Coverage Report

Created: 2024-09-03 06:23

/src/brpc/src/butil/third_party/dmg_fp/dtoa.cc
Line
Count
Source (jump to first uncovered line)
1
/****************************************************************
2
 *
3
 * The author of this software is David M. Gay.
4
 *
5
 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
6
 *
7
 * Permission to use, copy, modify, and distribute this software for any
8
 * purpose without fee is hereby granted, provided that this entire notice
9
 * is included in all copies of any software which is or includes a copy
10
 * or modification of this software and in all copies of the supporting
11
 * documentation for such software.
12
 *
13
 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
14
 * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
15
 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
16
 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
17
 *
18
 ***************************************************************/
19
20
/* Please send bug reports to David M. Gay (dmg at acm dot org,
21
 * with " at " changed at "@" and " dot " changed to ".").  */
22
23
/* On a machine with IEEE extended-precision registers, it is
24
 * necessary to specify double-precision (53-bit) rounding precision
25
 * before invoking strtod or dtoa.  If the machine uses (the equivalent
26
 * of) Intel 80x87 arithmetic, the call
27
 *  _control87(PC_53, MCW_PC);
28
 * does this with many compilers.  Whether this or another call is
29
 * appropriate depends on the compiler; for this to work, it may be
30
 * necessary to #include "float.h" or another system-dependent header
31
 * file.
32
 */
33
34
/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
35
 *
36
 * This strtod returns a nearest machine number to the input decimal
37
 * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
38
 * broken by the IEEE round-even rule.  Otherwise ties are broken by
39
 * biased rounding (add half and chop).
40
 *
41
 * Inspired loosely by William D. Clinger's paper "How to Read Floating
42
 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
43
 *
44
 * Modifications:
45
 *
46
 *  1. We only require IEEE, IBM, or VAX double-precision
47
 *    arithmetic (not IEEE double-extended).
48
 *  2. We get by with floating-point arithmetic in a case that
49
 *    Clinger missed -- when we're computing d * 10^n
50
 *    for a small integer d and the integer n is not too
51
 *    much larger than 22 (the maximum integer k for which
52
 *    we can represent 10^k exactly), we may be able to
53
 *    compute (d*10^k) * 10^(e-k) with just one roundoff.
54
 *  3. Rather than a bit-at-a-time adjustment of the binary
55
 *    result in the hard case, we use floating-point
56
 *    arithmetic to determine the adjustment to within
57
 *    one bit; only in really hard cases do we need to
58
 *    compute a second residual.
59
 *  4. Because of 3., we don't need a large table of powers of 10
60
 *    for ten-to-e (just some small tables, e.g. of 10^k
61
 *    for 0 <= k <= 22).
62
 */
63
64
/*
65
 * #define IEEE_8087 for IEEE-arithmetic machines where the least
66
 *  significant byte has the lowest address.
67
 * #define IEEE_MC68k for IEEE-arithmetic machines where the most
68
 *  significant byte has the lowest address.
69
 * #define Long int on machines with 32-bit ints and 64-bit longs.
70
 * #define IBM for IBM mainframe-style floating-point arithmetic.
71
 * #define VAX for VAX-style floating-point arithmetic (D_floating).
72
 * #define No_leftright to omit left-right logic in fast floating-point
73
 *  computation of dtoa.
74
 * #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
75
 *  and strtod and dtoa should round accordingly.  Unless Trust_FLT_ROUNDS
76
 *  is also #defined, fegetround() will be queried for the rounding mode.
77
 *  Note that both FLT_ROUNDS and fegetround() are specified by the C99
78
 *  standard (and are specified to be consistent, with fesetround()
79
 *  affecting the value of FLT_ROUNDS), but that some (Linux) systems
80
 *  do not work correctly in this regard, so using fegetround() is more
81
 *  portable than using FLT_FOUNDS directly.
82
 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
83
 *  and Honor_FLT_ROUNDS is not #defined.
84
 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
85
 *  that use extended-precision instructions to compute rounded
86
 *  products and quotients) with IBM.
87
 * #define ROUND_BIASED for IEEE-format with biased rounding.
88
 * #define Inaccurate_Divide for IEEE-format with correctly rounded
89
 *  products but inaccurate quotients, e.g., for Intel i860.
90
 * #define NO_LONG_LONG on machines that do not have a "long long"
91
 *  integer type (of >= 64 bits).  On such machines, you can
92
 *  #define Just_16 to store 16 bits per 32-bit Long when doing
93
 *  high-precision integer arithmetic.  Whether this speeds things
94
 *  up or slows things down depends on the machine and the number
95
 *  being converted.  If long long is available and the name is
96
 *  something other than "long long", #define Llong to be the name,
97
 *  and if "unsigned Llong" does not work as an unsigned version of
98
 *  Llong, #define #ULLong to be the corresponding unsigned type.
99
 * #define KR_headers for old-style C function headers.
100
 * #define Bad_float_h if your system lacks a float.h or if it does not
101
 *  define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
102
 *  FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
103
 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
104
 *  if memory is available and otherwise does something you deem
105
 *  appropriate.  If MALLOC is undefined, malloc will be invoked
106
 *  directly -- and assumed always to succeed.  Similarly, if you
107
 *  want something other than the system's free() to be called to
108
 *  recycle memory acquired from MALLOC, #define FREE to be the
109
 *  name of the alternate routine.  (FREE or free is only called in
110
 *  pathological cases, e.g., in a dtoa call after a dtoa return in
111
 *  mode 3 with thousands of digits requested.)
112
 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
113
 *  memory allocations from a private pool of memory when possible.
114
 *  When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
115
 *  unless #defined to be a different length.  This default length
116
 *  suffices to get rid of MALLOC calls except for unusual cases,
117
 *  such as decimal-to-binary conversion of a very long string of
118
 *  digits.  The longest string dtoa can return is about 751 bytes
119
 *  long.  For conversions by strtod of strings of 800 digits and
120
 *  all dtoa conversions in single-threaded executions with 8-byte
121
 *  pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte
122
 *  pointers, PRIVATE_MEM >= 7112 appears adequate.
123
 * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK
124
 *  #defined automatically on IEEE systems.  On such systems,
125
 *  when INFNAN_CHECK is #defined, strtod checks
126
 *  for Infinity and NaN (case insensitively).  On some systems
127
 *  (e.g., some HP systems), it may be necessary to #define NAN_WORD0
128
 *  appropriately -- to the most significant word of a quiet NaN.
129
 *  (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
130
 *  When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
131
 *  strtod also accepts (case insensitively) strings of the form
132
 *  NaN(x), where x is a string of hexadecimal digits and spaces;
133
 *  if there is only one string of hexadecimal digits, it is taken
134
 *  for the 52 fraction bits of the resulting NaN; if there are two
135
 *  or more strings of hex digits, the first is for the high 20 bits,
136
 *  the second and subsequent for the low 32 bits, with intervening
137
 *  white space ignored; but if this results in none of the 52
138
 *  fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0
139
 *  and NAN_WORD1 are used instead.
140
 * #define MULTIPLE_THREADS if the system offers preemptively scheduled
141
 *  multiple threads.  In this case, you must provide (or suitably
142
 *  #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
143
 *  by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
144
 *  in pow5mult, ensures lazy evaluation of only one copy of high
145
 *  powers of 5; omitting this lock would introduce a small
146
 *  probability of wasting memory, but would otherwise be harmless.)
147
 *  You must also invoke freedtoa(s) to free the value s returned by
148
 *  dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
149
 * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that
150
 *  avoids underflows on inputs whose result does not underflow.
151
 *  If you #define NO_IEEE_Scale on a machine that uses IEEE-format
152
 *  floating-point numbers and flushes underflows to zero rather
153
 *  than implementing gradual underflow, then you must also #define
154
 *  Sudden_Underflow.
155
 * #define USE_LOCALE to use the current locale's decimal_point value.
156
 * #define SET_INEXACT if IEEE arithmetic is being used and extra
157
 *  computation should be done to set the inexact flag when the
158
 *  result is inexact and avoid setting inexact when the result
159
 *  is exact.  In this case, dtoa.c must be compiled in
160
 *  an environment, perhaps provided by #include "dtoa.c" in a
161
 *  suitable wrapper, that defines two functions,
162
 *    int get_inexact(void);
163
 *    void clear_inexact(void);
164
 *  such that get_inexact() returns a nonzero value if the
165
 *  inexact bit is already set, and clear_inexact() sets the
166
 *  inexact bit to 0.  When SET_INEXACT is #defined, strtod
167
 *  also does extra computations to set the underflow and overflow
168
 *  flags when appropriate (i.e., when the result is tiny and
169
 *  inexact or when it is a numeric value rounded to +-infinity).
170
 * #define NO_ERRNO if strtod should not assign errno = ERANGE when
171
 *  the result overflows to +-Infinity or underflows to 0.
172
 * #define NO_HEX_FP to omit recognition of hexadecimal floating-point
173
 *  values by strtod.
174
 * #define NO_STRTOD_BIGCOMP (on IEEE-arithmetic systems only for now)
175
 *  to disable logic for "fast" testing of very long input strings
176
 *  to strtod.  This testing proceeds by initially truncating the
177
 *  input string, then if necessary comparing the whole string with
178
 *  a decimal expansion to decide close cases. This logic is only
179
 *  used for input more than STRTOD_DIGLIM digits long (default 40).
180
 */
181
182
#define IEEE_8087
183
#define NO_HEX_FP
184
185
#ifndef Long
186
#if __LP64__
187
0
#define Long int
188
#else
189
#define Long long
190
#endif
191
#endif
192
#ifndef ULong
193
typedef unsigned Long ULong;
194
#endif
195
196
#ifdef DEBUG
197
#include "stdio.h"
198
#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
199
#endif
200
201
#include "stdlib.h"
202
#include "string.h"
203
204
#ifdef USE_LOCALE
205
#include "locale.h"
206
#endif
207
208
#ifdef Honor_FLT_ROUNDS
209
#ifndef Trust_FLT_ROUNDS
210
#include <fenv.h>
211
#endif
212
#endif
213
214
#ifdef MALLOC
215
#ifdef KR_headers
216
extern char *MALLOC();
217
#else
218
extern void *MALLOC(size_t);
219
#endif
220
#else
221
0
#define MALLOC malloc
222
#endif
223
224
#ifndef Omit_Private_Memory
225
#ifndef PRIVATE_MEM
226
0
#define PRIVATE_MEM 2304
227
#endif
228
0
#define PRIVATE_mem ((unsigned)((PRIVATE_MEM+sizeof(double)-1)/sizeof(double)))
229
static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
230
#endif
231
232
#undef IEEE_Arith
233
#undef Avoid_Underflow
234
#ifdef IEEE_MC68k
235
#define IEEE_Arith
236
#endif
237
#ifdef IEEE_8087
238
#define IEEE_Arith
239
#endif
240
241
#ifdef IEEE_Arith
242
#ifndef NO_INFNAN_CHECK
243
#undef INFNAN_CHECK
244
#define INFNAN_CHECK
245
#endif
246
#else
247
#undef INFNAN_CHECK
248
#define NO_STRTOD_BIGCOMP
249
#endif
250
251
#include "errno.h"
252
253
#ifdef Bad_float_h
254
255
#ifdef IEEE_Arith
256
#define DBL_DIG 15
257
#define DBL_MAX_10_EXP 308
258
#define DBL_MAX_EXP 1024
259
#define FLT_RADIX 2
260
#endif /*IEEE_Arith*/
261
262
#ifdef IBM
263
#define DBL_DIG 16
264
#define DBL_MAX_10_EXP 75
265
#define DBL_MAX_EXP 63
266
#define FLT_RADIX 16
267
#define DBL_MAX 7.2370055773322621e+75
268
#endif
269
270
#ifdef VAX
271
#define DBL_DIG 16
272
#define DBL_MAX_10_EXP 38
273
#define DBL_MAX_EXP 127
274
#define FLT_RADIX 2
275
#define DBL_MAX 1.7014118346046923e+38
276
#endif
277
278
#ifndef LONG_MAX
279
#define LONG_MAX 2147483647
280
#endif
281
282
#else /* ifndef Bad_float_h */
283
#include "float.h"
284
#endif /* Bad_float_h */
285
286
#ifndef __MATH_H__
287
#include "math.h"
288
#endif
289
290
namespace dmg_fp {
291
292
#ifndef CONST
293
#ifdef KR_headers
294
#define CONST /* blank */
295
#else
296
0
#define CONST const
297
#endif
298
#endif
299
300
#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
301
Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
302
#endif
303
304
typedef union { double d; ULong L[2]; } U;
305
306
#ifdef IEEE_8087
307
0
#define word0(x) (x)->L[1]
308
0
#define word1(x) (x)->L[0]
309
#else
310
#define word0(x) (x)->L[0]
311
#define word1(x) (x)->L[1]
312
#endif
313
0
#define dval(x) (x)->d
314
315
#ifndef STRTOD_DIGLIM
316
0
#define STRTOD_DIGLIM 40
317
#endif
318
319
#ifdef DIGLIM_DEBUG
320
extern int strtod_diglim;
321
#else
322
0
#define strtod_diglim STRTOD_DIGLIM
323
#endif
324
325
/* The following definition of Storeinc is appropriate for MIPS processors.
326
 * An alternative that might be better on some machines is
327
 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
328
 */
329
#if defined(IEEE_8087) + defined(VAX)
330
#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
331
((unsigned short *)a)[0] = (unsigned short)c, a++)
332
#else
333
#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
334
((unsigned short *)a)[1] = (unsigned short)c, a++)
335
#endif
336
337
/* #define P DBL_MANT_DIG */
338
/* Ten_pmax = floor(P*log(2)/log(5)) */
339
/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
340
/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
341
/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
342
343
#ifdef IEEE_Arith
344
0
#define Exp_shift  20
345
0
#define Exp_shift1 20
346
0
#define Exp_msk1    0x100000
347
#define Exp_msk11   0x100000
348
0
#define Exp_mask  0x7ff00000
349
0
#define P 53
350
#define Nbits 53
351
0
#define Bias 1023
352
#define Emax 1023
353
0
#define Emin (-1022)
354
0
#define Exp_1  0x3ff00000
355
0
#define Exp_11 0x3ff00000
356
0
#define Ebits 11
357
0
#define Frac_mask  0xfffff
358
0
#define Frac_mask1 0xfffff
359
0
#define Ten_pmax 22
360
0
#define Bletch 0x10
361
0
#define Bndry_mask  0xfffff
362
0
#define Bndry_mask1 0xfffff
363
0
#define LSB 1
364
0
#define Sign_bit 0x80000000
365
0
#define Log2P 1
366
#define Tiny0 0
367
0
#define Tiny1 1
368
0
#define Quick_max 14
369
0
#define Int_max 14
370
#ifndef NO_IEEE_Scale
371
#define Avoid_Underflow
372
#ifdef Flush_Denorm /* debugging option */
373
#undef Sudden_Underflow
374
#endif
375
#endif
376
377
#ifndef Flt_Rounds
378
#ifdef FLT_ROUNDS
379
0
#define Flt_Rounds FLT_ROUNDS
380
#else
381
#define Flt_Rounds 1
382
#endif
383
#endif /*Flt_Rounds*/
384
385
#ifdef Honor_FLT_ROUNDS
386
#undef Check_FLT_ROUNDS
387
#define Check_FLT_ROUNDS
388
#else
389
#define Rounding Flt_Rounds
390
#endif
391
392
#else /* ifndef IEEE_Arith */
393
#undef Check_FLT_ROUNDS
394
#undef Honor_FLT_ROUNDS
395
#undef SET_INEXACT
396
#undef  Sudden_Underflow
397
#define Sudden_Underflow
398
#ifdef IBM
399
#undef Flt_Rounds
400
#define Flt_Rounds 0
401
#define Exp_shift  24
402
#define Exp_shift1 24
403
#define Exp_msk1   0x1000000
404
#define Exp_msk11  0x1000000
405
#define Exp_mask  0x7f000000
406
#define P 14
407
#define Nbits 56
408
#define Bias 65
409
#define Emax 248
410
#define Emin (-260)
411
#define Exp_1  0x41000000
412
#define Exp_11 0x41000000
413
#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
414
#define Frac_mask  0xffffff
415
#define Frac_mask1 0xffffff
416
#define Bletch 4
417
#define Ten_pmax 22
418
#define Bndry_mask  0xefffff
419
#define Bndry_mask1 0xffffff
420
#define LSB 1
421
#define Sign_bit 0x80000000
422
#define Log2P 4
423
#define Tiny0 0x100000
424
#define Tiny1 0
425
#define Quick_max 14
426
#define Int_max 15
427
#else /* VAX */
428
#undef Flt_Rounds
429
#define Flt_Rounds 1
430
#define Exp_shift  23
431
#define Exp_shift1 7
432
#define Exp_msk1    0x80
433
#define Exp_msk11   0x800000
434
#define Exp_mask  0x7f80
435
#define P 56
436
#define Nbits 56
437
#define Bias 129
438
#define Emax 126
439
#define Emin (-129)
440
#define Exp_1  0x40800000
441
#define Exp_11 0x4080
442
#define Ebits 8
443
#define Frac_mask  0x7fffff
444
#define Frac_mask1 0xffff007f
445
#define Ten_pmax 24
446
#define Bletch 2
447
#define Bndry_mask  0xffff007f
448
#define Bndry_mask1 0xffff007f
449
#define LSB 0x10000
450
#define Sign_bit 0x8000
451
#define Log2P 1
452
#define Tiny0 0x80
453
#define Tiny1 0
454
#define Quick_max 15
455
#define Int_max 15
456
#endif /* IBM, VAX */
457
#endif /* IEEE_Arith */
458
459
#ifndef IEEE_Arith
460
#define ROUND_BIASED
461
#endif
462
463
#ifdef RND_PRODQUOT
464
#define rounded_product(a,b) a = rnd_prod(a, b)
465
#define rounded_quotient(a,b) a = rnd_quot(a, b)
466
#ifdef KR_headers
467
extern double rnd_prod(), rnd_quot();
468
#else
469
extern double rnd_prod(double, double), rnd_quot(double, double);
470
#endif
471
#else
472
0
#define rounded_product(a,b) a *= b
473
0
#define rounded_quotient(a,b) a /= b
474
#endif
475
476
0
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
477
0
#define Big1 0xffffffff
478
479
#ifndef Pack_32
480
#define Pack_32
481
#endif
482
483
typedef struct BCinfo BCinfo;
484
 struct
485
BCinfo { int dp0, dp1, dplen, dsign, e0, inexact, nd, nd0, rounding, scale, uflchk; };
486
487
#ifdef KR_headers
488
#define FFFFFFFF ((((unsigned long)0xffff)<<16)|(unsigned long)0xffff)
489
#else
490
0
#define FFFFFFFF 0xffffffffUL
491
#endif
492
493
#ifdef NO_LONG_LONG
494
#undef ULLong
495
#ifdef Just_16
496
#undef Pack_32
497
/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
498
 * This makes some inner loops simpler and sometimes saves work
499
 * during multiplications, but it often seems to make things slightly
500
 * slower.  Hence the default is now to store 32 bits per Long.
