Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.11/site-packages/numpy/_core/multiarray.py: 3%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

111 statements  

1""" 

2Create the numpy._core.multiarray namespace for backward compatibility. 

3In v1.16 the multiarray and umath c-extension modules were merged into 

4a single _multiarray_umath extension module. So we replicate the old 

5namespace by importing from the extension module. 

6 

7""" 

8 

9import functools 

10 

11from . import _multiarray_umath, overrides 

12from ._multiarray_umath import * # noqa: F403 

13 

14# These imports are needed for backward compatibility, 

15# do not change them. issue gh-15518 

16# _get_ndarray_c_version is semi-public, on purpose not added to __all__ 

17from ._multiarray_umath import ( # noqa: F401 

18 _ARRAY_API, 

19 _flagdict, 

20 _get_madvise_hugepage, 

21 _get_ndarray_c_version, 

22 _monotonicity, 

23 _place, 

24 _reconstruct, 

25 _set_madvise_hugepage, 

26 _vec_string, 

27 from_dlpack, 

28) 

29 

30__all__ = [ 

31 '_ARRAY_API', 'ALLOW_THREADS', 'BUFSIZE', 'CLIP', 'DATETIMEUNITS', 

32 'ITEM_HASOBJECT', 'ITEM_IS_POINTER', 'LIST_PICKLE', 'MAXDIMS', 

33 'MAY_SHARE_BOUNDS', 'MAY_SHARE_EXACT', 'NEEDS_INIT', 'NEEDS_PYAPI', 

34 'RAISE', 'USE_GETITEM', 'USE_SETITEM', 'WRAP', 

35 '_flagdict', 'from_dlpack', '_place', '_reconstruct', '_vec_string', 

36 '_monotonicity', 'add_docstring', 'arange', 'array', 'asarray', 

37 'asanyarray', 'ascontiguousarray', 'asfortranarray', 'bincount', 

38 'broadcast', 'busday_count', 'busday_offset', 'busdaycalendar', 'can_cast', 

39 'compare_chararrays', 'concatenate', 'copyto', 'correlate', 'correlate2', 

40 'count_nonzero', 'c_einsum', 'datetime_as_string', 'datetime_data', 

41 'dot', 'dragon4_positional', 'dragon4_scientific', 'dtype', 

42 'empty', 'empty_like', 'error', 'flagsobj', 'flatiter', 'format_longfloat', 

43 'frombuffer', 'fromfile', 'fromiter', 'fromstring', 

44 'get_handler_name', 'get_handler_version', 'inner', 'interp', 

45 'interp_complex', 'is_busday', 'lexsort', 'matmul', 'vecdot', 

46 'may_share_memory', 'min_scalar_type', 'ndarray', 'nditer', 'nested_iters', 

47 'normalize_axis_index', 'packbits', 'promote_types', 'putmask', 

48 'ravel_multi_index', 'result_type', 'scalar', 'set_datetimeparse_function', 

49 'set_typeDict', 'shares_memory', 'typeinfo', 

50 'unpackbits', 'unravel_index', 'vdot', 'where', 'zeros'] 

51 

52# For backward compatibility, make sure pickle imports 

53# these functions from here 

54_reconstruct.__module__ = 'numpy._core.multiarray' 

55scalar.__module__ = 'numpy._core.multiarray' 

56 

57 

58from_dlpack.__module__ = 'numpy' 

59arange.__module__ = 'numpy' 

60array.__module__ = 'numpy' 

61asarray.__module__ = 'numpy' 

62asanyarray.__module__ = 'numpy' 

63ascontiguousarray.__module__ = 'numpy' 

64asfortranarray.__module__ = 'numpy' 

65datetime_data.__module__ = 'numpy' 

66empty.__module__ = 'numpy' 

67frombuffer.__module__ = 'numpy' 

68fromfile.__module__ = 'numpy' 

69fromiter.__module__ = 'numpy' 

70frompyfunc.__module__ = 'numpy' 

71fromstring.__module__ = 'numpy' 

72may_share_memory.__module__ = 'numpy' 

73nested_iters.__module__ = 'numpy' 

74promote_types.__module__ = 'numpy' 

75zeros.__module__ = 'numpy' 

76normalize_axis_index.__module__ = 'numpy.lib.array_utils' 

77add_docstring.__module__ = 'numpy.lib' 

78compare_chararrays.__module__ = 'numpy.char' 

79 

80 

81def _override___module__(): 

82 namespace_names = globals() 

83 for ufunc_name in [ 

84 'absolute', 'arccos', 'arccosh', 'add', 'arcsin', 'arcsinh', 'arctan', 

85 'arctan2', 'arctanh', 'bitwise_and', 'bitwise_count', 'invert', 

86 'left_shift', 'bitwise_or', 'right_shift', 'bitwise_xor', 'cbrt', 

87 'ceil', 'conjugate', 'copysign', 'cos', 'cosh', 'deg2rad', 'degrees', 

88 'divide', 'divmod', 'equal', 'exp', 'exp2', 'expm1', 'fabs', 

89 'float_power', 'floor', 'floor_divide', 'fmax', 'fmin', 'fmod', 

90 'frexp', 'gcd', 'greater', 'greater_equal', 'heaviside', 'hypot', 

91 'isfinite', 'isinf', 'isnan', 'isnat', 'lcm', 'ldexp', 'less', 

92 'less_equal', 'log', 'log10', 'log1p', 'log2', 'logaddexp', 

93 'logaddexp2', 'logical_and', 'logical_not', 'logical_or', 

94 'logical_xor', 'matmul', 'matvec', 'maximum', 'minimum', 'remainder', 

95 'modf', 'multiply', 'negative', 'nextafter', 'not_equal', 'positive', 

96 'power', 'rad2deg', 'radians', 'reciprocal', 'rint', 'sign', 'signbit', 

97 'sin', 'sinh', 'spacing', 'sqrt', 'square', 'subtract', 'tan', 'tanh', 

98 'trunc', 'vecdot', 'vecmat', 

99 ]: 

100 ufunc = namespace_names[ufunc_name] 

101 ufunc.__module__ = "numpy" 

102 ufunc.__qualname__ = ufunc_name 

103 

104 

105_override___module__() 

106 

107 

108# We can't verify dispatcher signatures because NumPy's C functions don't 

109# support introspection. 

110array_function_from_c_func_and_dispatcher = functools.partial( 

111 overrides.array_function_from_dispatcher, 

112 module='numpy', docs_from_dispatcher=True, verify=False) 

113 

114 

115@array_function_from_c_func_and_dispatcher(_multiarray_umath.empty_like) 

116def empty_like( 

117 prototype, dtype=None, order="K", subok=True, shape=None, *, device=None 

118): 

119 """ 

120 empty_like( 

121 prototype, 

122 /, 

123 dtype=None, 

124 order='K', 

125 subok=True, 

126 shape=None, 

127 *, 

128 device=None, 

129 ) 

130 -- 

131 

132 Return a new array with the same shape and type as a given array. 

133 

134 Parameters 

135 ---------- 

136 prototype : array_like 

137 The shape and data-type of `prototype` define these same attributes 

138 of the returned array. 

139 dtype : data-type, optional 

140 Overrides the data type of the result. 

141 order : {'C', 'F', 'A', or 'K'}, optional 

142 Overrides the memory layout of the result. 'C' means C-order, 

143 'F' means F-order, 'A' means 'F' if `prototype` is Fortran 

144 contiguous, 'C' otherwise. 'K' means match the layout of `prototype` 

145 as closely as possible. 

146 subok : bool, optional. 

147 If True, then the newly created array will use the sub-class 

148 type of `prototype`, otherwise it will be a base-class array. Defaults 

149 to True. 

150 shape : int or sequence of ints, optional. 

151 Overrides the shape of the result. If order='K' and the number of 

152 dimensions is unchanged, will try to keep order, otherwise, 

153 order='C' is implied. 

154 device : str, optional 

155 The device on which to place the created array. Default: None. 

156 For Array-API interoperability only, so must be ``"cpu"`` if passed. 

157 

158 .. versionadded:: 2.0.0 

159 

160 Returns 

161 ------- 

162 out : ndarray 

163 Array of uninitialized (arbitrary) data with the same 

164 shape and type as `prototype`. 

165 

166 See Also 

167 -------- 

168 ones_like : Return an array of ones with shape and type of input. 

169 zeros_like : Return an array of zeros with shape and type of input. 

170 full_like : Return a new array with shape of input filled with value. 

171 empty : Return a new uninitialized array. 

