an array. 

2604 MaskedArray.flatten : Returns a flattened copy of an array. 

2605 

2606 Notes 

2607 ----- 

2608 `MaskedIterator` is not exported by the `ma` module. Instead of 

2609 instantiating a `MaskedIterator` directly, use `MaskedArray.flat`. 

2610 

2611 Examples 

2612 -------- 

2613 >>> x = np.ma.array(arange(6).reshape(2, 3)) 

2614 >>> fl = x.flat 

2615 >>> type(fl) 

2616 <class 'numpy.ma.core.MaskedIterator'> 

2617 >>> for item in fl: 

2618 ... print(item) 

2619 ... 

2620 0 

2621 1 

2622 2 

2623 3 

2624 4 

2625 5 

2626 

2627 Extracting more than a single element b indexing the `MaskedIterator` 

2628 returns a masked array: 

2629 

2630 >>> fl[2:4] 

2631 masked_array(data = [2 3], 

2632 mask = False, 

2633 fill_value = 999999) 

2634 

2635 """ 

2636 

2637 def __init__(self, ma): 

2638 self.ma = ma 

2639 self.dataiter = ma._data.flat 

2640 

2641 if ma._mask is nomask: 

2642 self.maskiter = None 

2643 else: 

2644 self.maskiter = ma._mask.flat 

2645 

2646 def __iter__(self): 

2647 return self 

2648 

2649 def __getitem__(self, indx): 

2650 result = self.dataiter.__getitem__(indx).view(type(self.ma)) 

2651 if self.maskiter is not None: 

2652 _mask = self.maskiter.__getitem__(indx) 

2653 if isinstance(_mask, ndarray): 

2654 # set shape to match that of data; this is needed for matrices 

2655 _mask.shape = result.shape 

2656 result._mask = _mask 

2657 elif isinstance(_mask, np.void): 

2658 return mvoid(result, mask=_mask, hardmask=self.ma._hardmask) 

2659 elif _mask: # Just a scalar, masked 

2660 return masked 

2661 return result 

2662 

2663 # This won't work if ravel makes a copy 

2664 def __setitem__(self, index, value): 

2665 self.dataiter[index] = getdata(value) 

2666 if self.maskiter is not None: 

2667 self.maskiter[index] = getmaskarray(value) 

2668 

2669 def __next__(self): 

2670 """ 

2671 Return the next value, or raise StopIteration. 

2672 

2673 Examples 

2674 -------- 

2675 >>> x = np.ma.array([3, 2], mask=[0, 1]) 

2676 >>> fl = x.flat 

2677 >>> next(fl) 

2678 3 

2679 >>> next(fl) 

2680 masked 

2681 >>> next(fl) 

2682 Traceback (most recent call last): 

2683 ... 

2684 StopIteration 

2685 

2686 """ 

2687 d = next(self.dataiter) 

2688 if self.maskiter is not None: 

2689 m = next(self.maskiter) 

2690 if isinstance(m, np.void): 

2691 return mvoid(d, mask=m, hardmask=self.ma._hardmask) 

2692 elif m: # Just a scalar, masked 

2693 return masked 

2694 return d 

2695 

2696 

2697class MaskedArray(ndarray): 

2698 """ 

2699 An array class with possibly masked values. 

2700 

2701 Masked values of True exclude the corresponding element from any 

2702 computation. 

2703 

2704 Construction:: 

2705 

2706 x = MaskedArray(data, mask=nomask, dtype=None, copy=False, subok=True, 

2707 ndmin=0, fill_value=None, keep_mask=True, hard_mask=None, 

2708 shrink=True, order=None) 

2709 

2710 Parameters 

2711 ---------- 

2712 data : array_like 

2713 Input data. 

2714 mask : sequence, optional 

2715 Mask. Must be convertible to an array of booleans with the same 

2716 shape as `data`. True indicates a masked (i.e. invalid) data. 

2717 dtype : dtype, optional 

2718 Data type of the output. 

2719 If `dtype` is None, the type of the data argument (``data.dtype``) 

2720 is used. If `dtype` is not None and different from ``data.dtype``, 

2721 a copy is performed. 

2722 copy : bool, optional 

2723 Whether to copy the input data (True), or to use a reference instead. 

2724 Default is False. 

2725 subok : bool, optional 

2726 Whether to return a subclass of `MaskedArray` if possible (True) or a 

2727 plain `MaskedArray`. Default is True. 

2728 ndmin : int, optional 

2729 Minimum number of dimensions. Default is 0. 

2730 fill_value : scalar, optional 

2731 Value used to fill in the masked values when necessary. 

2732 If None, a default based on the data-type is used. 

2733 keep_mask : bool, optional 

2734 Whether to combine `mask` with the mask of the input data, if any 

2735 (True), or to use only `mask` for the output (False). Default is True. 

2736 hard_mask : bool, optional 

2737 Whether to use a hard mask or not. With a hard mask, masked values 

2738 cannot be unmasked. Default is False. 

2739 shrink : bool, optional 

2740 Whether to force compression of an empty mask. Default is True. 

2741 order : {'C', 'F', 'A'}, optional 

2742 Specify the order of the array. If order is 'C', then the array 

2743 will be in C-contiguous order (last-index varies the fastest). 

2744 If order is 'F', then the returned array will be in 

2745 Fortran-contiguous order (first-index varies the fastest). 

2746 If order is 'A' (default), then the returned array may be 

2747 in any order (either C-, Fortran-contiguous, or even discontiguous), 

2748 unless a copy is required, in which case it will be C-contiguous. 

2749 

2750 Examples 

2751 -------- 

2752 

2753 The ``mask`` can be initialized with an array of boolean values 

2754 with the same shape as ``data``. 

2755 

2756 >>> data = np.arange(6).reshape((2, 3)) 

2757 >>> np.ma.MaskedArray(data, mask=[[False, True, False], 

2758 ... [False, False, True]]) 

2759 masked_array( 

2760 data=[[0, --, 2], 

2761 [3, 4, --]], 

2762 mask=[[False, True, False], 

2763 [False, False, True]], 

2764 fill_value=999999) 

2765 

2766 Alternatively, the ``mask`` can be initialized to homogeneous boolean 

2767 array with the same shape as ``data`` by passing in a scalar 

2768 boolean value: 

2769 

2770 >>> np.ma.MaskedArray(data, mask=False) 

2771 masked_array( 

2772 data=[[0, 1, 2], 

2773 [3, 4, 5]], 

2774 mask=[[False, False, False], 

2775 [False, False, False]], 

2776 fill_value=999999) 

2777 

2778 >>> np.ma.MaskedArray(data, mask=True) 

2779 masked_array( 

2780 data=[[--, --, --], 

2781 [--, --, --]], 

2782 mask=[[ True, True, True], 

2783 [ True, True, True]], 

2784 fill_value=999999, 

2785 dtype=int64) 

2786 

2787 .. note:: 

2788 The recommended practice for initializing ``mask`` with a scalar 

2789 boolean value is to use ``True``/``False`` rather than 

2790 ``np.True_``/``np.False_``. The reason is :attr:`nomask` 

2791 is represented internally as ``np.False_``. 

2792 

2793 >>> np.False_ is np.ma.nomask 

2794 True 

2795 

2796 """ 

2797 

2798 __array_priority__ = 15 

2799 _defaultmask = nomask 

2800 _defaulthardmask = False 

2801 _baseclass = ndarray 

2802 

2803 # Maximum number of elements per axis used when printing an array. The 

2804 # 1d case is handled separately because we need more values in this case. 

2805 _print_width = 100 

2806 _print_width_1d = 1500 

2807 

2808 def __new__(cls, data=None, mask=nomask, dtype=None, copy=False, 

2809 subok=True, ndmin=0, fill_value=None, keep_mask=True, 

2810 hard_mask=None, shrink=True, order=None): 

2811 """ 

2812 Create a new masked array from scratch. 

2813 

2814 Notes 

2815 ----- 

2816 A masked array can also be created by taking a .view(MaskedArray). 

2817 

2818 """ 

2819 # Process data. 

2820 _data = np.array(data, dtype=dtype, copy=copy, 

2821 order=order, subok=True, ndmin=ndmin) 

2822 _baseclass = getattr(data, '_baseclass', type(_data)) 

2823 # Check that we're not erasing the mask. 

2824 if isinstance(data, MaskedArray) and (data.shape != _data.shape): 

2825 copy = True 

2826 

2827 # Here, we copy the _view_, so that we can attach new properties to it 

2828 # we must never do .view(MaskedConstant), as that would create a new 

2829 # instance of np.ma.masked, which make identity comparison fail 

2830 if isinstance(data, cls) and subok and not isinstance(data, MaskedConstant): 

2831 _data = ndarray.view(_data, type(data)) 

2832 else: 

2833 _data = ndarray.view(_data, cls) 

2834 

2835 # Handle the case where data is not a subclass of ndarray, but 

2836 # still has the _mask attribute like MaskedArrays 

2837 if hasattr(data, '_mask') and not isinstance(data, ndarray): 

2838 _data._mask = data._mask 

2839 # FIXME: should we set `_data._sharedmask = True`? 

2840 # Process mask. 

2841 # Type of the mask 

2842 mdtype = make_mask_descr(_data.dtype) 

2843 

2844 if mask is nomask: 

2845 # Case 1. : no mask in input. 

2846 # Erase the current mask ? 

2847 if not keep_mask: 

2848 # With a reduced version 

2849 if shrink: 

2850 _data._mask = nomask 

2851 # With full version 

2852 else: 

2853 _data._mask = np.zeros(_data.shape, dtype=mdtype) 

2854 # Check whether we missed something 

2855 elif isinstance(data, (tuple, list)): 

2856 try: 

2857 # If data is a sequence of masked array 

2858 mask = np.array( 

2859 [getmaskarray(np.asanyarray(m, dtype=_data.dtype)) 

2860 for m in data], dtype=mdtype) 

2861 except ValueError: 

2862 # If data is nested 

2863 mask = nomask 

2864 # Force shrinking of the mask if needed (and possible) 

2865 if (mdtype == MaskType) and mask.any(): 

2866 _data._mask = mask 

2867 _data._sharedmask = False 

2868 else: 

2869 _data._sharedmask = not copy 

2870 if copy: 

2871 _data._mask = _data._mask.copy() 

2872 # Reset the shape of the original mask 

2873 if getmask(data) is not nomask: 

2874 data._mask.shape = data.shape 

2875 else: 

2876 # Case 2. : With a mask in input. 

2877 # If mask is boolean, create an array of True or False 

2878 if mask is True and mdtype == MaskType: 

2879 mask = np.ones(_data.shape, dtype=mdtype) 

2880 elif mask is False and mdtype == MaskType: 

2881 mask = np.zeros(_data.shape, dtype=mdtype) 

2882 else: 

2883 # Read the mask with the current mdtype 

2884 try: 

2885 mask = np.array(mask, copy=copy, dtype=mdtype) 

2886 # Or assume it's a sequence of bool/int 

2887 except TypeError: 

2888 mask = np.array([tuple([m] * len(mdtype)) for m in mask], 

2889 dtype=mdtype) 

2890 # Make sure the mask and the data have the same shape 

2891 if mask.shape != _data.shape: 

2892 (nd, nm) = (_data.size, mask.size) 

2893 if nm == 1: 

2894 mask = np.resize(mask, _data.shape) 

2895 elif nm == nd: 

2896 mask = np.reshape(mask, _data.shape) 

2897 else: 

2898 msg = "Mask and data not compatible: data size is %i, " + \ 

2899 "mask size is %i." 

2900 raise MaskError(msg % (nd, nm)) 

2901 copy = True 

2902 # Set the mask to the new value 

2903 if _data._mask is nomask: 

2904 _data._mask = mask 

2905 _data._sharedmask = not copy 

2906 else: 

2907 if not keep_mask: 

2908 _data._mask = mask 

2909 _data._sharedmask = not copy 

2910 else: 

2911 if _data.dtype.names is not None: 

2912 def _recursive_or(a, b): 

2913 "do a|=b on each field of a, recursively" 

2914 for name in a.dtype.names: 

2915 (af, bf) = (a[name], b[name]) 

2916 if af.dtype.names is not None: 

2917 _recursive_or(af, bf) 

2918 else: 

2919 af |= bf 

2920 

2921 _recursive_or(_data._mask, mask) 

2922 else: 

2923 _data._mask = np.logical_or(mask, _data._mask) 

2924 _data._sharedmask = False 

2925 # Update fill_value. 

2926 if fill_value is None: 

2927 fill_value = getattr(data, '_fill_value', None) 

2928 # But don't run the check unless we have something to check. 

2929 if fill_value is not None: 

2930 _data._fill_value = _check_fill_value(fill_value, _data.dtype) 

2931 # Process extra options .. 

2932 if hard_mask is None: 

2933 _data._hardmask = getattr(data, '_hardmask', False) 

2934 else: 

2935 _data._hardmask = hard_mask 

2936 _data._baseclass = _baseclass 

2937 return _data 

2938 

2939 

2940 def _update_from(self, obj): 

2941 """ 

2942 Copies some attributes of obj to self. 

2943 

2944 """ 

2945 if isinstance(obj, ndarray): 

2946 _baseclass = type(obj) 

2947 else: 

2948 _baseclass = ndarray 

2949 # We need to copy the _basedict to avoid backward propagation 

2950 _optinfo = {} 

2951 _optinfo.update(getattr(obj, '_optinfo', {})) 

2952 _optinfo.update(getattr(obj, '_basedict', {})) 

2953 if not isinstance(obj, MaskedArray): 

2954 _optinfo.update(getattr(obj, '__dict__', {})) 

2955 _dict = dict(_fill_value=getattr(obj, '_fill_value', None), 

2956 _hardmask=getattr(obj, '_hardmask', False), 

2957 _sharedmask=getattr(obj, '_sharedmask', False), 

2958 _isfield=getattr(obj, '_isfield', False), 

2959 _baseclass=getattr(obj, '_baseclass', _baseclass), 

2960 _optinfo=_optinfo, 

2961 _basedict=_optinfo) 

2962 self.__dict__.update(_dict) 

2963 self.__dict__.update(_optinfo) 

2964 return 

2965 

2966 def __array_finalize__(self, obj): 

2967 """ 

2968 Finalizes the masked array. 

2969 

2970 """ 

2971 # Get main attributes. 

2972 self._update_from(obj) 

2973 

2974 # We have to decide how to initialize self.mask, based on 

2975 # obj.mask. This is very difficult. There might be some 

2976 # correspondence between the elements in the array we are being 

2977 # created from (= obj) and us. Or there might not. This method can 

2978 # be called in all kinds of places for all kinds of reasons -- could 

2979 # be empty_like, could be slicing, could be a ufunc, could be a view. 

2980 # The numpy subclassing interface simply doesn't give us any way 

2981 # to know, which means that at best this method will be based on 

2982 # guesswork and heuristics. To make things worse, there isn't even any 

2983 # clear consensus about what the desired behavior is. For instance, 

2984 # most users think that np.empty_like(marr) -- which goes via this 

2985 # method -- should return a masked array with an empty mask (see 

2986 # gh-3404 and linked discussions), but others disagree, and they have 

2987 # existing code which depends on empty_like returning an array that 

2988 # matches the input mask. 

2989 # 

2990 # Historically our algorithm was: if the template object mask had the 

2991 # same *number of elements* as us, then we used *it's mask object 

2992 # itself* as our mask, so that writes to us would also write to the 

2993 # original array. This is horribly broken in multiple ways. 

2994 # 

2995 # Now what we do instead is, if the template object mask has the same 

2996 # number of elements as us, and we do not have the same base pointer 

2997 # as the template object (b/c views like arr[...] should keep the same 

2998 # mask), then we make a copy of the template object mask and use 

2999 # that. This is also horribly broken but somewhat less so. Maybe. 

3000 if isinstance(obj, ndarray): 

3001 # XX: This looks like a bug -- shouldn't it check self.dtype 

3002 # instead? 

3003 if obj.dtype.names is not None: 

3004 _mask = getmaskarray(obj) 

3005 else: 

3006 _mask = getmask(obj) 

3007 

3008 # If self and obj point to exactly the same data, then probably 

3009 # self is a simple view of obj (e.g., self = obj[...]), so they 

3010 # should share the same mask. (This isn't 100% reliable, e.g. self 

3011 # could be the first row of obj, or have strange strides, but as a 

3012 # heuristic it's not bad.) In all other cases, we make a copy of 

3013 # the mask, so that future modifications to 'self' do not end up 

3014 # side-effecting 'obj' as well. 

3015 if (_mask is not nomask and obj.__array_interface__["data"][0] 

3016 != self.__array_interface__["data"][0]): 

3017 # We should make a copy. But we could get here via astype, 

3018 # in which case the mask might need a new dtype as well 

3019 # (e.g., changing to or from a structured dtype), and the 

3020 # order could have changed. So, change the mask type if 

3021 # needed and use astype instead of copy. 

3022 if self.dtype == obj.dtype: 

3023 _mask_dtype = _mask.dtype 

3024 else: 

3025 _mask_dtype = make_mask_descr(self.dtype) 

3026 

3027 if self.flags.c_contiguous: 

3028 order = "C" 

3029 elif self.flags.f_contiguous: 

3030 order = "F" 

3031 else: 

3032 order = "K" 

3033 

3034 _mask = _mask.astype(_mask_dtype, order) 

3035 else: 

3036 # Take a view so shape changes, etc., do not propagate back. 

3037 _mask = _mask.view() 

3038 else: 

3039 _mask = nomask 

3040 

3041 self._mask = _mask 

3042 # Finalize the mask 

3043 if self._mask is not nomask: 

3044 try: 

3045 self._mask.shape = self.shape 

3046 except ValueError: 

3047 self._mask = nomask 

3048 except (TypeError, AttributeError): 

3049 # When _mask.shape is not writable (because it's a void) 

3050 pass 

3051 

3052 # Finalize the fill_value 

3053 if self._fill_value is not None: 

3054 self._fill_value = _check_fill_value(self._fill_value, self.dtype) 

3055 elif self.dtype.names is not None: 

3056 # Finalize the default fill_value for structured arrays 

3057 self._fill_value = _check_fill_value(None, self.dtype) 

3058 

3059 def __array_wrap__(self, obj, context=None): 

3060 """ 

3061 Special hook for ufuncs. 

3062 

3063 Wraps the numpy array and sets the mask according to context. 

3064 

3065 """ 

3066 if obj is self: # for in-place operations 

3067 result = obj 

3068 else: 

3069 result = obj.view(type(self)) 

3070 result._update_from(self) 

3071 

3072 if context is not None: 

3073 result._mask = result._mask.copy() 

3074 func, args, out_i = context 

3075 # args sometimes contains outputs (gh-10459), which we don't want 

3076 input_args = args[:func.nin] 

3077 m = reduce(mask_or, [getmaskarray(arg) for arg in input_args]) 

3078 # Get the domain mask 

3079 domain = ufunc_domain.get(func, None) 

3080 if domain is not None: 

3081 # Take the domain, and make sure it's a ndarray 

3082 with np.errstate(divide='ignore', invalid='ignore'): 

3083 d = filled(domain(*input_args), True) 

3084 

3085 if d.any(): 

3086 # Fill the result where the domain is wrong 

3087 try: 

3088 # Binary domain: take the last value 

3089 fill_value = ufunc_fills[func][-1] 

3090 except TypeError: 

3091 # Unary domain: just use this one 

3092 fill_value = ufunc_fills[func] 

3093 except KeyError: 

3094 # Domain not recognized, use fill_value instead 

3095 fill_value = self.fill_value 

3096 

3097 np.copyto(result, fill_value, where=d) 

3098 

3099 # Update the mask 

3100 if m is nomask: 

3101 m = d 

3102 else: 

3103 # Don't modify inplace, we risk back-propagation 

3104 m = (m | d) 

3105 

3106 # Make sure the mask has the proper size 

3107 if result is not self and result.shape == () and m: 

3108 return masked 

3109 else: 

3110 result._mask = m 

3111 result._sharedmask = False 

3112 

3113 return result 

3114 

3115 def view(self, dtype=None, type=None, fill_value=None): 

3116 """ 

3117 Return a view of the MaskedArray data. 

3118 

3119 Parameters 

3120 ---------- 

3121 dtype : data-type or ndarray sub-class, optional 

3122 Data-type descriptor of the returned view, e.g., float32 or int16. 

3123 The default, None, results in the view having the same data-type 

3124 as `a`. As with ``ndarray.view``, dtype can also be specified as 

3125 an ndarray sub-class, which then specifies the type of the 

3126 returned object (this is equivalent to setting the ``type`` 

3127 parameter). 

3128 type : Python type, optional 

3129 Type of the returned view, either ndarray or a subclass. The 

3130 default None results in type preservation. 

3131 fill_value : scalar, optional 

3132 The value to use for invalid entries (None by default). 

3133 If None, then this argument is inferred from the passed `dtype`, or 

3134 in its absence the original array, as discussed in the notes below. 

3135 

3136 See Also 

3137 -------- 

3138 numpy.ndarray.view : Equivalent method on ndarray object. 

3139 

3140 Notes 

3141 ----- 

3142 

3143 ``a.view()`` is used two different ways: 

3144 

3145 ``a.view(some_dtype)`` or ``a.view(dtype=some_dtype)`` constructs a view 

3146 of the array's memory with a different data-type. This can cause a 

3147 reinterpretation of the bytes of memory. 

3148 

3149 ``a.view(ndarray_subclass)`` or ``a.view(type=ndarray_subclass)`` just 

3150 returns an instance of `ndarray_subclass` that looks at the same array 

3151 (same shape, dtype, etc.) This does not cause a reinterpretation of the 

3152 memory. 

3153 

3154 If `fill_value` is not specified, but `dtype` is specified (and is not 

3155 an ndarray sub-class), the `fill_value` of the MaskedArray will be 

3156 reset. If neither `fill_value` nor `dtype` are specified (or if 

3157 `dtype` is an ndarray sub-class), then the fill value is preserved. 

3158 Finally, if `fill_value` is specified, but `dtype` is not, the fill 

3159 value is set to the specified value. 

3160 

3161 For ``a.view(some_dtype)``, if ``some_dtype`` has a different number of 

3162 bytes per entry than the previous dtype (for example, converting a 

3163 regular array to a structured array), then the behavior of the view 

3164 cannot be predicted just from the superficial appearance of ``a`` (shown 

3165 by ``print(a)``). It also depends on exactly how ``a`` is stored in 

3166 memory. Therefore if ``a`` is C-ordered versus fortran-ordered, versus 

3167 defined as a slice or transpose, etc., the view may give different 

3168 results. 

3169 """ 

3170 

3171 if dtype is None: 

3172 if type is None: 

3173 output = ndarray.view(self) 

3174 else: 

3175 output = ndarray.view(self, type) 

3176 elif type is None: 

3177 try: 

3178 if issubclass(dtype, ndarray): 

3179 output = ndarray.view(self, dtype) 

3180 dtype = None 

3181 else: 

3182 output = ndarray.view(self, dtype) 

3183 except TypeError: 

3184 output = ndarray.view(self, dtype) 

3185 else: 

3186 output = ndarray.view(self, dtype, type) 

3187 

3188 # also make the mask be a view (so attr changes to the view's 

3189 # mask do no affect original object's mask) 

3190 # (especially important to avoid affecting np.masked singleton) 

3191 if getmask(output) is not nomask: 

3192 output._mask = output._mask.view() 

3193 

3194 # Make sure to reset the _fill_value if needed 

3195 if getattr(output, '_fill_value', None) is not None: 

3196 if fill_value is None: 

3197 if dtype is None: 

3198 pass # leave _fill_value as is 

3199 else: 

3200 output._fill_value = None 

3201 else: 

3202 output.fill_value = fill_value 

3203 return output 

3204 

3205 def __getitem__(self, indx): 

3206 """ 

3207 x.__getitem__(y) <==> x[y] 

3208 

3209 Return the item described by i, as a masked array. 

3210 

3211 """ 

3212 # We could directly use ndarray.__getitem__ on self. 

3213 # But then we would have to modify __array_finalize__ to prevent the 

3214 # mask of being reshaped if it hasn't been set up properly yet 

3215 # So it's easier to stick to the current version 

3216 dout = self.data[indx] 

3217 _mask = self._mask 

3218 

3219 def _is_scalar(m): 

3220 return not isinstance(m, np.ndarray) 

3221 

3222 def _scalar_heuristic(arr, elem): 

3223 """ 

3224 Return whether `elem` is a scalar result of indexing `arr`, or None 

3225 if undecidable without promoting nomask to a full mask 

3226 """ 

3227 # obviously a scalar 

3228 if not isinstance(elem, np.ndarray): 

3229 return True 

3230 

3231 # object array scalar indexing can return anything 

3232 elif arr.dtype.type is np.object_: 

3233 if arr.dtype is not elem.dtype: 

3234 # elem is an array, but dtypes do not match, so must be 

3235 # an element 

3236 return True 

3237 

3238 # well-behaved subclass that only returns 0d arrays when 

3239 # expected - this is not a scalar 

3240 elif type(arr).__getitem__ == ndarray.__getitem__: 

3241 return False 

3242 

3243 return None 

3244 

3245 if _mask is not nomask: 

3246 # _mask cannot be a subclass, so it tells us whether we should 

3247 # expect a scalar. It also cannot be of dtype object. 

3248 mout = _mask[indx] 

3249 scalar_expected = _is_scalar(mout) 

3250 

3251 else: 

3252 # attempt to apply the heuristic to avoid constructing a full mask 

3253 mout = nomask 

3254 scalar_expected = _scalar_heuristic(self.data, dout) 

3255 if scalar_expected is None: 

3256 # heuristics have failed 

3257 # construct a full array, so we can be certain. This is costly. 

3258 # we could also fall back on ndarray.__getitem__(self.data, indx) 

3259 scalar_expected = _is_scalar(getmaskarray(self)[indx]) 

3260 

3261 # Did we extract a single item? 

3262 if scalar_expected: 

3263 # A record 

3264 if isinstance(dout, np.void): 

3265 # We should always re-cast to mvoid, otherwise users can 

3266 # change masks on rows that already have masked values, but not 

3267 # on rows that have no masked values, which is inconsistent. 

3268 return mvoid(dout, mask=mout, hardmask=self._hardmask) 

3269 

3270 # special case introduced in gh-5962 

3271 elif (self.dtype.type is np.object_ and 

3272 isinstance(dout, np.ndarray) and 

3273 dout is not masked): 

3274 # If masked, turn into a MaskedArray, with everything masked. 