501
 */
502
#endif
503
#else /* long long available */
504
#ifndef Llong
505
#define Llong long long
506
#endif
507
#ifndef ULLong
508
0
#define ULLong unsigned Llong
509
#endif
510
#endif /* NO_LONG_LONG */
511
512
#ifndef MULTIPLE_THREADS
513
#define ACQUIRE_DTOA_LOCK(n)  /*nothing*/
514
#define FREE_DTOA_LOCK(n) /*nothing*/
515
#endif
516
517
0
#define Kmax 7
518
519
double strtod(const char *s00, char **se);
520
char *dtoa(double d, int mode, int ndigits,
521
      int *decpt, int *sign, char **rve);
522
523
 struct
524
Bigint {
525
  struct Bigint *next;
526
  int k, maxwds, sign, wds;
527
  ULong x[1];
528
  };
529
530
 typedef struct Bigint Bigint;
531
532
 static Bigint *freelist[Kmax+1];
533
534
 static Bigint *
535
Balloc
536
#ifdef KR_headers
537
  (k) int k;
538
#else
539
  (int k)
540
#endif
541
0
{
542
0
  int x;
543
0
  Bigint *rv;
544
0
#ifndef Omit_Private_Memory
545
0
  unsigned int len;
546
0
#endif
547
548
0
  ACQUIRE_DTOA_LOCK(0);
549
  /* The k > Kmax case does not need ACQUIRE_DTOA_LOCK(0), */
550
  /* but this case seems very unlikely. */
551
0
  if (k <= Kmax && (rv = freelist[k]))
552
0
    freelist[k] = rv->next;
553
0
  else {
554
0
    x = 1 << k;
555
#ifdef Omit_Private_Memory
556
    rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong));
557
#else
558
0
    len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
559
0
      /sizeof(double);
560
0
    if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) {
561
0
      rv = (Bigint*)pmem_next;
562
0
      pmem_next += len;
563
0
      }
564
0
    else
565
0
      rv = (Bigint*)MALLOC(len*sizeof(double));
566
0
#endif
567
0
    rv->k = k;
568
0
    rv->maxwds = x;
569
0
    }
570
0
  FREE_DTOA_LOCK(0);
571
0
  rv->sign = rv->wds = 0;
572
0
  return rv;
573
0
  }
574
575
 static void
576
Bfree
577
#ifdef KR_headers
578
  (v) Bigint *v;
579
#else
580
  (Bigint *v)
581
#endif
582
0
{
583
0
  if (v) {
584
0
    if (v->k > Kmax)
585
#ifdef FREE
586
      FREE((void*)v);
587
#else
588
0
      free((void*)v);
589
0
#endif
590
0
    else {
591
0
      ACQUIRE_DTOA_LOCK(0);
592
0
      v->next = freelist[v->k];
593
0
      freelist[v->k] = v;
594
0
      FREE_DTOA_LOCK(0);
595
0
      }
596
0
    }
597
0
  }
598
599
0
#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
600
0
y->wds*sizeof(Long) + 2*sizeof(int))
601
602
 static Bigint *
603
multadd
604
#ifdef KR_headers
605
  (b, m, a) Bigint *b; int m, a;
606
#else
607
  (Bigint *b, int m, int a) /* multiply by m and add a */
608
#endif
609
0
{
610
0
  int i, wds;
611
0
#ifdef ULLong
612
0
  ULong *x;
613
0
  ULLong carry, y;
614
#else
615
  ULong carry, *x, y;
616
#ifdef Pack_32
617
  ULong xi, z;
618
#endif
619
#endif
620
0
  Bigint *b1;
621
622
0
  wds = b->wds;
623
0
  x = b->x;
624
0
  i = 0;
625
0
  carry = a;
626
0
  do {
627
0
#ifdef ULLong
628
0
    y = *x * (ULLong)m + carry;
629
0
    carry = y >> 32;
630
0
    *x++ = y & FFFFFFFF;
631
#else
632
#ifdef Pack_32
633
    xi = *x;
634
    y = (xi & 0xffff) * m + carry;
635
    z = (xi >> 16) * m + (y >> 16);
636
    carry = z >> 16;
637
    *x++ = (z << 16) + (y & 0xffff);
638
#else
639
    y = *x * m + carry;
640
    carry = y >> 16;
641
    *x++ = y & 0xffff;
642
#endif
643
#endif
644
0
    }
645
0
    while(++i < wds);
646
0
  if (carry) {
647
0
    if (wds >= b->maxwds) {
648
0
      b1 = Balloc(b->k+1);
649
0
      Bcopy(b1, b);
650
0
      Bfree(b);
651
0
      b = b1;
652
0
      }
653
0
    b->x[wds++] = carry;
654
0
    b->wds = wds;
655
0
    }
656
0
  return b;
657
0
  }
658
659
 static Bigint *
660
s2b
661
#ifdef KR_headers
662
  (s, nd0, nd, y9, dplen) CONST char *s; int nd0, nd, dplen; ULong y9;
663
#else
664
  (CONST char *s, int nd0, int nd, ULong y9, int dplen)
665
#endif
666
0
{
667
0
  Bigint *b;
668
0
  int i, k;
669
0
  Long x, y;
670
671
0
  x = (nd + 8) / 9;
672
0
  for(k = 0, y = 1; x > y; y <<= 1, k++) ;
673
0
#ifdef Pack_32
674
0
  b = Balloc(k);
675
0
  b->x[0] = y9;
676
0
  b->wds = 1;
677
#else
678
  b = Balloc(k+1);
679
  b->x[0] = y9 & 0xffff;
680
  b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
681
#endif
682
683
0
  i = 9;
684
0
  if (9 < nd0) {
685
0
    s += 9;
686
0
    do b = multadd(b, 10, *s++ - '0');
687
0
      while(++i < nd0);
688
0
    s += dplen;
689
0
    }
690
0
  else
691
0
    s += dplen + 9;
692
0
  for(; i < nd; i++)
693
0
    b = multadd(b, 10, *s++ - '0');
694
0
  return b;
695
0
  }
696
697
 static int
698
hi0bits
699
#ifdef KR_headers
700
  (x) ULong x;
701
#else
702
  (ULong x)
703
#endif
704
0
{
705
0
  int k = 0;
706
707
0
  if (!(x & 0xffff0000)) {
708
0
    k = 16;
709
0
    x <<= 16;
710
0
    }
711
0
  if (!(x & 0xff000000)) {
712
0
    k += 8;
713
0
    x <<= 8;
714
0
    }
715
0
  if (!(x & 0xf0000000)) {
716
0
    k += 4;
717
0
    x <<= 4;
718
0
    }
719
0
  if (!(x & 0xc0000000)) {
720
0
    k += 2;
721
0
    x <<= 2;
722
0
    }
723
0
  if (!(x & 0x80000000)) {
724
0
    k++;
725
0
    if (!(x & 0x40000000))
726
0
      return 32;
727
0
    }
728
0
  return k;
729
0
  }
730
731
 static int
732
lo0bits
733
#ifdef KR_headers
734
  (y) ULong *y;
735
#else
736
  (ULong *y)
737
#endif
738
0
{
739
0
  int k;
740
0
  ULong x = *y;
741
742
0
  if (x & 7) {
743
0
    if (x & 1)
744
0
      return 0;
745
0
    if (x & 2) {
746
0
      *y = x >> 1;
747
0
      return 1;
748
0
      }
749
0
    *y = x >> 2;
750
0
    return 2;
751
0
    }
752
0
  k = 0;
753
0
  if (!(x & 0xffff)) {
754
0
    k = 16;
755
0
    x >>= 16;
756
0
    }
757
0
  if (!(x & 0xff)) {
758
0
    k += 8;
759
0
    x >>= 8;
760
0
    }
761
0
  if (!(x & 0xf)) {
762
0
    k += 4;
763
0
    x >>= 4;
764
0
    }
765
0
  if (!(x & 0x3)) {
766
0
    k += 2;
767
0
    x >>= 2;
768
0
    }
769
0
  if (!(x & 1)) {
770
0
    k++;
771
0
    x >>= 1;
772
0
    if (!x)
773
0
      return 32;
774
0
    }
775
0
  *y = x;
776
0
  return k;
777
0
  }
778
779
 static Bigint *
780
i2b
781
#ifdef KR_headers
782
  (i) int i;
783
#else
784
  (int i)
785
#endif
786
0
{
787
0
  Bigint *b;
788
789
0
  b = Balloc(1);
790
0
  b->x[0] = i;
791
0
  b->wds = 1;
792
0
  return b;
793
0
  }
794
795
 static Bigint *
796
mult
797
#ifdef KR_headers
798
  (a, b) Bigint *a, *b;
799
#else
800
  (Bigint *a, Bigint *b)
801
#endif
802
0
{
803
0
  Bigint *c;
804
0
  int k, wa, wb, wc;
805
0
  ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
806
0
  ULong y;
807
0
#ifdef ULLong
808
0
  ULLong carry, z;
809
#else
810
  ULong carry, z;
811
#ifdef Pack_32
812
  ULong z2;
813
#endif
814
#endif
815
816
0
  if (a->wds < b->wds) {
817
0
    c = a;
818
0
    a = b;
819
0
    b = c;
820
0
    }
821
0
  k = a->k;
822
0
  wa = a->wds;
823
0
  wb = b->wds;
824
0
  wc = wa + wb;
825
0
  if (wc > a->maxwds)
826
0
    k++;
827
0
  c = Balloc(k);
828
0
  for(x = c->x, xa = x + wc; x < xa; x++)
829
0
    *x = 0;
830
0
  xa = a->x;
831
0
  xae = xa + wa;
832
0
  xb = b->x;
833
0
  xbe = xb + wb;
834
0
  xc0 = c->x;
835
0
#ifdef ULLong
836
0
  for(; xb < xbe; xc0++) {
837
0
    if ((y = *xb++)) {
838
0
      x = xa;
839
0
      xc = xc0;
840
0
      carry = 0;
841
0
      do {
842
0
        z = *x++ * (ULLong)y + *xc + carry;
843
0
        carry = z >> 32;
844
0
        *xc++ = z & FFFFFFFF;
845
0
        }
846
0
        while(x < xae);
847
0
      *xc = carry;
848
0
      }
849
0
    }
850
#else
851
#ifdef Pack_32
852
  for(; xb < xbe; xb++, xc0++) {
853
    if (y = *xb & 0xffff) {
854
      x = xa;
855
      xc = xc0;
856
      carry = 0;
857
      do {
858
        z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
859
        carry = z >> 16;
860
        z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
861
        carry = z2 >> 16;
862
        Storeinc(xc, z2, z);
863
        }
864
        while(x < xae);
865
      *xc = carry;
866
      }
867
    if (y = *xb >> 16) {
868
      x = xa;
869
      xc = xc0;
870
      carry = 0;
871
      z2 = *xc;
872
      do {
873
        z = (*x & 0xffff) * y + (*xc >> 16) + carry;
874
        carry = z >> 16;
875
        Storeinc(xc, z, z2);
876
        z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
877
        carry = z2 >> 16;
878
        }
879
        while(x < xae);
880
      *xc = z2;
881
      }
882
    }
883
#else
884
  for(; xb < xbe; xc0++) {
885
    if (y = *xb++) {
886
      x = xa;
887
      xc = xc0;
888
      carry = 0;
889
      do {
890
        z = *x++ * y + *xc + carry;
891
        carry = z >> 16;
892
        *xc++ = z & 0xffff;
893
        }
894
        while(x < xae);
895
      *xc = carry;
896
      }
897
    }
898
#endif
899
#endif
900
0
  for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
901
0
  c->wds = wc;
902
0
  return c;
903
0
  }
904
905
 static Bigint *p5s;
906
907
 static Bigint *
908
pow5mult
909
#ifdef KR_headers
910
  (b, k) Bigint *b; int k;
911
#else
912
  (Bigint *b, int k)
913
#endif
914
0
{
915
0
  Bigint *b1, *p5, *p51;
916
0
  int i;
917
0
  static int p05[3] = { 5, 25, 125 };
918
919
0
  if ((i = k & 3))
920
0
    b = multadd(b, p05[i-1], 0);
921
922
0
  if (!(k >>= 2))
923
0
    return b;
924
0
  if (!(p5 = p5s)) {
925
    /* first time */
926
0
#ifdef MULTIPLE_THREADS
927
0
    ACQUIRE_DTOA_LOCK(1);
928
0
    if (!(p5 = p5s)) {
929
0
      p5 = p5s = i2b(625);
930
0
      p5->next = 0;
931
0
      }
932
0
    FREE_DTOA_LOCK(1);
933
#else
934
    p5 = p5s = i2b(625);
935
    p5->next = 0;
936
#endif
937
0
    }
938
0
  for(;;) {
939
0
    if (k & 1) {
940
0
      b1 = mult(b, p5);
941
0
      Bfree(b);
942
0
      b = b1;
943
0
      }
944
0
    if (!(k >>= 1))
945
0
      break;
946
0
    if (!(p51 = p5->next)) {
947
0
#ifdef MULTIPLE_THREADS
948
0
      ACQUIRE_DTOA_LOCK(1);
949
0
      if (!(p51 = p5->next)) {
950
0
        p51 = p5->next = mult(p5,p5);
951
0
        p51->next = 0;
952
0
        }
953
0
      FREE_DTOA_LOCK(1);
954
#else
955
      p51 = p5->next = mult(p5,p5);
956
      p51->next = 0;
957
#endif
958
0
      }
959
0
    p5 = p51;
960
0
    }
961
0
  return b;
962
0
  }
963
964
 static Bigint *
965
lshift
966
#ifdef KR_headers
967
  (b, k) Bigint *b; int k;
968
#else
969
  (Bigint *b, int k)
970
#endif
971
0
{
972
0
  int i, k1, n, n1;
973
0
  Bigint *b1;
974
0
  ULong *x, *x1, *xe, z;
975
976
0
#ifdef Pack_32
977
0
  n = k >> 5;
978
#else
979
  n = k >> 4;
980
#endif
981
0
  k1 = b->k;
982
0
  n1 = n + b->wds + 1;
983
0
  for(i = b->maxwds; n1 > i; i <<= 1)
984
0
    k1++;
985
0
  b1 = Balloc(k1);
986
0
  x1 = b1->x;
987
0
  for(i = 0; i < n; i++)
988
0
    *x1++ = 0;
989
0
  x = b->x;
990
0
  xe = x + b->wds;
991
0
#ifdef Pack_32
992
0
  if (k &= 0x1f) {
993
0
    k1 = 32 - k;
994
0
    z = 0;
995
0
    do {
996
0
      *x1++ = *x << k | z;
997
0
      z = *x++ >> k1;
998
0
      }
999
0
      while(x < xe);
1000
0
    if ((*x1 = z))
1001
0
      ++n1;
1002
0
    }
1003
#else
1004
  if (k &= 0xf) {
1005
    k1 = 16 - k;
1006
    z = 0;
1007
    do {
1008
      *x1++ = *x << k  & 0xffff | z;
1009
      z = *x++ >> k1;
1010
      }
1011
      while(x < xe);
1012
    if (*x1 = z)
1013
      ++n1;
1014
    }
1015
#endif
1016
0
  else do
1017
0
    *x1++ = *x++;
1018
0
    while(x < xe);
1019
0
  b1->wds = n1 - 1;
1020
0
  Bfree(b);
1021
0
  return b1;
1022
0
  }
1023
1024
 static int
1025
cmp
1026
#ifdef KR_headers
1027
  (a, b) Bigint *a, *b;
1028
#else
1029
  (Bigint *a, Bigint *b)
1030
#endif
1031
0
{
1032
0
  ULong *xa, *xa0, *xb, *xb0;
1033
0
  int i, j;
1034
1035
0
  i = a->wds;
1036
0
  j = b->wds;
1037
#ifdef DEBUG
1038
  if (i > 1 && !a->x[i-1])
1039
    Bug("cmp called with a->x[a->wds-1] == 0");
1040
  if (j > 1 && !b->x[j-1])
1041
    Bug("cmp called with b->x[b->wds-1] == 0");
1042
#endif
1043
0
  if (i -= j)
1044
0
    return i;
1045
0
  xa0 = a->x;
1046
0
  xa = xa0 + j;
1047
0
  xb0 = b->x;
1048
0
  xb = xb0 + j;
1049
0
  for(;;) {
1050
0
    if (*--xa != *--xb)
1051
0
      return *xa < *xb ? -1 : 1;
1052
0
    if (xa <= xa0)
1053
0
      break;
1054
0
    }
1055
0
  return 0;
1056
0
  }
1057
1058
 static Bigint *
1059
diff
1060
#ifdef KR_headers
1061
  (a, b) Bigint *a, *b;
1062
#else
1063
  (Bigint *a, Bigint *b)
1064
#endif
1065
0
{
1066
0
  Bigint *c;
1067
0
  int i, wa, wb;
1068
0
  ULong *xa, *xae, *xb, *xbe, *xc;
1069
0
#ifdef ULLong
1070
0
  ULLong borrow, y;
1071
#else
1072
  ULong borrow, y;
1073
#ifdef Pack_32
1074
  ULong z;
1075
#endif
1076
#endif
1077
1078
0
  i = cmp(a,b);
1079
0
  if (!i) {
1080
0
    c = Balloc(0);
1081
0
    c->wds = 1;
1082
0
    c->x[0] = 0;
1083
0
    return c;
1084
0
    }
1085
0
  if (i < 0) {
1086
0
    c = a;
1087
0
    a = b;
1088
0
    b = c;
1089
0
    i = 1;
1090
0
    }
1091
0
  else
1092
0
    i = 0;
1093
0
  c = Balloc(a->k);
1094
0
  c->sign = i;
1095
0
  wa = a->wds;
1096
0
  xa = a->x;
1097
0
  xae = xa + wa;
1098
0
  wb = b->wds;
1099
0
  xb = b->x;
1100
0
  xbe = xb + wb;
1101
0
  xc = c->x;
1102
0
  borrow = 0;
1103
0
#ifdef ULLong
1104
0
  do {
1105
0
    y = (ULLong)*xa++ - *xb++ - borrow;
1106
0
    borrow = y >> 32 & (ULong)1;
1107
0
    *xc++ = y & FFFFFFFF;
1108
0
    }
1109
0
    while(xb < xbe);
1110
0
  while(xa < xae) {
1111
0
    y = *xa++ - borrow;
1112
0
    borrow = y >> 32 & (ULong)1;
1113
0
    *xc++ = y & FFFFFFFF;
1114
0
    }
1115
#else
1116
#ifdef Pack_32
1117
  do {
1118
    y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
1119
    borrow = (y & 0x10000) >> 16;
1120
    z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
1121
    borrow = (z & 0x10000) >> 16;
1122
    Storeinc(xc, z, y);
1123
    }
1124
    while(xb < xbe);
1125
  while(xa < xae) {
1126
    y = (*xa & 0xffff) - borrow;
1127
    borrow = (y & 0x10000) >> 16;
1128
    z = (*xa++ >> 16) - borrow;
1129
    borrow = (z & 0x10000) >> 16;
1130
    Storeinc(xc, z, y);
1131
    }
1132
#else
1133
  do {
1134
    y = *xa++ - *xb++ - borrow;
1135
    borrow = (y & 0x10000) >> 16;
1136
    *xc++ = y & 0xffff;
1137
    }
1138
    while(xb < xbe);
1139
  while(xa < xae) {
1140
    y = *xa++ - borrow;
1141
    borrow = (y & 0x10000) >> 16;
1142
    *xc++ = y & 0xffff;
1143
    }
1144
#endif
1145
#endif
1146
0
  while(!*--xc)
1147
0
    wa--;
1148
0
  c->wds = wa;
1149
0
  return c;
1150
0
  }
1151
1152
 static double
1153
ulp
1154
#ifdef KR_headers
1155
  (x) U *x;
1156
#else
1157
  (U *x)
1158
#endif
1159
0
{
1160
0
  Long L;
1161
0
  U u;
1162
1163
0
  L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
1164
#ifndef Avoid_Underflow
1165
#ifndef Sudden_Underflow
1166
  if (L > 0) {
1167
#endif
1168
#endif
1169
#ifdef IBM
1170
    L |= Exp_msk1 >> 4;
1171
#endif
1172
0
    word0(&u) = L;
1173
0
    word1(&u) = 0;
1174
#ifndef Avoid_Underflow
1175
#ifndef Sudden_Underflow
1176
    }
1177
  else {
1178
    L = -L >> Exp_shift;