172 

173 Notes 

174 ----- 

175 Unlike other array creation functions (e.g. `zeros_like`, `ones_like`, 

176 `full_like`), `empty_like` does not initialize the values of the array, 

177 and may therefore be marginally faster. However, the values stored in the 

178 newly allocated array are arbitrary. For reproducible behavior, be sure 

179 to set each element of the array before reading. 

180 

181 Examples 

182 -------- 

183 >>> import numpy as np 

184 >>> a = ([1,2,3], [4,5,6]) # a is array-like 

185 >>> np.empty_like(a) 

186 array([[-1073741821, -1073741821, 3], # uninitialized 

187 [ 0, 0, -1073741821]]) 

188 >>> a = np.array([[1., 2., 3.],[4.,5.,6.]]) 

189 >>> np.empty_like(a) 

190 array([[ -2.00000715e+000, 1.48219694e-323, -2.00000572e+000], # uninitialized 

191 [ 4.38791518e-305, -2.00000715e+000, 4.17269252e-309]]) 

192 

193 """ 

194 return (prototype,) 

195 

196 

197@array_function_from_c_func_and_dispatcher(_multiarray_umath.concatenate) 

198def concatenate(arrays, axis=0, out=None, *, dtype=None, casting="same_kind"): 

199 """ 

200 concatenate( 

201 arrays, 

202 /, 

203 axis=0, 

204 out=None, 

205 *, 

206 dtype=None, 

207 casting="same_kind", 

208 ) 

209 -- 

210 

211 Join a sequence of arrays along an existing axis. 

212 

213 Parameters 

214 ---------- 

215 a1, a2, ... : sequence of array_like 

216 The arrays must have the same shape, except in the dimension 

217 corresponding to `axis` (the first, by default). 

218 axis : int, optional 

219 The axis along which the arrays will be joined. If axis is None, 

220 arrays are flattened before use. Default is 0. 

221 out : ndarray, optional 

222 If provided, the destination to place the result. The shape must be 

223 correct, matching that of what concatenate would have returned if no 

224 out argument were specified. 

225 dtype : str or dtype 

226 If provided, the destination array will have this dtype. Cannot be 

227 provided together with `out`. 

228 

229 .. versionadded:: 1.20.0 

230 

231 casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional 

232 Controls what kind of data casting may occur. Defaults to 'same_kind'. 

233 For a description of the options, please see :term:`casting`. 

234 

235 .. versionadded:: 1.20.0 

236 

237 Returns 

238 ------- 

239 res : ndarray 

240 The concatenated array. 

241 

242 See Also 

243 -------- 

244 ma.concatenate : Concatenate function that preserves input masks. 

245 array_split : Split an array into multiple sub-arrays of equal or 

246 near-equal size. 

247 split : Split array into a list of multiple sub-arrays of equal size. 

248 hsplit : Split array into multiple sub-arrays horizontally (column wise). 

249 vsplit : Split array into multiple sub-arrays vertically (row wise). 

250 dsplit : Split array into multiple sub-arrays along the 3rd axis (depth). 

251 stack : Stack a sequence of arrays along a new axis. 

252 block : Assemble arrays from blocks. 

253 hstack : Stack arrays in sequence horizontally (column wise). 

254 vstack : Stack arrays in sequence vertically (row wise). 

255 dstack : Stack arrays in sequence depth wise (along third dimension). 

256 column_stack : Stack 1-D arrays as columns into a 2-D array. 

257 

258 Notes 

259 ----- 

260 When one or more of the arrays to be concatenated is a MaskedArray, 

261 this function will return a MaskedArray object instead of an ndarray, 

262 but the input masks are *not* preserved. In cases where a MaskedArray 

263 is expected as input, use the ma.concatenate function from the masked 

264 array module instead. 

265 

266 Examples 

267 -------- 

268 >>> import numpy as np 

269 >>> a = np.array([[1, 2], [3, 4]]) 

270 >>> b = np.array([[5, 6]]) 

271 >>> np.concatenate((a, b), axis=0) 

272 array([[1, 2], 

273 [3, 4], 

274 [5, 6]]) 

275 >>> np.concatenate((a, b.T), axis=1) 

276 array([[1, 2, 5], 

277 [3, 4, 6]]) 

278 >>> np.concatenate((a, b), axis=None) 

279 array([1, 2, 3, 4, 5, 6]) 

280 

281 This function will not preserve masking of MaskedArray inputs. 

282 

283 >>> a = np.ma.arange(3) 

284 >>> a[1] = np.ma.masked 

285 >>> b = np.arange(2, 5) 

286 >>> a 

287 masked_array(data=[0, --, 2], 

288 mask=[False, True, False], 

289 fill_value=999999) 

290 >>> b 

291 array([2, 3, 4]) 

292 >>> np.concatenate([a, b]) 

293 masked_array(data=[0, 1, 2, 2, 3, 4], 

294 mask=False, 

295 fill_value=999999) 

296 >>> np.ma.concatenate([a, b]) 

297 masked_array(data=[0, --, 2, 2, 3, 4], 

298 mask=[False, True, False, False, False, False], 

299 fill_value=999999) 

300 

301 """ 

302 if out is not None: 

303 # optimize for the typical case where only arrays is provided 

304 arrays = list(arrays) 

305 arrays.append(out) 

306 return arrays 

307 

308 

309@array_function_from_c_func_and_dispatcher(_multiarray_umath.inner) 

310def inner(a, b, /): 

311 """ 

312 inner(a, b, /) 

313 

314 Inner product of two arrays. 

315 

316 Ordinary inner product of vectors for 1-D arrays (without complex 

317 conjugation), in higher dimensions a sum product over the last axes. 

318 

319 Parameters 

320 ---------- 

321 a, b : array_like 

322 If `a` and `b` are nonscalar, their last dimensions must match. 

323 

324 Returns 

325 ------- 

326 out : ndarray 

327 If `a` and `b` are both 

328 scalars or both 1-D arrays then a scalar is returned; otherwise 

329 an array is returned. 

330 ``out.shape = (*a.shape[:-1], *b.shape[:-1])`` 

331 

332 Raises 

333 ------ 

334 ValueError 

335 If both `a` and `b` are nonscalar and their last dimensions have 

336 different sizes. 

337 

338 See Also 

339 -------- 

340 tensordot : Sum products over arbitrary axes. 

341 dot : Generalised matrix product, using second last dimension of `b`. 

342 vecdot : Vector dot product of two arrays. 

343 einsum : Einstein summation convention. 

344 

345 Notes 

346 ----- 

347 For vectors (1-D arrays) it computes the ordinary inner-product:: 

348 

349 np.inner(a, b) = sum(a[:]*b[:]) 

350 

351 More generally, if ``ndim(a) = r > 0`` and ``ndim(b) = s > 0``:: 

352 

353 np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1)) 

354 

355 or explicitly:: 

356 

357 np.inner(a, b)[i0,...,ir-2,j0,...,js-2] 

358 = sum(a[i0,...,ir-2,:]*b[j0,...,js-2,:]) 

359 

360 In addition `a` or `b` may be scalars, in which case:: 

361 

362 np.inner(a,b) = a*b 

363 

364 Examples 

365 -------- 

366 Ordinary inner product for vectors: 

367 

368 >>> import numpy as np 

369 >>> a = np.array([1,2,3]) 

370 >>> b = np.array([0,1,0]) 

371 >>> np.inner(a, b) 

372 2 

373 

374 Some multidimensional examples: 

375 

376 >>> a = np.arange(24).reshape((2,3,4)) 

377 >>> b = np.arange(4) 

378 >>> c = np.inner(a, b) 

379 >>> c.shape 

380 (2, 3) 

381 >>> c 

382 array([[ 14, 38, 62], 

383 [ 86, 110, 134]]) 

384 

385 >>> a = np.arange(2).reshape((1,1,2)) 

386 >>> b = np.arange(6).reshape((3,2)) 

387 >>> c = np.inner(a, b) 

388 >>> c.shape 

389 (1, 1, 3) 

390 >>> c 

391 array([[[1, 3, 5]]]) 

392 

393 An example where `b` is a scalar: 

394 

395 >>> np.inner(np.eye(2), 7) 

396 array([[7., 0.], 

397 [0., 7.]]) 

398 

399 """ 

400 return (a, b) 

401 

402 

403@array_function_from_c_func_and_dispatcher(_multiarray_umath.where) 

404def where(condition, x=None, y=None, /): 

405 """ 

406 where(condition, [x, y], /) 

407 

408 Return elements chosen from `x` or `y` depending on `condition`. 

409 

410 .. note:: 

411 When only `condition` is provided, this function is a shorthand for 

412 ``np.asarray(condition).nonzero()``. Using `nonzero` directly should be 

413 preferred, as it behaves correctly for subclasses. The rest of this 

414 documentation covers only the case where all three arguments are 

415 provided. 

