/rust/registry/src/index.crates.io-6f17d22bba15001f/bitvec-1.0.1/src/vec.rs
Line | Count | Source (jump to first uncovered line) |
1 | | #![doc = include_str!("../doc/vec.md")] |
2 | | #![cfg(feature = "alloc")] |
3 | | |
4 | | #[cfg(not(feature = "std"))] |
5 | | use alloc::vec; |
6 | | use alloc::vec::Vec; |
7 | | use core::{ |
8 | | mem::{ |
9 | | self, |
10 | | ManuallyDrop, |
11 | | }, |
12 | | ptr, |
13 | | slice, |
14 | | }; |
15 | | |
16 | | use tap::Pipe; |
17 | | use wyz::comu::{ |
18 | | Const, |
19 | | Mut, |
20 | | }; |
21 | | |
22 | | pub use self::iter::{ |
23 | | Drain, |
24 | | Splice, |
25 | | }; |
26 | | pub use crate::boxed::IntoIter; |
27 | | use crate::{ |
28 | | boxed::BitBox, |
29 | | index::BitIdx, |
30 | | mem::bits_of, |
31 | | order::{ |
32 | | BitOrder, |
33 | | Lsb0, |
34 | | }, |
35 | | ptr::{ |
36 | | AddressExt, |
37 | | BitPtr, |
38 | | BitSpan, |
39 | | BitSpanError, |
40 | | }, |
41 | | slice::BitSlice, |
42 | | store::BitStore, |
43 | | view::BitView, |
44 | | }; |
45 | | |
46 | | mod api; |
47 | | mod iter; |
48 | | mod ops; |
49 | | mod tests; |
50 | | mod traits; |
51 | | |
52 | | #[repr(C)] |
53 | | #[doc = include_str!("../doc/vec/BitVec.md")] |
54 | | pub struct BitVec<T = usize, O = Lsb0> |
55 | | where |
56 | | T: BitStore, |
57 | | O: BitOrder, |
58 | | { |
59 | | /// Span description of the live bits in the allocation. |
60 | | bitspan: BitSpan<Mut, T, O>, |
61 | | /// Allocation capacity, measured in `T` elements. |
62 | | capacity: usize, |
63 | | } |
64 | | |
65 | | /// Constructors. |
66 | | impl<T, O> BitVec<T, O> |
67 | | where |
68 | | T: BitStore, |
69 | | O: BitOrder, |
70 | | { |
71 | | /// An empty bit-vector with no backing allocation. |
72 | | pub const EMPTY: Self = Self { |
73 | | bitspan: BitSpan::EMPTY, |
74 | | capacity: 0, |
75 | | }; |
76 | | |
77 | | /// Creates a new bit-vector by repeating a bit for the desired length. |
78 | | /// |
79 | | /// ## Examples |
80 | | /// |
81 | | /// ```rust |
82 | | /// use bitvec::prelude::*; |
83 | | /// |
84 | | /// let zeros = BitVec::<u8, Msb0>::repeat(false, 50); |
85 | | /// let ones = BitVec::<u16, Lsb0>::repeat(true, 50); |
86 | | /// ``` |
87 | | #[inline] |
88 | 0 | pub fn repeat(bit: bool, len: usize) -> Self { |
89 | 0 | let mut out = Self::with_capacity(len); |
90 | 0 | unsafe { |
91 | 0 | out.set_len(len); |
92 | 0 | out.as_raw_mut_slice().fill_with(|| { |
93 | 0 | BitStore::new(if bit { !<T::Mem>::ZERO } else { <T::Mem>::ZERO }) |
94 | 0 | }); |
95 | 0 | } |
96 | 0 | out |
97 | 0 | } |
98 | | |
99 | | /// Copies the contents of a bit-slice into a new heap allocation. |
100 | | /// |
101 | | /// This copies the raw underlying elements into a new allocation, and sets |
102 | | /// the produced bit-vector to use the same memory layout as the originating |
103 | | /// bit-slice. This means that it may begin at any bit in the first element, |
104 | | /// not just the zeroth bit. If you require this property, call |
105 | | /// [`.force_align()`]. |
106 | | /// |