1179
    if (L < Exp_shift) {
1180
      word0(&u) = 0x80000 >> L;
1181
      word1(&u) = 0;
1182
      }
1183
    else {
1184
      word0(&u) = 0;
1185
      L -= Exp_shift;
1186
      word1(&u) = L >= 31 ? 1 : 1 << 31 - L;
1187
      }
1188
    }
1189
#endif
1190
#endif
1191
0
  return dval(&u);
1192
0
  }
1193
1194
 static double
1195
b2d
1196
#ifdef KR_headers
1197
  (a, e) Bigint *a; int *e;
1198
#else
1199
  (Bigint *a, int *e)
1200
#endif
1201
0
{
1202
0
  ULong *xa, *xa0, w, y, z;
1203
0
  int k;
1204
0
  U d;
1205
#ifdef VAX
1206
  ULong d0, d1;
1207
#else
1208
0
#define d0 word0(&d)
1209
0
#define d1 word1(&d)
1210
0
#endif
1211
1212
0
  xa0 = a->x;
1213
0
  xa = xa0 + a->wds;
1214
0
  y = *--xa;
1215
#ifdef DEBUG
1216
  if (!y) Bug("zero y in b2d");
1217
#endif
1218
0
  k = hi0bits(y);
1219
0
  *e = 32 - k;
1220
0
#ifdef Pack_32
1221
0
  if (k < Ebits) {
1222
0
    d0 = Exp_1 | y >> (Ebits - k);
1223
0
    w = xa > xa0 ? *--xa : 0;
1224
0
    d1 = y << ((32-Ebits) + k) | w >> (Ebits - k);
1225
0
    goto ret_d;
1226
0
    }
1227
0
  z = xa > xa0 ? *--xa : 0;
1228
0
  if (k -= Ebits) {
1229
0
    d0 = Exp_1 | y << k | z >> (32 - k);
1230
0
    y = xa > xa0 ? *--xa : 0;
1231
0
    d1 = z << k | y >> (32 - k);
1232
0
    }
1233
0
  else {
1234
0
    d0 = Exp_1 | y;
1235
0
    d1 = z;
1236
0
    }
1237
#else
1238
  if (k < Ebits + 16) {
1239
    z = xa > xa0 ? *--xa : 0;
1240
    d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
1241
    w = xa > xa0 ? *--xa : 0;
1242
    y = xa > xa0 ? *--xa : 0;
1243
    d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
1244
    goto ret_d;
1245
    }
1246
  z = xa > xa0 ? *--xa : 0;
1247
  w = xa > xa0 ? *--xa : 0;
1248
  k -= Ebits + 16;
1249
  d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
1250
  y = xa > xa0 ? *--xa : 0;
1251
  d1 = w << k + 16 | y << k;
1252
#endif
1253
0
 ret_d:
1254
#ifdef VAX
1255
  word0(&d) = d0 >> 16 | d0 << 16;
1256
  word1(&d) = d1 >> 16 | d1 << 16;
1257
#else
1258
0
#undef d0
1259
0
#undef d1
1260
0
#endif
1261
0
  return dval(&d);
1262
0
  }
1263
1264
 static Bigint *
1265
d2b
1266
#ifdef KR_headers
1267
  (d, e, bits) U *d; int *e, *bits;
1268
#else
1269
  (U *d, int *e, int *bits)
1270
#endif
1271
0
{
1272
0
  Bigint *b;
1273
0
  int de, k;
1274
0
  ULong *x, y, z;
1275
0
#ifndef Sudden_Underflow
1276
0
  int i;
1277
0
#endif
1278
#ifdef VAX
1279
  ULong d0, d1;
1280
  d0 = word0(d) >> 16 | word0(d) << 16;
1281
  d1 = word1(d) >> 16 | word1(d) << 16;
1282
#else
1283
0
#define d0 word0(d)
1284
0
#define d1 word1(d)
1285
0
#endif
1286
1287
0
#ifdef Pack_32
1288
0
  b = Balloc(1);
1289
#else
1290
  b = Balloc(2);
1291
#endif
1292
0
  x = b->x;
1293
1294
0
  z = d0 & Frac_mask;
1295
0
  d0 &= 0x7fffffff; /* clear sign bit, which we ignore */
1296
#ifdef Sudden_Underflow
1297
  de = (int)(d0 >> Exp_shift);
1298
#ifndef IBM
1299
  z |= Exp_msk11;
1300
#endif
1301
#else
1302
0
  if ((de = (int)(d0 >> Exp_shift)))
1303
0
    z |= Exp_msk1;
1304
0
#endif
1305
0
#ifdef Pack_32
1306
0
  if ((y = d1)) {
1307
0
    if ((k = lo0bits(&y))) {
1308
0
      x[0] = y | z << (32 - k);
1309
0
      z >>= k;
1310
0
      }
1311
0
    else
1312
0
      x[0] = y;
1313
0
#ifndef Sudden_Underflow
1314
0
    i =
1315
0
#endif
1316
0
        b->wds = (x[1] = z) ? 2 : 1;
1317
0
    }
1318
0
  else {
1319
0
    k = lo0bits(&z);
1320
0
    x[0] = z;
1321
0
#ifndef Sudden_Underflow
1322
0
    i =
1323
0
#endif
1324
0
        b->wds = 1;
1325
0
    k += 32;
1326
0
    }
1327
#else
1328
  if (y = d1) {
1329
    if (k = lo0bits(&y))
1330
      if (k >= 16) {
1331
        x[0] = y | z << 32 - k & 0xffff;
1332
        x[1] = z >> k - 16 & 0xffff;
1333
        x[2] = z >> k;
1334
        i = 2;
1335
        }
1336
      else {
1337
        x[0] = y & 0xffff;
1338
        x[1] = y >> 16 | z << 16 - k & 0xffff;
1339
        x[2] = z >> k & 0xffff;
1340
        x[3] = z >> k+16;
1341
        i = 3;
1342
        }
1343
    else {
1344
      x[0] = y & 0xffff;
1345
      x[1] = y >> 16;
1346
      x[2] = z & 0xffff;
1347
      x[3] = z >> 16;
1348
      i = 3;
1349
      }
1350
    }
1351
  else {
1352
#ifdef DEBUG
1353
    if (!z)
1354
      Bug("Zero passed to d2b");
1355
#endif
1356
    k = lo0bits(&z);
1357
    if (k >= 16) {
1358
      x[0] = z;
1359
      i = 0;
1360
      }
1361
    else {
1362
      x[0] = z & 0xffff;
1363
      x[1] = z >> 16;
1364
      i = 1;
1365
      }
1366
    k += 32;
1367
    }
1368
  while(!x[i])
1369
    --i;
1370
  b->wds = i + 1;
1371
#endif
1372
0
#ifndef Sudden_Underflow
1373
0
  if (de) {
1374
0
#endif
1375
#ifdef IBM
1376
    *e = (de - Bias - (P-1) << 2) + k;
1377
    *bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
1378
#else
1379
0
    *e = de - Bias - (P-1) + k;
1380
0
    *bits = P - k;
1381
0
#endif
1382
0
#ifndef Sudden_Underflow
1383
0
    }
1384
0
  else {
1385
0
    *e = de - Bias - (P-1) + 1 + k;
1386
0
#ifdef Pack_32
1387
0
    *bits = 32*i - hi0bits(x[i-1]);
1388
#else
1389
    *bits = (i+2)*16 - hi0bits(x[i]);
1390
#endif
1391
0
    }
1392
0
#endif
1393
0
  return b;
1394
0
  }
1395
#undef d0
1396
#undef d1
1397
1398
 static double
1399
ratio
1400
#ifdef KR_headers
1401
  (a, b) Bigint *a, *b;
1402
#else
1403
  (Bigint *a, Bigint *b)
1404
#endif
1405
0
{
1406
0
  U da, db;
1407
0
  int k, ka, kb;
1408
1409
0
  dval(&da) = b2d(a, &ka);
1410
0
  dval(&db) = b2d(b, &kb);
1411
0
#ifdef Pack_32
1412
0
  k = ka - kb + 32*(a->wds - b->wds);
1413
#else
1414
  k = ka - kb + 16*(a->wds - b->wds);
1415
#endif
1416
#ifdef IBM
1417
  if (k > 0) {
1418
    word0(&da) += (k >> 2)*Exp_msk1;
1419
    if (k &= 3)
1420
      dval(&da) *= 1 << k;
1421
    }
1422
  else {
1423
    k = -k;
1424
    word0(&db) += (k >> 2)*Exp_msk1;
1425
    if (k &= 3)
1426
      dval(&db) *= 1 << k;
1427
    }
1428
#else
1429
0
  if (k > 0)
1430
0
    word0(&da) += k*Exp_msk1;
1431
0
  else {
1432
0
    k = -k;
1433
0
    word0(&db) += k*Exp_msk1;
1434
0
    }
1435
0
#endif
1436
0
  return dval(&da) / dval(&db);
1437
0
  }
1438
1439
 static CONST double
1440
tens[] = {
1441
    1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1442
    1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1443
    1e20, 1e21, 1e22
1444
#ifdef VAX
1445
    , 1e23, 1e24
1446
#endif
1447
    };
1448
1449
 static CONST double
1450
#ifdef IEEE_Arith
1451
bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1452
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
1453
#ifdef Avoid_Underflow
1454
    9007199254740992.*9007199254740992.e-256
1455
    /* = 2^106 * 1e-256 */
1456
#else
1457
    1e-256
1458
#endif
1459
    };
1460
/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
1461
/* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
1462
0
#define Scale_Bit 0x10
1463
0
#define n_bigtens 5
1464
#else
1465
#ifdef IBM
1466
bigtens[] = { 1e16, 1e32, 1e64 };
1467
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 };
1468
#define n_bigtens 3
1469
#else
1470
bigtens[] = { 1e16, 1e32 };
1471
static CONST double tinytens[] = { 1e-16, 1e-32 };
1472
#define n_bigtens 2
1473
#endif
1474
#endif
1475
1476
#undef Need_Hexdig
1477
#ifdef INFNAN_CHECK
1478
#ifndef No_Hex_NaN
1479
#define Need_Hexdig
1480
#endif
1481
#endif
1482
1483
#ifndef Need_Hexdig
1484
#ifndef NO_HEX_FP
1485
#define Need_Hexdig
1486
#endif
1487
#endif
1488
1489
#ifdef Need_Hexdig /*{*/
1490
static unsigned char hexdig[256];
1491
1492
 static void
1493
#ifdef KR_headers
1494
htinit(h, s, inc) unsigned char *h; unsigned char *s; int inc;
1495
#else
1496
htinit(unsigned char *h, unsigned char *s, int inc)
1497
#endif
1498
0
{
1499
0
  int i, j;
1500
0
  for(i = 0; (j = s[i]) !=0; i++)
1501
0
    h[j] = i + inc;
1502
0
  }
1503
1504
 static void
1505
#ifdef KR_headers
1506
hexdig_init()
1507
#else
1508
hexdig_init(void)
1509
#endif
1510
0
{
1511
0
#define USC (unsigned char *)
1512
0
  htinit(hexdig, USC "0123456789", 0x10);
1513
0
  htinit(hexdig, USC "abcdef", 0x10 + 10);
1514
0
  htinit(hexdig, USC "ABCDEF", 0x10 + 10);
1515
0
  }
1516
#endif /* } Need_Hexdig */
1517
1518
#ifdef INFNAN_CHECK
1519
1520
#ifndef NAN_WORD0
1521
0
#define NAN_WORD0 0x7ff80000
1522
#endif
1523
1524
#ifndef NAN_WORD1
1525
0
#define NAN_WORD1 0
1526
#endif
1527
1528
 static int
1529
match
1530
#ifdef KR_headers
1531
  (sp, t) char **sp, *t;
1532
#else
1533
  (CONST char **sp, CONST char *t)
1534
#endif
1535
0
{
1536
0
  int c, d;
1537
0
  CONST char *s = *sp;
1538
1539
0
  while((d = *t++)) {
1540
0
    if ((c = *++s) >= 'A' && c <= 'Z')
1541
0
      c += 'a' - 'A';
1542
0
    if (c != d)
1543
0
      return 0;
1544
0
    }
1545
0
  *sp = s + 1;
1546
0
  return 1;
1547
0
  }
1548
1549
#ifndef No_Hex_NaN
1550
 static void
1551
hexnan
1552
#ifdef KR_headers
1553
  (rvp, sp) U *rvp; CONST char **sp;
1554
#else
1555
  (U *rvp, CONST char **sp)
1556
#endif
1557
0
{
1558
0
  ULong c, x[2];
1559
0
  CONST char *s;
1560
0
  int c1, havedig, udx0, xshift;
1561
1562
0
  if (!hexdig[(int)'0'])
1563
0
    hexdig_init();
1564
0
  x[0] = x[1] = 0;
1565
0
  havedig = xshift = 0;
1566
0
  udx0 = 1;
1567
0
  s = *sp;
1568
  /* allow optional initial 0x or 0X */
1569
0
  while((c = *(CONST unsigned char*)(s+1)) && c <= ' ')
1570
0
    ++s;
1571
0
  if (s[1] == '0' && (s[2] == 'x' || s[2] == 'X'))
1572
0
    s += 2;
1573
0
  while((c = *(CONST unsigned char*)++s)) {
1574
0
    if ((c1 = hexdig[c]))
1575
0
      c  = c1 & 0xf;
1576
0
    else if (c <= ' ') {
1577
0
      if (udx0 && havedig) {
1578
0
        udx0 = 0;
1579
0
        xshift = 1;
1580
0
        }
1581
0
      continue;
1582
0
      }
1583
#ifdef GDTOA_NON_PEDANTIC_NANCHECK
1584
    else if (/*(*/ c == ')' && havedig) {
1585
      *sp = s + 1;
1586
      break;
1587
      }
1588
    else
1589
      return; /* invalid form: don't change *sp */
1590
#else
1591
0
    else {
1592
0
      do {
1593
0
        if (/*(*/ c == ')') {
1594
0
          *sp = s + 1;
1595
0
          break;
1596
0
          }
1597
0
        } while((c = *++s));
1598
0
      break;
1599
0
      }
1600
0
#endif
1601
0
    havedig = 1;
1602
0
    if (xshift) {
1603
0
      xshift = 0;
1604
0
      x[0] = x[1];
1605
0
      x[1] = 0;
1606
0
      }
1607
0
    if (udx0)
1608
0
      x[0] = (x[0] << 4) | (x[1] >> 28);
1609
0
    x[1] = (x[1] << 4) | c;
1610
0
    }
1611
0
  if ((x[0] &= 0xfffff) || x[1]) {
1612
0
    word0(rvp) = Exp_mask | x[0];
1613
0
    word1(rvp) = x[1];
1614
0
    }
1615
0
  }
1616
#endif /*No_Hex_NaN*/
1617
#endif /* INFNAN_CHECK */
1618
1619
#ifdef Pack_32
1620
#define ULbits 32
1621
#define kshift 5
1622
0
#define kmask 31
1623
#else
1624
#define ULbits 16
1625
#define kshift 4
1626
#define kmask 15
1627
#endif
1628
#ifndef NO_HEX_FP /*{*/
1629
1630
 static void
1631
#ifdef KR_headers
1632
rshift(b, k) Bigint *b; int k;
1633
#else
1634
rshift(Bigint *b, int k)
1635
#endif
1636
{
1637
  ULong *x, *x1, *xe, y;
1638
  int n;
1639
1640
  x = x1 = b->x;
1641
  n = k >> kshift;
1642
  if (n < b->wds) {
1643
    xe = x + b->wds;
1644
    x += n;
1645
    if (k &= kmask) {
1646
      n = 32 - k;
1647
      y = *x++ >> k;
1648
      while(x < xe) {
1649
        *x1++ = (y | (*x << n)) & 0xffffffff;
1650
        y = *x++ >> k;
1651
        }
1652
      if ((*x1 = y) !=0)
1653
        x1++;
1654
      }
1655
    else
1656
      while(x < xe)
1657
        *x1++ = *x++;
1658
    }
1659
  if ((b->wds = x1 - b->x) == 0)
1660
    b->x[0] = 0;
1661
  }
1662
1663
 static ULong
1664
#ifdef KR_headers
1665
any_on(b, k) Bigint *b; int k;
1666
#else
1667
any_on(Bigint *b, int k)
1668
#endif
1669
{
1670
  int n, nwds;
1671
  ULong *x, *x0, x1, x2;
1672
1673
  x = b->x;
1674
  nwds = b->wds;
1675
  n = k >> kshift;
1676
  if (n > nwds)
1677
    n = nwds;
1678
  else if (n < nwds && (k &= kmask)) {
1679
    x1 = x2 = x[n];
1680
    x1 >>= k;
1681
    x1 <<= k;
1682
    if (x1 != x2)
1683
      return 1;
1684
    }
1685
  x0 = x;
1686
  x += n;
1687
  while(x > x0)
1688
    if (*--x)
1689
      return 1;
1690
  return 0;
1691
  }
1692
1693
enum {  /* rounding values: same as FLT_ROUNDS */
1694
  Round_zero = 0,
1695
  Round_near = 1,
1696
  Round_up = 2,
1697
  Round_down = 3
1698
  };
1699
1700
 static Bigint *
1701
#ifdef KR_headers
1702
increment(b) Bigint *b;
1703
#else
1704
increment(Bigint *b)
1705
#endif
1706
{
1707
  ULong *x, *xe;
1708
  Bigint *b1;
1709
1710
  x = b->x;
1711
  xe = x + b->wds;
1712
  do {
1713
    if (*x < (ULong)0xffffffffL) {
1714
      ++*x;
1715
      return b;
1716
      }
1717
    *x++ = 0;
1718
    } while(x < xe);
1719
  {
1720
    if (b->wds >= b->maxwds) {
1721
      b1 = Balloc(b->k+1);
1722
      Bcopy(b1,b);
1723
      Bfree(b);
1724
      b = b1;
1725
      }
1726
    b->x[b->wds++] = 1;
1727
    }
1728
  return b;
1729
  }
1730
1731
 void
1732
#ifdef KR_headers
1733
gethex(sp, rvp, rounding, sign)
1734
  CONST char **sp; U *rvp; int rounding, sign;
1735
#else
1736
gethex( CONST char **sp, U *rvp, int rounding, int sign)
1737
#endif
1738
{
1739
  Bigint *b;
1740
  CONST unsigned char *decpt, *s0, *s, *s1;
1741
  Long e, e1;
1742
  ULong L, lostbits, *x;
1743
  int big, denorm, esign, havedig, k, n, nbits, up, zret;
1744
#ifdef IBM
1745
  int j;
1746
#endif
1747
  enum {
1748
#ifdef IEEE_Arith /*{{*/
1749
    emax = 0x7fe - Bias - P + 1,
1750
    emin = Emin - P + 1
1751
#else /*}{*/
1752
    emin = Emin - P,
1753
#ifdef VAX
1754
    emax = 0x7ff - Bias - P + 1
1755
#endif
1756
#ifdef IBM
1757
    emax = 0x7f - Bias - P
1758
#endif
1759
#endif /*}}*/
1760
    };
1761
#ifdef USE_LOCALE
1762
  int i;
1763
#ifdef NO_LOCALE_CACHE
1764
  const unsigned char *decimalpoint = (unsigned char*)
1765
    localeconv()->decimal_point;
1766
#else
1767
  const unsigned char *decimalpoint;
1768
  static unsigned char *decimalpoint_cache;
1769
  if (!(s0 = decimalpoint_cache)) {
1770
    s0 = (unsigned char*)localeconv()->decimal_point;
1771
    if ((decimalpoint_cache = (unsigned char*)
1772
        MALLOC(strlen((CONST char*)s0) + 1))) {
1773
      strcpy((char*)decimalpoint_cache, (CONST char*)s0);
1774
      s0 = decimalpoint_cache;
1775
      }
1776
    }
1777
  decimalpoint = s0;
1778
#endif
1779
#endif
1780
1781
  if (!hexdig['0'])
1782
    hexdig_init();
1783
  havedig = 0;
1784
  s0 = *(CONST unsigned char **)sp + 2;
1785
  while(s0[havedig] == '0')
1786
    havedig++;
1787
  s0 += havedig;
1788
  s = s0;
1789
  decpt = 0;
1790
  zret = 0;
1791
  e = 0;
1792
  if (hexdig[*s])
1793
    havedig++;
1794
  else {
1795
    zret = 1;
1796
#ifdef USE_LOCALE
1797
    for(i = 0; decimalpoint[i]; ++i) {
1798
      if (s[i] != decimalpoint[i])
1799
        goto pcheck;
1800
      }
1801
    decpt = s += i;
1802
#else
1803
    if (*s != '.')