416 

417 Parameters 

418 ---------- 

419 condition : array_like, bool 

420 Where True, yield `x`, otherwise yield `y`. 

421 x, y : array_like 

422 Values from which to choose. `x`, `y` and `condition` need to be 

423 broadcastable to some shape. 

424 

425 Returns 

426 ------- 

427 out : ndarray 

428 An array with elements from `x` where `condition` is True, and elements 

429 from `y` elsewhere. 

430 

431 See Also 

432 -------- 

433 choose 

434 nonzero : The function that is called when x and y are omitted 

435 

436 Notes 

437 ----- 

438 If all the arrays are 1-D, `where` is equivalent to:: 

439 

440 [xv if c else yv 

441 for c, xv, yv in zip(condition, x, y)] 

442 

443 Examples 

444 -------- 

445 >>> import numpy as np 

446 >>> a = np.arange(10) 

447 >>> a 

448 array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 

449 >>> np.where(a < 5, a, 10*a) 

450 array([ 0, 1, 2, 3, 4, 50, 60, 70, 80, 90]) 

451 

452 This can be used on multidimensional arrays too: 

453 

454 >>> np.where([[True, False], [True, True]], 

455 ... [[1, 2], [3, 4]], 

456 ... [[9, 8], [7, 6]]) 

457 array([[1, 8], 

458 [3, 4]]) 

459 

460 The shapes of x, y, and the condition are broadcast together: 

461 

462 >>> x, y = np.ogrid[:3, :4] 

463 >>> np.where(x < y, x, 10 + y) # both x and 10+y are broadcast 

464 array([[10, 0, 0, 0], 

465 [10, 11, 1, 1], 

466 [10, 11, 12, 2]]) 

467 

468 >>> a = np.array([[0, 1, 2], 

469 ... [0, 2, 4], 

470 ... [0, 3, 6]]) 

471 >>> np.where(a < 4, a, -1) # -1 is broadcast 

472 array([[ 0, 1, 2], 

473 [ 0, 2, -1], 

474 [ 0, 3, -1]]) 

475 """ 

476 return (condition, x, y) 

477 

478 

479@array_function_from_c_func_and_dispatcher(_multiarray_umath.lexsort) 

480def lexsort(keys, axis=-1): 

481 """ 

482 lexsort(keys, axis=-1) 

483 

484 Perform an indirect stable sort using a sequence of keys. 

485 

486 Given multiple sorting keys, lexsort returns an array of integer indices 

487 that describes the sort order by multiple keys. The last key in the 

488 sequence is used for the primary sort order, ties are broken by the 

489 second-to-last key, and so on. 

490 

491 Parameters 

492 ---------- 

493 keys : (k, m, n, ...) array-like 

494 The `k` keys to be sorted. The *last* key (e.g, the last 

495 row if `keys` is a 2D array) is the primary sort key. 

496 Each element of `keys` along the zeroth axis must be 

497 an array-like object of the same shape. 

498 axis : int, optional 

499 Axis to be indirectly sorted. By default, sort over the last axis 

500 of each sequence. Separate slices along `axis` sorted over 

501 independently; see last example. 

502 

503 Returns 

504 ------- 

505 indices : (m, n, ...) ndarray of ints 

506 Array of indices that sort the keys along the specified axis. 

507 

508 See Also 

509 -------- 

510 argsort : Indirect sort. 

511 ndarray.sort : In-place sort. 

512 sort : Return a sorted copy of an array. 

513 

514 Examples 

515 -------- 

516 Sort names: first by surname, then by name. 

517 

518 >>> import numpy as np 

519 >>> surnames = ('Hertz', 'Galilei', 'Hertz') 

520 >>> first_names = ('Heinrich', 'Galileo', 'Gustav') 

521 >>> ind = np.lexsort((first_names, surnames)) 

522 >>> ind 

523 array([1, 2, 0]) 

524 

525 >>> [surnames[i] + ", " + first_names[i] for i in ind] 

526 ['Galilei, Galileo', 'Hertz, Gustav', 'Hertz, Heinrich'] 

527 

528 Sort according to two numerical keys, first by elements 

529 of ``a``, then breaking ties according to elements of ``b``: 

530 

531 >>> a = [1, 5, 1, 4, 3, 4, 4] # First sequence 

532 >>> b = [9, 4, 0, 4, 0, 2, 1] # Second sequence 

533 >>> ind = np.lexsort((b, a)) # Sort by `a`, then by `b` 

534 >>> ind 

535 array([2, 0, 4, 6, 5, 3, 1]) 

536 >>> [(a[i], b[i]) for i in ind] 

537 [(1, 0), (1, 9), (3, 0), (4, 1), (4, 2), (4, 4), (5, 4)] 

538 

539 Compare against `argsort`, which would sort each key independently. 

540 

541 >>> np.argsort((b, a), kind='stable') 

542 array([[2, 4, 6, 5, 1, 3, 0], 

543 [0, 2, 4, 3, 5, 6, 1]]) 

544 

545 To sort lexicographically with `argsort`, we would need to provide a 

546 structured array. 

547 

548 >>> x = np.array([(ai, bi) for ai, bi in zip(a, b)], 

549 ... dtype = np.dtype([('x', int), ('y', int)])) 

550 >>> np.argsort(x) # or np.argsort(x, order=('x', 'y')) 

551 array([2, 0, 4, 6, 5, 3, 1]) 

552 

553 The zeroth axis of `keys` always corresponds with the sequence of keys, 

554 so 2D arrays are treated just like other sequences of keys. 

555 

556 >>> arr = np.asarray([b, a]) 

557 >>> ind2 = np.lexsort(arr) 

558 >>> np.testing.assert_equal(ind2, ind) 

559 

560 Accordingly, the `axis` parameter refers to an axis of *each* key, not of 

561 the `keys` argument itself. For instance, the array ``arr`` is treated as 

562 a sequence of two 1-D keys, so specifying ``axis=0`` is equivalent to 

563 using the default axis, ``axis=-1``. 

564 

565 >>> np.testing.assert_equal(np.lexsort(arr, axis=0), 

566 ... np.lexsort(arr, axis=-1)) 

567 

568 For higher-dimensional arrays, the axis parameter begins to matter. The 

569 resulting array has the same shape as each key, and the values are what 

570 we would expect if `lexsort` were performed on corresponding slices 

571 of the keys independently. For instance, 

572 

573 >>> x = [[1, 2, 3, 4], 

574 ... [4, 3, 2, 1], 

575 ... [2, 1, 4, 3]] 

576 >>> y = [[2, 2, 1, 1], 

577 ... [1, 2, 1, 2], 

578 ... [1, 1, 2, 1]] 

579 >>> np.lexsort((x, y), axis=1) 

580 array([[2, 3, 0, 1], 

581 [2, 0, 3, 1], 

582 [1, 0, 3, 2]]) 

583 

584 Each row of the result is what we would expect if we were to perform 

585 `lexsort` on the corresponding row of the keys: 

586 

587 >>> for i in range(3): 

588 ... print(np.lexsort((x[i], y[i]))) 

589 [2 3 0 1] 

590 [2 0 3 1] 

591 [1 0 3 2] 

592 

593 """ 

594 if isinstance(keys, tuple): 

595 return keys 

596 else: 

597 return (keys,) 

598 

599 

600@array_function_from_c_func_and_dispatcher(_multiarray_umath.can_cast) 

601def can_cast(from_, to, casting="safe"): 

602 """ 

603 can_cast(from_, to, casting='safe') 

604 

605 Returns True if cast between data types can occur according to the 

606 casting rule. 

607 

608 Parameters 

609 ---------- 

610 from_ : dtype, dtype specifier, NumPy scalar, or array 

611 Data type, NumPy scalar, or array to cast from. 

612 to : dtype or dtype specifier 

613 Data type to cast to. 

614 casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional 

615 Controls what kind of data casting may occur. 

616 

617 * 'no' means the data types should not be cast at all. 

618 * 'equiv' means only byte-order changes are allowed. 

619 * 'safe' means only casts which can preserve values are allowed. 

620 * 'same_kind' means only safe casts or casts within a kind, 

621 like float64 to float32, are allowed. 

622 * 'unsafe' means any data conversions may be done. 

623 

624 Returns 

625 ------- 

626 out : bool 

627 True if cast can occur according to the casting rule. 

628 

629 Notes 

630 ----- 

631 .. versionchanged:: 2.0 

632 This function does not support Python scalars anymore and does not 

633 apply any value-based logic for 0-D arrays and NumPy scalars. 