3275 if mout: 

3276 return MaskedArray(dout, mask=True) 

3277 else: 

3278 return dout 

3279 

3280 # Just a scalar 

3281 else: 

3282 if mout: 

3283 return masked 

3284 else: 

3285 return dout 

3286 else: 

3287 # Force dout to MA 

3288 dout = dout.view(type(self)) 

3289 # Inherit attributes from self 

3290 dout._update_from(self) 

3291 # Check the fill_value 

3292 if is_string_or_list_of_strings(indx): 

3293 if self._fill_value is not None: 

3294 dout._fill_value = self._fill_value[indx] 

3295 

3296 # Something like gh-15895 has happened if this check fails. 

3297 # _fill_value should always be an ndarray. 

3298 if not isinstance(dout._fill_value, np.ndarray): 

3299 raise RuntimeError('Internal NumPy error.') 

3300 # If we're indexing a multidimensional field in a 

3301 # structured array (such as dtype("(2,)i2,(2,)i1")), 

3302 # dimensionality goes up (M[field].ndim == M.ndim + 

3303 # M.dtype[field].ndim). That's fine for 

3304 # M[field] but problematic for M[field].fill_value 

3305 # which should have shape () to avoid breaking several 

3306 # methods. There is no great way out, so set to 

3307 # first element. See issue #6723. 

3308 if dout._fill_value.ndim > 0: 

3309 if not (dout._fill_value == 

3310 dout._fill_value.flat[0]).all(): 

3311 warnings.warn( 

3312 "Upon accessing multidimensional field " 

3313 f"{indx!s}, need to keep dimensionality " 

3314 "of fill_value at 0. Discarding " 

3315 "heterogeneous fill_value and setting " 

3316 f"all to {dout._fill_value[0]!s}.", 

3317 stacklevel=2) 

3318 # Need to use `.flat[0:1].squeeze(...)` instead of just 

3319 # `.flat[0]` to ensure the result is a 0d array and not 

3320 # a scalar. 

3321 dout._fill_value = dout._fill_value.flat[0:1].squeeze(axis=0) 

3322 dout._isfield = True 

3323 # Update the mask if needed 

3324 if mout is not nomask: 

3325 # set shape to match that of data; this is needed for matrices 

3326 dout._mask = reshape(mout, dout.shape) 

3327 dout._sharedmask = True 

3328 # Note: Don't try to check for m.any(), that'll take too long 

3329 return dout 

3330 

3331 def __setitem__(self, indx, value): 

3332 """ 

3333 x.__setitem__(i, y) <==> x[i]=y 

3334 

3335 Set item described by index. If value is masked, masks those 

3336 locations. 

3337 

3338 """ 

3339 if self is masked: 

3340 raise MaskError('Cannot alter the masked element.') 

3341 _data = self._data 

3342 _mask = self._mask 

3343 if isinstance(indx, str): 

3344 _data[indx] = value 

3345 if _mask is nomask: 

3346 self._mask = _mask = make_mask_none(self.shape, self.dtype) 

3347 _mask[indx] = getmask(value) 

3348 return 

3349 

3350 _dtype = _data.dtype 

3351 

3352 if value is masked: 

3353 # The mask wasn't set: create a full version. 

3354 if _mask is nomask: 

3355 _mask = self._mask = make_mask_none(self.shape, _dtype) 

3356 # Now, set the mask to its value. 

3357 if _dtype.names is not None: 

3358 _mask[indx] = tuple([True] * len(_dtype.names)) 

3359 else: 

3360 _mask[indx] = True 

3361 return 

3362 

3363 # Get the _data part of the new value 

3364 dval = getattr(value, '_data', value) 

3365 # Get the _mask part of the new value 

3366 mval = getmask(value) 

3367 if _dtype.names is not None and mval is nomask: 

3368 mval = tuple([False] * len(_dtype.names)) 

3369 if _mask is nomask: 

3370 # Set the data, then the mask 

3371 _data[indx] = dval 

3372 if mval is not nomask: 

3373 _mask = self._mask = make_mask_none(self.shape, _dtype) 

3374 _mask[indx] = mval 

3375 elif not self._hardmask: 

3376 # Set the data, then the mask 

3377 if (isinstance(indx, masked_array) and 

3378 not isinstance(value, masked_array)): 

3379 _data[indx.data] = dval 

3380 else: 

3381 _data[indx] = dval 

3382 _mask[indx] = mval 

3383 elif hasattr(indx, 'dtype') and (indx.dtype == MaskType): 

3384 indx = indx * umath.logical_not(_mask) 

3385 _data[indx] = dval 

3386 else: 

3387 if _dtype.names is not None: 

3388 err_msg = "Flexible 'hard' masks are not yet supported." 

3389 raise NotImplementedError(err_msg) 

3390 mindx = mask_or(_mask[indx], mval, copy=True) 

3391 dindx = self._data[indx] 

3392 if dindx.size > 1: 

3393 np.copyto(dindx, dval, where=~mindx) 

3394 elif mindx is nomask: 

3395 dindx = dval 

3396 _data[indx] = dindx 

3397 _mask[indx] = mindx 

3398 return 

3399 

3400 # Define so that we can overwrite the setter. 

3401 @property 

3402 def dtype(self): 

3403 return super().dtype 

3404 

3405 @dtype.setter 

3406 def dtype(self, dtype): 

3407 super(MaskedArray, type(self)).dtype.__set__(self, dtype) 

3408 if self._mask is not nomask: 

3409 self._mask = self._mask.view(make_mask_descr(dtype), ndarray) 

3410 # Try to reset the shape of the mask (if we don't have a void). 

3411 # This raises a ValueError if the dtype change won't work. 

3412 try: 

3413 self._mask.shape = self.shape 

3414 except (AttributeError, TypeError): 

3415 pass 

3416 

3417 @property 

3418 def shape(self): 

3419 return super().shape 

3420 

3421 @shape.setter 

3422 def shape(self, shape): 

3423 super(MaskedArray, type(self)).shape.__set__(self, shape) 

3424 # Cannot use self._mask, since it may not (yet) exist when a 

3425 # masked matrix sets the shape. 

3426 if getmask(self) is not nomask: 

3427 self._mask.shape = self.shape 

3428 

3429 def __setmask__(self, mask, copy=False): 

3430 """ 

3431 Set the mask. 

3432 

3433 """ 

3434 idtype = self.dtype 

3435 current_mask = self._mask 

3436 if mask is masked: 

3437 mask = True 

3438 

3439 if current_mask is nomask: 

3440 # Make sure the mask is set 

3441 # Just don't do anything if there's nothing to do. 

3442 if mask is nomask: 

3443 return 

3444 current_mask = self._mask = make_mask_none(self.shape, idtype) 

3445 

3446 if idtype.names is None: 

3447 # No named fields. 

3448 # Hardmask: don't unmask the data 

3449 if self._hardmask: 

3450 current_mask |= mask 

3451 # Softmask: set everything to False 

3452 # If it's obviously a compatible scalar, use a quick update 

3453 # method. 

3454 elif isinstance(mask, (int, float, np.bool_, np.number)): 

3455 current_mask[...] = mask 

3456 # Otherwise fall back to the slower, general purpose way. 

3457 else: 

3458 current_mask.flat = mask 

3459 else: 

3460 # Named fields w/ 

3461 mdtype = current_mask.dtype 

3462 mask = np.array(mask, copy=False) 

3463 # Mask is a singleton 

3464 if not mask.ndim: 

3465 # It's a boolean : make a record 

3466 if mask.dtype.kind == 'b': 

3467 mask = np.array(tuple([mask.item()] * len(mdtype)), 

3468 dtype=mdtype) 

3469 # It's a record: make sure the dtype is correct 

3470 else: 

3471 mask = mask.astype(mdtype) 

3472 # Mask is a sequence 

3473 else: 

3474 # Make sure the new mask is a ndarray with the proper dtype 

3475 try: 

3476 mask = np.array(mask, copy=copy, dtype=mdtype) 

3477 # Or assume it's a sequence of bool/int 

3478 except TypeError: 

3479 mask = np.array([tuple([m] * len(mdtype)) for m in mask], 

3480 dtype=mdtype) 

3481 # Hardmask: don't unmask the data 

3482 if self._hardmask: 

3483 for n in idtype.names: 

3484 current_mask[n] |= mask[n] 

3485 # Softmask: set everything to False 

3486 # If it's obviously a compatible scalar, use a quick update 

3487 # method. 

3488 elif isinstance(mask, (int, float, np.bool_, np.number)): 

3489 current_mask[...] = mask 

3490 # Otherwise fall back to the slower, general purpose way. 

3491 else: 

3492 current_mask.flat = mask 

3493 # Reshape if needed 

3494 if current_mask.shape: 

3495 current_mask.shape = self.shape 

3496 return 

3497 

3498 _set_mask = __setmask__ 

3499 

3500 @property 

3501 def mask(self): 

3502 """ Current mask. """ 

3503 

3504 # We could try to force a reshape, but that wouldn't work in some 

3505 # cases. 

3506 # Return a view so that the dtype and shape cannot be changed in place 

3507 # This still preserves nomask by identity 

3508 return self._mask.view() 

3509 

3510 @mask.setter 

3511 def mask(self, value): 

3512 self.__setmask__(value) 

3513 

3514 @property 

3515 def recordmask(self): 

3516 """ 

3517 Get or set the mask of the array if it has no named fields. For 

3518 structured arrays, returns a ndarray of booleans where entries are 

3519 ``True`` if **all** the fields are masked, ``False`` otherwise: 

3520 

3521 >>> x = np.ma.array([(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)], 

3522 ... mask=[(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)], 

3523 ... dtype=[('a', int), ('b', int)]) 

3524 >>> x.recordmask 

3525 array([False, False, True, False, False]) 

3526 """ 

3527 

3528 _mask = self._mask.view(ndarray) 

3529 if _mask.dtype.names is None: 

3530 return _mask 

3531 return np.all(flatten_structured_array(_mask), axis=-1) 

3532 

3533 @recordmask.setter 

3534 def recordmask(self, mask): 

3535 raise NotImplementedError("Coming soon: setting the mask per records!") 

3536 

3537 def harden_mask(self): 

3538 """ 

3539 Force the mask to hard, preventing unmasking by assignment. 

3540 

3541 Whether the mask of a masked array is hard or soft is determined by 

3542 its `~ma.MaskedArray.hardmask` property. `harden_mask` sets 

3543 `~ma.MaskedArray.hardmask` to ``True`` (and returns the modified 

3544 self). 

3545 

3546 See Also 

3547 -------- 

3548 ma.MaskedArray.hardmask 

3549 ma.MaskedArray.soften_mask 

3550 

3551 """ 

3552 self._hardmask = True 

3553 return self 

3554 

3555 def soften_mask(self): 

3556 """ 

3557 Force the mask to soft (default), allowing unmasking by assignment. 

3558 

3559 Whether the mask of a masked array is hard or soft is determined by 

3560 its `~ma.MaskedArray.hardmask` property. `soften_mask` sets 

3561 `~ma.MaskedArray.hardmask` to ``False`` (and returns the modified 

3562 self). 

3563 

3564 See Also 

3565 -------- 

3566 ma.MaskedArray.hardmask 

3567 ma.MaskedArray.harden_mask 

3568 

3569 """ 

3570 self._hardmask = False 

3571 return self 

3572 

3573 @property 

3574 def hardmask(self): 

3575 """ 

3576 Specifies whether values can be unmasked through assignments. 

3577 

3578 By default, assigning definite values to masked array entries will 

3579 unmask them. When `hardmask` is ``True``, the mask will not change 

3580 through assignments. 

3581 

3582 See Also 

3583 -------- 

3584 ma.MaskedArray.harden_mask 

3585 ma.MaskedArray.soften_mask 

3586 

3587 Examples 

3588 -------- 

3589 >>> x = np.arange(10) 

3590 >>> m = np.ma.masked_array(x, x>5) 

3591 >>> assert not m.hardmask 

3592 

3593 Since `m` has a soft mask, assigning an element value unmasks that 

3594 element: 

3595 

3596 >>> m[8] = 42 

3597 >>> m 

3598 masked_array(data=[0, 1, 2, 3, 4, 5, --, --, 42, --], 

3599 mask=[False, False, False, False, False, False, 

3600 True, True, False, True], 

3601 fill_value=999999) 

3602 

3603 After hardening, the mask is not affected by assignments: 

3604 

3605 >>> hardened = np.ma.harden_mask(m) 

3606 >>> assert m.hardmask and hardened is m 

3607 >>> m[:] = 23 

3608 >>> m 

3609 masked_array(data=[23, 23, 23, 23, 23, 23, --, --, 23, --], 

3610 mask=[False, False, False, False, False, False, 

3611 True, True, False, True], 

3612 fill_value=999999) 

3613 

3614 """ 

3615 return self._hardmask 

3616 

3617 def unshare_mask(self): 

3618 """ 

3619 Copy the mask and set the `sharedmask` flag to ``False``. 

3620 

3621 Whether the mask is shared between masked arrays can be seen from 

3622 the `sharedmask` property. `unshare_mask` ensures the mask is not 

3623 shared. A copy of the mask is only made if it was shared. 

3624 

3625 See Also 

3626 -------- 

3627 sharedmask 

3628 

3629 """ 

3630 if self._sharedmask: 

3631 self._mask = self._mask.copy() 

3632 self._sharedmask = False 

3633 return self 

3634 

3635 @property 

3636 def sharedmask(self): 

3637 """ Share status of the mask (read-only). """ 

3638 return self._sharedmask 

3639 

3640 def shrink_mask(self): 

3641 """ 

3642 Reduce a mask to nomask when possible. 

3643 

3644 Parameters 

3645 ---------- 

3646 None 

3647 

3648 Returns 

3649 ------- 

3650 None 

3651 

3652 Examples 

3653 -------- 

3654 >>> x = np.ma.array([[1,2 ], [3, 4]], mask=[0]*4) 

3655 >>> x.mask 

3656 array([[False, False], 

3657 [False, False]]) 

3658 >>> x.shrink_mask() 

3659 masked_array( 

3660 data=[[1, 2], 

3661 [3, 4]], 

3662 mask=False, 

3663 fill_value=999999) 

3664 >>> x.mask 

3665 False 

3666 

3667 """ 

3668 self._mask = _shrink_mask(self._mask) 

3669 return self 

3670 

3671 @property 

3672 def baseclass(self): 

3673 """ Class of the underlying data (read-only). """ 

3674 return self._baseclass 

3675 

3676 def _get_data(self): 

3677 """ 

3678 Returns the underlying data, as a view of the masked array. 

3679 

3680 If the underlying data is a subclass of :class:`numpy.ndarray`, it is 

3681 returned as such. 

3682 

3683 >>> x = np.ma.array(np.matrix([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]]) 

3684 >>> x.data 

3685 matrix([[1, 2], 

3686 [3, 4]]) 

3687 

3688 The type of the data can be accessed through the :attr:`baseclass` 

3689 attribute. 

3690 """ 

3691 return ndarray.view(self, self._baseclass) 

3692 

3693 _data = property(fget=_get_data) 

3694 data = property(fget=_get_data) 

3695 

3696 @property 

3697 def flat(self): 

3698 """ Return a flat iterator, or set a flattened version of self to value. """ 

3699 return MaskedIterator(self) 

3700 

3701 @flat.setter 

3702 def flat(self, value): 

3703 y = self.ravel() 

3704 y[:] = value 

3705 

3706 @property 

3707 def fill_value(self): 

3708 """ 

3709 The filling value of the masked array is a scalar. When setting, None 

3710 will set to a default based on the data type. 

3711 

3712 Examples 

3713 -------- 

3714 >>> for dt in [np.int32, np.int64, np.float64, np.complex128]: 

3715 ... np.ma.array([0, 1], dtype=dt).get_fill_value() 

3716 ... 

3717 999999 

3718 999999 

3719 1e+20 

3720 (1e+20+0j) 

3721 

3722 >>> x = np.ma.array([0, 1.], fill_value=-np.inf) 

3723 >>> x.fill_value 

3724 -inf 

3725 >>> x.fill_value = np.pi 

3726 >>> x.fill_value 

3727 3.1415926535897931 # may vary 

3728 

3729 Reset to default: 

3730 

3731 >>> x.fill_value = None 

3732 >>> x.fill_value 

3733 1e+20 

3734 

3735 """ 

3736 if self._fill_value is None: 

3737 self._fill_value = _check_fill_value(None, self.dtype) 

3738 

3739 # Temporary workaround to account for the fact that str and bytes 

3740 # scalars cannot be indexed with (), whereas all other numpy 

3741 # scalars can. See issues #7259 and #7267. 

3742 # The if-block can be removed after #7267 has been fixed. 

3743 if isinstance(self._fill_value, ndarray): 

3744 return self._fill_value[()] 

3745 return self._fill_value 

3746 

3747 @fill_value.setter 

3748 def fill_value(self, value=None): 

3749 target = _check_fill_value(value, self.dtype) 

3750 if not target.ndim == 0: 

3751 # 2019-11-12, 1.18.0 

3752 warnings.warn( 

3753 "Non-scalar arrays for the fill value are deprecated. Use " 

3754 "arrays with scalar values instead. The filled function " 

3755 "still supports any array as `fill_value`.", 

3756 DeprecationWarning, stacklevel=2) 

3757 

3758 _fill_value = self._fill_value 

3759 if _fill_value is None: 

3760 # Create the attribute if it was undefined 

3761 self._fill_value = target 

3762 else: 

3763 # Don't overwrite the attribute, just fill it (for propagation) 

3764 _fill_value[()] = target 

3765 

3766 # kept for compatibility 

3767 get_fill_value = fill_value.fget 

3768 set_fill_value = fill_value.fset 

3769 

3770 def filled(self, fill_value=None): 

3771 """ 

3772 Return a copy of self, with masked values filled with a given value. 

3773 **However**, if there are no masked values to fill, self will be 

3774 returned instead as an ndarray. 

3775 

3776 Parameters 

3777 ---------- 

3778 fill_value : array_like, optional 

3779 The value to use for invalid entries. Can be scalar or non-scalar. 

3780 If non-scalar, the resulting ndarray must be broadcastable over 

3781 input array. Default is None, in which case, the `fill_value` 

3782 attribute of the array is used instead. 

3783 

3784 Returns 

3785 ------- 

3786 filled_array : ndarray 

3787 A copy of ``self`` with invalid entries replaced by *fill_value* 

3788 (be it the function argument or the attribute of ``self``), or 

3789 ``self`` itself as an ndarray if there are no invalid entries to 

3790 be replaced. 

3791 

3792 Notes 

3793 ----- 

3794 The result is **not** a MaskedArray! 

3795 

3796 Examples 

3797 -------- 

3798 >>> x = np.ma.array([1,2,3,4,5], mask=[0,0,1,0,1], fill_value=-999) 

3799 >>> x.filled() 

3800 array([ 1, 2, -999, 4, -999]) 

3801 >>> x.filled(fill_value=1000) 

3802 array([ 1, 2, 1000, 4, 1000]) 

3803 >>> type(x.filled()) 

3804 <class 'numpy.ndarray'> 

3805 

3806 Subclassing is preserved. This means that if, e.g., the data part of 

3807 the masked array is a recarray, `filled` returns a recarray: 

3808 

3809 >>> x = np.array([(-1, 2), (-3, 4)], dtype='i8,i8').view(np.recarray) 

3810 >>> m = np.ma.array(x, mask=[(True, False), (False, True)]) 

3811 >>> m.filled() 

3812 rec.array([(999999, 2), ( -3, 999999)], 

3813 dtype=[('f0', '<i8'), ('f1', '<i8')]) 

3814 """ 

3815 m = self._mask 

3816 if m is nomask: 

3817 return self._data 

3818 

3819 if fill_value is None: 

3820 fill_value = self.fill_value 

3821 else: 

3822 fill_value = _check_fill_value(fill_value, self.dtype) 

3823 

3824 if self is masked_singleton: 

3825 return np.asanyarray(fill_value) 

3826 

3827 if m.dtype.names is not None: 

3828 result = self._data.copy('K') 

3829 _recursive_filled(result, self._mask, fill_value) 

3830 elif not m.any(): 

3831 return self._data 

3832 else: 

3833 result = self._data.copy('K') 

3834 try: 

3835 np.copyto(result, fill_value, where=m) 

3836 except (TypeError, AttributeError): 

3837 fill_value = narray(fill_value, dtype=object) 

3838 d = result.astype(object) 

3839 result = np.choose(m, (d, fill_value)) 

3840 except IndexError: 

3841 # ok, if scalar 

3842 if self._data.shape: 

3843 raise 

3844 elif m: 

3845 result = np.array(fill_value, dtype=self.dtype) 

3846 else: 

3847 result = self._data 

3848 return result 

3849 

3850 def compressed(self): 

3851 """ 

3852 Return all the non-masked data as a 1-D array. 

3853 

3854 Returns 

3855 ------- 

3856 data : ndarray 

3857 A new `ndarray` holding the non-masked data is returned. 

3858 

3859 Notes 

3860 ----- 

3861 The result is **not** a MaskedArray! 

3862 

3863 Examples 

3864 -------- 

3865 >>> x = np.ma.array(np.arange(5), mask=[0]*2 + [1]*3) 

3866 >>> x.compressed() 

3867 array([0, 1]) 

3868 >>> type(x.compressed()) 

3869 <class 'numpy.ndarray'> 

3870 

3871 """ 

3872 data = ndarray.ravel(self._data) 

3873 if self._mask is not nomask: 

3874 data = data.compress(np.logical_not(ndarray.ravel(self._mask))) 

3875 return data 

3876 

3877 def compress(self, condition, axis=None, out=None): 

3878 """ 

3879 Return `a` where condition is ``True``. 

3880 

3881 If condition is a `~ma.MaskedArray`, missing values are considered 

3882 as ``False``. 

3883 

3884 Parameters 

3885 ---------- 

3886 condition : var 

3887 Boolean 1-d array selecting which entries to return. If len(condition) 

3888 is less than the size of a along the axis, then output is truncated 

3889 to length of condition array. 

3890 axis : {None, int}, optional 

3891 Axis along which the operation must be performed. 

3892 out : {None, ndarray}, optional 

3893 Alternative output array in which to place the result. It must have 

3894 the same shape as the expected output but the type will be cast if 

3895 necessary. 

3896 

3897 Returns 

3898 ------- 

3899 result : MaskedArray 

3900 A :class:`~ma.MaskedArray` object. 

3901 

3902 Notes 

3903 ----- 

3904 Please note the difference with :meth:`compressed` ! 

3905 The output of :meth:`compress` has a mask, the output of 

3906 :meth:`compressed` does not. 

3907 

3908 Examples 

3909 -------- 

3910 >>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4) 

3911 >>> x 

3912 masked_array( 

3913 data=[[1, --, 3], 

3914 [--, 5, --], 

3915 [7, --, 9]], 

3916 mask=[[False, True, False], 

3917 [ True, False, True], 

3918 [False, True, False]], 

3919 fill_value=999999) 

3920 >>> x.compress([1, 0, 1]) 

3921 masked_array(data=[1, 3], 

3922 mask=[False, False], 

3923 fill_value=999999) 

3924 

3925 >>> x.compress([1, 0, 1], axis=1) 

3926 masked_array( 

3927 data=[[1, 3], 

3928 [--, --], 

3929 [7, 9]], 

3930 mask=[[False, False], 

3931 [ True, True], 

3932 [False, False]], 

3933 fill_value=999999) 

3934 

3935 """ 

3936 # Get the basic components 

3937 (_data, _mask) = (self._data, self._mask) 

3938 

3939 # Force the condition to a regular ndarray and forget the missing 

3940 # values. 

3941 condition = np.asarray(condition) 

3942 

3943 _new = _data.compress(condition, axis=axis, out=out).view(type(self)) 

3944 _new._update_from(self) 

3945 if _mask is not nomask: 

3946 _new._mask = _mask.compress(condition, axis=axis) 

3947 return _new 

3948 

3949 def _insert_masked_print(self): 

3950 """ 

3951 Replace masked values with masked_print_option, casting all innermost 

3952 dtypes to object. 

3953 """ 

3954 if masked_print_option.enabled(): 

3955 mask = self._mask 

3956 if mask is nomask: 

3957 res = self._data 

3958 else: 

3959 # convert to object array to make filled work 

3960 data = self._data 

3961 # For big arrays, to avoid a costly conversion to the 

3962 # object dtype, extract the corners before the conversion. 