107 | | /// Dead bits in the copied memory elements are guaranteed to be zeroed. |
108 | | /// |
109 | | /// ## Examples |
110 | | /// |
111 | | /// ```rust |
112 | | /// use bitvec::prelude::*; |
113 | | /// |
114 | | /// let bits = bits![0, 1, 0, 0, 1]; |
115 | | /// let bv = BitVec::from_bitslice(bits); |
116 | | /// assert_eq!(bv, bits); |
117 | | /// ``` |
118 | | /// |
119 | | /// [`.force_align()`]: Self::force_align |
120 | | #[inline] |
121 | 0 | pub fn from_bitslice(slice: &BitSlice<T, O>) -> Self { |
122 | 0 | let bitspan = slice.as_bitspan(); |
123 | 0 |
|
124 | 0 | let mut vec = bitspan |
125 | 0 | .elements() |
126 | 0 | .pipe(Vec::with_capacity) |
127 | 0 | .pipe(ManuallyDrop::new); |
128 | 0 | vec.extend(slice.domain()); |
129 | 0 |
|
130 | 0 | let bitspan = unsafe { |
131 | 0 | BitSpan::new_unchecked( |
132 | 0 | vec.as_mut_ptr().cast::<T>().into_address(), |
133 | 0 | bitspan.head(), |
134 | 0 | bitspan.len(), |
135 | 0 | ) |
136 | 0 | }; |
137 | 0 | let capacity = vec.capacity(); |
138 | 0 | Self { bitspan, capacity } |
139 | 0 | } |
140 | | |
141 | | /// Constructs a new bit-vector from a single element. |
142 | | /// |
143 | | /// This copies `elem` into a new heap allocation, and sets the bit-vector |
144 | | /// to cover it entirely. |
145 | | /// |
146 | | /// ## Examples |
147 | | /// |
148 | | /// ```rust |
149 | | /// use bitvec::prelude::*; |
150 | | /// |
151 | | /// let bv = BitVec::<_, Msb0>::from_element(1u8); |
152 | | /// assert!(bv[7]); |
153 | | /// ``` |
154 | | #[inline] |
155 | 0 | pub fn from_element(elem: T) -> Self { |
156 | 0 | Self::from_vec(vec![elem]) |
157 | 0 | } |
158 | | |
159 | | /// Constructs a new bit-vector from a slice of memory elements. |
160 | | /// |
161 | | /// This copies `slice` into a new heap allocation, and sets the bit-vector |
162 | | /// to cover it entirely. |
163 | | /// |
164 | | /// ## Panics |
165 | | /// |
166 | | /// This panics if `slice` exceeds bit-vector capacity. |
167 | | /// |
168 | | /// ## Examples |
169 | | /// |
170 | | /// ```rust |
171 | | /// use bitvec::prelude::*; |
172 | | /// |
173 | | /// let slice = &[0u8, 1, 2, 3]; |
174 | | /// let bv = BitVec::<_, Lsb0>::from_slice(slice); |
175 | | /// assert_eq!(bv.len(), 32); |
176 | | /// ``` |
177 | | #[inline] |
178 | 0 | pub fn from_slice(slice: &[T]) -> Self { |
179 | 0 | Self::try_from_slice(slice).unwrap() |
180 | 0 | } |
181 | | |
182 | | /// Fallibly constructs a new bit-vector from a slice of memory elements. |
183 | | /// |
184 | | /// This fails early if `slice` exceeds bit-vector capacity. If it is not, |
185 | | /// then `slice` is copied into a new heap allocation and fully spanned by |
186 | | /// the returned bit-vector. |
187 | | /// |
188 | | /// ## Examples |
189 | | /// |
190 | | /// ```rust |
191 | | /// use bitvec::prelude::*; |
192 | | /// |
193 | | /// let slice = &[0u8, 1, 2, 3]; |
194 | | /// let bv = BitVec::<_, Lsb0>::try_from_slice(slice).unwrap(); |
195 | | /// assert_eq!(bv.len(), 32); |
196 | | /// ``` |
197 | | #[inline] |