634 

635 See also 

636 -------- 

637 dtype, result_type 

638 

639 Examples 

640 -------- 

641 Basic examples 

642 

643 >>> import numpy as np 

644 >>> np.can_cast(np.int32, np.int64) 

645 True 

646 >>> np.can_cast(np.float64, complex) 

647 True 

648 >>> np.can_cast(complex, float) 

649 False 

650 

651 >>> np.can_cast('i8', 'f8') 

652 True 

653 >>> np.can_cast('i8', 'f4') 

654 False 

655 >>> np.can_cast('i4', 'S4') 

656 False 

657 

658 """ 

659 return (from_,) 

660 

661 

662@array_function_from_c_func_and_dispatcher(_multiarray_umath.min_scalar_type) 

663def min_scalar_type(a, /): 

664 """ 

665 min_scalar_type(a, /) 

666 

667 For scalar ``a``, returns the data type with the smallest size 

668 and smallest scalar kind which can hold its value. For non-scalar 

669 array ``a``, returns the vector's dtype unmodified. 

670 

671 Floating point values are not demoted to integers, 

672 and complex values are not demoted to floats. 

673 

674 Parameters 

675 ---------- 

676 a : scalar or array_like 

677 The value whose minimal data type is to be found. 

678 

679 Returns 

680 ------- 

681 out : dtype 

682 The minimal data type. 

683 

684 See Also 

685 -------- 

686 result_type, promote_types, dtype, can_cast 

687 

688 Examples 

689 -------- 

690 >>> import numpy as np 

691 >>> np.min_scalar_type(10) 

692 dtype('uint8') 

693 

694 >>> np.min_scalar_type(-260) 

695 dtype('int16') 

696 

697 >>> np.min_scalar_type(3.1) 

698 dtype('float16') 

699 

700 >>> np.min_scalar_type(1e50) 

701 dtype('float64') 

702 

703 >>> np.min_scalar_type(np.arange(4,dtype='f8')) 

704 dtype('float64') 

705 

706 """ 

707 return (a,) 

708 

709 

710@array_function_from_c_func_and_dispatcher(_multiarray_umath.result_type) 

711def result_type(*arrays_and_dtypes): 

712 """ 

713 result_type(*arrays_and_dtypes) 

714 

715 Returns the type that results from applying the NumPy 

716 :ref:`type promotion <arrays.promotion>` rules to the arguments. 

717 

718 Parameters 

719 ---------- 

720 arrays_and_dtypes : list of arrays and dtypes 

721 The operands of some operation whose result type is needed. 

722 

723 Returns 

724 ------- 

725 out : dtype 

726 The result type. 

727 

728 See also 

729 -------- 

730 dtype, promote_types, min_scalar_type, can_cast 

731 

732 Examples 

733 -------- 

734 >>> import numpy as np 

735 >>> np.result_type(3, np.arange(7, dtype='i1')) 

736 dtype('int8') 

737 

738 >>> np.result_type('i4', 'c8') 

739 dtype('complex128') 

740 

741 >>> np.result_type(3.0, -2) 

742 dtype('float64') 

743 

744 """ 

745 return arrays_and_dtypes 

746 

747 

748@array_function_from_c_func_and_dispatcher(_multiarray_umath.dot) 

749def dot(a, b, out=None): 

750 """ 

751 dot(a, b, out=None) 

752 

753 Dot product of two arrays. Specifically, 

754 

755 - If both `a` and `b` are 1-D arrays, it is inner product of vectors 

756 (without complex conjugation). 

757 

758 - If both `a` and `b` are 2-D arrays, it is matrix multiplication, 

759 but using :func:`matmul` or ``a @ b`` is preferred. 

760 

761 - If either `a` or `b` is 0-D (scalar), it is equivalent to 

762 :func:`multiply` and using ``numpy.multiply(a, b)`` or ``a * b`` is 

763 preferred. 

764 

765 - If `a` is an N-D array and `b` is a 1-D array, it is a sum product over 

766 the last axis of `a` and `b`. 

767 

768 - If `a` is an N-D array and `b` is an M-D array (where ``M>=2``), it is a 

769 sum product over the last axis of `a` and the second-to-last axis of 

770 `b`:: 

771 

772 dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m]) 

773 

774 It uses an optimized BLAS library when possible (see `numpy.linalg`). 

775 

776 Parameters 

777 ---------- 

778 a : array_like 

779 First argument. 

780 b : array_like 

781 Second argument. 

782 out : ndarray, optional 

783 Output argument. This must have the exact kind that would be returned 

784 if it was not used. In particular, it must have the right type, must be 

785 C-contiguous, and its dtype must be the dtype that would be returned 

786 for `dot(a,b)`. This is a performance feature. Therefore, if these 

787 conditions are not met, an exception is raised, instead of attempting 

788 to be flexible. 

789 

790 Returns 

791 ------- 

792 output : ndarray 

793 Returns the dot product of `a` and `b`. If `a` and `b` are both 

794 scalars or both 1-D arrays then a scalar is returned; otherwise 

795 an array is returned. 

796 If `out` is given, then it is returned. 

797 

798 Raises 

799 ------ 

800 ValueError 

801 If the last dimension of `a` is not the same size as 

802 the second-to-last dimension of `b`. 

803 

804 See Also 

805 -------- 

806 vdot : Complex-conjugating dot product. 

807 vecdot : Vector dot product of two arrays. 

808 tensordot : Sum products over arbitrary axes. 

809 einsum : Einstein summation convention. 

810 matmul : '@' operator as method with out parameter. 

811 linalg.multi_dot : Chained dot product. 

812 

813 Examples 

814 -------- 

815 >>> import numpy as np 

816 >>> np.dot(3, 4) 

817 12 

818 

819 Neither argument is complex-conjugated: 

820 

821 >>> np.dot([2j, 3j], [2j, 3j]) 

822 (-13+0j) 

823 

824 For 2-D arrays it is the matrix product: 

825 

826 >>> a = [[1, 0], [0, 1]] 

827 >>> b = [[4, 1], [2, 2]] 

828 >>> np.dot(a, b) 

829 array([[4, 1], 

830 [2, 2]]) 

831 

832 >>> a = np.arange(3*4*5*6).reshape((3,4,5,6)) 

833 >>> b = np.arange(3*4*5*6)[::-1].reshape((5,4,6,3)) 

834 >>> np.dot(a, b)[2,3,2,1,2,2] 

835 499128 

836 >>> sum(a[2,3,2,:] * b[1,2,:,2]) 

837 499128 

838 

839 """ 

840 return (a, b, out) 

841 

842 

843@array_function_from_c_func_and_dispatcher(_multiarray_umath.vdot) 

844def vdot(a, b, /): 

845 r""" 

846 vdot(a, b, /) 

847 

848 Return the dot product of two vectors. 

849 

850 The `vdot` function handles complex numbers differently than `dot`: 

851 if the first argument is complex, it is replaced by its complex conjugate 

852 in the dot product calculation. `vdot` also handles multidimensional 

853 arrays differently than `dot`: it does not perform a matrix product, but 

854 flattens the arguments to 1-D arrays before taking a vector dot product. 

855 

856 Consequently, when the arguments are 2-D arrays of the same shape, this 

857 function effectively returns their 

858 `Frobenius inner product <https://en.wikipedia.org/wiki/Frobenius_inner_product>`_ 

859 (also known as the *trace inner product* or the *standard inner product* 

860 on a vector space of matrices). 

861 

862 Parameters 

863 ---------- 

864 a : array_like 

865 If `a` is complex the complex conjugate is taken before calculation 

866 of the dot product. 

867 b : array_like 

868 Second argument to the dot product. 

869 

870 Returns 

871 ------- 

872 output : ndarray 

873 Dot product of `a` and `b`. Can be an int, float, or 

874 complex depending on the types of `a` and `b`. 

875 

876 See Also 

877 -------- 

878 dot : Return the dot product without using the complex conjugate of the 

879 first argument. 