3963 print_width = (self._print_width if self.ndim > 1 

3964 else self._print_width_1d) 

3965 for axis in range(self.ndim): 

3966 if data.shape[axis] > print_width: 

3967 ind = print_width // 2 

3968 arr = np.split(data, (ind, -ind), axis=axis) 

3969 data = np.concatenate((arr[0], arr[2]), axis=axis) 

3970 arr = np.split(mask, (ind, -ind), axis=axis) 

3971 mask = np.concatenate((arr[0], arr[2]), axis=axis) 

3972 

3973 rdtype = _replace_dtype_fields(self.dtype, "O") 

3974 res = data.astype(rdtype) 

3975 _recursive_printoption(res, mask, masked_print_option) 

3976 else: 

3977 res = self.filled(self.fill_value) 

3978 return res 

3979 

3980 def __str__(self): 

3981 return str(self._insert_masked_print()) 

3982 

3983 def __repr__(self): 

3984 """ 

3985 Literal string representation. 

3986 

3987 """ 

3988 if self._baseclass is np.ndarray: 

3989 name = 'array' 

3990 else: 

3991 name = self._baseclass.__name__ 

3992 

3993 

3994 # 2016-11-19: Demoted to legacy format 

3995 if np.core.arrayprint._get_legacy_print_mode() <= 113: 

3996 is_long = self.ndim > 1 

3997 parameters = dict( 

3998 name=name, 

3999 nlen=" " * len(name), 

4000 data=str(self), 

4001 mask=str(self._mask), 

4002 fill=str(self.fill_value), 

4003 dtype=str(self.dtype) 

4004 ) 

4005 is_structured = bool(self.dtype.names) 

4006 key = '{}_{}'.format( 

4007 'long' if is_long else 'short', 

4008 'flx' if is_structured else 'std' 

4009 ) 

4010 return _legacy_print_templates[key] % parameters 

4011 

4012 prefix = f"masked_{name}(" 

4013 

4014 dtype_needed = ( 

4015 not np.core.arrayprint.dtype_is_implied(self.dtype) or 

4016 np.all(self.mask) or 

4017 self.size == 0 

4018 ) 

4019 

4020 # determine which keyword args need to be shown 

4021 keys = ['data', 'mask', 'fill_value'] 

4022 if dtype_needed: 

4023 keys.append('dtype') 

4024 

4025 # array has only one row (non-column) 

4026 is_one_row = builtins.all(dim == 1 for dim in self.shape[:-1]) 

4027 

4028 # choose what to indent each keyword with 

4029 min_indent = 2 

4030 if is_one_row: 

4031 # first key on the same line as the type, remaining keys 

4032 # aligned by equals 

4033 indents = {} 

4034 indents[keys[0]] = prefix 

4035 for k in keys[1:]: 

4036 n = builtins.max(min_indent, len(prefix + keys[0]) - len(k)) 

4037 indents[k] = ' ' * n 

4038 prefix = '' # absorbed into the first indent 

4039 else: 

4040 # each key on its own line, indented by two spaces 

4041 indents = {k: ' ' * min_indent for k in keys} 

4042 prefix = prefix + '\n' # first key on the next line 

4043 

4044 # format the field values 

4045 reprs = {} 

4046 reprs['data'] = np.array2string( 

4047 self._insert_masked_print(), 

4048 separator=", ", 

4049 prefix=indents['data'] + 'data=', 

4050 suffix=',') 

4051 reprs['mask'] = np.array2string( 

4052 self._mask, 

4053 separator=", ", 

4054 prefix=indents['mask'] + 'mask=', 

4055 suffix=',') 

4056 reprs['fill_value'] = repr(self.fill_value) 

4057 if dtype_needed: 

4058 reprs['dtype'] = np.core.arrayprint.dtype_short_repr(self.dtype) 

4059 

4060 # join keys with values and indentations 

4061 result = ',\n'.join( 

4062 '{}{}={}'.format(indents[k], k, reprs[k]) 

4063 for k in keys 

4064 ) 

4065 return prefix + result + ')' 

4066 

4067 def _delegate_binop(self, other): 

4068 # This emulates the logic in 

4069 # private/binop_override.h:forward_binop_should_defer 

4070 if isinstance(other, type(self)): 

4071 return False 

4072 array_ufunc = getattr(other, "__array_ufunc__", False) 

4073 if array_ufunc is False: 

4074 other_priority = getattr(other, "__array_priority__", -1000000) 

4075 return self.__array_priority__ < other_priority 

4076 else: 

4077 # If array_ufunc is not None, it will be called inside the ufunc; 

4078 # None explicitly tells us to not call the ufunc, i.e., defer. 

4079 return array_ufunc is None 

4080 

4081 def _comparison(self, other, compare): 

4082 """Compare self with other using operator.eq or operator.ne. 

4083 

4084 When either of the elements is masked, the result is masked as well, 

4085 but the underlying boolean data are still set, with self and other 

4086 considered equal if both are masked, and unequal otherwise. 

4087 

4088 For structured arrays, all fields are combined, with masked values 

4089 ignored. The result is masked if all fields were masked, with self 

4090 and other considered equal only if both were fully masked. 

4091 """ 

4092 omask = getmask(other) 

4093 smask = self.mask 

4094 mask = mask_or(smask, omask, copy=True) 

4095 

4096 odata = getdata(other) 

4097 if mask.dtype.names is not None: 

4098 # only == and != are reasonably defined for structured dtypes, 

4099 # so give up early for all other comparisons: 

4100 if compare not in (operator.eq, operator.ne): 

4101 return NotImplemented 

4102 # For possibly masked structured arrays we need to be careful, 

4103 # since the standard structured array comparison will use all 

4104 # fields, masked or not. To avoid masked fields influencing the 

4105 # outcome, we set all masked fields in self to other, so they'll 

4106 # count as equal. To prepare, we ensure we have the right shape. 

4107 broadcast_shape = np.broadcast(self, odata).shape 

4108 sbroadcast = np.broadcast_to(self, broadcast_shape, subok=True) 

4109 sbroadcast._mask = mask 

4110 sdata = sbroadcast.filled(odata) 

4111 # Now take care of the mask; the merged mask should have an item 

4112 # masked if all fields were masked (in one and/or other). 

4113 mask = (mask == np.ones((), mask.dtype)) 

4114 

4115 else: 

4116 # For regular arrays, just use the data as they come. 

4117 sdata = self.data 

4118 

4119 check = compare(sdata, odata) 

4120 

4121 if isinstance(check, (np.bool_, bool)): 

4122 return masked if mask else check 

4123 

4124 if mask is not nomask and compare in (operator.eq, operator.ne): 

4125 # Adjust elements that were masked, which should be treated 

4126 # as equal if masked in both, unequal if masked in one. 

4127 # Note that this works automatically for structured arrays too. 

4128 # Ignore this for operations other than `==` and `!=` 

4129 check = np.where(mask, compare(smask, omask), check) 

4130 if mask.shape != check.shape: 

4131 # Guarantee consistency of the shape, making a copy since the 

4132 # the mask may need to get written to later. 

4133 mask = np.broadcast_to(mask, check.shape).copy() 

4134 

4135 check = check.view(type(self)) 

4136 check._update_from(self) 

4137 check._mask = mask 

4138 

4139 # Cast fill value to bool_ if needed. If it cannot be cast, the 

4140 # default boolean fill value is used. 

4141 if check._fill_value is not None: 

4142 try: 

4143 fill = _check_fill_value(check._fill_value, np.bool_) 

4144 except (TypeError, ValueError): 

4145 fill = _check_fill_value(None, np.bool_) 

4146 check._fill_value = fill 

4147 

4148 return check 

4149 

4150 def __eq__(self, other): 

4151 """Check whether other equals self elementwise. 

4152 

4153 When either of the elements is masked, the result is masked as well, 

4154 but the underlying boolean data are still set, with self and other 

4155 considered equal if both are masked, and unequal otherwise. 

4156 

4157 For structured arrays, all fields are combined, with masked values 

4158 ignored. The result is masked if all fields were masked, with self 

4159 and other considered equal only if both were fully masked. 

4160 """ 

4161 return self._comparison(other, operator.eq) 

4162 

4163 def __ne__(self, other): 

4164 """Check whether other does not equal self elementwise. 

4165 

4166 When either of the elements is masked, the result is masked as well, 

4167 but the underlying boolean data are still set, with self and other 

4168 considered equal if both are masked, and unequal otherwise. 

4169 

4170 For structured arrays, all fields are combined, with masked values 

4171 ignored. The result is masked if all fields were masked, with self 

4172 and other considered equal only if both were fully masked. 

4173 """ 

4174 return self._comparison(other, operator.ne) 

4175 

4176 # All other comparisons: 

4177 def __le__(self, other): 

4178 return self._comparison(other, operator.le) 

4179 

4180 def __lt__(self, other): 

4181 return self._comparison(other, operator.lt) 

4182 

4183 def __ge__(self, other): 

4184 return self._comparison(other, operator.ge) 

4185 

4186 def __gt__(self, other): 

4187 return self._comparison(other, operator.gt) 

4188 

4189 def __add__(self, other): 

4190 """ 

4191 Add self to other, and return a new masked array. 

4192 

4193 """ 

4194 if self._delegate_binop(other): 

4195 return NotImplemented 

4196 return add(self, other) 

4197 

4198 def __radd__(self, other): 

4199 """ 

4200 Add other to self, and return a new masked array. 

4201 

4202 """ 

4203 # In analogy with __rsub__ and __rdiv__, use original order: 

4204 # we get here from `other + self`. 

4205 return add(other, self) 

4206 

4207 def __sub__(self, other): 

4208 """ 

4209 Subtract other from self, and return a new masked array. 

4210 

4211 """ 

4212 if self._delegate_binop(other): 

4213 return NotImplemented 

4214 return subtract(self, other) 

4215 

4216 def __rsub__(self, other): 

4217 """ 

4218 Subtract self from other, and return a new masked array. 

4219 

4220 """ 

4221 return subtract(other, self) 

4222 

4223 def __mul__(self, other): 

4224 "Multiply self by other, and return a new masked array." 

4225 if self._delegate_binop(other): 

4226 return NotImplemented 

4227 return multiply(self, other) 

4228 

4229 def __rmul__(self, other): 

4230 """ 

4231 Multiply other by self, and return a new masked array. 

4232 

4233 """ 

4234 # In analogy with __rsub__ and __rdiv__, use original order: 

4235 # we get here from `other * self`. 

4236 return multiply(other, self) 

4237 

4238 def __div__(self, other): 

4239 """ 

4240 Divide other into self, and return a new masked array. 

4241 

4242 """ 

4243 if self._delegate_binop(other): 

4244 return NotImplemented 

4245 return divide(self, other) 

4246 

4247 def __truediv__(self, other): 

4248 """ 

4249 Divide other into self, and return a new masked array. 

4250 

4251 """ 

4252 if self._delegate_binop(other): 

4253 return NotImplemented 

4254 return true_divide(self, other) 

4255 

4256 def __rtruediv__(self, other): 

4257 """ 

4258 Divide self into other, and return a new masked array. 

4259 

4260 """ 

4261 return true_divide(other, self) 

4262 

4263 def __floordiv__(self, other): 

4264 """ 

4265 Divide other into self, and return a new masked array. 

4266 

4267 """ 

4268 if self._delegate_binop(other): 

4269 return NotImplemented 

4270 return floor_divide(self, other) 

4271 

4272 def __rfloordiv__(self, other): 

4273 """ 

4274 Divide self into other, and return a new masked array. 

4275 

4276 """ 

4277 return floor_divide(other, self) 

4278 

4279 def __pow__(self, other): 

4280 """ 

4281 Raise self to the power other, masking the potential NaNs/Infs 

4282 

4283 """ 

4284 if self._delegate_binop(other): 

4285 return NotImplemented 

4286 return power(self, other) 

4287 

4288 def __rpow__(self, other): 

4289 """ 

4290 Raise other to the power self, masking the potential NaNs/Infs 

4291 

4292 """ 

4293 return power(other, self) 

4294 

4295 def __iadd__(self, other): 

4296 """ 

4297 Add other to self in-place. 

4298 

4299 """ 

4300 m = getmask(other) 

4301 if self._mask is nomask: 

4302 if m is not nomask and m.any(): 

4303 self._mask = make_mask_none(self.shape, self.dtype) 

4304 self._mask += m 

4305 else: 

4306 if m is not nomask: 

4307 self._mask += m 

4308 other_data = getdata(other) 

4309 other_data = np.where(self._mask, other_data.dtype.type(0), other_data) 

4310 self._data.__iadd__(other_data) 

4311 return self 

4312 

4313 def __isub__(self, other): 

4314 """ 

4315 Subtract other from self in-place. 

4316 

4317 """ 

4318 m = getmask(other) 

4319 if self._mask is nomask: 

4320 if m is not nomask and m.any(): 

4321 self._mask = make_mask_none(self.shape, self.dtype) 

4322 self._mask += m 

4323 elif m is not nomask: 

4324 self._mask += m 

4325 other_data = getdata(other) 

4326 other_data = np.where(self._mask, other_data.dtype.type(0), other_data) 

4327 self._data.__isub__(other_data) 

4328 return self 

4329 

4330 def __imul__(self, other): 

4331 """ 

4332 Multiply self by other in-place. 

4333 

4334 """ 

4335 m = getmask(other) 

4336 if self._mask is nomask: 

4337 if m is not nomask and m.any(): 

4338 self._mask = make_mask_none(self.shape, self.dtype) 

4339 self._mask += m 

4340 elif m is not nomask: 

4341 self._mask += m 

4342 other_data = getdata(other) 

4343 other_data = np.where(self._mask, other_data.dtype.type(1), other_data) 

4344 self._data.__imul__(other_data) 

4345 return self 

4346 

4347 def __idiv__(self, other): 

4348 """ 

4349 Divide self by other in-place. 

4350 

4351 """ 

4352 other_data = getdata(other) 

4353 dom_mask = _DomainSafeDivide().__call__(self._data, other_data) 

4354 other_mask = getmask(other) 

4355 new_mask = mask_or(other_mask, dom_mask) 

4356 # The following 4 lines control the domain filling 

4357 if dom_mask.any(): 

4358 (_, fval) = ufunc_fills[np.divide] 

4359 other_data = np.where( 

4360 dom_mask, other_data.dtype.type(fval), other_data) 

4361 self._mask |= new_mask 

4362 other_data = np.where(self._mask, other_data.dtype.type(1), other_data) 

4363 self._data.__idiv__(other_data) 

4364 return self 

4365 

4366 def __ifloordiv__(self, other): 

4367 """ 

4368 Floor divide self by other in-place. 

4369 

4370 """ 

4371 other_data = getdata(other) 

4372 dom_mask = _DomainSafeDivide().__call__(self._data, other_data) 

4373 other_mask = getmask(other) 

4374 new_mask = mask_or(other_mask, dom_mask) 

4375 # The following 3 lines control the domain filling 

4376 if dom_mask.any(): 

4377 (_, fval) = ufunc_fills[np.floor_divide] 

4378 other_data = np.where( 

4379 dom_mask, other_data.dtype.type(fval), other_data) 

4380 self._mask |= new_mask 

4381 other_data = np.where(self._mask, other_data.dtype.type(1), other_data) 

4382 self._data.__ifloordiv__(other_data) 

4383 return self 

4384 

4385 def __itruediv__(self, other): 

4386 """ 

4387 True divide self by other in-place. 

4388 

4389 """ 

4390 other_data = getdata(other) 

4391 dom_mask = _DomainSafeDivide().__call__(self._data, other_data) 

4392 other_mask = getmask(other) 

4393 new_mask = mask_or(other_mask, dom_mask) 

4394 # The following 3 lines control the domain filling 

4395 if dom_mask.any(): 

4396 (_, fval) = ufunc_fills[np.true_divide] 

4397 other_data = np.where( 

4398 dom_mask, other_data.dtype.type(fval), other_data) 

4399 self._mask |= new_mask 

4400 other_data = np.where(self._mask, other_data.dtype.type(1), other_data) 

4401 self._data.__itruediv__(other_data) 

4402 return self 

4403 

4404 def __ipow__(self, other): 

4405 """ 

4406 Raise self to the power other, in place. 

4407 

4408 """ 

4409 other_data = getdata(other) 

4410 other_data = np.where(self._mask, other_data.dtype.type(1), other_data) 

4411 other_mask = getmask(other) 

4412 with np.errstate(divide='ignore', invalid='ignore'): 

4413 self._data.__ipow__(other_data) 

4414 invalid = np.logical_not(np.isfinite(self._data)) 

4415 if invalid.any(): 

4416 if self._mask is not nomask: 

4417 self._mask |= invalid 

4418 else: 

4419 self._mask = invalid 

4420 np.copyto(self._data, self.fill_value, where=invalid) 

4421 new_mask = mask_or(other_mask, invalid) 

4422 self._mask = mask_or(self._mask, new_mask) 

4423 return self 

4424 

4425 def __float__(self): 

4426 """ 

4427 Convert to float. 

4428 

4429 """ 

4430 if self.size > 1: 

4431 raise TypeError("Only length-1 arrays can be converted " 

4432 "to Python scalars") 

4433 elif self._mask: 

4434 warnings.warn("Warning: converting a masked element to nan.", stacklevel=2) 

4435 return np.nan 

4436 return float(self.item()) 

4437 

4438 def __int__(self): 

4439 """ 

4440 Convert to int. 

4441 

4442 """ 

4443 if self.size > 1: 

4444 raise TypeError("Only length-1 arrays can be converted " 

4445 "to Python scalars") 

4446 elif self._mask: 

4447 raise MaskError('Cannot convert masked element to a Python int.') 

4448 return int(self.item()) 

4449 

4450 @property 

4451 def imag(self): 

4452 """ 

4453 The imaginary part of the masked array. 

4454 

4455 This property is a view on the imaginary part of this `MaskedArray`. 

4456 

4457 See Also 

4458 -------- 

4459 real 

4460 

4461 Examples 

4462 -------- 

4463 >>> x = np.ma.array([1+1.j, -2j, 3.45+1.6j], mask=[False, True, False]) 

4464 >>> x.imag 

4465 masked_array(data=[1.0, --, 1.6], 

4466 mask=[False, True, False], 

4467 fill_value=1e+20) 

4468 

4469 """ 

4470 result = self._data.imag.view(type(self)) 

4471 result.__setmask__(self._mask) 

4472 return result 

4473 

4474 # kept for compatibility 

4475 get_imag = imag.fget 

4476 

4477 @property 

4478 def real(self): 

4479 """ 

4480 The real part of the masked array. 

4481 

4482 This property is a view on the real part of this `MaskedArray`. 

4483 

4484 See Also 

4485 -------- 

4486 imag 

4487 

4488 Examples 

4489 -------- 

4490 >>> x = np.ma.array([1+1.j, -2j, 3.45+1.6j], mask=[False, True, False]) 

4491 >>> x.real 

4492 masked_array(data=[1.0, --, 3.45], 

4493 mask=[False, True, False], 

4494 fill_value=1e+20) 

4495 

4496 """ 

4497 result = self._data.real.view(type(self)) 

4498 result.__setmask__(self._mask) 

4499 return result 

4500 

4501 # kept for compatibility 

4502 get_real = real.fget 

4503 

4504 def count(self, axis=None, keepdims=np._NoValue): 

4505 """ 

4506 Count the non-masked elements of the array along the given axis. 

4507 

4508 Parameters 

4509 ---------- 

4510 axis : None or int or tuple of ints, optional 

4511 Axis or axes along which the count is performed. 

4512 The default, None, performs the count over all 

4513 the dimensions of the input array. `axis` may be negative, in 

4514 which case it counts from the last to the first axis. 

4515 

4516 .. versionadded:: 1.10.0 

4517 

4518 If this is a tuple of ints, the count is performed on multiple 

4519 axes, instead of a single axis or all the axes as before. 

4520 keepdims : bool, optional 

4521 If this is set to True, the axes which are reduced are left 

4522 in the result as dimensions with size one. With this option, 

4523 the result will broadcast correctly against the array. 

4524 

4525 Returns 

4526 ------- 

4527 result : ndarray or scalar 

4528 An array with the same shape as the input array, with the specified 

4529 axis removed. If the array is a 0-d array, or if `axis` is None, a 

4530 scalar is returned. 

4531 

4532 See Also 

4533 -------- 

4534 ma.count_masked : Count masked elements in array or along a given axis. 

4535 

4536 Examples 

4537 -------- 

4538 >>> import numpy.ma as ma 

4539 >>> a = ma.arange(6).reshape((2, 3)) 

4540 >>> a[1, :] = ma.masked 

4541 >>> a 

4542 masked_array( 

4543 data=[[0, 1, 2], 

4544 [--, --, --]], 

4545 mask=[[False, False, False], 

4546 [ True, True, True]], 

4547 fill_value=999999) 

4548 >>> a.count() 

4549 3 

4550 

4551 When the `axis` keyword is specified an array of appropriate size is 

4552 returned. 

4553 

4554 >>> a.count(axis=0) 

4555 array([1, 1, 1]) 

4556 >>> a.count(axis=1) 

4557 array([3, 0]) 

4558 

4559 """ 

4560 kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} 

4561 

4562 m = self._mask 

4563 # special case for matrices (we assume no other subclasses modify 

4564 # their dimensions) 

4565 if isinstance(self.data, np.matrix): 

4566 if m is nomask: 

4567 m = np.zeros(self.shape, dtype=np.bool_) 

4568 m = m.view(type(self.data)) 

4569 

4570 if m is nomask: 

4571 # compare to _count_reduce_items in _methods.py 

4572 

4573 if self.shape == (): 

4574 if axis not in (None, 0): 

4575 raise np.AxisError(axis=axis, ndim=self.ndim) 

4576 return 1 

4577 elif axis is None: 

4578 if kwargs.get('keepdims', False): 

4579 return np.array(self.size, dtype=np.intp, ndmin=self.ndim) 

4580 return self.size 

4581 

4582 axes = normalize_axis_tuple(axis, self.ndim) 

4583 items = 1 

4584 for ax in axes: 

4585 items *= self.shape[ax] 

4586 

4587 if kwargs.get('keepdims', False): 

4588 out_dims = list(self.shape) 

4589 for a in axes: 

4590 out_dims[a] = 1 

4591 else: 

4592 out_dims = [d for n, d in enumerate(self.shape) 

4593 if n not in axes] 

4594 # make sure to return a 0-d array if axis is supplied 

4595 return np.full(out_dims, items, dtype=np.intp) 

4596 

4597 # take care of the masked singleton 

4598 if self is masked: 

4599 return 0 

4600 

4601 return (~m).sum(axis=axis, dtype=np.intp, **kwargs) 

4602 

4603 def ravel(self, order='C'): 

4604 """ 

4605 Returns a 1D version of self, as a view. 

4606 

4607 Parameters 

4608 ---------- 

4609 order : {'C', 'F', 'A', 'K'}, optional 

4610 The elements of `a` are read using this index order. 'C' means to 

4611 index the elements in C-like order, with the last axis index 

4612 changing fastest, back to the first axis index changing slowest. 

4613 'F' means to index the elements in Fortran-like index order, with 

4614 the first index changing fastest, and the last index changing 

4615 slowest. Note that the 'C' and 'F' options take no account of the 

4616 memory layout of the underlying array, and only refer to the order 

4617 of axis indexing. 'A' means to read the elements in Fortran-like 

4618 index order if `m` is Fortran *contiguous* in memory, C-like order 

4619 otherwise. 'K' means to read the elements in the order they occur 

4620 in memory, except for reversing the data when strides are negative. 

4621 By default, 'C' index order is used. 

4622 

4623 Returns 

4624 ------- 

4625 MaskedArray 

4626 Output view is of shape ``(self.size,)`` (or 

4627 ``(np.ma.product(self.shape),)``). 

4628 

4629 Examples 

4630 -------- 

4631 >>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4) 

4632 >>> x 

4633 masked_array( 

4634 data=[[1, --, 3], 

4635 [--, 5, --], 

4636 [7, --, 9]], 

4637 mask=[[False, True, False], 

4638 [ True, False, True], 

4639 [False, True, False]], 

4640 fill_value=999999) 

4641 >>> x.ravel() 

4642 masked_array(data=[1, --, 3, --, 5, --, 7, --, 9], 

4643 mask=[False, True, False, True, False, True, False, True, 

4644 False], 

4645 fill_value=999999) 

4646 

4647 """ 

4648 r = ndarray.ravel(self._data, order=order).view(type(self)) 

4649 r._update_from(self) 

4650 if self._mask is not nomask: 

4651 r._mask = ndarray.ravel(self._mask, order=order).reshape(r.shape) 

4652 else: 

4653 r._mask = nomask 

4654 return r 

4655 

4656 

4657 def reshape(self, *s, **kwargs): 

4658 """ 

4659 Give a new shape to the array without changing its data. 

4660 

4661 Returns a masked array containing the same data, but with a new shape. 

4662 The result is a view on the original array; if this is not possible, a 

4663 ValueError is raised. 

4664 

4665 Parameters 

4666 ---------- 

4667 shape : int or tuple of ints 

4668 The new shape should be compatible with the original shape. If an 

4669 integer is supplied, then the result will be a 1-D array of that 

4670 length. 

4671 order : {'C', 'F'}, optional 

4672 Determines whether the array data should be viewed as in C 

4673 (row-major) or FORTRAN (column-major) order. 

4674 

4675 Returns 

4676 ------- 

4677 reshaped_array : array 

4678 A new view on the array. 

4679 

4680 See Also 

4681 -------- 

4682 reshape : Equivalent function in the masked array module. 

4683 numpy.ndarray.reshape : Equivalent method on ndarray object. 

4684 numpy.reshape : Equivalent function in the NumPy module. 

4685 

4686 Notes 

4687 ----- 

4688 The reshaping operation cannot guarantee that a copy will not be made, 

4689 to modify the shape in place, use ``a.shape = s`` 

4690 

4691 Examples 

4692 -------- 

4693 >>> x = np.ma.array([[1,2],[3,4]], mask=[1,0,0,1]) 

4694 >>> x 

4695 masked_array( 

4696 data=[[--, 2], 

4697 [3, --]], 

4698 mask=[[ True, False], 

4699 [False, True]], 

4700 fill_value=999999) 

4701 >>> x = x.reshape((4,1)) 

4702 >>> x 

4703 masked_array( 

4704 data=[[--], 

4705 [2], 

4706 [3], 

4707 [--]], 

4708 mask=[[ True], 

4709 [False], 

4710 [False], 

4711 [ True]], 

4712 fill_value=999999) 

4713 

4714 """ 

4715 kwargs.update(order=kwargs.get('order', 'C')) 

4716 result = self._data.reshape(*s, **kwargs).view(type(self)) 

4717 result._update_from(self) 

4718 mask = self._mask 

4719 if mask is not nomask: 

4720 result._mask = mask.reshape(*s, **kwargs) 

4721 return result 

4722 

4723 def resize(self, newshape, refcheck=True, order=False): 

4724 """ 

4725 .. warning:: 

4726 

4727 This method does nothing, except raise a ValueError exception. A 

4728 masked array does not own its data and therefore cannot safely be 

4729 resized in place. Use the `numpy.ma.resize` function instead. 

4730 

4731 This method is difficult to implement safely and may be deprecated in 

4732 future releases of NumPy. 

4733 

4734 """ 

4735 # Note : the 'order' keyword looks broken, let's just drop it 

4736 errmsg = "A masked array does not own its data "\ 

4737 "and therefore cannot be resized.\n" \ 

4738 "Use the numpy.ma.resize function instead." 

4739 raise ValueError(errmsg) 

4740 

4741 def put(self, indices, values, mode='raise'): 

4742 """ 

4743 Set storage-indexed locations to corresponding values. 

4744 

4745 Sets self._data.flat[n] = values[n] for each n in indices. 

4746 If `values` is shorter than `indices` then it will repeat. 

4747 If `values` has some masked values, the initial mask is updated 

4748 in consequence, else the corresponding values are unmasked. 

4749 

4750 Parameters 

4751 ---------- 

4752 indices : 1-D array_like 

4753 Target indices, interpreted as integers. 

4754 values : array_like 

4755 Values to place in self._data copy at target indices. 

4756 mode : {'raise', 'wrap', 'clip'}, optional 

4757 Specifies how out-of-bounds indices will behave. 

4758 'raise' : raise an error. 