198 | 0 | pub fn try_from_slice(slice: &[T]) -> Result<Self, BitSpanError<T>> { |
199 | 0 | BitSlice::<T, O>::try_from_slice(slice).map(Self::from_bitslice) |
200 | 0 | } |
201 | | |
202 | | /// Converts a regular vector in-place into a bit-vector. |
203 | | /// |
204 | | /// The produced bit-vector spans every bit in the original vector. No |
205 | | /// reällocation occurs; this is purely a transform of the handle. |
206 | | /// |
207 | | /// ## Panics |
208 | | /// |
209 | | /// This panics if the source vector is too long to view as a bit-slice. |
210 | | /// |
211 | | /// ## Examples |
212 | | /// |
213 | | /// ```rust |
214 | | /// use bitvec::prelude::*; |
215 | | /// |
216 | | /// let v = vec![0u8, 1, 2, 3]; |
217 | | /// let bv = BitVec::<_, Msb0>::from_vec(v); |
218 | | /// assert_eq!(bv.len(), 32); |
219 | | /// ``` |
220 | | #[inline] |
221 | 0 | pub fn from_vec(vec: Vec<T>) -> Self { |
222 | 0 | Self::try_from_vec(vec) |
223 | 0 | .expect("vector was too long to be converted into a `BitVec`") |
224 | 0 | } |
225 | | |
226 | | /// Attempts to convert a regular vector in-place into a bit-vector. |
227 | | /// |
228 | | /// This fails if the source vector is too long to view as a bit-slice. On |
229 | | /// success, the produced bit-vector spans every bit in the original vector. |
230 | | /// No reällocation occurs; this is purely a transform of the handle. |
231 | | /// |
232 | | /// ## Examples |
233 | | /// |
234 | | /// ```rust |
235 | | /// use bitvec::prelude::*; |
236 | | /// |
237 | | /// let v = vec![0u8; 20]; |
238 | | /// assert_eq!(BitVec::<_, Msb0>::try_from_vec(v).unwrap().len(), 160); |
239 | | /// ``` |
240 | | /// |
241 | | /// It is not practical to allocate a vector that will fail this conversion. |
242 | | #[inline] |
243 | 0 | pub fn try_from_vec(vec: Vec<T>) -> Result<Self, Vec<T>> { |
244 | 0 | let mut vec = ManuallyDrop::new(vec); |
245 | 0 | let capacity = vec.capacity(); |
246 | 0 |
|
247 | 0 | BitPtr::from_mut_slice(vec.as_mut_slice()) |
248 | 0 | .span(vec.len() * bits_of::<T::Mem>()) |
249 | 0 | .map(|bitspan| Self { bitspan, capacity }) |
250 | 0 | .map_err(|_| ManuallyDrop::into_inner(vec)) |
251 | 0 | } |
252 | | |
253 | | /// Appends the contents of a bit-slice to a bit-vector. |
254 | | /// |
255 | | /// This can extend from a bit-slice of any type parameters; it is not |
256 | | /// restricted to using the same parameters as `self`. However, when the |
257 | | /// type parameters *do* match, it is possible for this to use a batch-copy |
258 | | /// optimization to go faster than the individual-bit crawl that is |
259 | | /// necessary when they differ. |
260 | | /// |
261 | | /// Until Rust provides extensive support for specialization in trait |
262 | | /// implementations, you should use this method whenever you are extending |
263 | | /// from a `BitSlice` proper, and only use the general [`.extend()`] |
264 | | /// implementation if you are required to use a generic `bool` source. |
265 | | /// |
266 | | /// ## Original |