880 

881 Examples 

882 -------- 

883 >>> import numpy as np 

884 >>> a = np.array([1+2j,3+4j]) 

885 >>> b = np.array([5+6j,7+8j]) 

886 >>> np.vdot(a, b) 

887 (70-8j) 

888 >>> np.vdot(b, a) 

889 (70+8j) 

890 

891 Note that higher-dimensional arrays are flattened! 

892 

893 >>> a = np.array([[1, 4], [5, 6]]) 

894 >>> b = np.array([[4, 1], [2, 2]]) 

895 >>> np.vdot(a, b) 

896 30 

897 >>> np.vdot(b, a) 

898 30 

899 >>> 1*4 + 4*1 + 5*2 + 6*2 

900 30 

901 

902 """ # noqa: E501 

903 return (a, b) 

904 

905 

906@array_function_from_c_func_and_dispatcher(_multiarray_umath.bincount) 

907def bincount(x, /, weights=None, minlength=0): 

908 """ 

909 bincount(x, /, weights=None, minlength=0) 

910 

911 Count number of occurrences of each value in array of non-negative ints. 

912 

913 The number of bins (of size 1) is one larger than the largest value in 

914 `x`. If `minlength` is specified, there will be at least this number 

915 of bins in the output array (though it will be longer if necessary, 

916 depending on the contents of `x`). 

917 Each bin gives the number of occurrences of its index value in `x`. 

918 If `weights` is specified the input array is weighted by it, i.e. if a 

919 value ``n`` is found at position ``i``, ``out[n] += weight[i]`` instead 

920 of ``out[n] += 1``. 

921 

922 Parameters 

923 ---------- 

924 x : array_like, 1 dimension, nonnegative ints 

925 Input array. 

926 weights : array_like, optional 

927 Weights, array of the same shape as `x`. 

928 minlength : int, optional 

929 A minimum number of bins for the output array. 

930 

931 Returns 

932 ------- 

933 out : ndarray of ints 

934 The result of binning the input array. 

935 The length of `out` is equal to ``np.amax(x)+1``. 

936 

937 Raises 

938 ------ 

939 ValueError 

940 If the input is not 1-dimensional, or contains elements with negative 

941 values, or if `minlength` is negative. 

942 TypeError 

943 If the type of the input is float or complex. 

944 

945 See Also 

946 -------- 

947 histogram, digitize, unique 

948 

949 Examples 

950 -------- 

951 >>> import numpy as np 

952 >>> np.bincount(np.arange(5)) 

953 array([1, 1, 1, 1, 1]) 

954 >>> np.bincount(np.array([0, 1, 1, 3, 2, 1, 7])) 

955 array([1, 3, 1, 1, 0, 0, 0, 1]) 

956 

957 >>> x = np.array([0, 1, 1, 3, 2, 1, 7, 23]) 

958 >>> np.bincount(x).size == np.amax(x)+1 

959 True 

960 

961 The input array needs to be of integer dtype, otherwise a 

962 TypeError is raised: 

963 

964 >>> np.bincount(np.arange(5, dtype=float)) 

965 Traceback (most recent call last): 

966 ... 

967 TypeError: Cannot cast array data from dtype('float64') to dtype('int64') 

968 according to the rule 'safe' 

969 

970 A possible use of ``bincount`` is to perform sums over 

971 variable-size chunks of an array, using the ``weights`` keyword. 

972 

973 >>> w = np.array([0.3, 0.5, 0.2, 0.7, 1., -0.6]) # weights 

974 >>> x = np.array([0, 1, 1, 2, 2, 2]) 

975 >>> np.bincount(x, weights=w) 

976 array([ 0.3, 0.7, 1.1]) 

977 

978 """ 

979 return (x, weights) 

980 

981 

982@array_function_from_c_func_and_dispatcher(_multiarray_umath.ravel_multi_index) 

983def ravel_multi_index(multi_index, dims, mode="raise", order="C"): 

984 """ 

985 ravel_multi_index(multi_index, dims, mode='raise', order='C') 

986 

987 Converts a tuple of index arrays into an array of flat 

988 indices, applying boundary modes to the multi-index. 

989 

990 Parameters 

991 ---------- 

992 multi_index : tuple of array_like 

993 A tuple of integer arrays, one array for each dimension. 

994 dims : tuple of ints 

995 The shape of array into which the indices from ``multi_index`` apply. 

996 mode : {'raise', 'wrap', 'clip'}, optional 

997 Specifies how out-of-bounds indices are handled. Can specify 

998 either one mode or a tuple of modes, one mode per index. 

999 

1000 * 'raise' -- raise an error (default) 

1001 * 'wrap' -- wrap around 

1002 * 'clip' -- clip to the range 

1003 

1004 In 'clip' mode, a negative index which would normally 

1005 wrap will clip to 0 instead. 

1006 order : {'C', 'F'}, optional 

1007 Determines whether the multi-index should be viewed as 

1008 indexing in row-major (C-style) or column-major 

1009 (Fortran-style) order. 

1010 

1011 Returns 

1012 ------- 

1013 raveled_indices : ndarray 

1014 An array of indices into the flattened version of an array 

1015 of dimensions ``dims``. 

1016 

1017 See Also 

1018 -------- 

1019 unravel_index 

1020 

1021 Examples 

1022 -------- 

1023 >>> import numpy as np 

1024 >>> arr = np.array([[3,6,6],[4,5,1]]) 

1025 >>> np.ravel_multi_index(arr, (7,6)) 

1026 array([22, 41, 37]) 

1027 >>> np.ravel_multi_index(arr, (7,6), order='F') 

1028 array([31, 41, 13]) 

1029 >>> np.ravel_multi_index(arr, (4,6), mode='clip') 

1030 array([22, 23, 19]) 

1031 >>> np.ravel_multi_index(arr, (4,4), mode=('clip','wrap')) 

1032 array([12, 13, 13]) 

1033 

1034 >>> np.ravel_multi_index((3,1,4,1), (6,7,8,9)) 

1035 1621 

1036 """ 

1037 return multi_index 

1038 

1039 

1040@array_function_from_c_func_and_dispatcher(_multiarray_umath.unravel_index) 

1041def unravel_index(indices, shape, order="C"): 

1042 """ 

1043 unravel_index(indices, shape, order='C') 

1044 

1045 Converts a flat index or array of flat indices into a tuple 

1046 of coordinate arrays. 

1047 

1048 Parameters 

1049 ---------- 

1050 indices : array_like 

1051 An integer array whose elements are indices into the flattened 

1052 version of an array of dimensions ``shape``. Before version 1.6.0, 

1053 this function accepted just one index value. 

1054 shape : tuple of ints 

1055 The shape of the array to use for unraveling ``indices``. 

1056 order : {'C', 'F'}, optional 

1057 Determines whether the indices should be viewed as indexing in 

1058 row-major (C-style) or column-major (Fortran-style) order. 

1059 

1060 Returns 

1061 ------- 

1062 unraveled_coords : tuple of ndarray 

1063 Each array in the tuple has the same shape as the ``indices`` 

1064 array. 

1065 

1066 See Also 

1067 -------- 

1068 ravel_multi_index 

1069 

1070 Examples 

1071 -------- 

1072 >>> import numpy as np 

1073 >>> np.unravel_index([22, 41, 37], (7,6)) 

1074 (array([3, 6, 6]), array([4, 5, 1])) 

1075 >>> np.unravel_index([31, 41, 13], (7,6), order='F') 

1076 (array([3, 6, 6]), array([4, 5, 1])) 

1077 

1078 >>> np.unravel_index(1621, (6,7,8,9)) 

1079 (3, 1, 4, 1) 

1080 

1081 """ 

1082 return (indices,) 

1083 

1084 

1085@array_function_from_c_func_and_dispatcher(_multiarray_umath.copyto) 

1086def copyto(dst, src, casting="same_kind", where=True): 

1087 """ 

1088 copyto(dst, src, casting='same_kind', where=True) 

1089 

1090 Copies values from one array to another, broadcasting as necessary. 

1091 

1092 Raises a TypeError if the `casting` rule is violated, and if 

1093 `where` is provided, it selects which elements to copy. 

1094 

1095 Parameters 

1096 ---------- 

1097 dst : ndarray 

1098 The array into which values are copied. 

1099 src : array_like 

1100 The array from which values are copied. 

1101 casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional 

1102 Controls what kind of data casting may occur when copying. 

1103 

1104 * 'no' means the data types should not be cast at all. 

1105 * 'equiv' means only byte-order changes are allowed. 

1106 * 'safe' means only casts which can preserve values are allowed. 

1107 * 'same_kind' means only safe casts or casts within a kind, 

1108 like float64 to float32, are allowed. 

1109 * 'unsafe' means any data conversions may be done. 

1110 where : array_like of bool, optional 

1111 A boolean array which is broadcasted to match the dimensions 

1112 of `dst`, and selects elements to copy from `src` to `dst` 

1113 wherever it contains the value True. 