4759 'wrap' : wrap around. 

4760 'clip' : clip to the range. 

4761 

4762 Notes 

4763 ----- 

4764 `values` can be a scalar or length 1 array. 

4765 

4766 Examples 

4767 -------- 

4768 >>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4) 

4769 >>> x 

4770 masked_array( 

4771 data=[[1, --, 3], 

4772 [--, 5, --], 

4773 [7, --, 9]], 

4774 mask=[[False, True, False], 

4775 [ True, False, True], 

4776 [False, True, False]], 

4777 fill_value=999999) 

4778 >>> x.put([0,4,8],[10,20,30]) 

4779 >>> x 

4780 masked_array( 

4781 data=[[10, --, 3], 

4782 [--, 20, --], 

4783 [7, --, 30]], 

4784 mask=[[False, True, False], 

4785 [ True, False, True], 

4786 [False, True, False]], 

4787 fill_value=999999) 

4788 

4789 >>> x.put(4,999) 

4790 >>> x 

4791 masked_array( 

4792 data=[[10, --, 3], 

4793 [--, 999, --], 

4794 [7, --, 30]], 

4795 mask=[[False, True, False], 

4796 [ True, False, True], 

4797 [False, True, False]], 

4798 fill_value=999999) 

4799 

4800 """ 

4801 # Hard mask: Get rid of the values/indices that fall on masked data 

4802 if self._hardmask and self._mask is not nomask: 

4803 mask = self._mask[indices] 

4804 indices = narray(indices, copy=False) 

4805 values = narray(values, copy=False, subok=True) 

4806 values.resize(indices.shape) 

4807 indices = indices[~mask] 

4808 values = values[~mask] 

4809 

4810 self._data.put(indices, values, mode=mode) 

4811 

4812 # short circuit if neither self nor values are masked 

4813 if self._mask is nomask and getmask(values) is nomask: 

4814 return 

4815 

4816 m = getmaskarray(self) 

4817 

4818 if getmask(values) is nomask: 

4819 m.put(indices, False, mode=mode) 

4820 else: 

4821 m.put(indices, values._mask, mode=mode) 

4822 m = make_mask(m, copy=False, shrink=True) 

4823 self._mask = m 

4824 return 

4825 

4826 def ids(self): 

4827 """ 

4828 Return the addresses of the data and mask areas. 

4829 

4830 Parameters 

4831 ---------- 

4832 None 

4833 

4834 Examples 

4835 -------- 

4836 >>> x = np.ma.array([1, 2, 3], mask=[0, 1, 1]) 

4837 >>> x.ids() 

4838 (166670640, 166659832) # may vary 

4839 

4840 If the array has no mask, the address of `nomask` is returned. This address 

4841 is typically not close to the data in memory: 

4842 

4843 >>> x = np.ma.array([1, 2, 3]) 

4844 >>> x.ids() 

4845 (166691080, 3083169284) # may vary 

4846 

4847 """ 

4848 if self._mask is nomask: 

4849 return (self.ctypes.data, id(nomask)) 

4850 return (self.ctypes.data, self._mask.ctypes.data) 

4851 

4852 def iscontiguous(self): 

4853 """ 

4854 Return a boolean indicating whether the data is contiguous. 

4855 

4856 Parameters 

4857 ---------- 

4858 None 

4859 

4860 Examples 

4861 -------- 

4862 >>> x = np.ma.array([1, 2, 3]) 

4863 >>> x.iscontiguous() 

4864 True 

4865 

4866 `iscontiguous` returns one of the flags of the masked array: 

4867 

4868 >>> x.flags 

4869 C_CONTIGUOUS : True 

4870 F_CONTIGUOUS : True 

4871 OWNDATA : False 

4872 WRITEABLE : True 

4873 ALIGNED : True 

4874 WRITEBACKIFCOPY : False 

4875 

4876 """ 

4877 return self.flags['CONTIGUOUS'] 

4878 

4879 def all(self, axis=None, out=None, keepdims=np._NoValue): 

4880 """ 

4881 Returns True if all elements evaluate to True. 

4882 

4883 The output array is masked where all the values along the given axis 

4884 are masked: if the output would have been a scalar and that all the 

4885 values are masked, then the output is `masked`. 

4886 

4887 Refer to `numpy.all` for full documentation. 

4888 

4889 See Also 

4890 -------- 

4891 numpy.ndarray.all : corresponding function for ndarrays 

4892 numpy.all : equivalent function 

4893 

4894 Examples 

4895 -------- 

4896 >>> np.ma.array([1,2,3]).all() 

4897 True 

4898 >>> a = np.ma.array([1,2,3], mask=True) 

4899 >>> (a.all() is np.ma.masked) 

4900 True 

4901 

4902 """ 

4903 kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} 

4904 

4905 mask = _check_mask_axis(self._mask, axis, **kwargs) 

4906 if out is None: 

4907 d = self.filled(True).all(axis=axis, **kwargs).view(type(self)) 

4908 if d.ndim: 

4909 d.__setmask__(mask) 

4910 elif mask: 

4911 return masked 

4912 return d 

4913 self.filled(True).all(axis=axis, out=out, **kwargs) 

4914 if isinstance(out, MaskedArray): 

4915 if out.ndim or mask: 

4916 out.__setmask__(mask) 

4917 return out 

4918 

4919 def any(self, axis=None, out=None, keepdims=np._NoValue): 

4920 """ 

4921 Returns True if any of the elements of `a` evaluate to True. 

4922 

4923 Masked values are considered as False during computation. 

4924 

4925 Refer to `numpy.any` for full documentation. 

4926 

4927 See Also 

4928 -------- 

4929 numpy.ndarray.any : corresponding function for ndarrays 

4930 numpy.any : equivalent function 

4931 

4932 """ 

4933 kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} 

4934 

4935 mask = _check_mask_axis(self._mask, axis, **kwargs) 

4936 if out is None: 

4937 d = self.filled(False).any(axis=axis, **kwargs).view(type(self)) 

4938 if d.ndim: 

4939 d.__setmask__(mask) 

4940 elif mask: 

4941 d = masked 

4942 return d 

4943 self.filled(False).any(axis=axis, out=out, **kwargs) 

4944 if isinstance(out, MaskedArray): 

4945 if out.ndim or mask: 

4946 out.__setmask__(mask) 

4947 return out 

4948 

4949 def nonzero(self): 

4950 """ 

4951 Return the indices of unmasked elements that are not zero. 

4952 

4953 Returns a tuple of arrays, one for each dimension, containing the 

4954 indices of the non-zero elements in that dimension. The corresponding 

4955 non-zero values can be obtained with:: 

4956 

4957 a[a.nonzero()] 

4958 

4959 To group the indices by element, rather than dimension, use 

4960 instead:: 

4961 

4962 np.transpose(a.nonzero()) 

4963 

4964 The result of this is always a 2d array, with a row for each non-zero 

4965 element. 

4966 

4967 Parameters 

4968 ---------- 

4969 None 

4970 

4971 Returns 

4972 ------- 

4973 tuple_of_arrays : tuple 

4974 Indices of elements that are non-zero. 

4975 

4976 See Also 

4977 -------- 

4978 numpy.nonzero : 

4979 Function operating on ndarrays. 

4980 flatnonzero : 

4981 Return indices that are non-zero in the flattened version of the input 

4982 array. 

4983 numpy.ndarray.nonzero : 

4984 Equivalent ndarray method. 

4985 count_nonzero : 

4986 Counts the number of non-zero elements in the input array. 

4987 

4988 Examples 

4989 -------- 

4990 >>> import numpy.ma as ma 

4991 >>> x = ma.array(np.eye(3)) 

4992 >>> x 

4993 masked_array( 

4994 data=[[1., 0., 0.], 

4995 [0., 1., 0.], 

4996 [0., 0., 1.]], 

4997 mask=False, 

4998 fill_value=1e+20) 

4999 >>> x.nonzero() 

5000 (array([0, 1, 2]), array([0, 1, 2])) 

5001 

5002 Masked elements are ignored. 

5003 

5004 >>> x[1, 1] = ma.masked 

5005 >>> x 

5006 masked_array( 

5007 data=[[1.0, 0.0, 0.0], 

5008 [0.0, --, 0.0], 

5009 [0.0, 0.0, 1.0]], 

5010 mask=[[False, False, False], 

5011 [False, True, False], 

5012 [False, False, False]], 

5013 fill_value=1e+20) 

5014 >>> x.nonzero() 

5015 (array([0, 2]), array([0, 2])) 

5016 

5017 Indices can also be grouped by element. 

5018 

5019 >>> np.transpose(x.nonzero()) 

5020 array([[0, 0], 

5021 [2, 2]]) 

5022 

5023 A common use for ``nonzero`` is to find the indices of an array, where 

5024 a condition is True. Given an array `a`, the condition `a` > 3 is a 

5025 boolean array and since False is interpreted as 0, ma.nonzero(a > 3) 

5026 yields the indices of the `a` where the condition is true. 

5027 

5028 >>> a = ma.array([[1,2,3],[4,5,6],[7,8,9]]) 

5029 >>> a > 3 

5030 masked_array( 

5031 data=[[False, False, False], 

5032 [ True, True, True], 

5033 [ True, True, True]], 

5034 mask=False, 

5035 fill_value=True) 

5036 >>> ma.nonzero(a > 3) 

5037 (array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2])) 

5038 

5039 The ``nonzero`` method of the condition array can also be called. 

5040 

5041 >>> (a > 3).nonzero() 

5042 (array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2])) 

5043 

5044 """ 

5045 return narray(self.filled(0), copy=False).nonzero() 

5046 

5047 def trace(self, offset=0, axis1=0, axis2=1, dtype=None, out=None): 

5048 """ 

5049 (this docstring should be overwritten) 

5050 """ 

5051 #!!!: implement out + test! 

5052 m = self._mask 

5053 if m is nomask: 

5054 result = super().trace(offset=offset, axis1=axis1, axis2=axis2, 

5055 out=out) 

5056 return result.astype(dtype) 

5057 else: 

5058 D = self.diagonal(offset=offset, axis1=axis1, axis2=axis2) 

5059 return D.astype(dtype).filled(0).sum(axis=-1, out=out) 

5060 trace.__doc__ = ndarray.trace.__doc__ 

5061 

5062 def dot(self, b, out=None, strict=False): 

5063 """ 

5064 a.dot(b, out=None) 

5065 

5066 Masked dot product of two arrays. Note that `out` and `strict` are 

5067 located in different positions than in `ma.dot`. In order to 

5068 maintain compatibility with the functional version, it is 

5069 recommended that the optional arguments be treated as keyword only. 

5070 At some point that may be mandatory. 

5071 

5072 .. versionadded:: 1.10.0 

5073 

5074 Parameters 

5075 ---------- 

5076 b : masked_array_like 

5077 Inputs array. 

5078 out : masked_array, optional 

5079 Output argument. This must have the exact kind that would be 

5080 returned if it was not used. In particular, it must have the 

5081 right type, must be C-contiguous, and its dtype must be the 

5082 dtype that would be returned for `ma.dot(a,b)`. This is a 

5083 performance feature. Therefore, if these conditions are not 

5084 met, an exception is raised, instead of attempting to be 

5085 flexible. 

5086 strict : bool, optional 

5087 Whether masked data are propagated (True) or set to 0 (False) 

5088 for the computation. Default is False. Propagating the mask 

5089 means that if a masked value appears in a row or column, the 

5090 whole row or column is considered masked. 

5091 

5092 .. versionadded:: 1.10.2 

5093 

5094 See Also 

5095 -------- 

5096 numpy.ma.dot : equivalent function 

5097 

5098 """ 

5099 return dot(self, b, out=out, strict=strict) 

5100 

5101 def sum(self, axis=None, dtype=None, out=None, keepdims=np._NoValue): 

5102 """ 

5103 Return the sum of the array elements over the given axis. 

5104 

5105 Masked elements are set to 0 internally. 

5106 

5107 Refer to `numpy.sum` for full documentation. 

5108 

5109 See Also 

5110 -------- 

5111 numpy.ndarray.sum : corresponding function for ndarrays 

5112 numpy.sum : equivalent function 

5113 

5114 Examples 

5115 -------- 

5116 >>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4) 

5117 >>> x 

5118 masked_array( 

5119 data=[[1, --, 3], 

5120 [--, 5, --], 

5121 [7, --, 9]], 

5122 mask=[[False, True, False], 

5123 [ True, False, True], 

5124 [False, True, False]], 

5125 fill_value=999999) 

5126 >>> x.sum() 

5127 25 

5128 >>> x.sum(axis=1) 

5129 masked_array(data=[4, 5, 16], 

5130 mask=[False, False, False], 

5131 fill_value=999999) 

5132 >>> x.sum(axis=0) 

5133 masked_array(data=[8, 5, 12], 

5134 mask=[False, False, False], 

5135 fill_value=999999) 

5136 >>> print(type(x.sum(axis=0, dtype=np.int64)[0])) 

5137 <class 'numpy.int64'> 

5138 

5139 """ 

5140 kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} 

5141 

5142 _mask = self._mask 

5143 newmask = _check_mask_axis(_mask, axis, **kwargs) 

5144 # No explicit output 

5145 if out is None: 

5146 result = self.filled(0).sum(axis, dtype=dtype, **kwargs) 

5147 rndim = getattr(result, 'ndim', 0) 

5148 if rndim: 

5149 result = result.view(type(self)) 

5150 result.__setmask__(newmask) 

5151 elif newmask: 

5152 result = masked 

5153 return result 

5154 # Explicit output 

5155 result = self.filled(0).sum(axis, dtype=dtype, out=out, **kwargs) 

5156 if isinstance(out, MaskedArray): 

5157 outmask = getmask(out) 

5158 if outmask is nomask: 

5159 outmask = out._mask = make_mask_none(out.shape) 

5160 outmask.flat = newmask 

5161 return out 

5162 

5163 def cumsum(self, axis=None, dtype=None, out=None): 

5164 """ 

5165 Return the cumulative sum of the array elements over the given axis. 

5166 

5167 Masked values are set to 0 internally during the computation. 

5168 However, their position is saved, and the result will be masked at 

5169 the same locations. 

5170 

5171 Refer to `numpy.cumsum` for full documentation. 

5172 

5173 Notes 

5174 ----- 

5175 The mask is lost if `out` is not a valid :class:`ma.MaskedArray` ! 

5176 

5177 Arithmetic is modular when using integer types, and no error is 

5178 raised on overflow. 

5179 

5180 See Also 

5181 -------- 

5182 numpy.ndarray.cumsum : corresponding function for ndarrays 

5183 numpy.cumsum : equivalent function 

5184 

5185 Examples 

5186 -------- 

5187 >>> marr = np.ma.array(np.arange(10), mask=[0,0,0,1,1,1,0,0,0,0]) 

5188 >>> marr.cumsum() 

5189 masked_array(data=[0, 1, 3, --, --, --, 9, 16, 24, 33], 

5190 mask=[False, False, False, True, True, True, False, False, 

5191 False, False], 

5192 fill_value=999999) 

5193 

5194 """ 

5195 result = self.filled(0).cumsum(axis=axis, dtype=dtype, out=out) 

5196 if out is not None: 

5197 if isinstance(out, MaskedArray): 

5198 out.__setmask__(self.mask) 

5199 return out 

5200 result = result.view(type(self)) 

5201 result.__setmask__(self._mask) 

5202 return result 

5203 

5204 def prod(self, axis=None, dtype=None, out=None, keepdims=np._NoValue): 

5205 """ 

5206 Return the product of the array elements over the given axis. 

5207 

5208 Masked elements are set to 1 internally for computation. 

5209 

5210 Refer to `numpy.prod` for full documentation. 

5211 

5212 Notes 

5213 ----- 

5214 Arithmetic is modular when using integer types, and no error is raised 

5215 on overflow. 

5216 

5217 See Also 

5218 -------- 

5219 numpy.ndarray.prod : corresponding function for ndarrays 

5220 numpy.prod : equivalent function 

5221 """ 

5222 kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} 

5223 

5224 _mask = self._mask 

5225 newmask = _check_mask_axis(_mask, axis, **kwargs) 

5226 # No explicit output 

5227 if out is None: 

5228 result = self.filled(1).prod(axis, dtype=dtype, **kwargs) 

5229 rndim = getattr(result, 'ndim', 0) 

5230 if rndim: 

5231 result = result.view(type(self)) 

5232 result.__setmask__(newmask) 

5233 elif newmask: 

5234 result = masked 

5235 return result 

5236 # Explicit output 

5237 result = self.filled(1).prod(axis, dtype=dtype, out=out, **kwargs) 

5238 if isinstance(out, MaskedArray): 

5239 outmask = getmask(out) 

5240 if outmask is nomask: 

5241 outmask = out._mask = make_mask_none(out.shape) 

5242 outmask.flat = newmask 

5243 return out 

5244 product = prod 

5245 

5246 def cumprod(self, axis=None, dtype=None, out=None): 

5247 """ 

5248 Return the cumulative product of the array elements over the given axis. 

5249 

5250 Masked values are set to 1 internally during the computation. 

5251 However, their position is saved, and the result will be masked at 

5252 the same locations. 

5253 

5254 Refer to `numpy.cumprod` for full documentation. 

5255 

5256 Notes 

5257 ----- 

5258 The mask is lost if `out` is not a valid MaskedArray ! 

5259 

5260 Arithmetic is modular when using integer types, and no error is 

5261 raised on overflow. 

5262 

5263 See Also 

5264 -------- 

5265 numpy.ndarray.cumprod : corresponding function for ndarrays 

5266 numpy.cumprod : equivalent function 

5267 """ 

5268 result = self.filled(1).cumprod(axis=axis, dtype=dtype, out=out) 

5269 if out is not None: 

5270 if isinstance(out, MaskedArray): 

5271 out.__setmask__(self._mask) 

5272 return out 

5273 result = result.view(type(self)) 

5274 result.__setmask__(self._mask) 

5275 return result 

5276 

5277 def mean(self, axis=None, dtype=None, out=None, keepdims=np._NoValue): 

5278 """ 

5279 Returns the average of the array elements along given axis. 

5280 

5281 Masked entries are ignored, and result elements which are not 

5282 finite will be masked. 

5283 

5284 Refer to `numpy.mean` for full documentation. 

5285 

5286 See Also 

5287 -------- 

5288 numpy.ndarray.mean : corresponding function for ndarrays 

5289 numpy.mean : Equivalent function 

5290 numpy.ma.average : Weighted average. 

5291 

5292 Examples 

5293 -------- 

5294 >>> a = np.ma.array([1,2,3], mask=[False, False, True]) 

5295 >>> a 

5296 masked_array(data=[1, 2, --], 

5297 mask=[False, False, True], 

5298 fill_value=999999) 

5299 >>> a.mean() 

5300 1.5 

5301 

5302 """ 

5303 kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} 

5304 if self._mask is nomask: 

5305 result = super().mean(axis=axis, dtype=dtype, **kwargs)[()] 

5306 else: 

5307 is_float16_result = False 

5308 if dtype is None: 

5309 if issubclass(self.dtype.type, (ntypes.integer, ntypes.bool_)): 

5310 dtype = mu.dtype('f8') 

5311 elif issubclass(self.dtype.type, ntypes.float16): 

5312 dtype = mu.dtype('f4') 

5313 is_float16_result = True 

5314 dsum = self.sum(axis=axis, dtype=dtype, **kwargs) 

5315 cnt = self.count(axis=axis, **kwargs) 

5316 if cnt.shape == () and (cnt == 0): 

5317 result = masked 

5318 elif is_float16_result: 

5319 result = self.dtype.type(dsum * 1. / cnt) 

5320 else: 

5321 result = dsum * 1. / cnt 

5322 if out is not None: 

5323 out.flat = result 

5324 if isinstance(out, MaskedArray): 

5325 outmask = getmask(out) 

5326 if outmask is nomask: 

5327 outmask = out._mask = make_mask_none(out.shape) 

5328 outmask.flat = getmask(result) 

5329 return out 

5330 return result 

5331 

5332 def anom(self, axis=None, dtype=None): 

5333 """ 

5334 Compute the anomalies (deviations from the arithmetic mean) 

5335 along the given axis. 

5336 

5337 Returns an array of anomalies, with the same shape as the input and 

5338 where the arithmetic mean is computed along the given axis. 

5339 

5340 Parameters 

5341 ---------- 

5342 axis : int, optional 

5343 Axis over which the anomalies are taken. 

5344 The default is to use the mean of the flattened array as reference. 

5345 dtype : dtype, optional 

5346 Type to use in computing the variance. For arrays of integer type 

5347 the default is float32; for arrays of float types it is the same as 

5348 the array type. 

5349 

5350 See Also 

5351 -------- 

5352 mean : Compute the mean of the array. 

5353 

5354 Examples 

5355 -------- 

5356 >>> a = np.ma.array([1,2,3]) 

5357 >>> a.anom() 

5358 masked_array(data=[-1., 0., 1.], 

5359 mask=False, 

5360 fill_value=1e+20) 

5361 

5362 """ 

5363 m = self.mean(axis, dtype) 

5364 if not axis: 

5365 return self - m 

5366 else: 

5367 return self - expand_dims(m, axis) 

5368 

5369 def var(self, axis=None, dtype=None, out=None, ddof=0, 

5370 keepdims=np._NoValue): 

5371 """ 

5372 Returns the variance of the array elements along given axis. 

5373 

5374 Masked entries are ignored, and result elements which are not 

5375 finite will be masked. 

5376 

5377 Refer to `numpy.var` for full documentation. 

5378 

5379 See Also 

5380 -------- 

5381 numpy.ndarray.var : corresponding function for ndarrays 

5382 numpy.var : Equivalent function 

5383 """ 

5384 kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} 

5385 

5386 # Easy case: nomask, business as usual 

5387 if self._mask is nomask: 

5388 ret = super().var(axis=axis, dtype=dtype, out=out, ddof=ddof, 

5389 **kwargs)[()] 

5390 if out is not None: 

5391 if isinstance(out, MaskedArray): 

5392 out.__setmask__(nomask) 

5393 return out 

5394 return ret 

5395 

5396 # Some data are masked, yay! 

5397 cnt = self.count(axis=axis, **kwargs) - ddof 

5398 danom = self - self.mean(axis, dtype, keepdims=True) 

5399 if iscomplexobj(self): 

5400 danom = umath.absolute(danom) ** 2 

5401 else: 

5402 danom *= danom 

5403 dvar = divide(danom.sum(axis, **kwargs), cnt).view(type(self)) 

5404 # Apply the mask if it's not a scalar 

5405 if dvar.ndim: 

5406 dvar._mask = mask_or(self._mask.all(axis, **kwargs), (cnt <= 0)) 

5407 dvar._update_from(self) 

5408 elif getmask(dvar): 

5409 # Make sure that masked is returned when the scalar is masked. 

5410 dvar = masked 

5411 if out is not None: 

5412 if isinstance(out, MaskedArray): 

5413 out.flat = 0 

5414 out.__setmask__(True) 

5415 elif out.dtype.kind in 'biu': 

5416 errmsg = "Masked data information would be lost in one or "\ 

5417 "more location." 

5418 raise MaskError(errmsg) 

5419 else: 

5420 out.flat = np.nan 

5421 return out 

5422 # In case with have an explicit output 

5423 if out is not None: 

5424 # Set the data 

5425 out.flat = dvar 

5426 # Set the mask if needed 

5427 if isinstance(out, MaskedArray): 

5428 out.__setmask__(dvar.mask) 

5429 return out 

5430 return dvar 

5431 var.__doc__ = np.var.__doc__ 

5432 

5433 def std(self, axis=None, dtype=None, out=None, ddof=0, 

5434 keepdims=np._NoValue): 

5435 """ 

5436 Returns the standard deviation of the array elements along given axis. 

5437 

5438 Masked entries are ignored. 

5439 

5440 Refer to `numpy.std` for full documentation. 

5441 

5442 See Also 

5443 -------- 

5444 numpy.ndarray.std : corresponding function for ndarrays 

5445 numpy.std : Equivalent function 

5446 """ 

5447 kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} 

5448 

5449 dvar = self.var(axis, dtype, out, ddof, **kwargs) 

5450 if dvar is not masked: 

5451 if out is not None: 

5452 np.power(out, 0.5, out=out, casting='unsafe') 

5453 return out 

5454 dvar = sqrt(dvar) 

5455 return dvar 

5456 

5457 def round(self, decimals=0, out=None): 

5458 """ 

5459 Return each element rounded to the given number of decimals. 

5460 

5461 Refer to `numpy.around` for full documentation. 

5462 

5463 See Also 

5464 -------- 

5465 numpy.ndarray.round : corresponding function for ndarrays 

5466 numpy.around : equivalent function 

5467 """ 

5468 result = self._data.round(decimals=decimals, out=out).view(type(self)) 

5469 if result.ndim > 0: 

5470 result._mask = self._mask 

5471 result._update_from(self) 

5472 elif self._mask: 

5473 # Return masked when the scalar is masked 

5474 result = masked 

5475 # No explicit output: we're done 

5476 if out is None: 

5477 return result 

5478 if isinstance(out, MaskedArray): 

5479 out.__setmask__(self._mask) 

5480 return out 

5481 

5482 def argsort(self, axis=np._NoValue, kind=None, order=None, 

5483 endwith=True, fill_value=None): 

5484 """ 

5485 Return an ndarray of indices that sort the array along the 

5486 specified axis. Masked values are filled beforehand to 

5487 `fill_value`. 

5488 

5489 Parameters 

5490 ---------- 

5491 axis : int, optional 

5492 Axis along which to sort. If None, the default, the flattened array 

5493 is used. 

5494 

5495 .. versionchanged:: 1.13.0 

5496 Previously, the default was documented to be -1, but that was 

5497 in error. At some future date, the default will change to -1, as 

5498 originally intended. 

5499 Until then, the axis should be given explicitly when 

5500 ``arr.ndim > 1``, to avoid a FutureWarning. 

5501 kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional 

5502 The sorting algorithm used. 

5503 order : list, optional 

5504 When `a` is an array with fields defined, this argument specifies 

5505 which fields to compare first, second, etc. Not all fields need be 

5506 specified. 

5507 endwith : {True, False}, optional 

5508 Whether missing values (if any) should be treated as the largest values 

5509 (True) or the smallest values (False) 

5510 When the array contains unmasked values at the same extremes of the 

5511 datatype, the ordering of these values and the masked values is 

5512 undefined. 