1804
      goto pcheck;
1805
    decpt = ++s;
1806
#endif
1807
    if (!hexdig[*s])
1808
      goto pcheck;
1809
    while(*s == '0')
1810
      s++;
1811
    if (hexdig[*s])
1812
      zret = 0;
1813
    havedig = 1;
1814
    s0 = s;
1815
    }
1816
  while(hexdig[*s])
1817
    s++;
1818
#ifdef USE_LOCALE
1819
  if (*s == *decimalpoint && !decpt) {
1820
    for(i = 1; decimalpoint[i]; ++i) {
1821
      if (s[i] != decimalpoint[i])
1822
        goto pcheck;
1823
      }
1824
    decpt = s += i;
1825
#else
1826
  if (*s == '.' && !decpt) {
1827
    decpt = ++s;
1828
#endif
1829
    while(hexdig[*s])
1830
      s++;
1831
    }/*}*/
1832
  if (decpt)
1833
    e = -(((Long)(s-decpt)) << 2);
1834
 pcheck:
1835
  s1 = s;
1836
  big = esign = 0;
1837
  switch(*s) {
1838
    case 'p':
1839
    case 'P':
1840
    switch(*++s) {
1841
      case '-':
1842
      esign = 1;
1843
      // fall through
1844
      case '+':
1845
      s++;
1846
      }
1847
    if ((n = hexdig[*s]) == 0 || n > 0x19) {
1848
      s = s1;
1849
      break;
1850
      }
1851
    e1 = n - 0x10;
1852
    while((n = hexdig[*++s]) !=0 && n <= 0x19) {
1853
      if (e1 & 0xf8000000)
1854
        big = 1;
1855
      e1 = 10*e1 + n - 0x10;
1856
      }
1857
    if (esign)
1858
      e1 = -e1;
1859
    e += e1;
1860
    }
1861
  *sp = (char*)s;
1862
  if (!havedig)
1863
    *sp = (char*)s0 - 1;
1864
  if (zret)
1865
    goto retz1;
1866
  if (big) {
1867
    if (esign) {
1868
#ifdef IEEE_Arith
1869
      switch(rounding) {
1870
        case Round_up:
1871
        if (sign)
1872
          break;
1873
        goto ret_tiny;
1874
        case Round_down:
1875
        if (!sign)
1876
          break;
1877
        goto ret_tiny;
1878
        }
1879
#endif
1880
      goto retz;
1881
#ifdef IEEE_Arith
1882
 ret_tiny:
1883
#ifndef NO_ERRNO
1884
      errno = ERANGE;
1885
#endif
1886
      word0(rvp) = 0;
1887
      word1(rvp) = 1;
1888
      return;
1889
#endif /* IEEE_Arith */
1890
      }
1891
    switch(rounding) {
1892
      case Round_near:
1893
      goto ovfl1;
1894
      case Round_up:
1895
      if (!sign)
1896
        goto ovfl1;
1897
      goto ret_big;
1898
      case Round_down:
1899
      if (sign)
1900
        goto ovfl1;
1901
      goto ret_big;
1902
      }
1903
 ret_big:
1904
    word0(rvp) = Big0;
1905
    word1(rvp) = Big1;
1906
    return;
1907
    }
1908
  n = s1 - s0 - 1;
1909
  for(k = 0; n > (1 << (kshift-2)) - 1; n >>= 1)
1910
    k++;
1911
  b = Balloc(k);
1912
  x = b->x;
1913
  n = 0;
1914
  L = 0;
1915
#ifdef USE_LOCALE
1916
  for(i = 0; decimalpoint[i+1]; ++i);
1917
#endif
1918
  while(s1 > s0) {
1919
#ifdef USE_LOCALE
1920
    if (*--s1 == decimalpoint[i]) {
1921
      s1 -= i;
1922
      continue;
1923
      }
1924
#else
1925
    if (*--s1 == '.')
1926
      continue;
1927
#endif
1928
    if (n == ULbits) {
1929
      *x++ = L;
1930
      L = 0;
1931
      n = 0;
1932
      }
1933
    L |= (hexdig[*s1] & 0x0f) << n;
1934
    n += 4;
1935
    }
1936
  *x++ = L;
1937
  b->wds = n = x - b->x;
1938
  n = ULbits*n - hi0bits(L);
1939
  nbits = Nbits;
1940
  lostbits = 0;
1941
  x = b->x;
1942
  if (n > nbits) {
1943
    n -= nbits;
1944
    if (any_on(b,n)) {
1945
      lostbits = 1;
1946
      k = n - 1;
1947
      if (x[k>>kshift] & 1 << (k & kmask)) {
1948
        lostbits = 2;
1949
        if (k > 0 && any_on(b,k))
1950
          lostbits = 3;
1951
        }
1952
      }
1953
    rshift(b, n);
1954
    e += n;
1955
    }
1956
  else if (n < nbits) {
1957
    n = nbits - n;
1958
    b = lshift(b, n);
1959
    e -= n;
1960
    x = b->x;
1961
    }
1962
  if (e > Emax) {
1963
 ovfl:
1964
    Bfree(b);
1965
 ovfl1:
1966
#ifndef NO_ERRNO
1967
    errno = ERANGE;
1968
#endif
1969
    word0(rvp) = Exp_mask;
1970
    word1(rvp) = 0;
1971
    return;
1972
    }
1973
  denorm = 0;
1974
  if (e < emin) {
1975
    denorm = 1;
1976
    n = emin - e;
1977
    if (n >= nbits) {
1978
#ifdef IEEE_Arith /*{*/
1979
      switch (rounding) {
1980
        case Round_near:
1981
        if (n == nbits && (n < 2 || any_on(b,n-1)))
1982
          goto ret_tiny;
1983
        break;
1984
        case Round_up:
1985
        if (!sign)
1986
          goto ret_tiny;
1987
        break;
1988
        case Round_down:
1989
        if (sign)
1990
          goto ret_tiny;
1991
        }
1992
#endif /* } IEEE_Arith */
1993
      Bfree(b);
1994
 retz:
1995
#ifndef NO_ERRNO
1996
      errno = ERANGE;
1997
#endif
1998
 retz1:
1999
      rvp->d = 0.;
2000
      return;
2001
      }
2002
    k = n - 1;
2003
    if (lostbits)
2004
      lostbits = 1;
2005
    else if (k > 0)
2006
      lostbits = any_on(b,k);
2007
    if (x[k>>kshift] & 1 << (k & kmask))
2008
      lostbits |= 2;
2009
    nbits -= n;
2010
    rshift(b,n);
2011
    e = emin;
2012
    }
2013
  if (lostbits) {
2014
    up = 0;
2015
    switch(rounding) {
2016
      case Round_zero:
2017
      break;
2018
      case Round_near:
2019
      if (lostbits & 2
2020
       && (lostbits & 1) | (x[0] & 1))
2021
        up = 1;
2022
      break;
2023
      case Round_up:
2024
      up = 1 - sign;
2025
      break;
2026
      case Round_down:
2027
      up = sign;
2028
      }
2029
    if (up) {
2030
      k = b->wds;
2031
      b = increment(b);
2032
      x = b->x;
2033
      if (denorm) {
2034
#if 0
2035
        if (nbits == Nbits - 1
2036
         && x[nbits >> kshift] & 1 << (nbits & kmask))
2037
          denorm = 0; /* not currently used */
2038
#endif
2039
        }
2040
      else if (b->wds > k
2041
       || ((n = nbits & kmask) !=0
2042
           && hi0bits(x[k-1]) < 32-n)) {
2043
        rshift(b,1);
2044
        if (++e > Emax)
2045
          goto ovfl;
2046
        }
2047
      }
2048
    }
2049
#ifdef IEEE_Arith
2050
  if (denorm)
2051
    word0(rvp) = b->wds > 1 ? b->x[1] & ~0x100000 : 0;
2052
  else
2053
    word0(rvp) = (b->x[1] & ~0x100000) | ((e + 0x3ff + 52) << 20);
2054
  word1(rvp) = b->x[0];
2055
#endif
2056
#ifdef IBM
2057
  if ((j = e & 3)) {
2058
    k = b->x[0] & ((1 << j) - 1);
2059
    rshift(b,j);
2060
    if (k) {
2061
      switch(rounding) {
2062
        case Round_up:
2063
        if (!sign)
2064
          increment(b);
2065
        break;
2066
        case Round_down:
2067
        if (sign)
2068
          increment(b);
2069
        break;
2070
        case Round_near:
2071
        j = 1 << (j-1);
2072
        if (k & j && ((k & (j-1)) | lostbits))
2073
          increment(b);
2074
        }
2075
      }
2076
    }
2077
  e >>= 2;
2078
  word0(rvp) = b->x[1] | ((e + 65 + 13) << 24);
2079
  word1(rvp) = b->x[0];
2080
#endif
2081
#ifdef VAX
2082
  /* The next two lines ignore swap of low- and high-order 2 bytes. */
2083
  /* word0(rvp) = (b->x[1] & ~0x800000) | ((e + 129 + 55) << 23); */
2084
  /* word1(rvp) = b->x[0]; */
2085
  word0(rvp) = ((b->x[1] & ~0x800000) >> 16) | ((e + 129 + 55) << 7) | (b->x[1] << 16);
2086
  word1(rvp) = (b->x[0] >> 16) | (b->x[0] << 16);
2087
#endif
2088
  Bfree(b);
2089
  }
2090
#endif /*}!NO_HEX_FP*/
2091
2092
 static int
2093
#ifdef KR_headers
2094
dshift(b, p2) Bigint *b; int p2;
2095
#else
2096
dshift(Bigint *b, int p2)
2097
#endif
2098
0
{
2099
0
  int rv = hi0bits(b->x[b->wds-1]) - 4;
2100
0
  if (p2 > 0)
2101
0
    rv -= p2;
2102
0
  return rv & kmask;
2103
0
  }
2104
2105
 static int
2106
quorem
2107
#ifdef KR_headers
2108
  (b, S) Bigint *b, *S;
2109
#else
2110
  (Bigint *b, Bigint *S)
2111
#endif
2112
0
{
2113
0
  int n;
2114
0
  ULong *bx, *bxe, q, *sx, *sxe;
2115
0
#ifdef ULLong
2116
0
  ULLong borrow, carry, y, ys;
2117
#else
2118
  ULong borrow, carry, y, ys;
2119
#ifdef Pack_32
2120
  ULong si, z, zs;
2121
#endif
2122
#endif
2123
2124
0
  n = S->wds;
2125
#ifdef DEBUG
2126
  /*debug*/ if (b->wds > n)
2127
  /*debug*/ Bug("oversize b in quorem");
2128
#endif
2129
0
  if (b->wds < n)
2130
0
    return 0;
2131
0
  sx = S->x;
2132
0
  sxe = sx + --n;
2133
0
  bx = b->x;
2134
0
  bxe = bx + n;
2135
0
  q = *bxe / (*sxe + 1);  /* ensure q <= true quotient */
2136
#ifdef DEBUG
2137
  /*debug*/ if (q > 9)
2138
  /*debug*/ Bug("oversized quotient in quorem");
2139
#endif
2140
0
  if (q) {
2141
0
    borrow = 0;
2142
0
    carry = 0;
2143
0
    do {
2144
0
#ifdef ULLong
2145
0
      ys = *sx++ * (ULLong)q + carry;
2146
0
      carry = ys >> 32;
2147
0
      y = *bx - (ys & FFFFFFFF) - borrow;
2148
0
      borrow = y >> 32 & (ULong)1;
2149
0
      *bx++ = y & FFFFFFFF;
2150
#else
2151
#ifdef Pack_32
2152
      si = *sx++;
2153
      ys = (si & 0xffff) * q + carry;
2154
      zs = (si >> 16) * q + (ys >> 16);
2155
      carry = zs >> 16;
2156
      y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
2157
      borrow = (y & 0x10000) >> 16;
2158
      z = (*bx >> 16) - (zs & 0xffff) - borrow;
2159
      borrow = (z & 0x10000) >> 16;
2160
      Storeinc(bx, z, y);
2161
#else
2162
      ys = *sx++ * q + carry;
2163
      carry = ys >> 16;
2164
      y = *bx - (ys & 0xffff) - borrow;
2165
      borrow = (y & 0x10000) >> 16;
2166
      *bx++ = y & 0xffff;
2167
#endif
2168
#endif
2169
0
      }
2170
0
      while(sx <= sxe);
2171
0
    if (!*bxe) {
2172
0
      bx = b->x;
2173
0
      while(--bxe > bx && !*bxe)
2174
0
        --n;
2175
0
      b->wds = n;
2176
0
      }
2177
0
    }
2178
0
  if (cmp(b, S) >= 0) {
2179
0
    q++;
2180
0
    borrow = 0;
2181
0
    carry = 0;
2182
0
    bx = b->x;
2183
0
    sx = S->x;
2184
0
    do {
2185
0
#ifdef ULLong
2186
0
      ys = *sx++ + carry;
2187
0
      carry = ys >> 32;
2188
0
      y = *bx - (ys & FFFFFFFF) - borrow;
2189
0
      borrow = y >> 32 & (ULong)1;
2190
0
      *bx++ = y & FFFFFFFF;
2191
#else
2192
#ifdef Pack_32
2193
      si = *sx++;
2194
      ys = (si & 0xffff) + carry;
2195
      zs = (si >> 16) + (ys >> 16);
2196
      carry = zs >> 16;
2197
      y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
2198
      borrow = (y & 0x10000) >> 16;
2199
      z = (*bx >> 16) - (zs & 0xffff) - borrow;
2200
      borrow = (z & 0x10000) >> 16;
2201
      Storeinc(bx, z, y);
2202
#else
2203
      ys = *sx++ + carry;
2204
      carry = ys >> 16;
2205
      y = *bx - (ys & 0xffff) - borrow;
2206
      borrow = (y & 0x10000) >> 16;
2207
      *bx++ = y & 0xffff;
2208
#endif
2209
#endif
2210
0
      }
2211
0
      while(sx <= sxe);
2212
0
    bx = b->x;
2213
0
    bxe = bx + n;
2214
0
    if (!*bxe) {
2215
0
      while(--bxe > bx && !*bxe)
2216
0
        --n;
2217
0
      b->wds = n;
2218
0
      }
2219
0
    }
2220
0
  return q;
2221
0
  }
2222
2223
#ifndef NO_STRTOD_BIGCOMP
2224
2225
 static void
2226
bigcomp
2227
#ifdef KR_headers
2228
  (rv, s0, bc)
2229
  U *rv; CONST char *s0; BCinfo *bc;
2230
#else
2231
  (U *rv, CONST char *s0, BCinfo *bc)
2232
#endif
2233
0
{
2234
0
  Bigint *b, *d;
2235
0
  int b2, bbits, d2, dd, dig, dsign, i, j, nd, nd0, p2, p5, speccase;
2236
2237
0
  dsign = bc->dsign;
2238
0
  nd = bc->nd;
2239
0
  nd0 = bc->nd0;
2240
0
  p5 = nd + bc->e0 - 1;
2241
0
  dd = speccase = 0;
2242
0
#ifndef Sudden_Underflow
2243
0
  if (rv->d == 0.) { /* special case: value near underflow-to-zero */
2244
        /* threshold was rounded to zero */
2245
0
    b = i2b(1);
2246
0
    p2 = Emin - P + 1;
2247
0
    bbits = 1;
2248
0
#ifdef Avoid_Underflow
2249
0
    word0(rv) = (P+2) << Exp_shift;
2250
#else
2251
    word1(rv) = 1;
2252
#endif
2253
0
    i = 0;
2254
#ifdef Honor_FLT_ROUNDS
2255
    if (bc->rounding == 1)
2256
#endif
2257
0
      {
2258
0
      speccase = 1;
2259
0
      --p2;
2260
0
      dsign = 0;
2261
0
      goto have_i;
2262
0
      }
2263
0
    }
2264
0
  else
2265
0
#endif
2266
0
    b = d2b(rv, &p2, &bbits);
2267
0
#ifdef Avoid_Underflow
2268
0
  p2 -= bc->scale;
2269
0
#endif
2270
  /* floor(log2(rv)) == bbits - 1 + p2 */
2271
  /* Check for denormal case. */
2272
0
  i = P - bbits;
2273
0
  if (i > (j = P - Emin - 1 + p2)) {
2274
#ifdef Sudden_Underflow
2275
    Bfree(b);
2276
    b = i2b(1);
2277
    p2 = Emin;
2278
    i = P - 1;
2279
#ifdef Avoid_Underflow
2280
    word0(rv) = (1 + bc->scale) << Exp_shift;
2281
#else
2282
    word0(rv) = Exp_msk1;
2283
#endif
2284
    word1(rv) = 0;
2285
#else
2286
0
    i = j;
2287
0
#endif
2288
0
    }
2289
#ifdef Honor_FLT_ROUNDS
2290
  if (bc->rounding != 1) {
2291
    if (i > 0)
2292
      b = lshift(b, i);
2293
    if (dsign)
2294
      b = increment(b);
2295
    }
2296
  else
2297
#endif
2298
0
    {
2299
0
    b = lshift(b, ++i);
2300
0
    b->x[0] |= 1;
2301
0
    }
2302
0
#ifndef Sudden_Underflow
2303
0
 have_i:
2304
0
#endif
2305
0
  p2 -= p5 + i;
2306
0
  d = i2b(1);
2307
  /* Arrange for convenient computation of quotients:
2308
   * shift left if necessary so divisor has 4 leading 0 bits.