267 | | /// |
268 | | /// [`Vec::extend_from_slice`](alloc::vec::Vec::extend_from_slice) |
269 | | /// |
270 | | /// ## Examples |
271 | | /// |
272 | | /// ```rust |
273 | | /// use bitvec::prelude::*; |
274 | | /// |
275 | | /// let mut bv = bitvec![0, 1]; |
276 | | /// bv.extend_from_bitslice(bits![0, 1, 0, 0, 1]); |
277 | | /// assert_eq!(bv, bits![0, 1, 0, 1, 0, 0, 1]); |
278 | | /// ``` |
279 | | /// |
280 | | /// [`.extend()`]: https://docs.rs/bitvec/latest/bitvec/vec/struct.Vec.html#impl-Extend |
281 | | #[inline] |
282 | 0 | pub fn extend_from_bitslice<T2, O2>(&mut self, other: &BitSlice<T2, O2>) |
283 | 0 | where |
284 | 0 | T2: BitStore, |
285 | 0 | O2: BitOrder, |
286 | 0 | { |
287 | 0 | let len = self.len(); |
288 | 0 | let olen = other.len(); |
289 | 0 | self.resize(len + olen, false); |
290 | 0 | unsafe { self.get_unchecked_mut(len ..) }.clone_from_bitslice(other); |
291 | 0 | } |
292 | | |
293 | | /// Appends a slice of `T` elements to a bit-vector. |
294 | | /// |
295 | | /// The slice is viewed as a `BitSlice<T, O>`, then appended directly to the |
296 | | /// bit-vector. |
297 | | /// |
298 | | /// ## Original |
299 | | /// |
300 | | /// [`Vec::extend_from_slice`](alloc::vec::Vec::extend_from_slice) |
301 | | #[inline] |
302 | 0 | pub fn extend_from_raw_slice(&mut self, slice: &[T]) { |
303 | 0 | self.extend_from_bitslice(slice.view_bits::<O>()); |
304 | 0 | } |
305 | | } |
306 | | |
307 | | /// Converters. |
308 | | impl<T, O> BitVec<T, O> |
309 | | where |
310 | | T: BitStore, |
311 | | O: BitOrder, |
312 | | { |
313 | | /// Explicitly views the bit-vector as a bit-slice. |
314 | | #[inline] |
315 | 0 | pub fn as_bitslice(&self) -> &BitSlice<T, O> { |
316 | 0 | unsafe { self.bitspan.into_bitslice_ref() } |
317 | 0 | } |
318 | | |
319 | | /// Explicitly views the bit-vector as a mutable bit-slice. |
320 | | #[inline] |
321 | 0 | pub fn as_mut_bitslice(&mut self) -> &mut BitSlice<T, O> { |
322 | 0 | unsafe { self.bitspan.into_bitslice_mut() } |
323 | 0 | } |
324 | | |
325 | | /// Views the bit-vector as a slice of its underlying memory elements. |
326 | | #[inline] |
327 | 0 | pub fn as_raw_slice(&self) -> &[T] { |
328 | 0 | let (data, len) = |
329 | 0 | (self.bitspan.address().to_const(), self.bitspan.elements()); |
330 | 0 | unsafe { slice::from_raw_parts(data, len) } |
331 | 0 | } |
332 | | |
333 | | /// Views the bit-vector as a mutable slice of its underlying memory |
334 | | /// elements. |
335 | | #[inline] |
336 | 0 | pub fn as_raw_mut_slice(&mut self) -> &mut [T] { |
337 | 0 | let (data, len) = |
338 | 0 | (self.bitspan.address().to_mut(), self.bitspan.elements()); |
339 | 0 | unsafe { slice::from_raw_parts_mut(data, len) } |
340 | 0 | } |
341 | | |
342 | | /// Creates an unsafe shared bit-pointer to the start of the buffer. |
343 | | /// |
344 | | /// ## Original |
345 | | /// |
346 | | /// [`Vec::as_ptr`](alloc::vec::Vec::as_ptr) |
347 | | /// |
348 | | /// ## Safety |
349 | | /// |
350 | | /// You must initialize the contents of the underlying buffer before |