5513 fill_value : scalar or None, optional 

5514 Value used internally for the masked values. 

5515 If ``fill_value`` is not None, it supersedes ``endwith``. 

5516 

5517 Returns 

5518 ------- 

5519 index_array : ndarray, int 

5520 Array of indices that sort `a` along the specified axis. 

5521 In other words, ``a[index_array]`` yields a sorted `a`. 

5522 

5523 See Also 

5524 -------- 

5525 ma.MaskedArray.sort : Describes sorting algorithms used. 

5526 lexsort : Indirect stable sort with multiple keys. 

5527 numpy.ndarray.sort : Inplace sort. 

5528 

5529 Notes 

5530 ----- 

5531 See `sort` for notes on the different sorting algorithms. 

5532 

5533 Examples 

5534 -------- 

5535 >>> a = np.ma.array([3,2,1], mask=[False, False, True]) 

5536 >>> a 

5537 masked_array(data=[3, 2, --], 

5538 mask=[False, False, True], 

5539 fill_value=999999) 

5540 >>> a.argsort() 

5541 array([1, 0, 2]) 

5542 

5543 """ 

5544 

5545 # 2017-04-11, Numpy 1.13.0, gh-8701: warn on axis default 

5546 if axis is np._NoValue: 

5547 axis = _deprecate_argsort_axis(self) 

5548 

5549 if fill_value is None: 

5550 if endwith: 

5551 # nan > inf 

5552 if np.issubdtype(self.dtype, np.floating): 

5553 fill_value = np.nan 

5554 else: 

5555 fill_value = minimum_fill_value(self) 

5556 else: 

5557 fill_value = maximum_fill_value(self) 

5558 

5559 filled = self.filled(fill_value) 

5560 return filled.argsort(axis=axis, kind=kind, order=order) 

5561 

5562 def argmin(self, axis=None, fill_value=None, out=None, *, 

5563 keepdims=np._NoValue): 

5564 """ 

5565 Return array of indices to the minimum values along the given axis. 

5566 

5567 Parameters 

5568 ---------- 

5569 axis : {None, integer} 

5570 If None, the index is into the flattened array, otherwise along 

5571 the specified axis 

5572 fill_value : scalar or None, optional 

5573 Value used to fill in the masked values. If None, the output of 

5574 minimum_fill_value(self._data) is used instead. 

5575 out : {None, array}, optional 

5576 Array into which the result can be placed. Its type is preserved 

5577 and it must be of the right shape to hold the output. 

5578 

5579 Returns 

5580 ------- 

5581 ndarray or scalar 

5582 If multi-dimension input, returns a new ndarray of indices to the 

5583 minimum values along the given axis. Otherwise, returns a scalar 

5584 of index to the minimum values along the given axis. 

5585 

5586 Examples 

5587 -------- 

5588 >>> x = np.ma.array(np.arange(4), mask=[1,1,0,0]) 

5589 >>> x.shape = (2,2) 

5590 >>> x 

5591 masked_array( 

5592 data=[[--, --], 

5593 [2, 3]], 

5594 mask=[[ True, True], 

5595 [False, False]], 

5596 fill_value=999999) 

5597 >>> x.argmin(axis=0, fill_value=-1) 

5598 array([0, 0]) 

5599 >>> x.argmin(axis=0, fill_value=9) 

5600 array([1, 1]) 

5601 

5602 """ 

5603 if fill_value is None: 

5604 fill_value = minimum_fill_value(self) 

5605 d = self.filled(fill_value).view(ndarray) 

5606 keepdims = False if keepdims is np._NoValue else bool(keepdims) 

5607 return d.argmin(axis, out=out, keepdims=keepdims) 

5608 

5609 def argmax(self, axis=None, fill_value=None, out=None, *, 

5610 keepdims=np._NoValue): 

5611 """ 

5612 Returns array of indices of the maximum values along the given axis. 

5613 Masked values are treated as if they had the value fill_value. 

5614 

5615 Parameters 

5616 ---------- 

5617 axis : {None, integer} 

5618 If None, the index is into the flattened array, otherwise along 

5619 the specified axis 

5620 fill_value : scalar or None, optional 

5621 Value used to fill in the masked values. If None, the output of 

5622 maximum_fill_value(self._data) is used instead. 

5623 out : {None, array}, optional 

5624 Array into which the result can be placed. Its type is preserved 

5625 and it must be of the right shape to hold the output. 

5626 

5627 Returns 

5628 ------- 

5629 index_array : {integer_array} 

5630 

5631 Examples 

5632 -------- 

5633 >>> a = np.arange(6).reshape(2,3) 

5634 >>> a.argmax() 

5635 5 

5636 >>> a.argmax(0) 

5637 array([1, 1, 1]) 

5638 >>> a.argmax(1) 

5639 array([2, 2]) 

5640 

5641 """ 

5642 if fill_value is None: 

5643 fill_value = maximum_fill_value(self._data) 

5644 d = self.filled(fill_value).view(ndarray) 

5645 keepdims = False if keepdims is np._NoValue else bool(keepdims) 

5646 return d.argmax(axis, out=out, keepdims=keepdims) 

5647 

5648 def sort(self, axis=-1, kind=None, order=None, 

5649 endwith=True, fill_value=None): 

5650 """ 

5651 Sort the array, in-place 

5652 

5653 Parameters 

5654 ---------- 

5655 a : array_like 

5656 Array to be sorted. 

5657 axis : int, optional 

5658 Axis along which to sort. If None, the array is flattened before 

5659 sorting. The default is -1, which sorts along the last axis. 

5660 kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional 

5661 The sorting algorithm used. 

5662 order : list, optional 

5663 When `a` is a structured array, this argument specifies which fields 

5664 to compare first, second, and so on. This list does not need to 

5665 include all of the fields. 

5666 endwith : {True, False}, optional 

5667 Whether missing values (if any) should be treated as the largest values 

5668 (True) or the smallest values (False) 

5669 When the array contains unmasked values sorting at the same extremes of the 

5670 datatype, the ordering of these values and the masked values is 

5671 undefined. 

5672 fill_value : scalar or None, optional 

5673 Value used internally for the masked values. 

5674 If ``fill_value`` is not None, it supersedes ``endwith``. 

5675 

5676 Returns 

5677 ------- 

5678 sorted_array : ndarray 

5679 Array of the same type and shape as `a`. 

5680 

5681 See Also 

5682 -------- 

5683 numpy.ndarray.sort : Method to sort an array in-place. 

5684 argsort : Indirect sort. 

5685 lexsort : Indirect stable sort on multiple keys. 

5686 searchsorted : Find elements in a sorted array. 

5687 

5688 Notes 

5689 ----- 

5690 See ``sort`` for notes on the different sorting algorithms. 

5691 

5692 Examples 

5693 -------- 

5694 >>> a = np.ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0]) 

5695 >>> # Default 

5696 >>> a.sort() 

5697 >>> a 

5698 masked_array(data=[1, 3, 5, --, --], 

5699 mask=[False, False, False, True, True], 

5700 fill_value=999999) 

5701 

5702 >>> a = np.ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0]) 

5703 >>> # Put missing values in the front 

5704 >>> a.sort(endwith=False) 

5705 >>> a 

5706 masked_array(data=[--, --, 1, 3, 5], 

5707 mask=[ True, True, False, False, False], 

5708 fill_value=999999) 

5709 

5710 >>> a = np.ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0]) 

5711 >>> # fill_value takes over endwith 

5712 >>> a.sort(endwith=False, fill_value=3) 

5713 >>> a 

5714 masked_array(data=[1, --, --, 3, 5], 

5715 mask=[False, True, True, False, False], 

5716 fill_value=999999) 

5717 

5718 """ 

5719 if self._mask is nomask: 

5720 ndarray.sort(self, axis=axis, kind=kind, order=order) 

5721 return 

5722 

5723 if self is masked: 

5724 return 

5725 

5726 sidx = self.argsort(axis=axis, kind=kind, order=order, 

5727 fill_value=fill_value, endwith=endwith) 

5728 

5729 self[...] = np.take_along_axis(self, sidx, axis=axis) 

5730 

5731 def min(self, axis=None, out=None, fill_value=None, keepdims=np._NoValue): 

5732 """ 

5733 Return the minimum along a given axis. 

5734 

5735 Parameters 

5736 ---------- 

5737 axis : None or int or tuple of ints, optional 

5738 Axis along which to operate. By default, ``axis`` is None and the 

5739 flattened input is used. 

5740 .. versionadded:: 1.7.0 

5741 If this is a tuple of ints, the minimum is selected over multiple 

5742 axes, instead of a single axis or all the axes as before. 

5743 out : array_like, optional 

5744 Alternative output array in which to place the result. Must be of 

5745 the same shape and buffer length as the expected output. 

5746 fill_value : scalar or None, optional 

5747 Value used to fill in the masked values. 

5748 If None, use the output of `minimum_fill_value`. 

5749 keepdims : bool, optional 

5750 If this is set to True, the axes which are reduced are left 

5751 in the result as dimensions with size one. With this option, 

5752 the result will broadcast correctly against the array. 

5753 

5754 Returns 

5755 ------- 

5756 amin : array_like 

5757 New array holding the result. 

5758 If ``out`` was specified, ``out`` is returned. 

5759 

5760 See Also 

5761 -------- 

5762 ma.minimum_fill_value 

5763 Returns the minimum filling value for a given datatype. 

5764 

5765 Examples 

5766 -------- 

5767 >>> import numpy.ma as ma 

5768 >>> x = [[1., -2., 3.], [0.2, -0.7, 0.1]] 

5769 >>> mask = [[1, 1, 0], [0, 0, 1]] 

5770 >>> masked_x = ma.masked_array(x, mask) 

5771 >>> masked_x 

5772 masked_array( 

5773 data=[[--, --, 3.0], 

5774 [0.2, -0.7, --]], 

5775 mask=[[ True, True, False], 

5776 [False, False, True]], 

5777 fill_value=1e+20) 

5778 >>> ma.min(masked_x) 

5779 -0.7 

5780 >>> ma.min(masked_x, axis=-1) 

5781 masked_array(data=[3.0, -0.7], 

5782 mask=[False, False], 

5783 fill_value=1e+20) 

5784 >>> ma.min(masked_x, axis=0, keepdims=True) 

5785 masked_array(data=[[0.2, -0.7, 3.0]], 

5786 mask=[[False, False, False]], 

5787 fill_value=1e+20) 

5788 >>> mask = [[1, 1, 1,], [1, 1, 1]] 

5789 >>> masked_x = ma.masked_array(x, mask) 

5790 >>> ma.min(masked_x, axis=0) 

5791 masked_array(data=[--, --, --], 

5792 mask=[ True, True, True], 

5793 fill_value=1e+20, 

5794 dtype=float64) 

5795 """ 

5796 kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} 

5797 

5798 _mask = self._mask 

5799 newmask = _check_mask_axis(_mask, axis, **kwargs) 

5800 if fill_value is None: 

5801 fill_value = minimum_fill_value(self) 

5802 # No explicit output 

5803 if out is None: 

5804 result = self.filled(fill_value).min( 

5805 axis=axis, out=out, **kwargs).view(type(self)) 

5806 if result.ndim: 

5807 # Set the mask 

5808 result.__setmask__(newmask) 

5809 # Get rid of Infs 

5810 if newmask.ndim: 

5811 np.copyto(result, result.fill_value, where=newmask) 

5812 elif newmask: 

5813 result = masked 

5814 return result 

5815 # Explicit output 

5816 result = self.filled(fill_value).min(axis=axis, out=out, **kwargs) 

5817 if isinstance(out, MaskedArray): 

5818 outmask = getmask(out) 

5819 if outmask is nomask: 

5820 outmask = out._mask = make_mask_none(out.shape) 

5821 outmask.flat = newmask 

5822 else: 

5823 if out.dtype.kind in 'biu': 

5824 errmsg = "Masked data information would be lost in one or more"\ 

5825 " location." 

5826 raise MaskError(errmsg) 

5827 np.copyto(out, np.nan, where=newmask) 

5828 return out 

5829 

5830 def max(self, axis=None, out=None, fill_value=None, keepdims=np._NoValue): 

5831 """ 

5832 Return the maximum along a given axis. 

5833 

5834 Parameters 

5835 ---------- 

5836 axis : None or int or tuple of ints, optional 

5837 Axis along which to operate. By default, ``axis`` is None and the 

5838 flattened input is used. 

5839 .. versionadded:: 1.7.0 

5840 If this is a tuple of ints, the maximum is selected over multiple 

5841 axes, instead of a single axis or all the axes as before. 

5842 out : array_like, optional 

5843 Alternative output array in which to place the result. Must 

5844 be of the same shape and buffer length as the expected output. 

5845 fill_value : scalar or None, optional 

5846 Value used to fill in the masked values. 

5847 If None, use the output of maximum_fill_value(). 

5848 keepdims : bool, optional 

5849 If this is set to True, the axes which are reduced are left 

5850 in the result as dimensions with size one. With this option, 

5851 the result will broadcast correctly against the array. 

5852 

5853 Returns 

5854 ------- 

5855 amax : array_like 

5856 New array holding the result. 

5857 If ``out`` was specified, ``out`` is returned. 

5858 

5859 See Also 

5860 -------- 

5861 ma.maximum_fill_value 

5862 Returns the maximum filling value for a given datatype. 

5863 

5864 Examples 

5865 -------- 

5866 >>> import numpy.ma as ma 

5867 >>> x = [[-1., 2.5], [4., -2.], [3., 0.]] 

5868 >>> mask = [[0, 0], [1, 0], [1, 0]] 

5869 >>> masked_x = ma.masked_array(x, mask) 

5870 >>> masked_x 

5871 masked_array( 

5872 data=[[-1.0, 2.5], 

5873 [--, -2.0], 

5874 [--, 0.0]], 

5875 mask=[[False, False], 

5876 [ True, False], 

5877 [ True, False]], 

5878 fill_value=1e+20) 

5879 >>> ma.max(masked_x) 

5880 2.5 

5881 >>> ma.max(masked_x, axis=0) 

5882 masked_array(data=[-1.0, 2.5], 

5883 mask=[False, False], 

5884 fill_value=1e+20) 

5885 >>> ma.max(masked_x, axis=1, keepdims=True) 

5886 masked_array( 

5887 data=[[2.5], 

5888 [-2.0], 

5889 [0.0]], 

5890 mask=[[False], 

5891 [False], 

5892 [False]], 

5893 fill_value=1e+20) 

5894 >>> mask = [[1, 1], [1, 1], [1, 1]] 

5895 >>> masked_x = ma.masked_array(x, mask) 

5896 >>> ma.max(masked_x, axis=1) 

5897 masked_array(data=[--, --, --], 

5898 mask=[ True, True, True], 

5899 fill_value=1e+20, 

5900 dtype=float64) 

5901 """ 

5902 kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} 

5903 

5904 _mask = self._mask 

5905 newmask = _check_mask_axis(_mask, axis, **kwargs) 

5906 if fill_value is None: 

5907 fill_value = maximum_fill_value(self) 

5908 # No explicit output 

5909 if out is None: 

5910 result = self.filled(fill_value).max( 

5911 axis=axis, out=out, **kwargs).view(type(self)) 

5912 if result.ndim: 

5913 # Set the mask 

5914 result.__setmask__(newmask) 

5915 # Get rid of Infs 

5916 if newmask.ndim: 

5917 np.copyto(result, result.fill_value, where=newmask) 

5918 elif newmask: 

5919 result = masked 

5920 return result 

5921 # Explicit output 

5922 result = self.filled(fill_value).max(axis=axis, out=out, **kwargs) 

5923 if isinstance(out, MaskedArray): 

5924 outmask = getmask(out) 

5925 if outmask is nomask: 

5926 outmask = out._mask = make_mask_none(out.shape) 

5927 outmask.flat = newmask 

5928 else: 

5929 

5930 if out.dtype.kind in 'biu': 

5931 errmsg = "Masked data information would be lost in one or more"\ 

5932 " location." 

5933 raise MaskError(errmsg) 

5934 np.copyto(out, np.nan, where=newmask) 

5935 return out 

5936 

5937 def ptp(self, axis=None, out=None, fill_value=None, keepdims=False): 

5938 """ 

5939 Return (maximum - minimum) along the given dimension 

5940 (i.e. peak-to-peak value). 

5941 

5942 .. warning:: 

5943 `ptp` preserves the data type of the array. This means the 

5944 return value for an input of signed integers with n bits 

5945 (e.g. `np.int8`, `np.int16`, etc) is also a signed integer 

5946 with n bits. In that case, peak-to-peak values greater than 

5947 ``2**(n-1)-1`` will be returned as negative values. An example 

5948 with a work-around is shown below. 

5949 

5950 Parameters 

5951 ---------- 

5952 axis : {None, int}, optional 

5953 Axis along which to find the peaks. If None (default) the 

5954 flattened array is used. 

5955 out : {None, array_like}, optional 

5956 Alternative output array in which to place the result. It must 

5957 have the same shape and buffer length as the expected output 

5958 but the type will be cast if necessary. 

5959 fill_value : scalar or None, optional 

5960 Value used to fill in the masked values. 

5961 keepdims : bool, optional 

5962 If this is set to True, the axes which are reduced are left 

5963 in the result as dimensions with size one. With this option, 

5964 the result will broadcast correctly against the array. 

5965 

5966 Returns 

5967 ------- 

5968 ptp : ndarray. 

5969 A new array holding the result, unless ``out`` was 

5970 specified, in which case a reference to ``out`` is returned. 

5971 

5972 Examples 

5973 -------- 

5974 >>> x = np.ma.MaskedArray([[4, 9, 2, 10], 

5975 ... [6, 9, 7, 12]]) 

5976 

5977 >>> x.ptp(axis=1) 

5978 masked_array(data=[8, 6], 

5979 mask=False, 

5980 fill_value=999999) 

5981 

5982 >>> x.ptp(axis=0) 

5983 masked_array(data=[2, 0, 5, 2], 

5984 mask=False, 

5985 fill_value=999999) 

5986 

5987 >>> x.ptp() 

5988 10 

5989 

5990 This example shows that a negative value can be returned when 

5991 the input is an array of signed integers. 

5992 

5993 >>> y = np.ma.MaskedArray([[1, 127], 

5994 ... [0, 127], 

5995 ... [-1, 127], 

5996 ... [-2, 127]], dtype=np.int8) 

5997 >>> y.ptp(axis=1) 

5998 masked_array(data=[ 126, 127, -128, -127], 

5999 mask=False, 

6000 fill_value=999999, 

6001 dtype=int8) 

6002 

6003 A work-around is to use the `view()` method to view the result as 

6004 unsigned integers with the same bit width: 

6005 

6006 >>> y.ptp(axis=1).view(np.uint8) 

6007 masked_array(data=[126, 127, 128, 129], 

6008 mask=False, 

6009 fill_value=999999, 

6010 dtype=uint8) 

6011 """ 

6012 if out is None: 

6013 result = self.max(axis=axis, fill_value=fill_value, 

6014 keepdims=keepdims) 

6015 result -= self.min(axis=axis, fill_value=fill_value, 

6016 keepdims=keepdims) 

6017 return result 

6018 out.flat = self.max(axis=axis, out=out, fill_value=fill_value, 

6019 keepdims=keepdims) 

6020 min_value = self.min(axis=axis, fill_value=fill_value, 

6021 keepdims=keepdims) 

6022 np.subtract(out, min_value, out=out, casting='unsafe') 

6023 return out 

6024 

6025 def partition(self, *args, **kwargs): 

6026 warnings.warn("Warning: 'partition' will ignore the 'mask' " 

6027 f"of the {self.__class__.__name__}.", 

6028 stacklevel=2) 

6029 return super().partition(*args, **kwargs) 

6030 

6031 def argpartition(self, *args, **kwargs): 

6032 warnings.warn("Warning: 'argpartition' will ignore the 'mask' " 

6033 f"of the {self.__class__.__name__}.", 

6034 stacklevel=2) 

6035 return super().argpartition(*args, **kwargs) 

6036 

6037 def take(self, indices, axis=None, out=None, mode='raise'): 

6038 """ 

6039 """ 

6040 (_data, _mask) = (self._data, self._mask) 

6041 cls = type(self) 

6042 # Make sure the indices are not masked 

6043 maskindices = getmask(indices) 

6044 if maskindices is not nomask: 

6045 indices = indices.filled(0) 

6046 # Get the data, promoting scalars to 0d arrays with [...] so that 

6047 # .view works correctly 

6048 if out is None: 

6049 out = _data.take(indices, axis=axis, mode=mode)[...].view(cls) 

6050 else: 

6051 np.take(_data, indices, axis=axis, mode=mode, out=out) 

6052 # Get the mask 

6053 if isinstance(out, MaskedArray): 

6054 if _mask is nomask: 

6055 outmask = maskindices 

6056 else: 

6057 outmask = _mask.take(indices, axis=axis, mode=mode) 

6058 outmask |= maskindices 

6059 out.__setmask__(outmask) 

6060 # demote 0d arrays back to scalars, for consistency with ndarray.take 

6061 return out[()] 

6062 

6063 # Array methods 

6064 copy = _arraymethod('copy') 

6065 diagonal = _arraymethod('diagonal') 

6066 flatten = _arraymethod('flatten') 

6067 repeat = _arraymethod('repeat') 

6068 squeeze = _arraymethod('squeeze') 

6069 swapaxes = _arraymethod('swapaxes') 

6070 T = property(fget=lambda self: self.transpose()) 

6071 transpose = _arraymethod('transpose') 

6072 

6073 def tolist(self, fill_value=None): 

6074 """ 

6075 Return the data portion of the masked array as a hierarchical Python list. 

6076 

6077 Data items are converted to the nearest compatible Python type. 

6078 Masked values are converted to `fill_value`. If `fill_value` is None, 

6079 the corresponding entries in the output list will be ``None``. 

6080 

6081 Parameters 

6082 ---------- 

6083 fill_value : scalar, optional 

6084 The value to use for invalid entries. Default is None. 

6085 

6086 Returns 

6087 ------- 

6088 result : list 

6089 The Python list representation of the masked array. 

6090 

6091 Examples 

6092 -------- 

6093 >>> x = np.ma.array([[1,2,3], [4,5,6], [7,8,9]], mask=[0] + [1,0]*4) 

6094 >>> x.tolist() 

6095 [[1, None, 3], [None, 5, None], [7, None, 9]] 

6096 >>> x.tolist(-999) 

6097 [[1, -999, 3], [-999, 5, -999], [7, -999, 9]] 

6098 

6099 """ 

6100 _mask = self._mask 

6101 # No mask ? Just return .data.tolist ? 

6102 if _mask is nomask: 

6103 return self._data.tolist() 

6104 # Explicit fill_value: fill the array and get the list 

6105 if fill_value is not None: 

6106 return self.filled(fill_value).tolist() 

6107 # Structured array. 

6108 names = self.dtype.names 

6109 if names: 

6110 result = self._data.astype([(_, object) for _ in names]) 

6111 for n in names: 

6112 result[n][_mask[n]] = None 

6113 return result.tolist() 

6114 # Standard arrays. 

6115 if _mask is nomask: 

6116 return [None] 

6117 # Set temps to save time when dealing w/ marrays. 

6118 inishape = self.shape 

6119 result = np.array(self._data.ravel(), dtype=object) 

6120 result[_mask.ravel()] = None 

6121 result.shape = inishape 

6122 return result.tolist() 

6123 

6124 def tostring(self, fill_value=None, order='C'): 

6125 r""" 

6126 A compatibility alias for `tobytes`, with exactly the same behavior. 

6127 

6128 Despite its name, it returns `bytes` not `str`\ s. 

6129 

6130 .. deprecated:: 1.19.0 

6131 """ 

6132 # 2020-03-30, Numpy 1.19.0 

6133 warnings.warn( 

6134 "tostring() is deprecated. Use tobytes() instead.", 

6135 DeprecationWarning, stacklevel=2) 

6136 

6137 return self.tobytes(fill_value, order=order) 

6138 

6139 def tobytes(self, fill_value=None, order='C'): 

6140 """ 

6141 Return the array data as a string containing the raw bytes in the array. 

6142 

6143 The array is filled with a fill value before the string conversion. 

6144 

6145 .. versionadded:: 1.9.0 

6146 

6147 Parameters 

6148 ---------- 

6149 fill_value : scalar, optional 

6150 Value used to fill in the masked values. Default is None, in which 

6151 case `MaskedArray.fill_value` is used. 

6152 order : {'C','F','A'}, optional 

6153 Order of the data item in the copy. Default is 'C'. 

6154 

6155 - 'C' -- C order (row major). 

6156 - 'F' -- Fortran order (column major). 

6157 - 'A' -- Any, current order of array. 

6158 - None -- Same as 'A'. 

6159 

6160 See Also 

6161 -------- 

6162 numpy.ndarray.tobytes 

6163 tolist, tofile 

6164 

6165 Notes 

6166 ----- 

6167 As for `ndarray.tobytes`, information about the shape, dtype, etc., 

6168 but also about `fill_value`, will be lost. 

6169 

6170 Examples 

6171 -------- 

6172 >>> x = np.ma.array(np.array([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]]) 

6173 >>> x.tobytes() 

6174 b'\\x01\\x00\\x00\\x00\\x00\\x00\\x00\\x00?B\\x0f\\x00\\x00\\x00\\x00\\x00?B\\x0f\\x00\\x00\\x00\\x00\\x00\\x04\\x00\\x00\\x00\\x00\\x00\\x00\\x00' 

6175 

6176 """ 

6177 return self.filled(fill_value).tobytes(order=order) 

6178 

6179 def tofile(self, fid, sep="", format="%s"): 

6180 """ 

6181 Save a masked array to a file in binary format. 

6182 

6183 .. warning:: 

6184 This function is not implemented yet. 

6185 

6186 Raises 

6187 ------ 

6188 NotImplementedError 

6189 When `tofile` is called. 

6190 

6191 """ 

6192 raise NotImplementedError("MaskedArray.tofile() not implemented yet.") 

6193 

6194 def toflex(self): 

6195 """ 

6196 Transforms a masked array into a flexible-type array. 

6197 

6198 The flexible type array that is returned will have two fields: 

6199 

6200 * the ``_data`` field stores the ``_data`` part of the array. 

6201 * the ``_mask`` field stores the ``_mask`` part of the array. 