1114 

1115 Examples 

1116 -------- 

1117 >>> import numpy as np 

1118 >>> A = np.array([4, 5, 6]) 

1119 >>> B = [1, 2, 3] 

1120 >>> np.copyto(A, B) 

1121 >>> A 

1122 array([1, 2, 3]) 

1123 

1124 >>> A = np.array([[1, 2, 3], [4, 5, 6]]) 

1125 >>> B = [[4, 5, 6], [7, 8, 9]] 

1126 >>> np.copyto(A, B) 

1127 >>> A 

1128 array([[4, 5, 6], 

1129 [7, 8, 9]]) 

1130 

1131 """ 

1132 return (dst, src, where) 

1133 

1134 

1135@array_function_from_c_func_and_dispatcher(_multiarray_umath.putmask) 

1136def putmask(a, /, mask, values): 

1137 """ 

1138 putmask(a, /, mask, values) 

1139 

1140 Changes elements of an array based on conditional and input values. 

1141 

1142 Sets ``a.flat[n] = values[n]`` for each n where ``mask.flat[n]==True``. 

1143 

1144 If `values` is not the same size as `a` and `mask` then it will repeat. 

1145 This gives behavior different from ``a[mask] = values``. 

1146 

1147 Parameters 

1148 ---------- 

1149 a : ndarray 

1150 Target array. 

1151 mask : array_like 

1152 Boolean mask array. It has to be the same shape as `a`. 

1153 values : array_like 

1154 Values to put into `a` where `mask` is True. If `values` is smaller 

1155 than `a` it will be repeated. 

1156 

1157 See Also 

1158 -------- 

1159 place, put, take, copyto 

1160 

1161 Examples 

1162 -------- 

1163 >>> import numpy as np 

1164 >>> x = np.arange(6).reshape(2, 3) 

1165 >>> np.putmask(x, x>2, x**2) 

1166 >>> x 

1167 array([[ 0, 1, 2], 

1168 [ 9, 16, 25]]) 

1169 

1170 If `values` is smaller than `a` it is repeated: 

1171 

1172 >>> x = np.arange(5) 

1173 >>> np.putmask(x, x>1, [-33, -44]) 

1174 >>> x 

1175 array([ 0, 1, -33, -44, -33]) 

1176 

1177 """ 

1178 return (a, mask, values) 

1179 

1180 

1181@array_function_from_c_func_and_dispatcher(_multiarray_umath.packbits) 

1182def packbits(a, /, axis=None, bitorder="big"): 

1183 """ 

1184 packbits(a, /, axis=None, bitorder='big') 

1185 

1186 Packs the elements of a binary-valued array into bits in a uint8 array. 

1187 

1188 The result is padded to full bytes by inserting zero bits at the end. 

1189 

1190 Parameters 

1191 ---------- 

1192 a : array_like 

1193 An array of integers or booleans whose elements should be packed to 

1194 bits. 

1195 axis : int, optional 

1196 The dimension over which bit-packing is done. 

1197 ``None`` implies packing the flattened array. 

1198 bitorder : {'big', 'little'}, optional 

1199 The order of the input bits. 'big' will mimic bin(val), 

1200 ``[0, 0, 0, 0, 0, 0, 1, 1] => 3 = 0b00000011``, 'little' will 

1201 reverse the order so ``[1, 1, 0, 0, 0, 0, 0, 0] => 3``. 

1202 Defaults to 'big'. 

1203 

1204 Returns 

1205 ------- 

1206 packed : ndarray 

1207 Array of type uint8 whose elements represent bits corresponding to the 

1208 logical (0 or nonzero) value of the input elements. The shape of 

1209 `packed` has the same number of dimensions as the input (unless `axis` 

1210 is None, in which case the output is 1-D). 

1211 

1212 See Also 

1213 -------- 

1214 unpackbits: Unpacks elements of a uint8 array into a binary-valued output 

1215 array. 

1216 

1217 Examples 

1218 -------- 

1219 >>> import numpy as np 

1220 >>> a = np.array([[[1,0,1], 

1221 ... [0,1,0]], 

1222 ... [[1,1,0], 

1223 ... [0,0,1]]]) 

1224 >>> b = np.packbits(a, axis=-1) 

1225 >>> b 

1226 array([[[160], 

1227 [ 64]], 

1228 [[192], 

1229 [ 32]]], dtype=uint8) 

1230 

1231 Note that in binary 160 = 1010 0000, 64 = 0100 0000, 192 = 1100 0000, 

1232 and 32 = 0010 0000. 

1233 

1234 """ 

1235 return (a,) 

1236 

1237 

1238@array_function_from_c_func_and_dispatcher(_multiarray_umath.unpackbits) 

1239def unpackbits(a, /, axis=None, count=None, bitorder="big"): 

1240 """ 

1241 unpackbits(a, /, axis=None, count=None, bitorder='big') 

1242 

1243 Unpacks elements of a uint8 array into a binary-valued output array. 

1244 

1245 Each element of `a` represents a bit-field that should be unpacked 

1246 into a binary-valued output array. The shape of the output array is 

1247 either 1-D (if `axis` is ``None``) or the same shape as the input 

1248 array with unpacking done along the axis specified. 

1249 

1250 Parameters 

1251 ---------- 

1252 a : ndarray, uint8 type 

1253 Input array. 

1254 axis : int, optional 

1255 The dimension over which bit-unpacking is done. 

1256 ``None`` implies unpacking the flattened array. 

1257 count : int or None, optional 

1258 The number of elements to unpack along `axis`, provided as a way 

1259 of undoing the effect of packing a size that is not a multiple 

1260 of eight. A non-negative number means to only unpack `count` 

1261 bits. A negative number means to trim off that many bits from 

1262 the end. ``None`` means to unpack the entire array (the 

1263 default). Counts larger than the available number of bits will 

1264 add zero padding to the output. Negative counts must not 

1265 exceed the available number of bits. 

1266 bitorder : {'big', 'little'}, optional 

1267 The order of the returned bits. 'big' will mimic bin(val), 

1268 ``3 = 0b00000011 => [0, 0, 0, 0, 0, 0, 1, 1]``, 'little' will reverse 

1269 the order to ``[1, 1, 0, 0, 0, 0, 0, 0]``. 

1270 Defaults to 'big'. 

1271 

1272 Returns 

1273 ------- 

1274 unpacked : ndarray, uint8 type 

1275 The elements are binary-valued (0 or 1). 

1276 

1277 See Also 

1278 -------- 

1279 packbits : Packs the elements of a binary-valued array into bits in 

1280 a uint8 array. 

1281 

1282 Examples 

1283 -------- 

1284 >>> import numpy as np 

1285 >>> a = np.array([[2], [7], [23]], dtype=np.uint8) 

1286 >>> a 

1287 array([[ 2], 

1288 [ 7], 

1289 [23]], dtype=uint8) 

1290 >>> b = np.unpackbits(a, axis=1) 

1291 >>> b 

1292 array([[0, 0, 0, 0, 0, 0, 1, 0], 

1293 [0, 0, 0, 0, 0, 1, 1, 1], 

1294 [0, 0, 0, 1, 0, 1, 1, 1]], dtype=uint8) 

1295 >>> c = np.unpackbits(a, axis=1, count=-3) 

1296 >>> c 

1297 array([[0, 0, 0, 0, 0], 

1298 [0, 0, 0, 0, 0], 

1299 [0, 0, 0, 1, 0]], dtype=uint8) 

1300 

1301 >>> p = np.packbits(b, axis=0) 

1302 >>> np.unpackbits(p, axis=0) 

1303 array([[0, 0, 0, 0, 0, 0, 1, 0], 

1304 [0, 0, 0, 0, 0, 1, 1, 1], 

1305 [0, 0, 0, 1, 0, 1, 1, 1], 

1306 [0, 0, 0, 0, 0, 0, 0, 0], 

1307 [0, 0, 0, 0, 0, 0, 0, 0], 

1308 [0, 0, 0, 0, 0, 0, 0, 0], 

1309 [0, 0, 0, 0, 0, 0, 0, 0], 

1310 [0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8) 

1311 >>> np.array_equal(b, np.unpackbits(p, axis=0, count=b.shape[0])) 

1312 True 

1313 

1314 """ 

1315 return (a,) 

1316 

1317 

1318@array_function_from_c_func_and_dispatcher(_multiarray_umath.shares_memory) 

1319def shares_memory(a, b, /, max_work=-1): 

1320 """ 

1321 shares_memory(a, b, /, max_work=-1) 

1322 

1323 Determine if two arrays share memory. 

1324 

1325 .. warning:: 

1326 

1327 This function can be exponentially slow for some inputs, unless 

1328 `max_work` is set to zero or a positive integer. 