351 | | /// accessing memory through this pointer. See the `BitPtr` documentation |
352 | | /// for more details. |
353 | | #[inline] |
354 | 0 | pub fn as_bitptr(&self) -> BitPtr<Const, T, O> { |
355 | 0 | self.bitspan.to_bitptr().to_const() |
356 | 0 | } |
357 | | |
358 | | /// Creates an unsafe writable bit-pointer to the start of the buffer. |
359 | | /// |
360 | | /// ## Original |
361 | | /// |
362 | | /// [`Vec::as_mut_ptr`](alloc::vec::Vec::as_mut_ptr) |
363 | | /// |
364 | | /// ## Safety |
365 | | /// |
366 | | /// You must initialize the contents of the underlying buffer before |
367 | | /// accessing memory through this pointer. See the `BitPtr` documentation |
368 | | /// for more details. |
369 | | #[inline] |
370 | 0 | pub fn as_mut_bitptr(&mut self) -> BitPtr<Mut, T, O> { |
371 | 0 | self.bitspan.to_bitptr() |
372 | 0 | } |
373 | | |
374 | | /// Converts a bit-vector into a boxed bit-slice. |
375 | | /// |
376 | | /// This may cause a reällocation to drop any excess capacity. |
377 | | /// |
378 | | /// ## Original |
379 | | /// |
380 | | /// [`Vec::into_boxed_slice`](alloc::vec::Vec::into_boxed_slice) |
381 | | /// |
382 | | /// ## Examples |
383 | | /// |
384 | | /// ```rust |
385 | | /// use bitvec::prelude::*; |
386 | | /// |
387 | | /// let bv = bitvec![0, 1, 0, 0, 1]; |
388 | | /// let bb = bv.into_boxed_bitslice(); |
389 | | /// ``` |
390 | | #[inline] |
391 | 0 | pub fn into_boxed_bitslice(self) -> BitBox<T, O> { |
392 | 0 | let mut bitspan = self.bitspan; |
393 | 0 | let mut boxed = |
394 | 0 | self.into_vec().into_boxed_slice().pipe(ManuallyDrop::new); |
395 | 0 | unsafe { |
396 | 0 | bitspan.set_address(boxed.as_mut_ptr().into_address()); |
397 | 0 | BitBox::from_raw(bitspan.into_bitslice_ptr_mut()) |
398 | 0 | } |
399 | 0 | } |
400 | | |
401 | | /// Converts a bit-vector into a `Vec` of its underlying storage. |
402 | | /// |
403 | | /// The produced vector contains all elements that contained live bits. Dead |
404 | | /// bits have an unspecified value; you should call [`.set_uninitialized()`] |
405 | | /// before converting into a vector. |
406 | | /// |
407 | | /// This does not affect the allocated memory; it is purely a conversion of |
408 | | /// the handle. |
409 | | /// |
410 | | /// ## Examples |
411 | | /// |
412 | | /// ```rust |
413 | | /// use bitvec::prelude::*; |
414 | | /// |
415 | | /// let bv = bitvec![u8, Msb0; 0, 1, 0, 0, 1]; |
416 | | /// let v = bv.into_vec(); |
417 | | /// assert_eq!(v[0] & 0xF8, 0b01001_000); |
418 | | /// ``` |
419 | | /// |
420 | | /// [`.set_uninitialized()`]: Self::set_uninitialized |
421 | | #[inline] |
422 | 0 | pub fn into_vec(self) -> Vec<T> { |
423 | 0 | let (bitspan, capacity) = (self.bitspan, self.capacity); |
424 | 0 | mem::forget(self); |
425 | 0 | unsafe { |
426 | 0 | Vec::from_raw_parts( |
427 | 0 | bitspan.address().to_mut(), |
428 | 0 | bitspan.elements(), |
429 | 0 | capacity, |
430 | 0 | ) |
431 | 0 | } |
432 | 0 | } |
433 | | } |
434 | | |
435 | | /// Utilities. |