6202 

6203 Parameters 

6204 ---------- 

6205 None 

6206 

6207 Returns 

6208 ------- 

6209 record : ndarray 

6210 A new flexible-type `ndarray` with two fields: the first element 

6211 containing a value, the second element containing the corresponding 

6212 mask boolean. The returned record shape matches self.shape. 

6213 

6214 Notes 

6215 ----- 

6216 A side-effect of transforming a masked array into a flexible `ndarray` is 

6217 that meta information (``fill_value``, ...) will be lost. 

6218 

6219 Examples 

6220 -------- 

6221 >>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4) 

6222 >>> x 

6223 masked_array( 

6224 data=[[1, --, 3], 

6225 [--, 5, --], 

6226 [7, --, 9]], 

6227 mask=[[False, True, False], 

6228 [ True, False, True], 

6229 [False, True, False]], 

6230 fill_value=999999) 

6231 >>> x.toflex() 

6232 array([[(1, False), (2, True), (3, False)], 

6233 [(4, True), (5, False), (6, True)], 

6234 [(7, False), (8, True), (9, False)]], 

6235 dtype=[('_data', '<i8'), ('_mask', '?')]) 

6236 

6237 """ 

6238 # Get the basic dtype. 

6239 ddtype = self.dtype 

6240 # Make sure we have a mask 

6241 _mask = self._mask 

6242 if _mask is None: 

6243 _mask = make_mask_none(self.shape, ddtype) 

6244 # And get its dtype 

6245 mdtype = self._mask.dtype 

6246 

6247 record = np.ndarray(shape=self.shape, 

6248 dtype=[('_data', ddtype), ('_mask', mdtype)]) 

6249 record['_data'] = self._data 

6250 record['_mask'] = self._mask 

6251 return record 

6252 torecords = toflex 

6253 

6254 # Pickling 

6255 def __getstate__(self): 

6256 """Return the internal state of the masked array, for pickling 

6257 purposes. 

6258 

6259 """ 

6260 cf = 'CF'[self.flags.fnc] 

6261 data_state = super().__reduce__()[2] 

6262 return data_state + (getmaskarray(self).tobytes(cf), self._fill_value) 

6263 

6264 def __setstate__(self, state): 

6265 """Restore the internal state of the masked array, for 

6266 pickling purposes. ``state`` is typically the output of the 

6267 ``__getstate__`` output, and is a 5-tuple: 

6268 

6269 - class name 

6270 - a tuple giving the shape of the data 

6271 - a typecode for the data 

6272 - a binary string for the data 

6273 - a binary string for the mask. 

6274 

6275 """ 

6276 (_, shp, typ, isf, raw, msk, flv) = state 

6277 super().__setstate__((shp, typ, isf, raw)) 

6278 self._mask.__setstate__((shp, make_mask_descr(typ), isf, msk)) 

6279 self.fill_value = flv 

6280 

6281 def __reduce__(self): 

6282 """Return a 3-tuple for pickling a MaskedArray. 

6283 

6284 """ 

6285 return (_mareconstruct, 

6286 (self.__class__, self._baseclass, (0,), 'b',), 

6287 self.__getstate__()) 

6288 

6289 def __deepcopy__(self, memo=None): 

6290 from copy import deepcopy 

6291 copied = MaskedArray.__new__(type(self), self, copy=True) 

6292 if memo is None: 

6293 memo = {} 

6294 memo[id(self)] = copied 

6295 for (k, v) in self.__dict__.items(): 

6296 copied.__dict__[k] = deepcopy(v, memo) 

6297 return copied 

6298 

6299 

6300def _mareconstruct(subtype, baseclass, baseshape, basetype,): 

6301 """Internal function that builds a new MaskedArray from the 

6302 information stored in a pickle. 

6303 

6304 """ 

6305 _data = ndarray.__new__(baseclass, baseshape, basetype) 

6306 _mask = ndarray.__new__(ndarray, baseshape, make_mask_descr(basetype)) 

6307 return subtype.__new__(subtype, _data, mask=_mask, dtype=basetype,) 

6308 

6309 

6310class mvoid(MaskedArray): 

6311 """ 

6312 Fake a 'void' object to use for masked array with structured dtypes. 

6313 """ 

6314 

6315 def __new__(self, data, mask=nomask, dtype=None, fill_value=None, 

6316 hardmask=False, copy=False, subok=True): 

6317 _data = np.array(data, copy=copy, subok=subok, dtype=dtype) 

6318 _data = _data.view(self) 

6319 _data._hardmask = hardmask 

6320 if mask is not nomask: 

6321 if isinstance(mask, np.void): 

6322 _data._mask = mask 

6323 else: 

6324 try: 

6325 # Mask is already a 0D array 

6326 _data._mask = np.void(mask) 

6327 except TypeError: 

6328 # Transform the mask to a void 

6329 mdtype = make_mask_descr(dtype) 

6330 _data._mask = np.array(mask, dtype=mdtype)[()] 

6331 if fill_value is not None: 

6332 _data.fill_value = fill_value 

6333 return _data 

6334 

6335 @property 

6336 def _data(self): 

6337 # Make sure that the _data part is a np.void 

6338 return super()._data[()] 

6339 

6340 def __getitem__(self, indx): 

6341 """ 

6342 Get the index. 

6343 

6344 """ 

6345 m = self._mask 

6346 if isinstance(m[indx], ndarray): 

6347 # Can happen when indx is a multi-dimensional field: 

6348 # A = ma.masked_array(data=[([0,1],)], mask=[([True, 

6349 # False],)], dtype=[("A", ">i2", (2,))]) 

6350 # x = A[0]; y = x["A"]; then y.mask["A"].size==2 

6351 # and we can not say masked/unmasked. 

6352 # The result is no longer mvoid! 

6353 # See also issue #6724. 

6354 return masked_array( 

6355 data=self._data[indx], mask=m[indx], 

6356 fill_value=self._fill_value[indx], 

6357 hard_mask=self._hardmask) 

6358 if m is not nomask and m[indx]: 

6359 return masked 

6360 return self._data[indx] 

6361 

6362 def __setitem__(self, indx, value): 

6363 self._data[indx] = value 

6364 if self._hardmask: 

6365 self._mask[indx] |= getattr(value, "_mask", False) 

6366 else: 

6367 self._mask[indx] = getattr(value, "_mask", False) 

6368 

6369 def __str__(self): 

6370 m = self._mask 

6371 if m is nomask: 

6372 return str(self._data) 

6373 

6374 rdtype = _replace_dtype_fields(self._data.dtype, "O") 

6375 data_arr = super()._data 

6376 res = data_arr.astype(rdtype) 

6377 _recursive_printoption(res, self._mask, masked_print_option) 

6378 return str(res) 

6379 

6380 __repr__ = __str__ 

6381 

6382 def __iter__(self): 

6383 "Defines an iterator for mvoid" 

6384 (_data, _mask) = (self._data, self._mask) 

6385 if _mask is nomask: 

6386 yield from _data 

6387 else: 

6388 for (d, m) in zip(_data, _mask): 

6389 if m: 

6390 yield masked 

6391 else: 

6392 yield d 

6393 

6394 def __len__(self): 

6395 return self._data.__len__() 

6396 

6397 def filled(self, fill_value=None): 

6398 """ 

6399 Return a copy with masked fields filled with a given value. 

6400 

6401 Parameters 

6402 ---------- 

6403 fill_value : array_like, optional 

6404 The value to use for invalid entries. Can be scalar or 

6405 non-scalar. If latter is the case, the filled array should 

6406 be broadcastable over input array. Default is None, in 

6407 which case the `fill_value` attribute is used instead. 

6408 

6409 Returns 

6410 ------- 

6411 filled_void 

6412 A `np.void` object 

6413 

6414 See Also 

6415 -------- 

6416 MaskedArray.filled 

6417 

6418 """ 

6419 return asarray(self).filled(fill_value)[()] 

6420 

6421 def tolist(self): 

6422 """ 

6423 Transforms the mvoid object into a tuple. 

6424 

6425 Masked fields are replaced by None. 

6426 

6427 Returns 

6428 ------- 

6429 returned_tuple 

6430 Tuple of fields 

6431 """ 

6432 _mask = self._mask 

6433 if _mask is nomask: 

6434 return self._data.tolist() 

6435 result = [] 

6436 for (d, m) in zip(self._data, self._mask): 

6437 if m: 

6438 result.append(None) 

6439 else: 

6440 # .item() makes sure we return a standard Python object 

6441 result.append(d.item()) 

6442 return tuple(result) 

6443 

6444 

6445############################################################################## 

6446# Shortcuts # 

6447############################################################################## 

6448 

6449 

6450def isMaskedArray(x): 

6451 """ 

6452 Test whether input is an instance of MaskedArray. 

6453 

6454 This function returns True if `x` is an instance of MaskedArray 

6455 and returns False otherwise. Any object is accepted as input. 

6456 

6457 Parameters 

6458 ---------- 

6459 x : object 

6460 Object to test. 

6461 

6462 Returns 

6463 ------- 

6464 result : bool 

6465 True if `x` is a MaskedArray. 

6466 

6467 See Also 

6468 -------- 

6469 isMA : Alias to isMaskedArray. 

6470 isarray : Alias to isMaskedArray. 

6471 

6472 Examples 

6473 -------- 

6474 >>> import numpy.ma as ma 

6475 >>> a = np.eye(3, 3) 

6476 >>> a 

6477 array([[ 1., 0., 0.], 

6478 [ 0., 1., 0.], 

6479 [ 0., 0., 1.]]) 

6480 >>> m = ma.masked_values(a, 0) 

6481 >>> m 

6482 masked_array( 

6483 data=[[1.0, --, --], 

6484 [--, 1.0, --], 

6485 [--, --, 1.0]], 

6486 mask=[[False, True, True], 

6487 [ True, False, True], 

6488 [ True, True, False]], 

6489 fill_value=0.0) 

6490 >>> ma.isMaskedArray(a) 

6491 False 

6492 >>> ma.isMaskedArray(m) 

6493 True 

6494 >>> ma.isMaskedArray([0, 1, 2]) 

6495 False 

6496 

6497 """ 

6498 return isinstance(x, MaskedArray) 

6499 

6500 

6501isarray = isMaskedArray 

6502isMA = isMaskedArray # backward compatibility 

6503 

6504 

6505class MaskedConstant(MaskedArray): 

6506 # the lone np.ma.masked instance 

6507 __singleton = None 

6508 

6509 @classmethod 

6510 def __has_singleton(cls): 

6511 # second case ensures `cls.__singleton` is not just a view on the 

6512 # superclass singleton 

6513 return cls.__singleton is not None and type(cls.__singleton) is cls 

6514 

6515 def __new__(cls): 

6516 if not cls.__has_singleton(): 

6517 # We define the masked singleton as a float for higher precedence. 

6518 # Note that it can be tricky sometimes w/ type comparison 

6519 data = np.array(0.) 

6520 mask = np.array(True) 

6521 

6522 # prevent any modifications 

6523 data.flags.writeable = False 

6524 mask.flags.writeable = False 

6525 

6526 # don't fall back on MaskedArray.__new__(MaskedConstant), since 

6527 # that might confuse it - this way, the construction is entirely 

6528 # within our control 

6529 cls.__singleton = MaskedArray(data, mask=mask).view(cls) 

6530 

6531 return cls.__singleton 

6532 

6533 def __array_finalize__(self, obj): 

6534 if not self.__has_singleton(): 

6535 # this handles the `.view` in __new__, which we want to copy across 

6536 # properties normally 

6537 return super().__array_finalize__(obj) 

6538 elif self is self.__singleton: 

6539 # not clear how this can happen, play it safe 

6540 pass 

6541 else: 

6542 # everywhere else, we want to downcast to MaskedArray, to prevent a 

6543 # duplicate maskedconstant. 

6544 self.__class__ = MaskedArray 

6545 MaskedArray.__array_finalize__(self, obj) 

6546 

6547 def __array_prepare__(self, obj, context=None): 

6548 return self.view(MaskedArray).__array_prepare__(obj, context) 

6549 

6550 def __array_wrap__(self, obj, context=None): 

6551 return self.view(MaskedArray).__array_wrap__(obj, context) 

6552 

6553 def __str__(self): 

6554 return str(masked_print_option._display) 

6555 

6556 def __repr__(self): 

6557 if self is MaskedConstant.__singleton: 

6558 return 'masked' 

6559 else: 

6560 # it's a subclass, or something is wrong, make it obvious 

6561 return object.__repr__(self) 

6562 

6563 def __format__(self, format_spec): 

6564 # Replace ndarray.__format__ with the default, which supports no format characters. 

6565 # Supporting format characters is unwise here, because we do not know what type 

6566 # the user was expecting - better to not guess. 

6567 try: 

6568 return object.__format__(self, format_spec) 

6569 except TypeError: 

6570 # 2020-03-23, NumPy 1.19.0 

6571 warnings.warn( 

6572 "Format strings passed to MaskedConstant are ignored, but in future may " 

6573 "error or produce different behavior", 

6574 FutureWarning, stacklevel=2 

6575 ) 

6576 return object.__format__(self, "") 

6577 

6578 def __reduce__(self): 

6579 """Override of MaskedArray's __reduce__. 

6580 """ 

6581 return (self.__class__, ()) 

6582 

6583 # inplace operations have no effect. We have to override them to avoid 

6584 # trying to modify the readonly data and mask arrays 

6585 def __iop__(self, other): 

6586 return self 

6587 __iadd__ = \ 

6588 __isub__ = \ 

6589 __imul__ = \ 

6590 __ifloordiv__ = \ 

6591 __itruediv__ = \ 

6592 __ipow__ = \ 

6593 __iop__ 

6594 del __iop__ # don't leave this around 

6595 

6596 def copy(self, *args, **kwargs): 

6597 """ Copy is a no-op on the maskedconstant, as it is a scalar """ 

6598 # maskedconstant is a scalar, so copy doesn't need to copy. There's 

6599 # precedent for this with `np.bool_` scalars. 

6600 return self 

6601 

6602 def __copy__(self): 

6603 return self 

6604 

6605 def __deepcopy__(self, memo): 

6606 return self 

6607 

6608 def __setattr__(self, attr, value): 

6609 if not self.__has_singleton(): 

6610 # allow the singleton to be initialized 

6611 return super().__setattr__(attr, value) 

6612 elif self is self.__singleton: 

6613 raise AttributeError( 

6614 f"attributes of {self!r} are not writeable") 

6615 else: 

6616 # duplicate instance - we can end up here from __array_finalize__, 

6617 # where we set the __class__ attribute 

6618 return super().__setattr__(attr, value) 

6619 

6620 

6621masked = masked_singleton = MaskedConstant() 

6622masked_array = MaskedArray 

6623 

6624 

6625def array(data, dtype=None, copy=False, order=None, 

6626 mask=nomask, fill_value=None, keep_mask=True, 

6627 hard_mask=False, shrink=True, subok=True, ndmin=0): 

6628 """ 

6629 Shortcut to MaskedArray. 

6630 

6631 The options are in a different order for convenience and backwards 

6632 compatibility. 

6633 

6634 """ 

6635 return MaskedArray(data, mask=mask, dtype=dtype, copy=copy, 

6636 subok=subok, keep_mask=keep_mask, 

6637 hard_mask=hard_mask, fill_value=fill_value, 

6638 ndmin=ndmin, shrink=shrink, order=order) 

6639array.__doc__ = masked_array.__doc__ 

6640 

6641 

6642def is_masked(x): 

6643 """ 

6644 Determine whether input has masked values. 

6645 

6646 Accepts any object as input, but always returns False unless the 

6647 input is a MaskedArray containing masked values. 

6648 

6649 Parameters 

6650 ---------- 

6651 x : array_like 

6652 Array to check for masked values. 

6653 

6654 Returns 

6655 ------- 

6656 result : bool 

6657 True if `x` is a MaskedArray with masked values, False otherwise. 

6658 

6659 Examples 

6660 -------- 

6661 >>> import numpy.ma as ma 

6662 >>> x = ma.masked_equal([0, 1, 0, 2, 3], 0) 

6663 >>> x 

6664 masked_array(data=[--, 1, --, 2, 3], 

6665 mask=[ True, False, True, False, False], 

6666 fill_value=0) 

6667 >>> ma.is_masked(x) 

6668 True 

6669 >>> x = ma.masked_equal([0, 1, 0, 2, 3], 42) 

6670 >>> x 

6671 masked_array(data=[0, 1, 0, 2, 3], 

6672 mask=False, 

6673 fill_value=42) 

6674 >>> ma.is_masked(x) 

6675 False 

6676 

6677 Always returns False if `x` isn't a MaskedArray. 

6678 

6679 >>> x = [False, True, False] 

6680 >>> ma.is_masked(x) 

6681 False 

6682 >>> x = 'a string' 

6683 >>> ma.is_masked(x) 

6684 False 

6685 

6686 """ 

6687 m = getmask(x) 

6688 if m is nomask: 

6689 return False 

6690 elif m.any(): 

6691 return True 

6692 return False 

6693 

6694 

6695############################################################################## 

6696# Extrema functions # 

6697############################################################################## 

6698 

6699 

6700class _extrema_operation(_MaskedUFunc): 

6701 """ 

6702 Generic class for maximum/minimum functions. 

6703 

6704 .. note:: 

6705 This is the base class for `_maximum_operation` and 

6706 `_minimum_operation`. 

6707 

6708 """ 

6709 def __init__(self, ufunc, compare, fill_value): 

6710 super().__init__(ufunc) 

6711 self.compare = compare 

6712 self.fill_value_func = fill_value 

6713 

6714 def __call__(self, a, b): 

6715 "Executes the call behavior." 

6716 

6717 return where(self.compare(a, b), a, b) 

6718 

6719 def reduce(self, target, axis=np._NoValue): 

6720 "Reduce target along the given axis." 

6721 target = narray(target, copy=False, subok=True) 

6722 m = getmask(target) 

6723 

6724 if axis is np._NoValue and target.ndim > 1: 

6725 # 2017-05-06, Numpy 1.13.0: warn on axis default 

6726 warnings.warn( 

6727 f"In the future the default for ma.{self.__name__}.reduce will be axis=0, " 

6728 f"not the current None, to match np.{self.__name__}.reduce. " 

6729 "Explicitly pass 0 or None to silence this warning.", 

6730 MaskedArrayFutureWarning, stacklevel=2) 

6731 axis = None 

6732 

6733 if axis is not np._NoValue: 

6734 kwargs = dict(axis=axis) 

6735 else: 

6736 kwargs = dict() 

6737 

6738 if m is nomask: 

6739 t = self.f.reduce(target, **kwargs) 

6740 else: 

6741 target = target.filled( 

6742 self.fill_value_func(target)).view(type(target)) 

6743 t = self.f.reduce(target, **kwargs) 

6744 m = umath.logical_and.reduce(m, **kwargs) 

6745 if hasattr(t, '_mask'): 

6746 t._mask = m 

6747 elif m: 

6748 t = masked 

6749 return t 

6750 

6751 def outer(self, a, b): 

6752 "Return the function applied to the outer product of a and b." 

6753 ma = getmask(a) 

6754 mb = getmask(b) 

6755 if ma is nomask and mb is nomask: 

6756 m = nomask 

6757 else: 

6758 ma = getmaskarray(a) 

6759 mb = getmaskarray(b) 

6760 m = logical_or.outer(ma, mb) 

6761 result = self.f.outer(filled(a), filled(b)) 

6762 if not isinstance(result, MaskedArray): 

6763 result = result.view(MaskedArray) 

6764 result._mask = m 

6765 return result 

6766 

6767def min(obj, axis=None, out=None, fill_value=None, keepdims=np._NoValue): 

6768 kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} 

6769 

6770 try: 

6771 return obj.min(axis=axis, fill_value=fill_value, out=out, **kwargs) 

6772 except (AttributeError, TypeError): 

6773 # If obj doesn't have a min method, or if the method doesn't accept a 

6774 # fill_value argument 

6775 return asanyarray(obj).min(axis=axis, fill_value=fill_value, 

6776 out=out, **kwargs) 

6777min.__doc__ = MaskedArray.min.__doc__ 

6778 

6779def max(obj, axis=None, out=None, fill_value=None, keepdims=np._NoValue): 

6780 kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} 

6781 

6782 try: 

6783 return obj.max(axis=axis, fill_value=fill_value, out=out, **kwargs) 

6784 except (AttributeError, TypeError): 

6785 # If obj doesn't have a max method, or if the method doesn't accept a 

6786 # fill_value argument 

6787 return asanyarray(obj).max(axis=axis, fill_value=fill_value, 

6788 out=out, **kwargs) 

6789max.__doc__ = MaskedArray.max.__doc__ 

6790 

6791 

6792def ptp(obj, axis=None, out=None, fill_value=None, keepdims=np._NoValue): 

6793 kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} 

6794 try: 

6795 return obj.ptp(axis, out=out, fill_value=fill_value, **kwargs) 

6796 except (AttributeError, TypeError): 

6797 # If obj doesn't have a ptp method or if the method doesn't accept 

6798 # a fill_value argument 

6799 return asanyarray(obj).ptp(axis=axis, fill_value=fill_value, 

6800 out=out, **kwargs) 

6801ptp.__doc__ = MaskedArray.ptp.__doc__ 

6802 

6803 

6804############################################################################## 

6805# Definition of functions from the corresponding methods # 

6806############################################################################## 

6807 

6808 

6809class _frommethod: 

6810 """ 

6811 Define functions from existing MaskedArray methods. 

6812 

6813 Parameters 

6814 ---------- 

6815 methodname : str 

6816 Name of the method to transform. 

6817 

6818 """ 

6819 

6820 def __init__(self, methodname, reversed=False): 

6821 self.__name__ = methodname 

6822 self.__doc__ = self.getdoc() 

6823 self.reversed = reversed 

6824 

6825 def getdoc(self): 

6826 "Return the doc of the function (from the doc of the method)." 

6827 meth = getattr(MaskedArray, self.__name__, None) or\ 

6828 getattr(np, self.__name__, None) 

6829 signature = self.__name__ + get_object_signature(meth) 

6830 if meth is not None: 

6831 doc = """ %s\n%s""" % ( 

6832 signature, getattr(meth, '__doc__', None)) 

6833 return doc 

6834 

6835 def __call__(self, a, *args, **params): 

6836 if self.reversed: 

6837 args = list(args) 

6838 a, args[0] = args[0], a 

6839 

6840 marr = asanyarray(a) 

6841 method_name = self.__name__ 

6842 method = getattr(type(marr), method_name, None) 

6843 if method is None: 

6844 # use the corresponding np function 

6845 method = getattr(np, method_name) 

6846 

6847 return method(marr, *args, **params) 

6848 

6849 

6850all = _frommethod('all') 

6851anomalies = anom = _frommethod('anom') 

6852any = _frommethod('any') 

6853compress = _frommethod('compress', reversed=True) 

6854cumprod = _frommethod('cumprod') 

6855cumsum = _frommethod('cumsum') 

6856copy = _frommethod('copy') 

6857diagonal = _frommethod('diagonal') 

6858harden_mask = _frommethod('harden_mask') 

6859ids = _frommethod('ids') 

6860maximum = _extrema_operation(umath.maximum, greater, maximum_fill_value) 

6861mean = _frommethod('mean') 

6862minimum = _extrema_operation(umath.minimum, less, minimum_fill_value) 

6863nonzero = _frommethod('nonzero') 

6864prod = _frommethod('prod') 

6865product = _frommethod('prod') 

6866ravel = _frommethod('ravel') 

6867repeat = _frommethod('repeat') 

6868shrink_mask = _frommethod('shrink_mask') 

6869soften_mask = _frommethod('soften_mask') 

6870std = _frommethod('std') 

6871sum = _frommethod('sum') 

6872swapaxes = _frommethod('swapaxes') 

6873#take = _frommethod('take') 

6874trace = _frommethod('trace') 

6875var = _frommethod('var') 

6876 

6877count = _frommethod('count') 

6878 

6879def take(a, indices, axis=None, out=None, mode='raise'): 

6880 """ 

6881 """ 

6882 a = masked_array(a) 

6883 return a.take(indices, axis=axis, out=out, mode=mode) 

6884 

6885 

6886def power(a, b, third=None): 

6887 """ 

6888 Returns element-wise base array raised to power from second array. 

6889 

6890 This is the masked array version of `numpy.power`. For details see 

6891 `numpy.power`. 

6892 

6893 See Also 

6894 -------- 

6895 numpy.power 

6896 

6897 Notes 

6898 ----- 

6899 The *out* argument to `numpy.power` is not supported, `third` has to be 

6900 None. 

6901 

6902 Examples 

6903 -------- 

6904 >>> import numpy.ma as ma 

6905 >>> x = [11.2, -3.973, 0.801, -1.41] 

6906 >>> mask = [0, 0, 0, 1] 

6907 >>> masked_x = ma.masked_array(x, mask) 

6908 >>> masked_x 

6909 masked_array(data=[11.2, -3.973, 0.801, --], 

6910 mask=[False, False, False, True], 

6911 fill_value=1e+20) 

6912 >>> ma.power(masked_x, 2) 

6913 masked_array(data=[125.43999999999998, 15.784728999999999, 

6914 0.6416010000000001, --], 

6915 mask=[False, False, False, True], 

6916 fill_value=1e+20) 

6917 >>> y = [-0.5, 2, 0, 17] 

6918 >>> masked_y = ma.masked_array(y, mask) 

6919 >>> masked_y 

6920 masked_array(data=[-0.5, 2.0, 0.0, --], 

6921 mask=[False, False, False, True], 

6922 fill_value=1e+20) 

6923 >>> ma.power(masked_x, masked_y) 

6924 masked_array(data=[0.29880715233359845, 15.784728999999999, 1.0, --], 

6925 mask=[False, False, False, True], 

6926 fill_value=1e+20) 

6927 

6928 """ 

6929 if third is not None: 

6930 raise MaskError("3-argument power not supported.") 