2309
   */
2310
0
  if (p5 > 0)
2311
0
    d = pow5mult(d, p5);
2312
0
  else if (p5 < 0)
2313
0
    b = pow5mult(b, -p5);
2314
0
  if (p2 > 0) {
2315
0
    b2 = p2;
2316
0
    d2 = 0;
2317
0
    }
2318
0
  else {
2319
0
    b2 = 0;
2320
0
    d2 = -p2;
2321
0
    }
2322
0
  i = dshift(d, d2);
2323
0
  if ((b2 += i) > 0)
2324
0
    b = lshift(b, b2);
2325
0
  if ((d2 += i) > 0)
2326
0
    d = lshift(d, d2);
2327
2328
  /* Now b/d = exactly half-way between the two floating-point values */
2329
  /* on either side of the input string.  Compute first digit of b/d. */
2330
2331
0
  if (!(dig = quorem(b,d))) {
2332
0
    b = multadd(b, 10, 0);  /* very unlikely */
2333
0
    dig = quorem(b,d);
2334
0
    }
2335
2336
  /* Compare b/d with s0 */
2337
2338
0
  for(i = 0; i < nd0; ) {
2339
0
    if ((dd = s0[i++] - '0' - dig))
2340
0
      goto ret;
2341
0
    if (!b->x[0] && b->wds == 1) {
2342
0
      if (i < nd)
2343
0
        dd = 1;
2344
0
      goto ret;
2345
0
      }
2346
0
    b = multadd(b, 10, 0);
2347
0
    dig = quorem(b,d);
2348
0
    }
2349
0
  for(j = bc->dp1; i++ < nd;) {
2350
0
    if ((dd = s0[j++] - '0' - dig))
2351
0
      goto ret;
2352
0
    if (!b->x[0] && b->wds == 1) {
2353
0
      if (i < nd)
2354
0
        dd = 1;
2355
0
      goto ret;
2356
0
      }
2357
0
    b = multadd(b, 10, 0);
2358
0
    dig = quorem(b,d);
2359
0
    }
2360
0
  if (b->x[0] || b->wds > 1)
2361
0
    dd = -1;
2362
0
 ret:
2363
0
  Bfree(b);
2364
0
  Bfree(d);
2365
#ifdef Honor_FLT_ROUNDS
2366
  if (bc->rounding != 1) {
2367
    if (dd < 0) {
2368
      if (bc->rounding == 0) {
2369
        if (!dsign)
2370
          goto retlow1;
2371
        }
2372
      else if (dsign)
2373
        goto rethi1;
2374
      }
2375
    else if (dd > 0) {
2376
      if (bc->rounding == 0) {
2377
        if (dsign)
2378
          goto rethi1;
2379
        goto ret1;
2380
        }
2381
      if (!dsign)
2382
        goto rethi1;
2383
      dval(rv) += 2.*ulp(rv);
2384
      }
2385
    else {
2386
      bc->inexact = 0;
2387
      if (dsign)
2388
        goto rethi1;
2389
      }
2390
    }
2391
  else
2392
#endif
2393
0
  if (speccase) {
2394
0
    if (dd <= 0)
2395
0
      rv->d = 0.;
2396
0
    }
2397
0
  else if (dd < 0) {
2398
0
    if (!dsign) /* does not happen for round-near */
2399
0
retlow1:
2400
0
      dval(rv) -= ulp(rv);
2401
0
    }
2402
0
  else if (dd > 0) {
2403
0
    if (dsign) {
2404
0
 rethi1:
2405
0
      dval(rv) += ulp(rv);
2406
0
      }
2407
0
    }
2408
0
  else {
2409
    /* Exact half-way case:  apply round-even rule. */
2410
0
    if (word1(rv) & 1) {
2411
0
      if (dsign)
2412
0
        goto rethi1;
2413
0
      goto retlow1;
2414
0
      }
2415
0
    }
2416
2417
#ifdef Honor_FLT_ROUNDS
2418
 ret1:
2419
#endif
2420
0
  return;
2421
0
  }
2422
#endif /* NO_STRTOD_BIGCOMP */
2423
2424
 double
2425
strtod
2426
#ifdef KR_headers
2427
  (s00, se) CONST char *s00; char **se;
2428
#else
2429
  (CONST char *s00, char **se)
2430
#endif
2431
0
{
2432
0
  int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, e, e1;
2433
0
  int esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
2434
0
  CONST char *s, *s0, *s1;
2435
0
  double aadj, aadj1;
2436
0
  Long L;
2437
0
  U aadj2, adj, rv, rv0;
2438
0
  ULong y, z;
2439
0
  BCinfo bc;
2440
0
  Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
2441
#ifdef SET_INEXACT
2442
  int oldinexact;
2443
#endif
2444
#ifdef Honor_FLT_ROUNDS /*{*/
2445
#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
2446
  bc.rounding = Flt_Rounds;
2447
#else /*}{*/
2448
  bc.rounding = 1;
2449
  switch(fegetround()) {
2450
    case FE_TOWARDZERO: bc.rounding = 0; break;
2451
    case FE_UPWARD: bc.rounding = 2; break;
2452
    case FE_DOWNWARD: bc.rounding = 3;
2453
    }
2454
#endif /*}}*/
2455
#endif /*}*/
2456
#ifdef USE_LOCALE
2457
  CONST char *s2;
2458
#endif
2459
2460
0
  sign = nz0 = nz = bc.dplen = bc.uflchk = 0;
2461
0
  dval(&rv) = 0.;
2462
0
  for(s = s00;;s++) switch(*s) {
2463
0
    case '-':
2464
0
      sign = 1;
2465
      // fall through
2466
0
    case '+':
2467
0
      if (*++s)
2468
0
        goto break2;
2469
      // fall through
2470
0
    case 0:
2471
0
      goto ret0;
2472
0
    case '\t':
2473
0
    case '\n':
2474
0
    case '\v':
2475
0
    case '\f':
2476
0
    case '\r':
2477
0
    case ' ':
2478
0
      continue;
2479
0
    default:
2480
0
      goto break2;
2481
0
    }
2482
0
 break2:
2483
0
  if (*s == '0') {
2484
#ifndef NO_HEX_FP /*{*/
2485
    switch(s[1]) {
2486
      case 'x':
2487
      case 'X':
2488
#ifdef Honor_FLT_ROUNDS
2489
      gethex(&s, &rv, bc.rounding, sign);
2490
#else
2491
      gethex(&s, &rv, 1, sign);
2492
#endif
2493
      goto ret;
2494
      }
2495
#endif /*}*/
2496
0
    nz0 = 1;
2497
0
    while(*++s == '0') ;
2498
0
    if (!*s)
2499
0
      goto ret;
2500
0
    }
2501
0
  s0 = s;
2502
0
  y = z = 0;
2503
0
  for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
2504
0
    if (nd < 9)
2505
0
      y = 10*y + c - '0';
2506
0
    else if (nd < 16)
2507
0
      z = 10*z + c - '0';
2508
0
  nd0 = nd;
2509
0
  bc.dp0 = bc.dp1 = s - s0;
2510
#ifdef USE_LOCALE
2511
  s1 = localeconv()->decimal_point;
2512
  if (c == *s1) {
2513
    c = '.';
2514
    if (*++s1) {
2515
      s2 = s;
2516
      for(;;) {
2517
        if (*++s2 != *s1) {
2518
          c = 0;
2519
          break;
2520
          }
2521
        if (!*++s1) {
2522
          s = s2;
2523
          break;
2524
          }
2525
        }
2526
      }
2527
    }
2528
#endif
2529
0
  if (c == '.') {
2530
0
    c = *++s;
2531
0
    bc.dp1 = s - s0;
2532
0
    bc.dplen = bc.dp1 - bc.dp0;
2533
0
    if (!nd) {
2534
0
      for(; c == '0'; c = *++s)
2535
0
        nz++;
2536
0
      if (c > '0' && c <= '9') {
2537
0
        s0 = s;
2538
0
        nf += nz;
2539
0
        nz = 0;
2540
0
        goto have_dig;
2541
0
        }
2542
0
      goto dig_done;
2543
0
      }
2544
0
    for(; c >= '0' && c <= '9'; c = *++s) {
2545
0
 have_dig:
2546
0
      nz++;
2547
0
      if (c -= '0') {
2548
0
        nf += nz;
2549
0
        for(i = 1; i < nz; i++)
2550
0
          if (nd++ < 9)
2551
0
            y *= 10;
2552
0
          else if (nd <= DBL_DIG + 1)
2553
0
            z *= 10;
2554
0
        if (nd++ < 9)
2555
0
          y = 10*y + c;
2556
0
        else if (nd <= DBL_DIG + 1)
2557
0
          z = 10*z + c;
2558
0
        nz = 0;
2559
0
        }
2560
0
      }
2561
0
    }
2562
0
 dig_done:
2563
0
  e = 0;
2564
0
  if (c == 'e' || c == 'E') {
2565
0
    if (!nd && !nz && !nz0) {
2566
0
      goto ret0;
2567
0
      }
2568
0
    s00 = s;
2569
0
    esign = 0;
2570
0
    switch(c = *++s) {
2571
0
      case '-':
2572
0
        esign = 1;
2573
        // fall through
2574
0
      case '+':
2575
0
        c = *++s;
2576
0
      }
2577
0
    if (c >= '0' && c <= '9') {
2578
0
      while(c == '0')
2579
0
        c = *++s;
2580
0
      if (c > '0' && c <= '9') {
2581
0
        L = c - '0';
2582
0
        s1 = s;
2583
0
        while((c = *++s) >= '0' && c <= '9')
2584
0
          L = 10*L + c - '0';
2585
0
        if (s - s1 > 8 || L > 19999)
2586
          /* Avoid confusion from exponents
2587
           * so large that e might overflow.
2588
           */
2589
0
          e = 19999; /* safe for 16 bit ints */
2590
0
        else
2591
0
          e = (int)L;
2592
0
        if (esign)
2593
0
          e = -e;
2594
0
        }
2595
0
      else
2596
0
        e = 0;
2597
0
      }
2598
0
    else
2599
0
      s = s00;
2600
0
    }
2601
0
  if (!nd) {
2602
0
    if (!nz && !nz0) {
2603
0
#ifdef INFNAN_CHECK
2604
      /* Check for Nan and Infinity */
2605
0
      if (!bc.dplen)
2606
0
       switch(c) {
2607
0
        case 'i':
2608
0
        case 'I':
2609
0
        if (match(&s,"nf")) {
2610
0
          --s;
2611
0
          if (!match(&s,"inity"))
2612
0
            ++s;
2613
0
          word0(&rv) = 0x7ff00000;
2614
0
          word1(&rv) = 0;
2615
0
          goto ret;
2616
0
          }
2617
0
        break;
2618
0
        case 'n':
2619
0
        case 'N':
2620
0
        if (match(&s, "an")) {
2621
0
          word0(&rv) = NAN_WORD0;
2622
0
          word1(&rv) = NAN_WORD1;
2623
0
#ifndef No_Hex_NaN
2624
0
          if (*s == '(') /*)*/
2625
0
            hexnan(&rv, &s);
2626
0
#endif
2627
0
          goto ret;
2628
0
          }
2629
0
        }
2630
0
#endif /* INFNAN_CHECK */
2631
0
 ret0:
2632
0
      s = s00;
2633
0
      sign = 0;
2634
0
      }
2635
0
    goto ret;
2636
0
    }
2637
0
  bc.e0 = e1 = e -= nf;
2638
2639
  /* Now we have nd0 digits, starting at s0, followed by a
2640
   * decimal point, followed by nd-nd0 digits.  The number we're
2641
   * after is the integer represented by those digits times
2642
   * 10**e */
2643
2644
0
  if (!nd0)
2645
0
    nd0 = nd;
2646
0
  k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
2647
0
  dval(&rv) = y;
2648
0
  if (k > 9) {
2649
#ifdef SET_INEXACT
2650
    if (k > DBL_DIG)
2651
      oldinexact = get_inexact();
2652
#endif
2653
0
    dval(&rv) = tens[k - 9] * dval(&rv) + z;
2654
0
    }
2655
0
  bd0 = 0;
2656
0
  if (nd <= DBL_DIG
2657
0
#ifndef RND_PRODQUOT
2658
0
#ifndef Honor_FLT_ROUNDS
2659
0
    && Flt_Rounds == 1
2660
0
#endif
2661
0
#endif
2662
0
      ) {
2663
0
    if (!e)
2664
0
      goto ret;
2665
0
    if (e > 0) {
2666
0
      if (e <= Ten_pmax) {
2667
#ifdef VAX
2668
        goto vax_ovfl_check;
2669
#else
2670
#ifdef Honor_FLT_ROUNDS
2671
        /* round correctly FLT_ROUNDS = 2 or 3 */
2672
        if (sign) {
2673
          rv.d = -rv.d;
2674
          sign = 0;
2675
          }
2676
#endif
2677
0
        /* rv = */ rounded_product(dval(&rv), tens[e]);
2678
0
        goto ret;
2679
0
#endif
2680
0
        }
2681
0
      i = DBL_DIG - nd;
2682
0
      if (e <= Ten_pmax + i) {
2683
        /* A fancier test would sometimes let us do
2684
         * this for larger i values.
2685
         */
2686
#ifdef Honor_FLT_ROUNDS
2687
        /* round correctly FLT_ROUNDS = 2 or 3 */
2688
        if (sign) {
2689
          rv.d = -rv.d;
2690
          sign = 0;
2691
          }
2692
#endif
2693
0
        e -= i;
2694
0
        dval(&rv) *= tens[i];
2695
#ifdef VAX
2696
        /* VAX exponent range is so narrow we must
2697
         * worry about overflow here...