436 | | impl<T, O> BitVec<T, O> |
437 | | where |
438 | | T: BitStore, |
439 | | O: BitOrder, |
440 | | { |
441 | | /// Overwrites each element (visible in [`.as_raw_mut_slice()`]) with a new |
442 | | /// bit-pattern. |
443 | | /// |
444 | | /// This unconditionally writes `element` into each element in the backing |
445 | | /// slice, without altering the bit-vector’s length or capacity. |
446 | | /// |
447 | | /// This guarantees that dead bits visible in [`.as_raw_slice()`] but not |
448 | | /// [`.as_bitslice()`] are initialized according to the bit-pattern of |
449 | | /// `element.` The elements not visible in the raw slice, but present in the |
450 | | /// allocation, do *not* specify a value. You may not rely on them being |
451 | | /// zeroed *or* being set to the `element` bit-pattern. |
452 | | /// |
453 | | /// ## Parameters |
454 | | /// |
455 | | /// - `&mut self` |
456 | | /// - `element`: The bit-pattern with which each live element in the backing |
457 | | /// store is initialized. |
458 | | /// |
459 | | /// ## Examples |
460 | | /// |
461 | | /// ```rust |
462 | | /// use bitvec::prelude::*; |
463 | | /// |
464 | | /// let mut bv = bitvec![u8, Msb0; 0; 20]; |
465 | | /// assert_eq!(bv.as_raw_slice(), [0; 3]); |
466 | | /// bv.set_elements(0xA5); |
467 | | /// assert_eq!(bv.as_raw_slice(), [0xA5; 3]); |
468 | | /// ``` |
469 | | /// |
470 | | /// [`.as_bitslice()`]: Self::as_bitslice |
471 | | /// [`.as_raw_mut_slice()`]: Self::as_raw_mut_slice |
472 | | /// [`.as_raw_slice()`]: Self::as_raw_slice |
473 | | #[inline] |
474 | 0 | pub fn set_elements(&mut self, element: T::Mem) { |
475 | 0 | self.as_raw_mut_slice() |
476 | 0 | .iter_mut() |
477 | 0 | .for_each(|elt| elt.store_value(element)); |
478 | 0 | } |
479 | | |
480 | | /// Sets the uninitialized bits of a bit-vector to a known value. |
481 | | /// |
482 | | /// This method modifies all bits that are observable in [`.as_raw_slice()`] |
483 | | /// but *not* observable in [`.as_bitslice()`] to a known value. |
484 | | /// Memory beyond the raw-slice view, but still within the allocation, is |
485 | | /// considered fully dead and will never be seen. |
486 | | /// |
487 | | /// This can be used to zero the unused memory so that when viewed as a raw |
488 | | /// slice, unused bits have a consistent and predictable value. |
489 | | /// |
490 | | /// ## Examples |
491 | | /// |
492 | | /// ```rust |
493 | | /// use bitvec::prelude::*; |
494 | | /// |
495 | | /// let mut bv = 0b1101_1100u8.view_bits::<Lsb0>().to_bitvec(); |
496 | | /// assert_eq!(bv.as_raw_slice()[0], 0b1101_1100u8); |
497 | | /// |
498 | | /// bv.truncate(4); |
499 | | /// assert_eq!(bv.count_ones(), 2); |
500 | | /// assert_eq!(bv.as_raw_slice()[0], 0b1101_1100u8); |
501 | | /// |
502 | | /// bv.set_uninitialized(false); |
503 | | /// assert_eq!(bv.as_raw_slice()[0], 0b0000_1100u8); |
504 | | /// |
505 | | /// bv.set_uninitialized(true); |
506 | | /// assert_eq!(bv.as_raw_slice()[0], 0b1111_1100u8); |
507 | | /// ``` |
508 | | /// |
509 | | /// [`.as_bitslice()`]: Self::as_bitslice |