1329 If in doubt, use `numpy.may_share_memory` instead. 

1330 

1331 Parameters 

1332 ---------- 

1333 a, b : ndarray 

1334 Input arrays 

1335 max_work : int, optional 

1336 Effort to spend on solving the overlap problem (maximum number 

1337 of candidate solutions to consider). The following special 

1338 values are recognized: 

1339 

1340 max_work=-1 (default) 

1341 The problem is solved exactly. In this case, the function returns 

1342 True only if there is an element shared between the arrays. Finding 

1343 the exact solution may take extremely long in some cases. 

1344 max_work=0 

1345 Only the memory bounds of a and b are checked. 

1346 This is equivalent to using ``may_share_memory()``. 

1347 

1348 Raises 

1349 ------ 

1350 numpy.exceptions.TooHardError 

1351 Exceeded max_work. 

1352 

1353 Returns 

1354 ------- 

1355 out : bool 

1356 

1357 See Also 

1358 -------- 

1359 may_share_memory 

1360 

1361 Examples 

1362 -------- 

1363 >>> import numpy as np 

1364 >>> x = np.array([1, 2, 3, 4]) 

1365 >>> np.shares_memory(x, np.array([5, 6, 7])) 

1366 False 

1367 >>> np.shares_memory(x[::2], x) 

1368 True 

1369 >>> np.shares_memory(x[::2], x[1::2]) 

1370 False 

1371 

1372 Checking whether two arrays share memory is NP-complete, and 

1373 runtime may increase exponentially in the number of 

1374 dimensions. Hence, `max_work` should generally be set to a finite 

1375 number, as it is possible to construct examples that take 

1376 extremely long to run: 

1377 

1378 >>> from numpy.lib.stride_tricks import as_strided 

1379 >>> x = np.zeros([192163377], dtype=np.int8) 

1380 >>> x1 = as_strided( 

1381 ... x, strides=(36674, 61119, 85569), shape=(1049, 1049, 1049)) 

1382 >>> x2 = as_strided( 

1383 ... x[64023025:], strides=(12223, 12224, 1), shape=(1049, 1049, 1)) 

1384 >>> np.shares_memory(x1, x2, max_work=1000) 

1385 Traceback (most recent call last): 

1386 ... 

1387 numpy.exceptions.TooHardError: Exceeded max_work 

1388 

1389 Running ``np.shares_memory(x1, x2)`` without `max_work` set takes 

1390 around 1 minute for this case. It is possible to find problems 

1391 that take still significantly longer. 

1392 

1393 """ 

1394 return (a, b) 

1395 

1396 

1397@array_function_from_c_func_and_dispatcher(_multiarray_umath.may_share_memory) 

1398def may_share_memory(a, b, /, max_work=0): 

1399 """ 

1400 may_share_memory(a, b, /, max_work=0) 

1401 

1402 Determine if two arrays might share memory 

1403 

1404 A return of True does not necessarily mean that the two arrays 

1405 share any element. It just means that they *might*. 

1406 

1407 Only the memory bounds of a and b are checked by default. 

1408 

1409 Parameters 

1410 ---------- 

1411 a, b : ndarray 

1412 Input arrays 

1413 max_work : int, optional 

1414 Effort to spend on solving the overlap problem. See 

1415 `shares_memory` for details. Default for ``may_share_memory`` 

1416 is to do a bounds check. 

1417 

1418 Returns 

1419 ------- 

1420 out : bool 

1421 

1422 See Also 

1423 -------- 

1424 shares_memory 

1425 

1426 Examples 

1427 -------- 

1428 >>> import numpy as np 

1429 >>> np.may_share_memory(np.array([1,2]), np.array([5,8,9])) 

1430 False 

1431 >>> x = np.zeros([3, 4]) 

1432 >>> np.may_share_memory(x[:,0], x[:,1]) 

1433 True 

1434 

1435 """ 

1436 return (a, b) 

1437 

1438 

1439@array_function_from_c_func_and_dispatcher(_multiarray_umath.is_busday) 

1440def is_busday(dates, weekmask="1111100", holidays=None, busdaycal=None, out=None): 

1441 """ 

1442 is_busday( 

1443 dates, 

1444 weekmask='1111100', 

1445 holidays=None, 

1446 busdaycal=None, 

1447 out=None, 

1448 ) 

1449 

1450 Calculates which of the given dates are valid days, and which are not. 

1451 

1452 Parameters 

1453 ---------- 

1454 dates : array_like of datetime64[D] 

1455 The array of dates to process. 

1456 weekmask : str or array_like of bool, optional 

1457 A seven-element array indicating which of Monday through Sunday are 

1458 valid days. May be specified as a length-seven list or array, like 

1459 [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string 

1460 like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for 

1461 weekdays, optionally separated by white space. Valid abbreviations 

1462 are: Mon Tue Wed Thu Fri Sat Sun 

1463 holidays : array_like of datetime64[D], optional 

1464 An array of dates to consider as invalid dates. They may be 

1465 specified in any order, and NaT (not-a-time) dates are ignored. 

1466 This list is saved in a normalized form that is suited for 

1467 fast calculations of valid days. 

1468 busdaycal : busdaycalendar, optional 

1469 A `busdaycalendar` object which specifies the valid days. If this 

1470 parameter is provided, neither weekmask nor holidays may be 

1471 provided. 

1472 out : array of bool, optional 

1473 If provided, this array is filled with the result. 

1474 

1475 Returns 

1476 ------- 

1477 out : array of bool 

1478 An array with the same shape as ``dates``, containing True for 

1479 each valid day, and False for each invalid day. 

1480 

1481 See Also 

1482 -------- 

1483 busdaycalendar : An object that specifies a custom set of valid days. 

1484 busday_offset : Applies an offset counted in valid days. 

1485 busday_count : Counts how many valid days are in a half-open date range. 

1486 

1487 Examples 

1488 -------- 

1489 >>> import numpy as np 

1490 >>> # The weekdays are Friday, Saturday, and Monday 

1491 ... np.is_busday(['2011-07-01', '2011-07-02', '2011-07-18'], 

1492 ... holidays=['2011-07-01', '2011-07-04', '2011-07-17']) 

1493 array([False, False, True]) 

1494 """ 

1495 return (dates, weekmask, holidays, out) 

1496 

1497 

1498@array_function_from_c_func_and_dispatcher(_multiarray_umath.busday_offset) 

1499def busday_offset(dates, offsets, roll="raise", weekmask="1111100", holidays=None, 

1500 busdaycal=None, out=None): 

1501 """ 

1502 busday_offset( 

1503 dates, 

1504 offsets, 

1505 roll='raise', 

1506 weekmask='1111100', 

1507 holidays=None, 

1508 busdaycal=None, 

1509 out=None, 

1510 ) 

1511 

1512 First adjusts the date to fall on a valid day according to 

1513 the ``roll`` rule, then applies offsets to the given dates 

1514 counted in valid days. 

1515 

1516 Parameters 

1517 ---------- 

1518 dates : array_like of datetime64[D] 

1519 The array of dates to process. 

1520 offsets : array_like of int 

1521 The array of offsets, which is broadcast with ``dates``. 

1522 roll : {'raise', 'nat', 'forward', 'following', 'backward', 'preceding', \ 

1523 'modifiedfollowing', 'modifiedpreceding'}, optional 

1524 How to treat dates that do not fall on a valid day. The default 

1525 is 'raise'. 

1526 

1527 * 'raise' means to raise an exception for an invalid day. 

1528 * 'nat' means to return a NaT (not-a-time) for an invalid day. 

1529 * 'forward' and 'following' mean to take the first valid day 

1530 later in time. 

1531 * 'backward' and 'preceding' mean to take the first valid day 

1532 earlier in time. 

1533 * 'modifiedfollowing' means to take the first valid day 

1534 later in time unless it is across a Month boundary, in which 

1535 case to take the first valid day earlier in time. 

1536 * 'modifiedpreceding' means to take the first valid day 

1537 earlier in time unless it is across a Month boundary, in which 

1538 case to take the first valid day later in time. 

1539 weekmask : str or array_like of bool, optional 

1540 A seven-element array indicating which of Monday through Sunday are 

1541 valid days. May be specified as a length-seven list or array, like 

1542 [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string 

1543 like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for 

1544 weekdays, optionally separated by white space. Valid abbreviations 

1545 are: Mon Tue Wed Thu Fri Sat Sun 

1546 holidays : array_like of datetime64[D], optional 

1547 An array of dates to consider as invalid dates. They may be 

1548 specified in any order, and NaT (not-a-time) dates are ignored. 

1549 This list is saved in a normalized form that is suited for 

1550 fast calculations of valid days. 