2698
         */
2699
 vax_ovfl_check:
2700
        word0(&rv) -= P*Exp_msk1;
2701
        /* rv = */ rounded_product(dval(&rv), tens[e]);
2702
        if ((word0(&rv) & Exp_mask)
2703
         > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
2704
          goto ovfl;
2705
        word0(&rv) += P*Exp_msk1;
2706
#else
2707
0
        /* rv = */ rounded_product(dval(&rv), tens[e]);
2708
0
#endif
2709
0
        goto ret;
2710
0
        }
2711
0
      }
2712
0
#ifndef Inaccurate_Divide
2713
0
    else if (e >= -Ten_pmax) {
2714
#ifdef Honor_FLT_ROUNDS
2715
      /* round correctly FLT_ROUNDS = 2 or 3 */
2716
      if (sign) {
2717
        rv.d = -rv.d;
2718
        sign = 0;
2719
        }
2720
#endif
2721
0
      /* rv = */ rounded_quotient(dval(&rv), tens[-e]);
2722
0
      goto ret;
2723
0
      }
2724
0
#endif
2725
0
    }
2726
0
  e1 += nd - k;
2727
2728
0
#ifdef IEEE_Arith
2729
#ifdef SET_INEXACT
2730
  bc.inexact = 1;
2731
  if (k <= DBL_DIG)
2732
    oldinexact = get_inexact();
2733
#endif
2734
0
#ifdef Avoid_Underflow
2735
0
  bc.scale = 0;
2736
0
#endif
2737
#ifdef Honor_FLT_ROUNDS
2738
  if (bc.rounding >= 2) {
2739
    if (sign)
2740
      bc.rounding = bc.rounding == 2 ? 0 : 2;
2741
    else
2742
      if (bc.rounding != 2)
2743
        bc.rounding = 0;
2744
    }
2745
#endif
2746
0
#endif /*IEEE_Arith*/
2747
2748
  /* Get starting approximation = rv * 10**e1 */
2749
2750
0
  if (e1 > 0) {
2751
0
    if ((i = e1 & 15))
2752
0
      dval(&rv) *= tens[i];
2753
0
    if (e1 &= ~15) {
2754
0
      if (e1 > DBL_MAX_10_EXP) {
2755
0
 ovfl:
2756
0
#ifndef NO_ERRNO
2757
0
        errno = ERANGE;
2758
0
#endif
2759
        /* Can't trust HUGE_VAL */
2760
0
#ifdef IEEE_Arith
2761
#ifdef Honor_FLT_ROUNDS
2762
        switch(bc.rounding) {
2763
          case 0: /* toward 0 */
2764
          case 3: /* toward -infinity */
2765
          word0(&rv) = Big0;
2766
          word1(&rv) = Big1;
2767
          break;
2768
          default:
2769
          word0(&rv) = Exp_mask;
2770
          word1(&rv) = 0;
2771
          }
2772
#else /*Honor_FLT_ROUNDS*/
2773
0
        word0(&rv) = Exp_mask;
2774
0
        word1(&rv) = 0;
2775
0
#endif /*Honor_FLT_ROUNDS*/
2776
#ifdef SET_INEXACT
2777
        /* set overflow bit */
2778
        dval(&rv0) = 1e300;
2779
        dval(&rv0) *= dval(&rv0);
2780
#endif
2781
#else /*IEEE_Arith*/
2782
        word0(&rv) = Big0;
2783
        word1(&rv) = Big1;
2784
#endif /*IEEE_Arith*/
2785
0
        goto ret;
2786
0
        }
2787
0
      e1 >>= 4;
2788
0
      for(j = 0; e1 > 1; j++, e1 >>= 1)
2789
0
        if (e1 & 1)
2790
0
          dval(&rv) *= bigtens[j];
2791
    /* The last multiplication could overflow. */
2792
0
      word0(&rv) -= P*Exp_msk1;
2793
0
      dval(&rv) *= bigtens[j];
2794
0
      if ((z = word0(&rv) & Exp_mask)
2795
0
       > Exp_msk1*(DBL_MAX_EXP+Bias-P))
2796
0
        goto ovfl;
2797
0
      if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
2798
        /* set to largest number */
2799
        /* (Can't trust DBL_MAX) */
2800
0
        word0(&rv) = Big0;
2801
0
        word1(&rv) = Big1;
2802
0
        }
2803
0
      else
2804
0
        word0(&rv) += P*Exp_msk1;
2805
0
      }
2806
0
    }
2807
0
  else if (e1 < 0) {
2808
0
    e1 = -e1;
2809
0
    if ((i = e1 & 15))
2810
0
      dval(&rv) /= tens[i];
2811
0
    if (e1 >>= 4) {
2812
0
      if (e1 >= 1 << n_bigtens)
2813
0
        goto undfl;
2814
0
#ifdef Avoid_Underflow
2815
0
      if (e1 & Scale_Bit)
2816
0
        bc.scale = 2*P;
2817
0
      for(j = 0; e1 > 0; j++, e1 >>= 1)
2818
0
        if (e1 & 1)
2819
0
          dval(&rv) *= tinytens[j];
2820
0
      if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
2821
0
            >> Exp_shift)) > 0) {
2822
        /* scaled rv is denormal; clear j low bits */
2823
0
        if (j >= 32) {
2824
0
          word1(&rv) = 0;
2825
0
          if (j >= 53)
2826
0
           word0(&rv) = (P+2)*Exp_msk1;
2827
0
          else
2828
0
           word0(&rv) &= 0xffffffff << (j-32);
2829
0
          }
2830
0
        else
2831
0
          word1(&rv) &= 0xffffffff << j;
2832
0
        }
2833
#else
2834
      for(j = 0; e1 > 1; j++, e1 >>= 1)
2835
        if (e1 & 1)
2836
          dval(&rv) *= tinytens[j];
2837
      /* The last multiplication could underflow. */
2838
      dval(&rv0) = dval(&rv);
2839
      dval(&rv) *= tinytens[j];
2840
      if (!dval(&rv)) {
2841
        dval(&rv) = 2.*dval(&rv0);
2842
        dval(&rv) *= tinytens[j];
2843
#endif
2844
0
        if (!dval(&rv)) {
2845
0
 undfl:
2846
0
          dval(&rv) = 0.;
2847
0
#ifndef NO_ERRNO
2848
0
          errno = ERANGE;
2849
0
#endif
2850
0
          goto ret;
2851
0
          }
2852
#ifndef Avoid_Underflow
2853
        word0(&rv) = Tiny0;
2854
        word1(&rv) = Tiny1;
2855
        /* The refinement below will clean
2856
         * this approximation up.
2857
         */
2858
        }
2859
#endif
2860
0
      }
2861
0
    }
2862
2863
  /* Now the hard part -- adjusting rv to the correct value.*/
2864
2865
  /* Put digits into bd: true value = bd * 10^e */
2866
2867
0
  bc.nd = nd;
2868
0
#ifndef NO_STRTOD_BIGCOMP
2869
0
  bc.nd0 = nd0; /* Only needed if nd > strtod_diglim, but done here */
2870
      /* to silence an erroneous warning about bc.nd0 */
2871
      /* possibly not being initialized. */
2872
0
  if (nd > strtod_diglim) {
2873
    /* ASSERT(strtod_diglim >= 18); 18 == one more than the */
2874
    /* minimum number of decimal digits to distinguish double values */
2875
    /* in IEEE arithmetic. */
2876
0
    i = j = 18;
2877
0
    if (i > nd0)
2878
0
      j += bc.dplen;
2879
0
    for(;;) {
2880
0
      if (--j <= bc.dp1 && j >= bc.dp0)
2881
0
        j = bc.dp0 - 1;
2882
0
      if (s0[j] != '0')
2883
0
        break;
2884
0
      --i;
2885
0
      }
2886
0
    e += nd - i;
2887
0
    nd = i;
2888
0
    if (nd0 > nd)
2889
0
      nd0 = nd;
2890
0
    if (nd < 9) { /* must recompute y */
2891
0
      y = 0;
2892
0
      for(i = 0; i < nd0; ++i)
2893
0
        y = 10*y + s0[i] - '0';
2894
0
      for(j = bc.dp1; i < nd; ++i)
2895
0
        y = 10*y + s0[j++] - '0';
2896
0
      }
2897
0
    }
2898
0
#endif
2899
0
  bd0 = s2b(s0, nd0, nd, y, bc.dplen);
2900
2901
0
  for(;;) {
2902
0
    bd = Balloc(bd0->k);
2903
0
    Bcopy(bd, bd0);
2904
0
    bb = d2b(&rv, &bbe, &bbbits); /* rv = bb * 2^bbe */
2905
0
    bs = i2b(1);
2906
2907
0
    if (e >= 0) {
2908
0
      bb2 = bb5 = 0;
2909
0
      bd2 = bd5 = e;
2910
0
      }
2911
0
    else {
2912
0
      bb2 = bb5 = -e;
2913
0
      bd2 = bd5 = 0;
2914
0
      }
2915
0
    if (bbe >= 0)
2916
0
      bb2 += bbe;
2917
0
    else
2918
0
      bd2 -= bbe;
2919
0
    bs2 = bb2;
2920
#ifdef Honor_FLT_ROUNDS
2921
    if (bc.rounding != 1)
2922
      bs2++;
2923
#endif
2924
0
#ifdef Avoid_Underflow
2925
0
    j = bbe - bc.scale;
2926
0
    i = j + bbbits - 1; /* logb(rv) */
2927
0
    if (i < Emin) /* denormal */
2928
0
      j += P - Emin;
2929
0
    else
2930
0
      j = P + 1 - bbbits;
2931
#else /*Avoid_Underflow*/
2932
#ifdef Sudden_Underflow
2933
#ifdef IBM
2934
    j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
2935
#else
2936
    j = P + 1 - bbbits;
2937
#endif
2938
#else /*Sudden_Underflow*/
2939
    j = bbe;
2940
    i = j + bbbits - 1; /* logb(rv) */
2941
    if (i < Emin) /* denormal */
2942
      j += P - Emin;
2943
    else
2944
      j = P + 1 - bbbits;
2945
#endif /*Sudden_Underflow*/
2946
#endif /*Avoid_Underflow*/
2947
0
    bb2 += j;
2948
0
    bd2 += j;
2949
0
#ifdef Avoid_Underflow
2950
0
    bd2 += bc.scale;
2951
0
#endif
2952
0
    i = bb2 < bd2 ? bb2 : bd2;
2953
0
    if (i > bs2)
2954
0
      i = bs2;
2955
0
    if (i > 0) {
2956
0
      bb2 -= i;
2957
0
      bd2 -= i;
2958
0
      bs2 -= i;
2959
0
      }
2960
0
    if (bb5 > 0) {
2961
0
      bs = pow5mult(bs, bb5);
2962
0
      bb1 = mult(bs, bb);
2963
0
      Bfree(bb);
2964
0
      bb = bb1;
2965
0
      }
2966
0
    if (bb2 > 0)
2967
0
      bb = lshift(bb, bb2);
2968
0
    if (bd5 > 0)
2969
0
      bd = pow5mult(bd, bd5);
2970
0
    if (bd2 > 0)
2971
0
      bd = lshift(bd, bd2);
2972
0
    if (bs2 > 0)
2973
0
      bs = lshift(bs, bs2);
2974
0
    delta = diff(bb, bd);
2975
0
    bc.dsign = delta->sign;
2976
0
    delta->sign = 0;
2977
0
    i = cmp(delta, bs);
2978
0
#ifndef NO_STRTOD_BIGCOMP
2979
0
    if (bc.nd > nd && i <= 0) {
2980
0
      if (bc.dsign)
2981
0
        break; /* Must use bigcomp(). */
2982
#ifdef Honor_FLT_ROUNDS
2983
      if (bc.rounding != 1) {
2984
        if (i < 0)
2985
          break;
2986
        }
2987
      else
2988
#endif
2989
0
        {
2990
0
        bc.nd = nd;
2991
0
        i = -1; /* Discarded digits make delta smaller. */
2992
0
        }
2993
0
      }
2994
0
#endif
2995
#ifdef Honor_FLT_ROUNDS
2996
    if (bc.rounding != 1) {
2997
      if (i < 0) {
2998
        /* Error is less than an ulp */
2999
        if (!delta->x[0] && delta->wds <= 1) {
3000
          /* exact */
3001
#ifdef SET_INEXACT
3002
          bc.inexact = 0;
3003
#endif
3004
          break;
3005
          }
3006
        if (bc.rounding) {
3007
          if (bc.dsign) {
3008
            adj.d = 1.;
3009
            goto apply_adj;
3010
            }
3011
          }
3012
        else if (!bc.dsign) {
3013
          adj.d = -1.;
3014
          if (!word1(&rv)
3015
           && !(word0(&rv) & Frac_mask)) {
3016
            y = word0(&rv) & Exp_mask;
3017
#ifdef Avoid_Underflow
3018
            if (!bc.scale || y > 2*P*Exp_msk1)
3019
#else
3020
            if (y)
3021
#endif
3022
              {
3023
              delta = lshift(delta,Log2P);
3024
              if (cmp(delta, bs) <= 0)
3025
              adj.d = -0.5;
3026
              }
3027
            }
3028
 apply_adj:
3029
#ifdef Avoid_Underflow
3030
          if (bc.scale && (y = word0(&rv) & Exp_mask)
3031
            <= 2*P*Exp_msk1)
3032
            word0(&adj) += (2*P+1)*Exp_msk1 - y;
3033
#else
3034
#ifdef Sudden_Underflow
3035
          if ((word0(&rv) & Exp_mask) <=
3036
              P*Exp_msk1) {
3037
            word0(&rv) += P*Exp_msk1;
3038
            dval(&rv) += adj.d*ulp(dval(&rv));
3039
            word0(&rv) -= P*Exp_msk1;
3040
            }
3041
          else
3042
#endif /*Sudden_Underflow*/
3043
#endif /*Avoid_Underflow*/
3044
          dval(&rv) += adj.d*ulp(&rv);
3045
          }
3046
        break;
3047
        }
3048
      adj.d = ratio(delta, bs);
3049
      if (adj.d < 1.)
3050
        adj.d = 1.;
3051
      if (adj.d <= 0x7ffffffe) {
3052
        /* adj = rounding ? ceil(adj) : floor(adj); */
3053
        y = adj.d;
3054
        if (y != adj.d) {
3055
          if (!((bc.rounding>>1) ^ bc.dsign))
3056
            y++;
3057
          adj.d = y;
3058
          }
3059
        }
3060
#ifdef Avoid_Underflow
3061
      if (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1)
3062
        word0(&adj) += (2*P+1)*Exp_msk1 - y;
3063
#else
3064
#ifdef Sudden_Underflow
3065
      if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) {
3066
        word0(&rv) += P*Exp_msk1;
3067
        adj.d *= ulp(dval(&rv));
3068
        if (bc.dsign)
3069
          dval(&rv) += adj.d;
3070
        else
3071
          dval(&rv) -= adj.d;
3072
        word0(&rv) -= P*Exp_msk1;
3073
        goto cont;
3074
        }
3075
#endif /*Sudden_Underflow*/
3076
#endif /*Avoid_Underflow*/
3077
      adj.d *= ulp(&rv);
3078
      if (bc.dsign) {
3079
        if (word0(&rv) == Big0 && word1(&rv) == Big1)
3080
          goto ovfl;
3081
        dval(&rv) += adj.d;
3082
        }
3083
      else
3084
        dval(&rv) -= adj.d;
3085
      goto cont;
3086
      }
3087
#endif /*Honor_FLT_ROUNDS*/
3088
3089
0
    if (i < 0) {
3090
      /* Error is less than half an ulp -- check for
3091
       * special case of mantissa a power of two.