510 | | /// [`.as_raw_slice()`]: Self::as_raw_slice |
511 | | #[inline] |
512 | 0 | pub fn set_uninitialized(&mut self, value: bool) { |
513 | 0 | let head = self.bitspan.head().into_inner() as usize; |
514 | 0 | let last = head + self.len(); |
515 | 0 | let all = self.as_raw_mut_slice().view_bits_mut::<O>(); |
516 | 0 | unsafe { |
517 | 0 | all.get_unchecked_mut(.. head).fill(value); |
518 | 0 | all.get_unchecked_mut(last ..).fill(value); |
519 | 0 | } |
520 | 0 | } |
521 | | |
522 | | /// Ensures that the live region of the bit-vector’s contents begin at the |
523 | | /// front edge of the buffer. |
524 | | /// |
525 | | /// `BitVec` has performance optimizations where it moves its view of its |
526 | | /// buffer contents in order to avoid needless moves of its data within the |
527 | | /// buffer. This can lead to unexpected contents of the raw memory values, |
528 | | /// so this method ensures that the semantic contents of the bit-vector |
529 | | /// match its in-memory storage. |
530 | | /// |
531 | | /// ## Examples |
532 | | /// |
533 | | /// ```rust |
534 | | /// use bitvec::prelude::*; |
535 | | /// |
536 | | /// let data = 0b00_1111_00u8; |
537 | | /// let bits = data.view_bits::<Msb0>(); |
538 | | /// |
539 | | /// let mut bv = bits[2 .. 6].to_bitvec(); |
540 | | /// assert_eq!(bv, bits![1; 4]); |
541 | | /// assert_eq!(bv.as_raw_slice()[0], data); |
542 | | /// |
543 | | /// bv.force_align(); |
544 | | /// assert_eq!(bv, bits![1; 4]); |
545 | | /// // BitVec does not specify the value of dead bits in its buffer. |
546 | | /// assert_eq!(bv.as_raw_slice()[0] & 0xF0, 0xF0); |
547 | | /// ``` |
548 | | #[inline] |
549 | 0 | pub fn force_align(&mut self) { |
550 | 0 | let mut bitspan = self.bitspan; |
551 | 0 | let len = bitspan.len(); |
552 | 0 | let head = self.bitspan.head(); |
553 | 0 | if head == BitIdx::MIN { |
554 | 0 | return; |
555 | 0 | } |
556 | 0 | let head = head.into_inner() as usize; |
557 | 0 | let last = head + len; |
558 | 0 | unsafe { |
559 | 0 | bitspan.set_head(BitIdx::MIN); |
560 | 0 | bitspan.set_len(last); |
561 | 0 | bitspan |
562 | 0 | .into_bitslice_mut() |
563 | 0 | .copy_within_unchecked(head .., 0); |
564 | 0 | bitspan.set_len(len); |
565 | 0 | } |
566 | 0 | self.bitspan = bitspan; |
567 | 0 | } |
568 | | |
569 | | /// Sets the starting-bit index of the span descriptor. |
570 | | /// |
571 | | /// ## Safety |
572 | | /// |
573 | | /// The new `head` value must not cause the final bits of the bit-vector to |
574 | | /// depart allocated memory. |
575 | 0 | pub(crate) unsafe fn set_head(&mut self, new_head: BitIdx<T::Mem>) { |
576 | 0 | self.bitspan.set_head(new_head); |
577 | 0 | } |
578 | | |
579 | | /// Sets a bit-vector’s length without checking that it fits in the |
580 | | /// allocated capacity. |
581 | | /// |
582 | | /// ## Safety |
583 | | /// |
584 | | /// `new_len` must not exceed `self.capacity()`. |
585 | 0 | pub(crate) unsafe fn set_len_unchecked(&mut self, new_len: usize) { |
586 | 0 | self.bitspan.set_len(new_len); |