6931 # Get the masks 

6932 ma = getmask(a) 

6933 mb = getmask(b) 

6934 m = mask_or(ma, mb) 

6935 # Get the rawdata 

6936 fa = getdata(a) 

6937 fb = getdata(b) 

6938 # Get the type of the result (so that we preserve subclasses) 

6939 if isinstance(a, MaskedArray): 

6940 basetype = type(a) 

6941 else: 

6942 basetype = MaskedArray 

6943 # Get the result and view it as a (subclass of) MaskedArray 

6944 with np.errstate(divide='ignore', invalid='ignore'): 

6945 result = np.where(m, fa, umath.power(fa, fb)).view(basetype) 

6946 result._update_from(a) 

6947 # Find where we're in trouble w/ NaNs and Infs 

6948 invalid = np.logical_not(np.isfinite(result.view(ndarray))) 

6949 # Add the initial mask 

6950 if m is not nomask: 

6951 if not result.ndim: 

6952 return masked 

6953 result._mask = np.logical_or(m, invalid) 

6954 # Fix the invalid parts 

6955 if invalid.any(): 

6956 if not result.ndim: 

6957 return masked 

6958 elif result._mask is nomask: 

6959 result._mask = invalid 

6960 result._data[invalid] = result.fill_value 

6961 return result 

6962 

6963argmin = _frommethod('argmin') 

6964argmax = _frommethod('argmax') 

6965 

6966def argsort(a, axis=np._NoValue, kind=None, order=None, endwith=True, fill_value=None): 

6967 "Function version of the eponymous method." 

6968 a = np.asanyarray(a) 

6969 

6970 # 2017-04-11, Numpy 1.13.0, gh-8701: warn on axis default 

6971 if axis is np._NoValue: 

6972 axis = _deprecate_argsort_axis(a) 

6973 

6974 if isinstance(a, MaskedArray): 

6975 return a.argsort(axis=axis, kind=kind, order=order, 

6976 endwith=endwith, fill_value=fill_value) 

6977 else: 

6978 return a.argsort(axis=axis, kind=kind, order=order) 

6979argsort.__doc__ = MaskedArray.argsort.__doc__ 

6980 

6981def sort(a, axis=-1, kind=None, order=None, endwith=True, fill_value=None): 

6982 """ 

6983 Return a sorted copy of the masked array. 

6984 

6985 Equivalent to creating a copy of the array 

6986 and applying the MaskedArray ``sort()`` method. 

6987 

6988 Refer to ``MaskedArray.sort`` for the full documentation 

6989 

6990 See Also 

6991 -------- 

6992 MaskedArray.sort : equivalent method 

6993 """ 

6994 a = np.array(a, copy=True, subok=True) 

6995 if axis is None: 

6996 a = a.flatten() 

6997 axis = 0 

6998 

6999 if isinstance(a, MaskedArray): 

7000 a.sort(axis=axis, kind=kind, order=order, 

7001 endwith=endwith, fill_value=fill_value) 

7002 else: 

7003 a.sort(axis=axis, kind=kind, order=order) 

7004 return a 

7005 

7006 

7007def compressed(x): 

7008 """ 

7009 Return all the non-masked data as a 1-D array. 

7010 

7011 This function is equivalent to calling the "compressed" method of a 

7012 `ma.MaskedArray`, see `ma.MaskedArray.compressed` for details. 

7013 

7014 See Also 

7015 -------- 

7016 ma.MaskedArray.compressed : Equivalent method. 

7017 

7018 """ 

7019 return asanyarray(x).compressed() 

7020 

7021 

7022def concatenate(arrays, axis=0): 

7023 """ 

7024 Concatenate a sequence of arrays along the given axis. 

7025 

7026 Parameters 

7027 ---------- 

7028 arrays : sequence of array_like 

7029 The arrays must have the same shape, except in the dimension 

7030 corresponding to `axis` (the first, by default). 

7031 axis : int, optional 

7032 The axis along which the arrays will be joined. Default is 0. 

7033 

7034 Returns 

7035 ------- 

7036 result : MaskedArray 

7037 The concatenated array with any masked entries preserved. 

7038 

7039 See Also 

7040 -------- 

7041 numpy.concatenate : Equivalent function in the top-level NumPy module. 

7042 

7043 Examples 

7044 -------- 

7045 >>> import numpy.ma as ma 

7046 >>> a = ma.arange(3) 

7047 >>> a[1] = ma.masked 

7048 >>> b = ma.arange(2, 5) 

7049 >>> a 

7050 masked_array(data=[0, --, 2], 

7051 mask=[False, True, False], 

7052 fill_value=999999) 

7053 >>> b 

7054 masked_array(data=[2, 3, 4], 

7055 mask=False, 

7056 fill_value=999999) 

7057 >>> ma.concatenate([a, b]) 

7058 masked_array(data=[0, --, 2, 2, 3, 4], 

7059 mask=[False, True, False, False, False, False], 

7060 fill_value=999999) 

7061 

7062 """ 

7063 d = np.concatenate([getdata(a) for a in arrays], axis) 

7064 rcls = get_masked_subclass(*arrays) 

7065 data = d.view(rcls) 

7066 # Check whether one of the arrays has a non-empty mask. 

7067 for x in arrays: 

7068 if getmask(x) is not nomask: 

7069 break 

7070 else: 

7071 return data 

7072 # OK, so we have to concatenate the masks 

7073 dm = np.concatenate([getmaskarray(a) for a in arrays], axis) 

7074 dm = dm.reshape(d.shape) 

7075 

7076 # If we decide to keep a '_shrinkmask' option, we want to check that 

7077 # all of them are True, and then check for dm.any() 

7078 data._mask = _shrink_mask(dm) 

7079 return data 

7080 

7081 

7082def diag(v, k=0): 

7083 """ 

7084 Extract a diagonal or construct a diagonal array. 

7085 

7086 This function is the equivalent of `numpy.diag` that takes masked 

7087 values into account, see `numpy.diag` for details. 

7088 

7089 See Also 

7090 -------- 

7091 numpy.diag : Equivalent function for ndarrays. 

7092 

7093 """ 

7094 output = np.diag(v, k).view(MaskedArray) 

7095 if getmask(v) is not nomask: 

7096 output._mask = np.diag(v._mask, k) 

7097 return output 

7098 

7099 

7100def left_shift(a, n): 

7101 """ 

7102 Shift the bits of an integer to the left. 

7103 

7104 This is the masked array version of `numpy.left_shift`, for details 

7105 see that function. 

7106 

7107 See Also 

7108 -------- 

7109 numpy.left_shift 

7110 

7111 """ 

7112 m = getmask(a) 

7113 if m is nomask: 

7114 d = umath.left_shift(filled(a), n) 

7115 return masked_array(d) 

7116 else: 

7117 d = umath.left_shift(filled(a, 0), n) 

7118 return masked_array(d, mask=m) 

7119 

7120 

7121def right_shift(a, n): 

7122 """ 

7123 Shift the bits of an integer to the right. 

7124 

7125 This is the masked array version of `numpy.right_shift`, for details 

7126 see that function. 

7127 

7128 See Also 

7129 -------- 

7130 numpy.right_shift 

7131 

7132 """ 

7133 m = getmask(a) 

7134 if m is nomask: 

7135 d = umath.right_shift(filled(a), n) 

7136 return masked_array(d) 

7137 else: 

7138 d = umath.right_shift(filled(a, 0), n) 

7139 return masked_array(d, mask=m) 

7140 

7141 

7142def put(a, indices, values, mode='raise'): 

7143 """ 

7144 Set storage-indexed locations to corresponding values. 

7145 

7146 This function is equivalent to `MaskedArray.put`, see that method 

7147 for details. 

7148 

7149 See Also 

7150 -------- 

7151 MaskedArray.put 

7152 

7153 """ 

7154 # We can't use 'frommethod', the order of arguments is different 

7155 try: 

7156 return a.put(indices, values, mode=mode) 

7157 except AttributeError: 

7158 return narray(a, copy=False).put(indices, values, mode=mode) 

7159 

7160 

7161def putmask(a, mask, values): # , mode='raise'): 

7162 """ 

7163 Changes elements of an array based on conditional and input values. 

7164 

7165 This is the masked array version of `numpy.putmask`, for details see 

7166 `numpy.putmask`. 

7167 

7168 See Also 

7169 -------- 

7170 numpy.putmask 

7171 

7172 Notes 

7173 ----- 

7174 Using a masked array as `values` will **not** transform a `ndarray` into 

7175 a `MaskedArray`. 

7176 

7177 """ 

7178 # We can't use 'frommethod', the order of arguments is different 

7179 if not isinstance(a, MaskedArray): 

7180 a = a.view(MaskedArray) 

7181 (valdata, valmask) = (getdata(values), getmask(values)) 

7182 if getmask(a) is nomask: 

7183 if valmask is not nomask: 

7184 a._sharedmask = True 

7185 a._mask = make_mask_none(a.shape, a.dtype) 

7186 np.copyto(a._mask, valmask, where=mask) 

7187 elif a._hardmask: 

7188 if valmask is not nomask: 

7189 m = a._mask.copy() 

7190 np.copyto(m, valmask, where=mask) 

7191 a.mask |= m 

7192 else: 

7193 if valmask is nomask: 

7194 valmask = getmaskarray(values) 

7195 np.copyto(a._mask, valmask, where=mask) 

7196 np.copyto(a._data, valdata, where=mask) 

7197 return 

7198 

7199 

7200def transpose(a, axes=None): 

7201 """ 

7202 Permute the dimensions of an array. 

7203 

7204 This function is exactly equivalent to `numpy.transpose`. 

7205 

7206 See Also 

7207 -------- 

7208 numpy.transpose : Equivalent function in top-level NumPy module. 

7209 

7210 Examples 

7211 -------- 

7212 >>> import numpy.ma as ma 

7213 >>> x = ma.arange(4).reshape((2,2)) 

7214 >>> x[1, 1] = ma.masked 

7215 >>> x 

7216 masked_array( 

7217 data=[[0, 1], 

7218 [2, --]], 

7219 mask=[[False, False], 

7220 [False, True]], 

7221 fill_value=999999) 

7222 

7223 >>> ma.transpose(x) 

7224 masked_array( 

7225 data=[[0, 2], 

7226 [1, --]], 

7227 mask=[[False, False], 

7228 [False, True]], 

7229 fill_value=999999) 

7230 """ 

7231 # We can't use 'frommethod', as 'transpose' doesn't take keywords 

7232 try: 

7233 return a.transpose(axes) 

7234 except AttributeError: 

7235 return narray(a, copy=False).transpose(axes).view(MaskedArray) 

7236 

7237 

7238def reshape(a, new_shape, order='C'): 

7239 """ 

7240 Returns an array containing the same data with a new shape. 

7241 

7242 Refer to `MaskedArray.reshape` for full documentation. 

7243 

7244 See Also 

7245 -------- 

7246 MaskedArray.reshape : equivalent function 

7247 

7248 """ 

7249 # We can't use 'frommethod', it whine about some parameters. Dmmit. 

7250 try: 

7251 return a.reshape(new_shape, order=order) 

7252 except AttributeError: 

7253 _tmp = narray(a, copy=False).reshape(new_shape, order=order) 

7254 return _tmp.view(MaskedArray) 

7255 

7256 

7257def resize(x, new_shape): 

7258 """ 

7259 Return a new masked array with the specified size and shape. 

7260 

7261 This is the masked equivalent of the `numpy.resize` function. The new 

7262 array is filled with repeated copies of `x` (in the order that the 

7263 data are stored in memory). If `x` is masked, the new array will be 

7264 masked, and the new mask will be a repetition of the old one. 

7265 

7266 See Also 

7267 -------- 

7268 numpy.resize : Equivalent function in the top level NumPy module. 

7269 

7270 Examples 

7271 -------- 

7272 >>> import numpy.ma as ma 

7273 >>> a = ma.array([[1, 2] ,[3, 4]]) 

7274 >>> a[0, 1] = ma.masked 

7275 >>> a 

7276 masked_array( 

7277 data=[[1, --], 

7278 [3, 4]], 

7279 mask=[[False, True], 

7280 [False, False]], 

7281 fill_value=999999) 

7282 >>> np.resize(a, (3, 3)) 

7283 masked_array( 

7284 data=[[1, 2, 3], 

7285 [4, 1, 2], 

7286 [3, 4, 1]], 

7287 mask=False, 

7288 fill_value=999999) 

7289 >>> ma.resize(a, (3, 3)) 

7290 masked_array( 

7291 data=[[1, --, 3], 

7292 [4, 1, --], 

7293 [3, 4, 1]], 

7294 mask=[[False, True, False], 

7295 [False, False, True], 

7296 [False, False, False]], 

7297 fill_value=999999) 

7298 

7299 A MaskedArray is always returned, regardless of the input type. 

7300 

7301 >>> a = np.array([[1, 2] ,[3, 4]]) 

7302 >>> ma.resize(a, (3, 3)) 

7303 masked_array( 

7304 data=[[1, 2, 3], 

7305 [4, 1, 2], 

7306 [3, 4, 1]], 

7307 mask=False, 

7308 fill_value=999999) 

7309 

7310 """ 

7311 # We can't use _frommethods here, as N.resize is notoriously whiny. 

7312 m = getmask(x) 

7313 if m is not nomask: 

7314 m = np.resize(m, new_shape) 

7315 result = np.resize(x, new_shape).view(get_masked_subclass(x)) 

7316 if result.ndim: 

7317 result._mask = m 

7318 return result 

7319 

7320 

7321def ndim(obj): 

7322 """ 

7323 maskedarray version of the numpy function. 

7324 

7325 """ 

7326 return np.ndim(getdata(obj)) 

7327 

7328ndim.__doc__ = np.ndim.__doc__ 

7329 

7330 

7331def shape(obj): 

7332 "maskedarray version of the numpy function." 

7333 return np.shape(getdata(obj)) 

7334shape.__doc__ = np.shape.__doc__ 

7335 

7336 

7337def size(obj, axis=None): 

7338 "maskedarray version of the numpy function." 

7339 return np.size(getdata(obj), axis) 

7340size.__doc__ = np.size.__doc__ 

7341 

7342 

7343############################################################################## 

7344# Extra functions # 

7345############################################################################## 

7346 

7347 

7348def where(condition, x=_NoValue, y=_NoValue): 

7349 """ 

7350 Return a masked array with elements from `x` or `y`, depending on condition. 

7351 

7352 .. note:: 

7353 When only `condition` is provided, this function is identical to 

7354 `nonzero`. The rest of this documentation covers only the case where 

7355 all three arguments are provided. 

7356 

7357 Parameters 

7358 ---------- 

7359 condition : array_like, bool 

7360 Where True, yield `x`, otherwise yield `y`. 

7361 x, y : array_like, optional 

7362 Values from which to choose. `x`, `y` and `condition` need to be 

7363 broadcastable to some shape. 

7364 

7365 Returns 

7366 ------- 

7367 out : MaskedArray 

7368 An masked array with `masked` elements where the condition is masked, 

7369 elements from `x` where `condition` is True, and elements from `y` 

7370 elsewhere. 

7371 

7372 See Also 

7373 -------- 

7374 numpy.where : Equivalent function in the top-level NumPy module. 

7375 nonzero : The function that is called when x and y are omitted 

7376 

7377 Examples 

7378 -------- 

7379 >>> x = np.ma.array(np.arange(9.).reshape(3, 3), mask=[[0, 1, 0], 

7380 ... [1, 0, 1], 

7381 ... [0, 1, 0]]) 

7382 >>> x 

7383 masked_array( 

7384 data=[[0.0, --, 2.0], 

7385 [--, 4.0, --], 

7386 [6.0, --, 8.0]], 

7387 mask=[[False, True, False], 

7388 [ True, False, True], 

7389 [False, True, False]], 

7390 fill_value=1e+20) 

7391 >>> np.ma.where(x > 5, x, -3.1416) 

7392 masked_array( 

7393 data=[[-3.1416, --, -3.1416], 

7394 [--, -3.1416, --], 

7395 [6.0, --, 8.0]], 

7396 mask=[[False, True, False], 

7397 [ True, False, True], 

7398 [False, True, False]], 

7399 fill_value=1e+20) 

7400 

7401 """ 

7402 

7403 # handle the single-argument case 

7404 missing = (x is _NoValue, y is _NoValue).count(True) 

7405 if missing == 1: 

7406 raise ValueError("Must provide both 'x' and 'y' or neither.") 

7407 if missing == 2: 

7408 return nonzero(condition) 

7409 

7410 # we only care if the condition is true - false or masked pick y 

7411 cf = filled(condition, False) 

7412 xd = getdata(x) 

7413 yd = getdata(y) 

7414 

7415 # we need the full arrays here for correct final dimensions 

7416 cm = getmaskarray(condition) 

7417 xm = getmaskarray(x) 

7418 ym = getmaskarray(y) 

7419 

7420 # deal with the fact that masked.dtype == float64, but we don't actually 

7421 # want to treat it as that. 

7422 if x is masked and y is not masked: 

7423 xd = np.zeros((), dtype=yd.dtype) 

7424 xm = np.ones((), dtype=ym.dtype) 

7425 elif y is masked and x is not masked: 

7426 yd = np.zeros((), dtype=xd.dtype) 

7427 ym = np.ones((), dtype=xm.dtype) 

7428 

7429 data = np.where(cf, xd, yd) 

7430 mask = np.where(cf, xm, ym) 

7431 mask = np.where(cm, np.ones((), dtype=mask.dtype), mask) 

7432 

7433 # collapse the mask, for backwards compatibility 

7434 mask = _shrink_mask(mask) 

7435 

7436 return masked_array(data, mask=mask) 

7437 

7438 

7439def choose(indices, choices, out=None, mode='raise'): 

7440 """ 

7441 Use an index array to construct a new array from a list of choices. 

7442 

7443 Given an array of integers and a list of n choice arrays, this method 

7444 will create a new array that merges each of the choice arrays. Where a 

7445 value in `index` is i, the new array will have the value that choices[i] 

7446 contains in the same place. 

7447 

7448 Parameters 

7449 ---------- 

7450 indices : ndarray of ints 

7451 This array must contain integers in ``[0, n-1]``, where n is the 

7452 number of choices. 

7453 choices : sequence of arrays 

7454 Choice arrays. The index array and all of the choices should be 

7455 broadcastable to the same shape. 

7456 out : array, optional 

7457 If provided, the result will be inserted into this array. It should 

7458 be of the appropriate shape and `dtype`. 

7459 mode : {'raise', 'wrap', 'clip'}, optional 

7460 Specifies how out-of-bounds indices will behave. 

7461 

7462 * 'raise' : raise an error 

7463 * 'wrap' : wrap around 

7464 * 'clip' : clip to the range 

7465 

7466 Returns 

7467 ------- 

7468 merged_array : array 

7469 

7470 See Also 

7471 -------- 

7472 choose : equivalent function 

7473 

7474 Examples 

7475 -------- 

7476 >>> choice = np.array([[1,1,1], [2,2,2], [3,3,3]]) 

7477 >>> a = np.array([2, 1, 0]) 

7478 >>> np.ma.choose(a, choice) 

7479 masked_array(data=[3, 2, 1], 

7480 mask=False, 

7481 fill_value=999999) 

7482 

7483 """ 

7484 def fmask(x): 

7485 "Returns the filled array, or True if masked." 

7486 if x is masked: 

7487 return True 

7488 return filled(x) 

7489 

7490 def nmask(x): 

7491 "Returns the mask, True if ``masked``, False if ``nomask``." 

7492 if x is masked: 

7493 return True 

7494 return getmask(x) 

7495 # Get the indices. 

7496 c = filled(indices, 0) 

7497 # Get the masks. 

7498 masks = [nmask(x) for x in choices] 

7499 data = [fmask(x) for x in choices] 

7500 # Construct the mask 

7501 outputmask = np.choose(c, masks, mode=mode) 

7502 outputmask = make_mask(mask_or(outputmask, getmask(indices)), 

7503 copy=False, shrink=True) 

7504 # Get the choices. 

7505 d = np.choose(c, data, mode=mode, out=out).view(MaskedArray) 

7506 if out is not None: 

7507 if isinstance(out, MaskedArray): 

7508 out.__setmask__(outputmask) 

7509 return out 

7510 d.__setmask__(outputmask) 

7511 return d 

7512 

7513 

7514def round_(a, decimals=0, out=None): 

7515 """ 

7516 Return a copy of a, rounded to 'decimals' places. 

7517 

7518 When 'decimals' is negative, it specifies the number of positions 

7519 to the left of the decimal point. The real and imaginary parts of 

7520 complex numbers are rounded separately. Nothing is done if the 

7521 array is not of float type and 'decimals' is greater than or equal 

7522 to 0. 

7523 

7524 Parameters 

7525 ---------- 

7526 decimals : int 

7527 Number of decimals to round to. May be negative. 

7528 out : array_like 

7529 Existing array to use for output. 

7530 If not given, returns a default copy of a. 

7531 

7532 Notes 

7533 ----- 

7534 If out is given and does not have a mask attribute, the mask of a 

7535 is lost! 

7536 

7537 Examples 

7538 -------- 

7539 >>> import numpy.ma as ma 

7540 >>> x = [11.2, -3.973, 0.801, -1.41] 

7541 >>> mask = [0, 0, 0, 1] 

7542 >>> masked_x = ma.masked_array(x, mask) 

7543 >>> masked_x 

7544 masked_array(data=[11.2, -3.973, 0.801, --], 

7545 mask=[False, False, False, True], 

7546 fill_value=1e+20) 

7547 >>> ma.round_(masked_x) 

7548 masked_array(data=[11.0, -4.0, 1.0, --], 

7549 mask=[False, False, False, True], 

7550 fill_value=1e+20) 

7551 >>> ma.round(masked_x, decimals=1) 

7552 masked_array(data=[11.2, -4.0, 0.8, --], 

7553 mask=[False, False, False, True], 

7554 fill_value=1e+20) 

7555 >>> ma.round_(masked_x, decimals=-1) 

7556 masked_array(data=[10.0, -0.0, 0.0, --], 

7557 mask=[False, False, False, True], 

7558 fill_value=1e+20) 

7559 """ 

7560 if out is None: 

7561 return np.round_(a, decimals, out) 

7562 else: 

7563 np.round_(getdata(a), decimals, out) 

7564 if hasattr(out, '_mask'): 

7565 out._mask = getmask(a) 

7566 return out 

7567round = round_ 

7568 

7569 

7570# Needed by dot, so move here from extras.py. It will still be exported 

7571# from extras.py for compatibility. 

7572def mask_rowcols(a, axis=None): 

7573 """ 

7574 Mask rows and/or columns of a 2D array that contain masked values. 

7575 

7576 Mask whole rows and/or columns of a 2D array that contain 

7577 masked values. The masking behavior is selected using the 

7578 `axis` parameter. 

7579 

7580 - If `axis` is None, rows *and* columns are masked. 

7581 - If `axis` is 0, only rows are masked. 

7582 - If `axis` is 1 or -1, only columns are masked. 

7583 

7584 Parameters 

7585 ---------- 

7586 a : array_like, MaskedArray 

7587 The array to mask. If not a MaskedArray instance (or if no array 

7588 elements are masked). The result is a MaskedArray with `mask` set 

7589 to `nomask` (False). Must be a 2D array. 

7590 axis : int, optional 

7591 Axis along which to perform the operation. If None, applies to a 

7592 flattened version of the array. 

7593 

7594 Returns 

7595 ------- 

7596 a : MaskedArray 

7597 A modified version of the input array, masked depending on the value 

7598 of the `axis` parameter. 

7599 

7600 Raises 

7601 ------ 

7602 NotImplementedError 

7603 If input array `a` is not 2D. 

7604 

7605 See Also 

7606 -------- 

7607 mask_rows : Mask rows of a 2D array that contain masked values. 

7608 mask_cols : Mask cols of a 2D array that contain masked values. 

7609 masked_where : Mask where a condition is met. 

7610 

7611 Notes 

7612 ----- 

7613 The input array's mask is modified by this function. 

7614 

7615 Examples 

7616 -------- 

7617 >>> import numpy.ma as ma 

7618 >>> a = np.zeros((3, 3), dtype=int) 

7619 >>> a[1, 1] = 1 

7620 >>> a 

7621 array([[0, 0, 0], 

7622 [0, 1, 0], 

7623 [0, 0, 0]]) 

7624 >>> a = ma.masked_equal(a, 1) 

7625 >>> a 

7626 masked_array( 

7627 data=[[0, 0, 0], 

7628 [0, --, 0], 

7629 [0, 0, 0]], 

7630 mask=[[False, False, False], 

7631 [False, True, False], 

7632 [False, False, False]], 

7633 fill_value=1) 

7634 >>> ma.mask_rowcols(a) 

7635 masked_array( 

7636 data=[[0, --, 0], 

7637 [--, --, --], 

7638 [0, --, 0]], 

7639 mask=[[False, True, False], 

7640 [ True, True, True], 

7641 [False, True, False]], 

7642 fill_value=1) 

7643 

7644 """ 

7645 a = array(a, subok=False) 

7646 if a.ndim != 2: 

7647 raise NotImplementedError("mask_rowcols works for 2D arrays only.") 

7648 m = getmask(a) 

7649 # Nothing is masked: return a 

7650 if m is nomask or not m.any(): 

7651 return a 

7652 maskedval = m.nonzero() 

7653 a._mask = a._mask.copy() 

7654 if not axis: 

7655 a[np.unique(maskedval[0])] = masked 

7656 if axis in [None, 1, -1]: 

7657 a[:, np.unique(maskedval[1])] = masked 

7658 return a 

7659 

7660 

7661# Include masked dot here to avoid import problems in getting it from 

7662# extras.py. Note that it is not included in __all__, but rather exported 

7663# from extras in order to avoid backward compatibility problems. 

7664def dot(a, b, strict=False, out=None): 

7665 """ 

7666 Return the dot product of two arrays. 

7667 

7668 This function is the equivalent of `numpy.dot` that takes masked values 

7669 into account. Note that `strict` and `out` are in different position 

7670 than in the method version. In order to maintain compatibility with the 

7671 corresponding method, it is recommended that the optional arguments be 

7672 treated as keyword only. At some point that may be mandatory. 

7673 

7674 .. note:: 

7675 Works only with 2-D arrays at the moment. 

7676 

7677 

7678 Parameters 

7679 ---------- 

7680 a, b : masked_array_like 

7681 Inputs arrays. 

7682 strict : bool, optional 

7683 Whether masked data are propagated (True) or set to 0 (False) for 

7684 the computation. Default is False. Propagating the mask means that 

7685 if a masked value appears in a row or column, the whole row or 

7686 column is considered masked. 

7687 out : masked_array, optional 

7688 Output argument. This must have the exact kind that would be returned 

7689 if it was not used. In particular, it must have the right type, must be 

7690 C-contiguous, and its dtype must be the dtype that would be returned 

7691 for `dot(a,b)`. This is a performance feature. Therefore, if these 

7692 conditions are not met, an exception is raised, instead of attempting 

7693 to be flexible. 