3092
       */
3093
0
      if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask
3094
0
#ifdef IEEE_Arith
3095
0
#ifdef Avoid_Underflow
3096
0
       || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
3097
#else
3098
       || (word0(&rv) & Exp_mask) <= Exp_msk1
3099
#endif
3100
0
#endif
3101
0
        ) {
3102
#ifdef SET_INEXACT
3103
        if (!delta->x[0] && delta->wds <= 1)
3104
          bc.inexact = 0;
3105
#endif
3106
0
        break;
3107
0
        }
3108
0
      if (!delta->x[0] && delta->wds <= 1) {
3109
        /* exact result */
3110
#ifdef SET_INEXACT
3111
        bc.inexact = 0;
3112
#endif
3113
0
        break;
3114
0
        }
3115
0
      delta = lshift(delta,Log2P);
3116
0
      if (cmp(delta, bs) > 0)
3117
0
        goto drop_down;
3118
0
      break;
3119
0
      }
3120
0
    if (i == 0) {
3121
      /* exactly half-way between */
3122
0
      if (bc.dsign) {
3123
0
        if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
3124
0
         &&  word1(&rv) == (
3125
0
#ifdef Avoid_Underflow
3126
0
      (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1)
3127
0
    ? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
3128
0
#endif
3129
0
               0xffffffff)) {
3130
          /*boundary case -- increment exponent*/
3131
0
          word0(&rv) = (word0(&rv) & Exp_mask)
3132
0
            + Exp_msk1
3133
#ifdef IBM
3134
            | Exp_msk1 >> 4
3135
#endif
3136
0
            ;
3137
0
          word1(&rv) = 0;
3138
0
#ifdef Avoid_Underflow
3139
0
          bc.dsign = 0;
3140
0
#endif
3141
0
          break;
3142
0
          }
3143
0
        }
3144
0
      else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
3145
0
 drop_down:
3146
        /* boundary case -- decrement exponent */
3147
#ifdef Sudden_Underflow /*{{*/
3148
        L = word0(&rv) & Exp_mask;
3149
#ifdef IBM
3150
        if (L <  Exp_msk1)
3151
#else
3152
#ifdef Avoid_Underflow
3153
        if (L <= (bc.scale ? (2*P+1)*Exp_msk1 : Exp_msk1))
3154
#else
3155
        if (L <= Exp_msk1)
3156
#endif /*Avoid_Underflow*/
3157
#endif /*IBM*/
3158
          {
3159
          if (bc.nd >nd) {
3160
            bc.uflchk = 1;
3161
            break;
3162
            }
3163
          goto undfl;
3164
          }
3165
        L -= Exp_msk1;
3166
#else /*Sudden_Underflow}{*/
3167
0
#ifdef Avoid_Underflow
3168
0
        if (bc.scale) {
3169
0
          L = word0(&rv) & Exp_mask;
3170
0
          if (L <= (2*P+1)*Exp_msk1) {
3171
0
            if (L > (P+2)*Exp_msk1)
3172
              /* round even ==> */
3173
              /* accept rv */
3174
0
              break;
3175
            /* rv = smallest denormal */
3176
0
            if (bc.nd >nd) {
3177
0
              bc.uflchk = 1;
3178
0
              break;
3179
0
              }
3180
0
            goto undfl;
3181
0
            }
3182
0
          }
3183
0
#endif /*Avoid_Underflow*/
3184
0
        L = (word0(&rv) & Exp_mask) - Exp_msk1;
3185
0
#endif /*Sudden_Underflow}}*/
3186
0
        word0(&rv) = L | Bndry_mask1;
3187
0
        word1(&rv) = 0xffffffff;
3188
#ifdef IBM
3189
        goto cont;
3190
#else
3191
0
        break;
3192
0
#endif
3193
0
        }
3194
0
#ifndef ROUND_BIASED
3195
0
      if (!(word1(&rv) & LSB))
3196
0
        break;
3197
0
#endif
3198
0
      if (bc.dsign)
3199
0
        dval(&rv) += ulp(&rv);
3200
0
#ifndef ROUND_BIASED
3201
0
      else {
3202
0
        dval(&rv) -= ulp(&rv);
3203
0
#ifndef Sudden_Underflow
3204
0
        if (!dval(&rv)) {
3205
0
          if (bc.nd >nd) {
3206
0
            bc.uflchk = 1;
3207
0
            break;
3208
0
            }
3209
0
          goto undfl;
3210
0
          }
3211
0
#endif
3212
0
        }
3213
0
#ifdef Avoid_Underflow
3214
0
      bc.dsign = 1 - bc.dsign;
3215
0
#endif
3216
0
#endif
3217
0
      break;
3218
0
      }
3219
0
    if ((aadj = ratio(delta, bs)) <= 2.) {
3220
0
      if (bc.dsign)
3221
0
        aadj = aadj1 = 1.;
3222
0
      else if (word1(&rv) || word0(&rv) & Bndry_mask) {
3223
0
#ifndef Sudden_Underflow
3224
0
        if (word1(&rv) == Tiny1 && !word0(&rv)) {
3225
0
          if (bc.nd >nd) {
3226
0
            bc.uflchk = 1;
3227
0
            break;
3228
0
            }
3229
0
          goto undfl;
3230
0
          }
3231
0
#endif
3232
0
        aadj = 1.;
3233
0
        aadj1 = -1.;
3234
0
        }
3235
0
      else {
3236
        /* special case -- power of FLT_RADIX to be */
3237
        /* rounded down... */
3238
3239
0
        if (aadj < 2./FLT_RADIX)
3240
0
          aadj = 1./FLT_RADIX;
3241
0
        else
3242
0
          aadj *= 0.5;
3243
0
        aadj1 = -aadj;
3244
0
        }
3245
0
      }
3246
0
    else {
3247
0
      aadj *= 0.5;
3248
0
      aadj1 = bc.dsign ? aadj : -aadj;
3249
#ifdef Check_FLT_ROUNDS
3250
      switch(bc.rounding) {
3251
        case 2: /* towards +infinity */
3252
          aadj1 -= 0.5;
3253
          break;
3254
        case 0: /* towards 0 */
3255
        case 3: /* towards -infinity */
3256
          aadj1 += 0.5;
3257
        }
3258
#else
3259
0
      if (Flt_Rounds == 0)
3260
0
        aadj1 += 0.5;
3261
0
#endif /*Check_FLT_ROUNDS*/
3262
0
      }
3263
0
    y = word0(&rv) & Exp_mask;
3264
3265
    /* Check for overflow */
3266
3267
0
    if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
3268
0
      dval(&rv0) = dval(&rv);
3269
0
      word0(&rv) -= P*Exp_msk1;
3270
0
      adj.d = aadj1 * ulp(&rv);
3271
0
      dval(&rv) += adj.d;
3272
0
      if ((word0(&rv) & Exp_mask) >=
3273
0
          Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
3274
0
        if (word0(&rv0) == Big0 && word1(&rv0) == Big1)
3275
0
          goto ovfl;
3276
0
        word0(&rv) = Big0;
3277
0
        word1(&rv) = Big1;
3278
0
        goto cont;
3279
0
        }
3280
0
      else
3281
0
        word0(&rv) += P*Exp_msk1;
3282
0
      }
3283
0
    else {
3284
0
#ifdef Avoid_Underflow
3285
0
      if (bc.scale && y <= 2*P*Exp_msk1) {
3286
0
        if (aadj <= 0x7fffffff) {
3287
0
                                    if ((z = (ULong)aadj) <= 0)
3288
0
            z = 1;
3289
0
          aadj = z;
3290
0
          aadj1 = bc.dsign ? aadj : -aadj;
3291
0
          }
3292
0
        dval(&aadj2) = aadj1;
3293
0
        word0(&aadj2) += (2*P+1)*Exp_msk1 - y;
3294
0
        aadj1 = dval(&aadj2);
3295
0
        }
3296
0
      adj.d = aadj1 * ulp(&rv);
3297
0
      dval(&rv) += adj.d;
3298
#else
3299
#ifdef Sudden_Underflow
3300
      if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) {
3301
        dval(&rv0) = dval(&rv);
3302
        word0(&rv) += P*Exp_msk1;
3303
        adj.d = aadj1 * ulp(&rv);
3304
        dval(&rv) += adj.d;
3305
#ifdef IBM
3306
        if ((word0(&rv) & Exp_mask) <  P*Exp_msk1)
3307
#else
3308
        if ((word0(&rv) & Exp_mask) <= P*Exp_msk1)
3309
#endif
3310
          {
3311
          if (word0(&rv0) == Tiny0
3312
           && word1(&rv0) == Tiny1) {
3313
            if (bc.nd >nd) {
3314
              bc.uflchk = 1;
3315
              break;
3316
              }
3317
            goto undfl;
3318
            }
3319
          word0(&rv) = Tiny0;
3320
          word1(&rv) = Tiny1;
3321
          goto cont;
3322
          }
3323
        else
3324
          word0(&rv) -= P*Exp_msk1;
3325
        }
3326
      else {
3327
        adj.d = aadj1 * ulp(&rv);
3328
        dval(&rv) += adj.d;
3329
        }
3330
#else /*Sudden_Underflow*/
3331
      /* Compute adj so that the IEEE rounding rules will
3332
       * correctly round rv + adj in some half-way cases.
3333
       * If rv * ulp(rv) is denormalized (i.e.,
3334
       * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
3335
       * trouble from bits lost to denormalization;
3336
       * example: 1.2e-307 .
3337
       */
3338
      if (y <= (P-1)*Exp_msk1 && aadj > 1.) {
3339
        aadj1 = (double)(int)(aadj + 0.5);
3340
        if (!bc.dsign)
3341
          aadj1 = -aadj1;
3342
        }
3343
      adj.d = aadj1 * ulp(&rv);
3344
      dval(&rv) += adj.d;
3345
#endif /*Sudden_Underflow*/
3346
#endif /*Avoid_Underflow*/
3347
0
      }
3348
0
    z = word0(&rv) & Exp_mask;
3349
0
#ifndef SET_INEXACT
3350
0
    if (bc.nd == nd) {
3351
0
#ifdef Avoid_Underflow
3352
0
    if (!bc.scale)
3353
0
#endif
3354
0
    if (y == z) {
3355
      /* Can we stop now? */
3356
0
      L = (Long)aadj;
3357
0
      aadj -= L;
3358
      /* The tolerances below are conservative. */
3359
0
      if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
3360
0
        if (aadj < .4999999 || aadj > .5000001)
3361
0
          break;
3362
0
        }
3363
0
      else if (aadj < .4999999/FLT_RADIX)
3364
0
        break;
3365
0
      }
3366
0
    }
3367
0
#endif
3368
0
 cont:
3369
0
    Bfree(bb);
3370
0
    Bfree(bd);
3371
0
    Bfree(bs);
3372
0
    Bfree(delta);
3373
0
    }
3374
0
  Bfree(bb);
3375
0
  Bfree(bd);
3376
0
  Bfree(bs);
3377
0
  Bfree(bd0);
3378
0
  Bfree(delta);
3379
0
#ifndef NO_STRTOD_BIGCOMP
3380
0
  if (bc.nd > nd)
3381
0
    bigcomp(&rv, s0, &bc);
3382
0
#endif
3383
#ifdef SET_INEXACT
3384
  if (bc.inexact) {
3385
    if (!oldinexact) {
3386
      word0(&rv0) = Exp_1 + (70 << Exp_shift);
3387
      word1(&rv0) = 0;
3388
      dval(&rv0) += 1.;
3389
      }
3390
    }
3391
  else if (!oldinexact)
3392
    clear_inexact();
3393
#endif
3394
0
#ifdef Avoid_Underflow
3395
0
  if (bc.scale) {
3396
0
    word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
3397
0
    word1(&rv0) = 0;
3398
0
    dval(&rv) *= dval(&rv0);
3399
0
#ifndef NO_ERRNO
3400
    /* try to avoid the bug of testing an 8087 register value */
3401
0
#ifdef IEEE_Arith
3402
0
    if (!(word0(&rv) & Exp_mask))
3403
#else
3404
    if (word0(&rv) == 0 && word1(&rv) == 0)
3405
#endif
3406
0
      errno = ERANGE;
3407
0
#endif
3408
0
    }
3409
0
#endif /* Avoid_Underflow */
3410
#ifdef SET_INEXACT
3411
  if (bc.inexact && !(word0(&rv) & Exp_mask)) {
3412
    /* set underflow bit */
3413
    dval(&rv0) = 1e-300;
3414
    dval(&rv0) *= dval(&rv0);
3415
    }
3416
#endif
3417
0
 ret:
3418
0
  if (se)
3419
0
    *se = (char *)s;
3420
0
  return sign ? -dval(&rv) : dval(&rv);
3421
0
  }
3422
3423
#ifndef MULTIPLE_THREADS
3424
 static char *dtoa_result;
3425
#endif
3426
3427
 static char *
3428
#ifdef KR_headers
3429
rv_alloc(i) int i;
3430
#else
3431
rv_alloc(int i)
3432
#endif
3433
0
{
3434
0
  int j, k, *r;
3435
3436
0
  j = sizeof(ULong);
3437
0
  for(k = 0;
3438
0
    sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (size_t)i;
3439
0
    j <<= 1)
3440
0
      k++;
3441
0
  r = (int*)Balloc(k);
3442
0
  *r = k;
3443
0
  return
3444
#ifndef MULTIPLE_THREADS
3445
  dtoa_result =
3446
#endif
3447
0
    (char *)(r+1);
3448
0
  }
3449
3450
 static char *
3451
#ifdef KR_headers
3452
nrv_alloc(s, rve, n) char *s, **rve; int n;
3453
#else
3454
nrv_alloc(CONST char *s, char **rve, int n)
3455
#endif
3456
0
{
3457
0
  char *rv, *t;
3458
3459
0
  t = rv = rv_alloc(n);
3460
0
  while((*t = *s++)) t++;
3461
0
  if (rve)
3462
0
    *rve = t;
3463
0
  return rv;
3464
0
  }
3465
3466
/* freedtoa(s) must be used to free values s returned by dtoa
3467
 * when MULTIPLE_THREADS is #defined.  It should be used in all cases,
3468
 * but for consistency with earlier versions of dtoa, it is optional
3469
 * when MULTIPLE_THREADS is not defined.
3470
 */
3471
3472
 void
3473
#ifdef KR_headers
3474
freedtoa(s) char *s;
3475
#else
3476
freedtoa(char *s)
3477
#endif
3478
0
{
3479
0
  Bigint *b = (Bigint *)((int *)s - 1);
3480
0
  b->maxwds = 1 << (b->k = *(int*)b);
3481
0
  Bfree(b);
3482
#ifndef MULTIPLE_THREADS
3483
  if (s == dtoa_result)
3484
    dtoa_result = 0;
3485
#endif
3486
0
  }
3487
3488
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
3489
 *
3490
 * Inspired by "How to Print Floating-Point Numbers Accurately" by
3491
 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
3492
 *
3493
 * Modifications:
3494
 *  1. Rather than iterating, we use a simple numeric overestimate
3495
 *     to determine k = floor(log10(d)).  We scale relevant
3496
 *     quantities using O(log2(k)) rather than O(k) multiplications.
3497
 *  2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
3498
 *     try to generate digits strictly left to right.  Instead, we
3499
 *     compute with fewer bits and propagate the carry if necessary
3500
 *     when rounding the final digit up.  This is often faster.
3501
 *  3. Under the assumption that input will be rounded nearest,
3502
 *     mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
3503
 *     That is, we allow equality in stopping tests when the
3504
 *     round-nearest rule will give the same floating-point value
3505
 *     as would satisfaction of the stopping test with strict
3506
 *     inequality.
3507
 *  4. We remove common factors of powers of 2 from relevant
3508
 *     quantities.
3509
 *  5. When converting floating-point integers less than 1e16,
3510
 *     we use floating-point arithmetic rather than resorting
3511
 *     to multiple-precision integers.
3512
 *  6. When asked to produce fewer than 15 digits, we first try
3513
 *     to get by with floating-point arithmetic; we resort to
3514
 *     multiple-precision integer arithmetic only if we cannot
3515
 *     guarantee that the floating-point calculation has given
3516
 *     the correctly rounded result.  For k requested digits and
3517
 *     "uniformly" distributed input, the probability is
3518
 *     something like 10^(k-15) that we must resort to the Long
3519
 *     calculation.
3520
 */
3521
3522
 char *
3523
dtoa
3524
#ifdef KR_headers
3525
  (dd, mode, ndigits, decpt, sign, rve)
3526
  double dd; int mode, ndigits, *decpt, *sign; char **rve;
3527
#else
3528
  (double dd, int mode, int ndigits, int *decpt, int *sign, char **rve)
3529
#endif
3530
0
{
3531
 /* Arguments ndigits, decpt, sign are similar to those
3532
  of ecvt and fcvt; trailing zeros are suppressed from
3533
  the returned string.  If not null, *rve is set to point
3534
  to the end of the return value.  If d is +-Infinity or NaN,
3535
  then *decpt is set to 9999.
3536
3537
  mode:
3538
    0 ==> shortest string that yields d when read in
3539
      and rounded to nearest.
3540
    1 ==> like 0, but with Steele & White stopping rule;
3541
      e.g. with IEEE P754 arithmetic , mode 0 gives
3542
      1e23 whereas mode 1 gives 9.999999999999999e22.
3543
    2 ==> max(1,ndigits) significant digits.  This gives a
3544
      return value similar to that of ecvt, except
3545
      that trailing zeros are suppressed.
3546
    3 ==> through ndigits past the decimal point.  This
3547
      gives a return value similar to that from fcvt,
3548
      except that trailing zeros are suppressed, and
3549
      ndigits can be negative.
3550
    4,5 ==> similar to 2 and 3, respectively, but (in
3551
      round-nearest mode) with the tests of mode 0 to
3552
      possibly return a shorter string that rounds to d.
3553
      With IEEE arithmetic and compilation with
3554
      -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
3555
      as modes 2 and 3 when FLT_ROUNDS != 1.
3556
    6-9 ==> Debugging modes similar to mode - 4:  don't try
3557
      fast floating-point estimate (if applicable).
3558
3559
    Values of mode other than 0-9 are treated as mode 0.
3560
3561
    Sufficient space is allocated to the return value
3562
    to hold the suppressed trailing zeros.
3563
  */
3564
3565
0
  int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
3566
0
    j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
3567
0
    spec_case, try_quick;
3568
0
  Long L;
3569
0
#ifndef Sudden_Underflow
3570
0
  int denorm;
3571
0
  ULong x;
3572
0
#endif
3573
0
  Bigint *b, *b1, *delta, *mlo = NULL, *mhi, *S;
3574
0
  U d2, eps, u;
3575
0
  double ds;
3576
0
  char *s, *s0;
3577
#ifdef SET_INEXACT
3578
  int inexact, oldinexact;
3579
#endif
3580
#ifdef Honor_FLT_ROUNDS /*{*/
3581
  int Rounding;
3582
#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
3583
  Rounding = Flt_Rounds;
3584
#else /*}{*/
3585
  Rounding = 1;
3586
  switch(fegetround()) {
3587
    case FE_TOWARDZERO: Rounding = 0; break;
3588
    case FE_UPWARD: Rounding = 2; break;
3589
    case FE_DOWNWARD: Rounding = 3;
3590
    }
3591
#endif /*}}*/
3592
#endif /*}*/
3593
3594
#ifndef MULTIPLE_THREADS
3595
  if (dtoa_result) {
3596
    freedtoa(dtoa_result);
3597
    dtoa_result = 0;
3598
    }
3599
#endif
3600
3601
0
  u.d = dd;
3602
0
  if (word0(&u) & Sign_bit) {
3603
    /* set sign for everything, including 0's and NaNs */
3604
0
    *sign = 1;
3605
0
    word0(&u) &= ~Sign_bit; /* clear sign bit */
3606
0
    }
3607
0
  else
3608
0
    *sign = 0;
3609
3610
0
#if defined(IEEE_Arith) + defined(VAX)
3611
0
#ifdef IEEE_Arith
3612
0
  if ((word0(&u) & Exp_mask) == Exp_mask)
3613
#else
3614
  if (word0(&u)  == 0x8000)
3615
#endif
3616
0
    {
3617
    /* Infinity or NaN */
3618
0
    *decpt = 9999;
3619
0
#ifdef IEEE_Arith
3620
0
    if (!word1(&u) && !(word0(&u) & 0xfffff))
3621
0
      return nrv_alloc("Infinity", rve, 8);
3622
0
#endif
3623
0
    return nrv_alloc("NaN", rve, 3);
3624
0
    }
3625
0
#endif
3626
#ifdef IBM
3627
  dval(&u) += 0; /* normalize */
3628
#endif
3629
0
  if (!dval(&u)) {
3630
0
    *decpt = 1;
3631
0
    return nrv_alloc("0", rve, 1);
3632
0
    }
3633
3634
#ifdef SET_INEXACT
3635
  try_quick = oldinexact = get_inexact();
3636
  inexact = 1;
3637
#endif
3638
#ifdef Honor_FLT_ROUNDS
3639
  if (Rounding >= 2) {
3640
    if (*sign)
3641
      Rounding = Rounding == 2 ? 0 : 2;
3642
    else
3643
      if (Rounding != 2)
3644
        Rounding = 0;
3645
    }
3646
#endif
3647
3648
0
  b = d2b(&u, &be, &bbits);
3649
#ifdef Sudden_Underflow
3650
  i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
3651
#else
3652
0
  if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
3653
0
#endif
3654
0
    dval(&d2) = dval(&u);
3655
0
    word0(&d2) &= Frac_mask1;
3656
0
    word0(&d2) |= Exp_11;
3657
#ifdef IBM
3658
    if (j = 11 - hi0bits(word0(&d2) & Frac_mask))
3659
      dval(&d2) /= 1 << j;
3660
#endif
3661
3662
    /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
3663
     * log10(x)  =  log(x) / log(10)
3664
     *    ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
3665
     * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
3666
     *
3667
     * This suggests computing an approximation k to log10(d) by
3668
     *
3669
     * k = (i - Bias)*0.301029995663981
3670
     *  + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
3671
     *
3672
     * We want k to be too large rather than too small.
3673
     * The error in the first-order Taylor series approximation
3674
     * is in our favor, so we just round up the constant enough
3675
     * to compensate for any error in the multiplication of
3676
     * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
3677
     * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
3678
     * adding 1e-13 to the constant term more than suffices.
3679
     * Hence we adjust the constant term to 0.1760912590558.
3680
     * (We could get a more accurate k by invoking log10,
3681
     *  but this is probably not worthwhile.)