587 | 0 | } |
588 | | |
589 | | /// Asserts that a length can be encoded into the bit-vector handle. |
590 | | /// |
591 | | /// ## Panics |
592 | | /// |
593 | | /// This panics if `len` is too large to encode into a `BitSpan`. |
594 | | #[inline] |
595 | 0 | fn assert_len_encodable(len: usize) { |
596 | 0 | assert!( |
597 | 0 | BitSpan::<Const, T, O>::len_encodable(len), |
598 | 0 | "bit-vector capacity exceeded: {} > {}", |
599 | | len, |
600 | | BitSlice::<T, O>::MAX_BITS, |
601 | | ); |
602 | 0 | } |
603 | | |
604 | | /// Reserves some memory through the underlying vector. |
605 | | /// |
606 | | /// ## Parameters |
607 | | /// |
608 | | /// - `&mut self` |
609 | | /// - `additional`: The amount of additional space required after |
610 | | /// `self.len()` in the allocation. |
611 | | /// - `func`: A function that manipulates the memory reservation of the |
612 | | /// underlying vector. |
613 | | /// |
614 | | /// ## Behavior |
615 | | /// |
616 | | /// `func` should perform the appropriate action to allocate space for at |
617 | | /// least `additional` more bits. After it returns, the underlying vector is |
618 | | /// extended with zero-initialized elements until `self.len() + additional` |
619 | | /// bits have been given initialized memory. |
620 | | #[inline] |
621 | 0 | fn do_reservation( |
622 | 0 | &mut self, |
623 | 0 | additional: usize, |
624 | 0 | func: impl FnOnce(&mut Vec<T>, usize), |
625 | 0 | ) { |
626 | 0 | let len = self.len(); |
627 | 0 | let new_len = len.saturating_add(additional); |
628 | 0 | Self::assert_len_encodable(new_len); |
629 | 0 |
|
630 | 0 | let (head, elts) = (self.bitspan.head(), self.bitspan.elements()); |
631 | 0 | let new_elts = |
632 | 0 | crate::mem::elts::<T>(head.into_inner() as usize + new_len); |
633 | 0 |
|
634 | 0 | let extra_elts = new_elts - elts; |
635 | 0 | self.with_vec(|vec| { |
636 | 0 | func(&mut **vec, extra_elts); |
637 | 0 | // Ensure that any new elements are initialized. |
638 | 0 | vec.resize_with(new_elts, || <T as BitStore>::ZERO); |
639 | 0 | }); |
640 | 0 | } |
641 | | |
642 | | /// Briefly constructs an ordinary `Vec` controlling the buffer, allowing |
643 | | /// operations to be applied to the memory allocation. |
644 | | /// |
645 | | /// ## Parameters |
646 | | /// |
647 | | /// - `&mut self` |
648 | | /// - `func`: A function which may interact with the memory allocation. |
649 | | /// |
650 | | /// After `func` runs, `self` is updated with the temporary `Vec`’s address |
651 | | /// and capacity. |
652 | | #[inline] |
653 | 0 | fn with_vec<F, R>(&mut self, func: F) -> R |
654 | 0 | where F: FnOnce(&mut ManuallyDrop<Vec<T>>) -> R { |
655 | 0 | let mut vec = unsafe { ptr::read(self) } |
656 | 0 | .into_vec() |
657 | 0 | .pipe(ManuallyDrop::new); |
658 | 0 | let out = func(&mut vec); |
659 | 0 |
|
660 | 0 | unsafe { |
661 | 0 | self.bitspan.set_address(vec.as_mut_ptr().into_address()); |
662 | 0 | } |
663 | 0 | self.capacity = vec.capacity(); |
664 | 0 | out |
665 | 0 | } |
666 | | } |