7694 

7695 .. versionadded:: 1.10.2 

7696 

7697 See Also 

7698 -------- 

7699 numpy.dot : Equivalent function for ndarrays. 

7700 

7701 Examples 

7702 -------- 

7703 >>> a = np.ma.array([[1, 2, 3], [4, 5, 6]], mask=[[1, 0, 0], [0, 0, 0]]) 

7704 >>> b = np.ma.array([[1, 2], [3, 4], [5, 6]], mask=[[1, 0], [0, 0], [0, 0]]) 

7705 >>> np.ma.dot(a, b) 

7706 masked_array( 

7707 data=[[21, 26], 

7708 [45, 64]], 

7709 mask=[[False, False], 

7710 [False, False]], 

7711 fill_value=999999) 

7712 >>> np.ma.dot(a, b, strict=True) 

7713 masked_array( 

7714 data=[[--, --], 

7715 [--, 64]], 

7716 mask=[[ True, True], 

7717 [ True, False]], 

7718 fill_value=999999) 

7719 

7720 """ 

7721 # !!!: Works only with 2D arrays. There should be a way to get it to run 

7722 # with higher dimension 

7723 if strict and (a.ndim == 2) and (b.ndim == 2): 

7724 a = mask_rowcols(a, 0) 

7725 b = mask_rowcols(b, 1) 

7726 am = ~getmaskarray(a) 

7727 bm = ~getmaskarray(b) 

7728 

7729 if out is None: 

7730 d = np.dot(filled(a, 0), filled(b, 0)) 

7731 m = ~np.dot(am, bm) 

7732 if d.ndim == 0: 

7733 d = np.asarray(d) 

7734 r = d.view(get_masked_subclass(a, b)) 

7735 r.__setmask__(m) 

7736 return r 

7737 else: 

7738 d = np.dot(filled(a, 0), filled(b, 0), out._data) 

7739 if out.mask.shape != d.shape: 

7740 out._mask = np.empty(d.shape, MaskType) 

7741 np.dot(am, bm, out._mask) 

7742 np.logical_not(out._mask, out._mask) 

7743 return out 

7744 

7745 

7746def inner(a, b): 

7747 """ 

7748 Returns the inner product of a and b for arrays of floating point types. 

7749 

7750 Like the generic NumPy equivalent the product sum is over the last dimension 

7751 of a and b. The first argument is not conjugated. 

7752 

7753 """ 

7754 fa = filled(a, 0) 

7755 fb = filled(b, 0) 

7756 if fa.ndim == 0: 

7757 fa.shape = (1,) 

7758 if fb.ndim == 0: 

7759 fb.shape = (1,) 

7760 return np.inner(fa, fb).view(MaskedArray) 

7761inner.__doc__ = doc_note(np.inner.__doc__, 

7762 "Masked values are replaced by 0.") 

7763innerproduct = inner 

7764 

7765 

7766def outer(a, b): 

7767 "maskedarray version of the numpy function." 

7768 fa = filled(a, 0).ravel() 

7769 fb = filled(b, 0).ravel() 

7770 d = np.outer(fa, fb) 

7771 ma = getmask(a) 

7772 mb = getmask(b) 

7773 if ma is nomask and mb is nomask: 

7774 return masked_array(d) 

7775 ma = getmaskarray(a) 

7776 mb = getmaskarray(b) 

7777 m = make_mask(1 - np.outer(1 - ma, 1 - mb), copy=False) 

7778 return masked_array(d, mask=m) 

7779outer.__doc__ = doc_note(np.outer.__doc__, 

7780 "Masked values are replaced by 0.") 

7781outerproduct = outer 

7782 

7783 

7784def _convolve_or_correlate(f, a, v, mode, propagate_mask): 

7785 """ 

7786 Helper function for ma.correlate and ma.convolve 

7787 """ 

7788 if propagate_mask: 

7789 # results which are contributed to by either item in any pair being invalid 

7790 mask = ( 

7791 f(getmaskarray(a), np.ones(np.shape(v), dtype=bool), mode=mode) 

7792 | f(np.ones(np.shape(a), dtype=bool), getmaskarray(v), mode=mode) 

7793 ) 

7794 data = f(getdata(a), getdata(v), mode=mode) 

7795 else: 

7796 # results which are not contributed to by any pair of valid elements 

7797 mask = ~f(~getmaskarray(a), ~getmaskarray(v)) 

7798 data = f(filled(a, 0), filled(v, 0), mode=mode) 

7799 

7800 return masked_array(data, mask=mask) 

7801 

7802 

7803def correlate(a, v, mode='valid', propagate_mask=True): 

7804 """ 

7805 Cross-correlation of two 1-dimensional sequences. 

7806 

7807 Parameters 

7808 ---------- 

7809 a, v : array_like 

7810 Input sequences. 

7811 mode : {'valid', 'same', 'full'}, optional 

7812 Refer to the `np.convolve` docstring. Note that the default 

7813 is 'valid', unlike `convolve`, which uses 'full'. 

7814 propagate_mask : bool 

7815 If True, then a result element is masked if any masked element contributes towards it. 

7816 If False, then a result element is only masked if no non-masked element 

7817 contribute towards it 

7818 

7819 Returns 

7820 ------- 

7821 out : MaskedArray 

7822 Discrete cross-correlation of `a` and `v`. 

7823 

7824 See Also 

7825 -------- 

7826 numpy.correlate : Equivalent function in the top-level NumPy module. 

7827 """ 

7828 return _convolve_or_correlate(np.correlate, a, v, mode, propagate_mask) 

7829 

7830 

7831def convolve(a, v, mode='full', propagate_mask=True): 

7832 """ 

7833 Returns the discrete, linear convolution of two one-dimensional sequences. 

7834 

7835 Parameters 

7836 ---------- 

7837 a, v : array_like 

7838 Input sequences. 

7839 mode : {'valid', 'same', 'full'}, optional 

7840 Refer to the `np.convolve` docstring. 

7841 propagate_mask : bool 

7842 If True, then if any masked element is included in the sum for a result 

7843 element, then the result is masked. 

7844 If False, then the result element is only masked if no non-masked cells 

7845 contribute towards it 

7846 

7847 Returns 

7848 ------- 

7849 out : MaskedArray 

7850 Discrete, linear convolution of `a` and `v`. 

7851 

7852 See Also 

7853 -------- 

7854 numpy.convolve : Equivalent function in the top-level NumPy module. 

7855 """ 

7856 return _convolve_or_correlate(np.convolve, a, v, mode, propagate_mask) 

7857 

7858 

7859def allequal(a, b, fill_value=True): 

7860 """ 

7861 Return True if all entries of a and b are equal, using 

7862 fill_value as a truth value where either or both are masked. 

7863 

7864 Parameters 

7865 ---------- 

7866 a, b : array_like 

7867 Input arrays to compare. 

7868 fill_value : bool, optional 

7869 Whether masked values in a or b are considered equal (True) or not 

7870 (False). 

7871 

7872 Returns 

7873 ------- 

7874 y : bool 

7875 Returns True if the two arrays are equal within the given 

7876 tolerance, False otherwise. If either array contains NaN, 

7877 then False is returned. 

7878 

7879 See Also 

7880 -------- 

7881 all, any 

7882 numpy.ma.allclose 

7883 

7884 Examples 

7885 -------- 

7886 >>> a = np.ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1]) 

7887 >>> a 

7888 masked_array(data=[10000000000.0, 1e-07, --], 

7889 mask=[False, False, True], 

7890 fill_value=1e+20) 

7891 

7892 >>> b = np.array([1e10, 1e-7, -42.0]) 

7893 >>> b 

7894 array([ 1.00000000e+10, 1.00000000e-07, -4.20000000e+01]) 

7895 >>> np.ma.allequal(a, b, fill_value=False) 

7896 False 

7897 >>> np.ma.allequal(a, b) 

7898 True 

7899 

7900 """ 

7901 m = mask_or(getmask(a), getmask(b)) 

7902 if m is nomask: 

7903 x = getdata(a) 

7904 y = getdata(b) 

7905 d = umath.equal(x, y) 

7906 return d.all() 

7907 elif fill_value: 

7908 x = getdata(a) 

7909 y = getdata(b) 

7910 d = umath.equal(x, y) 

7911 dm = array(d, mask=m, copy=False) 

7912 return dm.filled(True).all(None) 

7913 else: 

7914 return False 

7915 

7916 

7917def allclose(a, b, masked_equal=True, rtol=1e-5, atol=1e-8): 

7918 """ 

7919 Returns True if two arrays are element-wise equal within a tolerance. 

7920 

7921 This function is equivalent to `allclose` except that masked values 

7922 are treated as equal (default) or unequal, depending on the `masked_equal` 

7923 argument. 

7924 

7925 Parameters 

7926 ---------- 

7927 a, b : array_like 

7928 Input arrays to compare. 

7929 masked_equal : bool, optional 

7930 Whether masked values in `a` and `b` are considered equal (True) or not 

7931 (False). They are considered equal by default. 

7932 rtol : float, optional 

7933 Relative tolerance. The relative difference is equal to ``rtol * b``. 

7934 Default is 1e-5. 

7935 atol : float, optional 

7936 Absolute tolerance. The absolute difference is equal to `atol`. 

7937 Default is 1e-8. 

7938 

7939 Returns 

7940 ------- 

7941 y : bool 

7942 Returns True if the two arrays are equal within the given 

7943 tolerance, False otherwise. If either array contains NaN, then 

7944 False is returned. 

7945 

7946 See Also 

7947 -------- 

7948 all, any 

7949 numpy.allclose : the non-masked `allclose`. 

7950 

7951 Notes 

7952 ----- 

7953 If the following equation is element-wise True, then `allclose` returns 

7954 True:: 

7955 

7956 absolute(`a` - `b`) <= (`atol` + `rtol` * absolute(`b`)) 

7957 

7958 Return True if all elements of `a` and `b` are equal subject to 

7959 given tolerances. 

7960 

7961 Examples 

7962 -------- 

7963 >>> a = np.ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1]) 

7964 >>> a 

7965 masked_array(data=[10000000000.0, 1e-07, --], 

7966 mask=[False, False, True], 

7967 fill_value=1e+20) 

7968 >>> b = np.ma.array([1e10, 1e-8, -42.0], mask=[0, 0, 1]) 

7969 >>> np.ma.allclose(a, b) 

7970 False 

7971 

7972 >>> a = np.ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1]) 

7973 >>> b = np.ma.array([1.00001e10, 1e-9, -42.0], mask=[0, 0, 1]) 

7974 >>> np.ma.allclose(a, b) 

7975 True 

7976 >>> np.ma.allclose(a, b, masked_equal=False) 

7977 False 

7978 

7979 Masked values are not compared directly. 

7980 

7981 >>> a = np.ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1]) 

7982 >>> b = np.ma.array([1.00001e10, 1e-9, 42.0], mask=[0, 0, 1]) 

7983 >>> np.ma.allclose(a, b) 

7984 True 

7985 >>> np.ma.allclose(a, b, masked_equal=False) 

7986 False 

7987 

7988 """ 

7989 x = masked_array(a, copy=False) 

7990 y = masked_array(b, copy=False) 

7991 

7992 # make sure y is an inexact type to avoid abs(MIN_INT); will cause 

7993 # casting of x later. 

7994 # NOTE: We explicitly allow timedelta, which used to work. This could 

7995 # possibly be deprecated. See also gh-18286. 

7996 # timedelta works if `atol` is an integer or also a timedelta. 

7997 # Although, the default tolerances are unlikely to be useful 

7998 if y.dtype.kind != "m": 

7999 dtype = np.result_type(y, 1.) 

8000 if y.dtype != dtype: 

8001 y = masked_array(y, dtype=dtype, copy=False) 

8002 

8003 m = mask_or(getmask(x), getmask(y)) 

8004 xinf = np.isinf(masked_array(x, copy=False, mask=m)).filled(False) 

8005 # If we have some infs, they should fall at the same place. 

8006 if not np.all(xinf == filled(np.isinf(y), False)): 

8007 return False 

8008 # No infs at all 

8009 if not np.any(xinf): 

8010 d = filled(less_equal(absolute(x - y), atol + rtol * absolute(y)), 

8011 masked_equal) 

8012 return np.all(d) 

8013 

8014 if not np.all(filled(x[xinf] == y[xinf], masked_equal)): 

8015 return False 

8016 x = x[~xinf] 

8017 y = y[~xinf] 

8018 

8019 d = filled(less_equal(absolute(x - y), atol + rtol * absolute(y)), 

8020 masked_equal) 

8021 

8022 return np.all(d) 

8023 

8024 

8025def asarray(a, dtype=None, order=None): 

8026 """ 

8027 Convert the input to a masked array of the given data-type. 

8028 

8029 No copy is performed if the input is already an `ndarray`. If `a` is 

8030 a subclass of `MaskedArray`, a base class `MaskedArray` is returned. 

8031 

8032 Parameters 

8033 ---------- 

8034 a : array_like 

8035 Input data, in any form that can be converted to a masked array. This 

8036 includes lists, lists of tuples, tuples, tuples of tuples, tuples 

8037 of lists, ndarrays and masked arrays. 

8038 dtype : dtype, optional 

8039 By default, the data-type is inferred from the input data. 

8040 order : {'C', 'F'}, optional 

8041 Whether to use row-major ('C') or column-major ('FORTRAN') memory 

8042 representation. Default is 'C'. 

8043 

8044 Returns 

8045 ------- 

8046 out : MaskedArray 

8047 Masked array interpretation of `a`. 

8048 

8049 See Also 

8050 -------- 

8051 asanyarray : Similar to `asarray`, but conserves subclasses. 

8052 

8053 Examples 

8054 -------- 

8055 >>> x = np.arange(10.).reshape(2, 5) 

8056 >>> x 

8057 array([[0., 1., 2., 3., 4.], 

8058 [5., 6., 7., 8., 9.]]) 

8059 >>> np.ma.asarray(x) 

8060 masked_array( 

8061 data=[[0., 1., 2., 3., 4.], 

8062 [5., 6., 7., 8., 9.]], 

8063 mask=False, 

8064 fill_value=1e+20) 

8065 >>> type(np.ma.asarray(x)) 

8066 <class 'numpy.ma.core.MaskedArray'> 

8067 

8068 """ 

8069 order = order or 'C' 

8070 return masked_array(a, dtype=dtype, copy=False, keep_mask=True, 

8071 subok=False, order=order) 

8072 

8073 

8074def asanyarray(a, dtype=None): 

8075 """ 

8076 Convert the input to a masked array, conserving subclasses. 

8077 

8078 If `a` is a subclass of `MaskedArray`, its class is conserved. 

8079 No copy is performed if the input is already an `ndarray`. 

8080 

8081 Parameters 

8082 ---------- 

8083 a : array_like 

8084 Input data, in any form that can be converted to an array. 

8085 dtype : dtype, optional 

8086 By default, the data-type is inferred from the input data. 

8087 order : {'C', 'F'}, optional 

8088 Whether to use row-major ('C') or column-major ('FORTRAN') memory 

8089 representation. Default is 'C'. 

8090 

8091 Returns 

8092 ------- 

8093 out : MaskedArray 

8094 MaskedArray interpretation of `a`. 

8095 

8096 See Also 

8097 -------- 

8098 asarray : Similar to `asanyarray`, but does not conserve subclass. 

8099 

8100 Examples 

8101 -------- 

8102 >>> x = np.arange(10.).reshape(2, 5) 

8103 >>> x 

8104 array([[0., 1., 2., 3., 4.], 

8105 [5., 6., 7., 8., 9.]]) 

8106 >>> np.ma.asanyarray(x) 

8107 masked_array( 

8108 data=[[0., 1., 2., 3., 4.], 

8109 [5., 6., 7., 8., 9.]], 

8110 mask=False, 

8111 fill_value=1e+20) 

8112 >>> type(np.ma.asanyarray(x)) 

8113 <class 'numpy.ma.core.MaskedArray'> 

8114 

8115 """ 

8116 # workaround for #8666, to preserve identity. Ideally the bottom line 

8117 # would handle this for us. 

8118 if isinstance(a, MaskedArray) and (dtype is None or dtype == a.dtype): 

8119 return a 

8120 return masked_array(a, dtype=dtype, copy=False, keep_mask=True, subok=True) 

8121 

8122 

8123############################################################################## 

8124# Pickling # 

8125############################################################################## 

8126 

8127 

8128def fromfile(file, dtype=float, count=-1, sep=''): 

8129 raise NotImplementedError( 

8130 "fromfile() not yet implemented for a MaskedArray.") 

8131 

8132 

8133def fromflex(fxarray): 

8134 """ 

8135 Build a masked array from a suitable flexible-type array. 

8136 

8137 The input array has to have a data-type with ``_data`` and ``_mask`` 

8138 fields. This type of array is output by `MaskedArray.toflex`. 

8139 

8140 Parameters 

8141 ---------- 

8142 fxarray : ndarray 

8143 The structured input array, containing ``_data`` and ``_mask`` 

8144 fields. If present, other fields are discarded. 

8145 

8146 Returns 

8147 ------- 

8148 result : MaskedArray 

8149 The constructed masked array. 

8150 

8151 See Also 

8152 -------- 

8153 MaskedArray.toflex : Build a flexible-type array from a masked array. 

8154 

8155 Examples 

8156 -------- 

8157 >>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[0] + [1, 0] * 4) 

8158 >>> rec = x.toflex() 

8159 >>> rec 

8160 array([[(0, False), (1, True), (2, False)], 

8161 [(3, True), (4, False), (5, True)], 

8162 [(6, False), (7, True), (8, False)]], 

8163 dtype=[('_data', '<i8'), ('_mask', '?')]) 

8164 >>> x2 = np.ma.fromflex(rec) 

8165 >>> x2 

8166 masked_array( 

8167 data=[[0, --, 2], 

8168 [--, 4, --], 

8169 [6, --, 8]], 

8170 mask=[[False, True, False], 

8171 [ True, False, True], 

8172 [False, True, False]], 

8173 fill_value=999999) 

8174 

8175 Extra fields can be present in the structured array but are discarded: 

8176 

8177 >>> dt = [('_data', '<i4'), ('_mask', '|b1'), ('field3', '<f4')] 

8178 >>> rec2 = np.zeros((2, 2), dtype=dt) 

8179 >>> rec2 

8180 array([[(0, False, 0.), (0, False, 0.)], 

8181 [(0, False, 0.), (0, False, 0.)]], 

8182 dtype=[('_data', '<i4'), ('_mask', '?'), ('field3', '<f4')]) 

8183 >>> y = np.ma.fromflex(rec2) 

8184 >>> y 

8185 masked_array( 

8186 data=[[0, 0], 

8187 [0, 0]], 

8188 mask=[[False, False], 

8189 [False, False]], 

8190 fill_value=999999, 

8191 dtype=int32) 

8192 

8193 """ 

8194 return masked_array(fxarray['_data'], mask=fxarray['_mask']) 

8195 

8196 

8197class _convert2ma: 

8198 

8199 """ 

8200 Convert functions from numpy to numpy.ma. 

8201 

8202 Parameters 

8203 ---------- 

8204 _methodname : string 

8205 Name of the method to transform. 

8206 

8207 """ 

8208 __doc__ = None 

8209 

8210 def __init__(self, funcname, np_ret, np_ma_ret, params=None): 

8211 self._func = getattr(np, funcname) 

8212 self.__doc__ = self.getdoc(np_ret, np_ma_ret) 

8213 self._extras = params or {} 

8214 

8215 def getdoc(self, np_ret, np_ma_ret): 

8216 "Return the doc of the function (from the doc of the method)." 

8217 doc = getattr(self._func, '__doc__', None) 

8218 sig = get_object_signature(self._func) 

8219 if doc: 

8220 doc = self._replace_return_type(doc, np_ret, np_ma_ret) 

8221 # Add the signature of the function at the beginning of the doc 

8222 if sig: 

8223 sig = "%s%s\n" % (self._func.__name__, sig) 

8224 doc = sig + doc 

8225 return doc 

8226 

8227 def _replace_return_type(self, doc, np_ret, np_ma_ret): 

8228 """ 

8229 Replace documentation of ``np`` function's return type. 

8230 

8231 Replaces it with the proper type for the ``np.ma`` function. 

8232 

8233 Parameters 

8234 ---------- 

8235 doc : str 

8236 The documentation of the ``np`` method. 

8237 np_ret : str 

8238 The return type string of the ``np`` method that we want to 

8239 replace. (e.g. "out : ndarray") 

8240 np_ma_ret : str 

8241 The return type string of the ``np.ma`` method. 

8242 (e.g. "out : MaskedArray") 

8243 """ 

8244 if np_ret not in doc: 

8245 raise RuntimeError( 

8246 f"Failed to replace `{np_ret}` with `{np_ma_ret}`. " 

8247 f"The documentation string for return type, {np_ret}, is not " 

8248 f"found in the docstring for `np.{self._func.__name__}`. " 

8249 f"Fix the docstring for `np.{self._func.__name__}` or " 

8250 "update the expected string for return type." 

8251 ) 

8252 

8253 return doc.replace(np_ret, np_ma_ret) 

8254 

8255 def __call__(self, *args, **params): 

8256 # Find the common parameters to the call and the definition 

8257 _extras = self._extras 

8258 common_params = set(params).intersection(_extras) 

8259 # Drop the common parameters from the call 

8260 for p in common_params: 

8261 _extras[p] = params.pop(p) 

8262 # Get the result 

8263 result = self._func.__call__(*args, **params).view(MaskedArray) 

8264 if "fill_value" in common_params: 

8265 result.fill_value = _extras.get("fill_value", None) 

8266 if "hardmask" in common_params: 

8267 result._hardmask = bool(_extras.get("hard_mask", False)) 

8268 return result 

8269 

8270 

8271arange = _convert2ma( 

8272 'arange', 

8273 params=dict(fill_value=None, hardmask=False), 

8274 np_ret='arange : ndarray', 

8275 np_ma_ret='arange : MaskedArray', 

8276) 

8277clip = _convert2ma( 

8278 'clip', 

8279 params=dict(fill_value=None, hardmask=False), 

8280 np_ret='clipped_array : ndarray', 

8281 np_ma_ret='clipped_array : MaskedArray', 

8282) 

8283diff = _convert2ma( 

8284 'diff', 

8285 params=dict(fill_value=None, hardmask=False), 

8286 np_ret='diff : ndarray', 

8287 np_ma_ret='diff : MaskedArray', 

8288) 

8289empty = _convert2ma( 

8290 'empty', 

8291 params=dict(fill_value=None, hardmask=False), 

8292 np_ret='out : ndarray', 

8293 np_ma_ret='out : MaskedArray', 

8294) 

8295empty_like = _convert2ma( 

8296 'empty_like', 

8297 np_ret='out : ndarray', 

8298 np_ma_ret='out : MaskedArray', 

8299) 

8300frombuffer = _convert2ma( 

8301 'frombuffer', 

8302 np_ret='out : ndarray', 

8303 np_ma_ret='out: MaskedArray', 

8304) 

8305fromfunction = _convert2ma( 

8306 'fromfunction', 

8307 np_ret='fromfunction : any', 

8308 np_ma_ret='fromfunction: MaskedArray', 

8309) 

8310identity = _convert2ma( 

8311 'identity', 

8312 params=dict(fill_value=None, hardmask=False), 

8313 np_ret='out : ndarray', 

8314 np_ma_ret='out : MaskedArray', 

8315) 

8316indices = _convert2ma( 

8317 'indices', 

8318 params=dict(fill_value=None, hardmask=False), 

8319 np_ret='grid : one ndarray or tuple of ndarrays', 

8320 np_ma_ret='grid : one MaskedArray or tuple of MaskedArrays', 

8321) 

8322ones = _convert2ma( 

8323 'ones', 

8324 params=dict(fill_value=None, hardmask=False), 

8325 np_ret='out : ndarray', 

8326 np_ma_ret='out : MaskedArray', 

8327) 

8328ones_like = _convert2ma( 

8329 'ones_like', 

8330 np_ret='out : ndarray', 

8331 np_ma_ret='out : MaskedArray', 

8332) 

8333squeeze = _convert2ma( 

8334 'squeeze', 

8335 params=dict(fill_value=None, hardmask=False), 

8336 np_ret='squeezed : ndarray', 

8337 np_ma_ret='squeezed : MaskedArray', 

8338) 

8339zeros = _convert2ma( 

8340 'zeros', 

8341 params=dict(fill_value=None, hardmask=False), 

8342 np_ret='out : ndarray', 

8343 np_ma_ret='out : MaskedArray', 

8344) 

8345zeros_like = _convert2ma( 

8346 'zeros_like', 

8347 np_ret='out : ndarray', 

8348 np_ma_ret='out : MaskedArray', 

8349) 

8350 

8351 

8352def append(a, b, axis=None): 

8353 """Append values to the end of an array. 

8354 

8355 .. versionadded:: 1.9.0 

8356 

8357 Parameters 

8358 ---------- 

8359 a : array_like 

8360 Values are appended to a copy of this array. 

8361 b : array_like 

8362 These values are appended to a copy of `a`. It must be of the 

8363 correct shape (the same shape as `a`, excluding `axis`). If `axis` 

8364 is not specified, `b` can be any shape and will be flattened 

8365 before use. 

8366 axis : int, optional 

8367 The axis along which `v` are appended. If `axis` is not given, 

8368 both `a` and `b` are flattened before use. 

8369 

8370 Returns 

8371 ------- 

8372 append : MaskedArray 

8373 A copy of `a` with `b` appended to `axis`. Note that `append` 

8374 does not occur in-place: a new array is allocated and filled. If 

8375 `axis` is None, the result is a flattened array. 

8376 

8377 See Also 

8378 -------- 

8379 numpy.append : Equivalent function in the top-level NumPy module. 

8380 

8381 Examples 

8382 -------- 

8383 >>> import numpy.ma as ma 

8384 >>> a = ma.masked_values([1, 2, 3], 2) 

8385 >>> b = ma.masked_values([[4, 5, 6], [7, 8, 9]], 7) 

8386 >>> ma.append(a, b) 

8387 masked_array(data=[1, --, 3, 4, 5, 6, --, 8, 9], 

8388 mask=[False, True, False, False, False, False, True, False, 

8389 False], 

8390 fill_value=999999) 

8391 """ 

8392 return concatenate([a, b], axis)