1551 busdaycal : busdaycalendar, optional 

1552 A `busdaycalendar` object which specifies the valid days. If this 

1553 parameter is provided, neither weekmask nor holidays may be 

1554 provided. 

1555 out : array of datetime64[D], optional 

1556 If provided, this array is filled with the result. 

1557 

1558 Returns 

1559 ------- 

1560 out : array of datetime64[D] 

1561 An array with a shape from broadcasting ``dates`` and ``offsets`` 

1562 together, containing the dates with offsets applied. 

1563 

1564 See Also 

1565 -------- 

1566 busdaycalendar : An object that specifies a custom set of valid days. 

1567 is_busday : Returns a boolean array indicating valid days. 

1568 busday_count : Counts how many valid days are in a half-open date range. 

1569 

1570 Examples 

1571 -------- 

1572 >>> import numpy as np 

1573 >>> # First business day in October 2011 (not accounting for holidays) 

1574 ... np.busday_offset('2011-10', 0, roll='forward') 

1575 np.datetime64('2011-10-03') 

1576 >>> # Last business day in February 2012 (not accounting for holidays) 

1577 ... np.busday_offset('2012-03', -1, roll='forward') 

1578 np.datetime64('2012-02-29') 

1579 >>> # Third Wednesday in January 2011 

1580 ... np.busday_offset('2011-01', 2, roll='forward', weekmask='Wed') 

1581 np.datetime64('2011-01-19') 

1582 >>> # 2012 Mother's Day in Canada and the U.S. 

1583 ... np.busday_offset('2012-05', 1, roll='forward', weekmask='Sun') 

1584 np.datetime64('2012-05-13') 

1585 

1586 >>> # First business day on or after a date 

1587 ... np.busday_offset('2011-03-20', 0, roll='forward') 

1588 np.datetime64('2011-03-21') 

1589 >>> np.busday_offset('2011-03-22', 0, roll='forward') 

1590 np.datetime64('2011-03-22') 

1591 >>> # First business day after a date 

1592 ... np.busday_offset('2011-03-20', 1, roll='backward') 

1593 np.datetime64('2011-03-21') 

1594 >>> np.busday_offset('2011-03-22', 1, roll='backward') 

1595 np.datetime64('2011-03-23') 

1596 """ 

1597 return (dates, offsets, weekmask, holidays, out) 

1598 

1599 

1600@array_function_from_c_func_and_dispatcher(_multiarray_umath.busday_count) 

1601def busday_count(begindates, enddates, weekmask="1111100", holidays=(), 

1602 busdaycal=None, out=None): 

1603 """ 

1604 busday_count( 

1605 begindates, 

1606 enddates, 

1607 weekmask='1111100', 

1608 holidays=[], 

1609 busdaycal=None, 

1610 out=None 

1611 ) 

1612 

1613 Counts the number of valid days between `begindates` and 

1614 `enddates`, not including the day of `enddates`. 

1615 

1616 If ``enddates`` specifies a date value that is earlier than the 

1617 corresponding ``begindates`` date value, the count will be negative. 

1618 

1619 Parameters 

1620 ---------- 

1621 begindates : array_like of datetime64[D] 

1622 The array of the first dates for counting. 

1623 enddates : array_like of datetime64[D] 

1624 The array of the end dates for counting, which are excluded 

1625 from the count themselves. 

1626 weekmask : str or array_like of bool, optional 

1627 A seven-element array indicating which of Monday through Sunday are 

1628 valid days. May be specified as a length-seven list or array, like 

1629 [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string 

1630 like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for 

1631 weekdays, optionally separated by white space. Valid abbreviations 

1632 are: Mon Tue Wed Thu Fri Sat Sun 

1633 holidays : array_like of datetime64[D], optional 

1634 An array of dates to consider as invalid dates. They may be 

1635 specified in any order, and NaT (not-a-time) dates are ignored. 

1636 This list is saved in a normalized form that is suited for 

1637 fast calculations of valid days. 

1638 busdaycal : busdaycalendar, optional 

1639 A `busdaycalendar` object which specifies the valid days. If this 

1640 parameter is provided, neither weekmask nor holidays may be 

1641 provided. 

1642 out : array of int, optional 

1643 If provided, this array is filled with the result. 

1644 

1645 Returns 

1646 ------- 

1647 out : array of int 

1648 An array with a shape from broadcasting ``begindates`` and ``enddates`` 

1649 together, containing the number of valid days between 

1650 the begin and end dates. 

1651 

1652 See Also 

1653 -------- 

1654 busdaycalendar : An object that specifies a custom set of valid days. 

1655 is_busday : Returns a boolean array indicating valid days. 

1656 busday_offset : Applies an offset counted in valid days. 

1657 

1658 Examples 

1659 -------- 

1660 >>> import numpy as np 

1661 >>> # Number of weekdays in January 2011 

1662 ... np.busday_count('2011-01', '2011-02') 

1663 21 

1664 >>> # Number of weekdays in 2011 

1665 >>> np.busday_count('2011', '2012') 

1666 260 

1667 >>> # Number of Saturdays in 2011 

1668 ... np.busday_count('2011', '2012', weekmask='Sat') 

1669 53 

1670 """ 

1671 return (begindates, enddates, weekmask, holidays, out) 

1672 

1673 

1674@array_function_from_c_func_and_dispatcher(_multiarray_umath.datetime_as_string) 

1675def datetime_as_string(arr, unit=None, timezone="naive", casting="same_kind"): 

1676 """ 

1677 datetime_as_string(arr, unit=None, timezone='naive', casting='same_kind') 

1678 

1679 Convert an array of datetimes into an array of strings. 

1680 

1681 Parameters 

1682 ---------- 

1683 arr : array_like of datetime64 

1684 The array of UTC timestamps to format. 

1685 unit : str 

1686 One of None, 'auto', or 

1687 a :ref:`datetime unit <arrays.dtypes.dateunits>`. 

1688 timezone : {'naive', 'UTC', 'local'} or tzinfo 

1689 Timezone information to use when displaying the datetime. If 'UTC', 

1690 end with a Z to indicate UTC time. If 'local', convert to the local 

1691 timezone first, and suffix with a +-#### timezone offset. If a tzinfo 

1692 object, then do as with 'local', but use the specified timezone. 

1693 casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'} 

1694 Casting to allow when changing between datetime units. 

1695 

1696 Returns 

1697 ------- 

1698 str_arr : ndarray 

1699 An array of strings the same shape as `arr`. 

1700 

1701 Examples 

1702 -------- 

1703 >>> import numpy as np 

1704 >>> from zoneinfo import ZoneInfo 

1705 >>> d = np.arange('2002-10-27T04:30', 4*60, 60, dtype='M8[m]') 

1706 >>> d 

1707 array(['2002-10-27T04:30', '2002-10-27T05:30', '2002-10-27T06:30', 

1708 '2002-10-27T07:30'], dtype='datetime64[m]') 

1709 

1710 Setting the timezone to UTC shows the same information, but with a Z suffix 

1711 

1712 >>> np.datetime_as_string(d, timezone='UTC') 

1713 array(['2002-10-27T04:30Z', '2002-10-27T05:30Z', '2002-10-27T06:30Z', 

1714 '2002-10-27T07:30Z'], dtype='<U35') 

1715 

1716 Note that we picked datetimes that cross a DST boundary. Passing in a 

1717 ``ZoneInfo`` object will print the appropriate offset 

1718 

1719 >>> np.datetime_as_string(d, timezone=ZoneInfo('US/Eastern')) 

1720 array(['2002-10-27T00:30-0400', '2002-10-27T01:30-0400', 

1721 '2002-10-27T01:30-0500', '2002-10-27T02:30-0500'], dtype='<U39') 

1722 

1723 Passing in a unit will change the precision 

1724 

1725 >>> np.datetime_as_string(d, unit='h') 

1726 array(['2002-10-27T04', '2002-10-27T05', '2002-10-27T06', '2002-10-27T07'], 

1727 dtype='<U32') 

1728 >>> np.datetime_as_string(d, unit='s') 

1729 array(['2002-10-27T04:30:00', '2002-10-27T05:30:00', '2002-10-27T06:30:00', 

1730 '2002-10-27T07:30:00'], dtype='<U38') 

1731 

1732 'casting' can be used to specify whether precision can be changed 

1733 

1734 >>> np.datetime_as_string(d, unit='h', casting='safe') 

1735 Traceback (most recent call last): 

1736 ... 

1737 TypeError: Cannot create a datetime string as units 'h' from a NumPy 

1738 datetime with units 'm' according to the rule 'safe' 

1739 """ 

1740 return (arr,)