3682
     */
3683
3684
0
    i -= Bias;
3685
#ifdef IBM
3686
    i <<= 2;
3687
    i += j;
3688
#endif
3689
0
#ifndef Sudden_Underflow
3690
0
    denorm = 0;
3691
0
    }
3692
0
  else {
3693
    /* d is denormalized */
3694
3695
0
    i = bbits + be + (Bias + (P-1) - 1);
3696
0
    x = i > 32  ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
3697
0
          : word1(&u) << (32 - i);
3698
0
    dval(&d2) = x;
3699
0
    word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
3700
0
    i -= (Bias + (P-1) - 1) + 1;
3701
0
    denorm = 1;
3702
0
    }
3703
0
#endif
3704
0
  ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
3705
0
  k = (int)ds;
3706
0
  if (ds < 0. && ds != k)
3707
0
    k--; /* want k = floor(ds) */
3708
0
  k_check = 1;
3709
0
  if (k >= 0 && k <= Ten_pmax) {
3710
0
    if (dval(&u) < tens[k])
3711
0
      k--;
3712
0
    k_check = 0;
3713
0
    }
3714
0
  j = bbits - i - 1;
3715
0
  if (j >= 0) {
3716
0
    b2 = 0;
3717
0
    s2 = j;
3718
0
    }
3719
0
  else {
3720
0
    b2 = -j;
3721
0
    s2 = 0;
3722
0
    }
3723
0
  if (k >= 0) {
3724
0
    b5 = 0;
3725
0
    s5 = k;
3726
0
    s2 += k;
3727
0
    }
3728
0
  else {
3729
0
    b2 -= k;
3730
0
    b5 = -k;
3731
0
    s5 = 0;
3732
0
    }
3733
0
  if (mode < 0 || mode > 9)
3734
0
    mode = 0;
3735
3736
0
#ifndef SET_INEXACT
3737
#ifdef Check_FLT_ROUNDS
3738
  try_quick = Rounding == 1;
3739
#else
3740
0
  try_quick = 1;
3741
0
#endif
3742
0
#endif /*SET_INEXACT*/
3743
3744
0
  if (mode > 5) {
3745
0
    mode -= 4;
3746
0
    try_quick = 0;
3747
0
    }
3748
0
  leftright = 1;
3749
0
  ilim = ilim1 = -1;  /* Values for cases 0 and 1; done here to */
3750
        /* silence erroneous "gcc -Wall" warning. */
3751
0
  switch(mode) {
3752
0
    case 0:
3753
0
    case 1:
3754
0
      i = 18;
3755
0
      ndigits = 0;
3756
0
      break;
3757
0
    case 2:
3758
0
      leftright = 0;
3759
      // fall through
3760
0
    case 4:
3761
0
      if (ndigits <= 0)
3762
0
        ndigits = 1;
3763
0
      ilim = ilim1 = i = ndigits;
3764
0
      break;
3765
0
    case 3:
3766
0
      leftright = 0;
3767
      // fall through
3768
0
    case 5:
3769
0
      i = ndigits + k + 1;
3770
0
      ilim = i;
3771
0
      ilim1 = i - 1;
3772
0
      if (i <= 0)
3773
0
        i = 1;
3774
0
    }
3775
0
  s = s0 = rv_alloc(i);
3776
3777
#ifdef Honor_FLT_ROUNDS
3778
  if (mode > 1 && Rounding != 1)
3779
    leftright = 0;
3780
#endif
3781
3782
0
  if (ilim >= 0 && ilim <= Quick_max && try_quick) {
3783
3784
    /* Try to get by with floating-point arithmetic. */
3785
3786
0
    i = 0;
3787
0
    dval(&d2) = dval(&u);
3788
0
    k0 = k;
3789
0
    ilim0 = ilim;
3790
0
    ieps = 2; /* conservative */
3791
0
    if (k > 0) {
3792
0
      ds = tens[k&0xf];
3793
0
      j = k >> 4;
3794
0
      if (j & Bletch) {
3795
        /* prevent overflows */
3796
0
        j &= Bletch - 1;
3797
0
        dval(&u) /= bigtens[n_bigtens-1];
3798
0
        ieps++;
3799
0
        }
3800
0
      for(; j; j >>= 1, i++)
3801
0
        if (j & 1) {
3802
0
          ieps++;
3803
0
          ds *= bigtens[i];
3804
0
          }
3805
0
      dval(&u) /= ds;
3806
0
      }
3807
0
    else if ((j1 = -k)) {
3808
0
      dval(&u) *= tens[j1 & 0xf];
3809
0
      for(j = j1 >> 4; j; j >>= 1, i++)
3810
0
        if (j & 1) {
3811
0
          ieps++;
3812
0
          dval(&u) *= bigtens[i];
3813
0
          }
3814
0
      }
3815
0
    if (k_check && dval(&u) < 1. && ilim > 0) {
3816
0
      if (ilim1 <= 0)
3817
0
        goto fast_failed;
3818
0
      ilim = ilim1;
3819
0
      k--;
3820
0
      dval(&u) *= 10.;
3821
0
      ieps++;
3822
0
      }
3823
0
    dval(&eps) = ieps*dval(&u) + 7.;
3824
0
    word0(&eps) -= (P-1)*Exp_msk1;
3825
0
    if (ilim == 0) {
3826
0
      S = mhi = 0;
3827
0
      dval(&u) -= 5.;
3828
0
      if (dval(&u) > dval(&eps))
3829
0
        goto one_digit;
3830
0
      if (dval(&u) < -dval(&eps))
3831
0
        goto no_digits;
3832
0
      goto fast_failed;
3833
0
      }
3834
0
#ifndef No_leftright
3835
0
    if (leftright) {
3836
      /* Use Steele & White method of only
3837
       * generating digits needed.
3838
       */
3839
0
      dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
3840
0
      for(i = 0;;) {
3841
0
                                L = (Long)dval(&u);
3842
0
        dval(&u) -= L;
3843
0
        *s++ = '0' + (int)L;
3844
0
        if (dval(&u) < dval(&eps))
3845
0
          goto ret1;
3846
0
        if (1. - dval(&u) < dval(&eps))
3847
0
          goto bump_up;
3848
0
        if (++i >= ilim)
3849
0
          break;
3850
0
        dval(&eps) *= 10.;
3851
0
        dval(&u) *= 10.;
3852
0
        }
3853
0
      }
3854
0
    else {
3855
0
#endif
3856
      /* Generate ilim digits, then fix them up. */
3857
0
      dval(&eps) *= tens[ilim-1];
3858
0
      for(i = 1;; i++, dval(&u) *= 10.) {
3859
0
        L = (Long)(dval(&u));
3860
0
        if (!(dval(&u) -= L))
3861
0
          ilim = i;
3862
0
        *s++ = '0' + (int)L;
3863
0
        if (i == ilim) {
3864
0
          if (dval(&u) > 0.5 + dval(&eps))
3865
0
            goto bump_up;
3866
0
          else if (dval(&u) < 0.5 - dval(&eps)) {
3867
0
            while(*--s == '0') {}
3868
0
            s++;
3869
0
            goto ret1;
3870
0
            }
3871
0
          break;
3872
0
          }
3873
0
        }
3874
0
#ifndef No_leftright
3875
0
      }
3876
0
#endif
3877
0
 fast_failed:
3878
0
    s = s0;
3879
0
    dval(&u) = dval(&d2);
3880
0
    k = k0;
3881
0
    ilim = ilim0;
3882
0
    }
3883
3884
  /* Do we have a "small" integer? */
3885
3886
0
  if (be >= 0 && k <= Int_max) {
3887
    /* Yes. */
3888
0
    ds = tens[k];
3889
0
    if (ndigits < 0 && ilim <= 0) {
3890
0
      S = mhi = 0;
3891
0
      if (ilim < 0 || dval(&u) <= 5*ds)
3892
0
        goto no_digits;
3893
0
      goto one_digit;
3894
0
      }
3895
0
    for(i = 1; i <= k + 1; i++, dval(&u) *= 10.) {
3896
0
      L = (Long)(dval(&u) / ds);
3897
0
      dval(&u) -= L*ds;
3898
#ifdef Check_FLT_ROUNDS
3899
      /* If FLT_ROUNDS == 2, L will usually be high by 1 */
3900
      if (dval(&u) < 0) {
3901
        L--;
3902
        dval(&u) += ds;
3903
        }
3904
#endif
3905
0
      *s++ = '0' + (int)L;
3906
0
      if (!dval(&u)) {
3907
#ifdef SET_INEXACT
3908
        inexact = 0;
3909
#endif
3910
0
        break;
3911
0
        }
3912
0
      if (i == ilim) {
3913
#ifdef Honor_FLT_ROUNDS
3914
        if (mode > 1)
3915
        switch(Rounding) {
3916
          case 0: goto ret1;
3917
          case 2: goto bump_up;
3918
          }
3919
#endif
3920
0
        dval(&u) += dval(&u);
3921
0
        if (dval(&u) > ds || (dval(&u) == ds && L & 1)) {
3922
0
 bump_up:
3923
0
          while(*--s == '9')
3924
0
            if (s == s0) {
3925
0
              k++;
3926
0
              *s = '0';
3927
0
              break;
3928
0
              }
3929
0
          ++*s++;
3930
0
          }
3931
0
        break;
3932
0
        }
3933
0
      }
3934
0
    goto ret1;
3935
0
    }
3936
3937
0
  m2 = b2;
3938
0
  m5 = b5;
3939
0
  mhi = mlo = 0;
3940
0
  if (leftright) {
3941
0
    i =
3942
0
#ifndef Sudden_Underflow
3943
0
      denorm ? be + (Bias + (P-1) - 1 + 1) :
3944
0
#endif
3945
#ifdef IBM
3946
      1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
3947
#else
3948
0
      1 + P - bbits;
3949
0
#endif
3950
0
    b2 += i;
3951
0
    s2 += i;
3952
0
    mhi = i2b(1);
3953
0
    }
3954
0
  if (m2 > 0 && s2 > 0) {
3955
0
    i = m2 < s2 ? m2 : s2;
3956
0
    b2 -= i;
3957
0
    m2 -= i;
3958
0
    s2 -= i;
3959
0
    }
3960
0
  if (b5 > 0) {
3961
0
    if (leftright) {
3962
0
      if (m5 > 0) {
3963
0
        mhi = pow5mult(mhi, m5);
3964
0
        b1 = mult(mhi, b);
3965
0
        Bfree(b);
3966
0
        b = b1;
3967
0
        }
3968
0
      if ((j = b5 - m5))
3969
0
        b = pow5mult(b, j);
3970
0
      }
3971
0
    else
3972
0
      b = pow5mult(b, b5);
3973
0
    }
3974
0
  S = i2b(1);
3975
0
  if (s5 > 0)
3976
0
    S = pow5mult(S, s5);
3977
3978
  /* Check for special case that d is a normalized power of 2. */
3979
3980
0
  spec_case = 0;
3981
0
  if ((mode < 2 || leftright)
3982
#ifdef Honor_FLT_ROUNDS
3983
      && Rounding == 1
3984
#endif
3985
0
        ) {
3986
0
    if (!word1(&u) && !(word0(&u) & Bndry_mask)
3987
0
#ifndef Sudden_Underflow
3988
0
     && word0(&u) & (Exp_mask & ~Exp_msk1)
3989
0
#endif
3990
0
        ) {
3991
      /* The special case */
3992
0
      b2 += Log2P;
3993
0
      s2 += Log2P;
3994
0
      spec_case = 1;
3995
0
      }
3996
0
    }
3997
3998
  /* Arrange for convenient computation of quotients:
3999
   * shift left if necessary so divisor has 4 leading 0 bits.
4000
   *
4001
   * Perhaps we should just compute leading 28 bits of S once
4002
   * and for all and pass them and a shift to quorem, so it
4003
   * can do shifts and ors to compute the numerator for q.
4004
   */
4005
0
#ifdef Pack_32
4006
0
  if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f))
4007
0
    i = 32 - i;
4008
0
#define iInc 28
4009
#else
4010
  if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf)
4011
    i = 16 - i;
4012
#define iInc 12
4013
#endif
4014
0
  i = dshift(S, s2);
4015
0
  b2 += i;
4016
0
  m2 += i;
4017
0
  s2 += i;
4018
0
  if (b2 > 0)
4019
0
    b = lshift(b, b2);
4020
0
  if (s2 > 0)
4021
0
    S = lshift(S, s2);
4022
0
  if (k_check) {
4023
0
    if (cmp(b,S) < 0) {
4024
0
      k--;
4025
0
      b = multadd(b, 10, 0);  /* we botched the k estimate */
4026
0
      if (leftright)
4027
0
        mhi = multadd(mhi, 10, 0);
4028
0
      ilim = ilim1;
4029
0
      }
4030
0
    }
4031
0
  if (ilim <= 0 && (mode == 3 || mode == 5)) {
4032
0
    if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
4033
      /* no digits, fcvt style */
4034
0
 no_digits:
4035
0
      k = -1 - ndigits;
4036
0
      goto ret;
4037
0
      }
4038
0
 one_digit:
4039
0
    *s++ = '1';
4040
0
    k++;
4041
0
    goto ret;
4042
0
    }
4043
0
  if (leftright) {
4044
0
    if (m2 > 0)
4045
0
      mhi = lshift(mhi, m2);
4046
4047
    /* Compute mlo -- check for special case
4048
     * that d is a normalized power of 2.
4049
     */
4050
4051
0
    mlo = mhi;
4052
0
    if (spec_case) {
4053
0
      mhi = Balloc(mhi->k);
4054
0
      Bcopy(mhi, mlo);
4055
0
      mhi = lshift(mhi, Log2P);
4056
0
      }
4057
4058
0
    for(i = 1;;i++) {
4059
0
      dig = quorem(b,S) + '0';
4060
      /* Do we yet have the shortest decimal string
4061
       * that will round to d?
4062
       */
4063
0
      j = cmp(b, mlo);
4064
0
      delta = diff(S, mhi);
4065
0
      j1 = delta->sign ? 1 : cmp(b, delta);
4066
0
      Bfree(delta);
4067
0
#ifndef ROUND_BIASED
4068
0
      if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
4069
#ifdef Honor_FLT_ROUNDS
4070
        && Rounding >= 1
4071
#endif
4072
0
                   ) {
4073
0
        if (dig == '9')
4074
0
          goto round_9_up;
4075
0
        if (j > 0)
4076
0
          dig++;
4077
#ifdef SET_INEXACT
4078
        else if (!b->x[0] && b->wds <= 1)
4079
          inexact = 0;
4080
#endif
4081
0
        *s++ = dig;
4082
0
        goto ret;
4083
0
        }
4084
0
#endif
4085
0
      if (j < 0 || (j == 0 && mode != 1
4086
0
#ifndef ROUND_BIASED
4087
0
              && !(word1(&u) & 1)
4088
0
#endif
4089
0
          )) {
4090
0
        if (!b->x[0] && b->wds <= 1) {
4091
#ifdef SET_INEXACT
4092
          inexact = 0;
4093
#endif
4094
0
          goto accept_dig;
4095
0
          }
4096
#ifdef Honor_FLT_ROUNDS
4097
        if (mode > 1)
4098
         switch(Rounding) {
4099
          case 0: goto accept_dig;
4100
          case 2: goto keep_dig;
4101
          }
4102
#endif /*Honor_FLT_ROUNDS*/
4103
0
        if (j1 > 0) {
4104
0
          b = lshift(b, 1);
4105
0
          j1 = cmp(b, S);
4106
0
          if ((j1 > 0 || (j1 == 0 && dig & 1))
4107
0
          && dig++ == '9')
4108
0
            goto round_9_up;
4109
0
          }
4110
0
 accept_dig:
4111
0
        *s++ = dig;
4112
0
        goto ret;
4113
0
        }
4114
0
      if (j1 > 0) {
4115
#ifdef Honor_FLT_ROUNDS
4116
        if (!Rounding)
4117
          goto accept_dig;
4118
#endif
4119
0
        if (dig == '9') { /* possible if i == 1 */
4120
0
 round_9_up:
4121
0
          *s++ = '9';
4122
0
          goto roundoff;
4123
0
          }
4124
0
        *s++ = dig + 1;
4125
0
        goto ret;
4126
0
        }
4127
#ifdef Honor_FLT_ROUNDS
4128
 keep_dig:
4129
#endif
4130
0
      *s++ = dig;
4131
0
      if (i == ilim)
4132
0
        break;
4133
0
      b = multadd(b, 10, 0);
4134
0
      if (mlo == mhi)
4135
0
        mlo = mhi = multadd(mhi, 10, 0);
4136
0
      else {
4137
0
        mlo = multadd(mlo, 10, 0);
4138
0
        mhi = multadd(mhi, 10, 0);
4139
0
        }
4140
0
      }
4141
0
    }
4142
0
  else
4143
0
    for(i = 1;; i++) {
4144
0
      *s++ = dig = quorem(b,S) + '0';
4145
0
      if (!b->x[0] && b->wds <= 1) {
4146
#ifdef SET_INEXACT
4147
        inexact = 0;
4148
#endif
4149
0
        goto ret;
4150
0
        }
4151
0
      if (i >= ilim)
4152
0
        break;
4153
0
      b = multadd(b, 10, 0);
4154
0
      }
4155
4156
  /* Round off last digit */
4157
4158
#ifdef Honor_FLT_ROUNDS
4159
  switch(Rounding) {
4160
    case 0: goto trimzeros;
4161
    case 2: goto roundoff;
4162
    }
4163
#endif
4164
0
  b = lshift(b, 1);
4165
0
  j = cmp(b, S);
4166
0
  if (j > 0 || (j == 0 && dig & 1)) {
4167
0
 roundoff:
4168
0
    while(*--s == '9')
4169
0
      if (s == s0) {
4170
0
        k++;
4171
0
        *s++ = '1';
4172
0
        goto ret;
4173
0
        }
4174
0
    ++*s++;
4175
0
    }
4176
0
  else {
4177
#ifdef Honor_FLT_ROUNDS
4178
 trimzeros:
4179
#endif
4180
0
    while(*--s == '0') {}
4181
0
    s++;
4182
0
    }
4183
0
 ret:
4184
0
  Bfree(S);
4185
0
  if (mhi) {
4186
0
    if (mlo && mlo != mhi)
4187
0
      Bfree(mlo);
4188
0
    Bfree(mhi);
4189
0
    }
4190
0
 ret1:
4191
#ifdef SET_INEXACT
4192
  if (inexact) {
4193
    if (!oldinexact) {
4194
      word0(&u) = Exp_1 + (70 << Exp_shift);
4195
      word1(&u) = 0;
4196
      dval(&u) += 1.;
4197
      }
4198
    }
4199
  else if (!oldinexact)
4200
    clear_inexact();
4201
#endif
4202
0
  Bfree(b);
4203
0
  *s = 0;
4204
0
  *decpt = k + 1;
4205
0
  if (rve)
4206
0
    *rve = s;
4207
0
  return s0;
4208
0
  }
4209
4210
}  // namespace dmg_fp