Coverage Report

Created: 2025-08-28 06:25

/rust/registry/src/index.crates.io-6f17d22bba15001f/rand-0.9.2/src/distr/bernoulli.rs
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2018 Developers of the Rand project.
2
//
3
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
4
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
5
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
6
// option. This file may not be copied, modified, or distributed
7
// except according to those terms.
8
9
//! The Bernoulli distribution `Bernoulli(p)`.
10
11
use crate::distr::Distribution;
12
use crate::Rng;
13
use core::fmt;
14
15
#[cfg(feature = "serde")]
16
use serde::{Deserialize, Serialize};
17
18
/// The [Bernoulli distribution](https://en.wikipedia.org/wiki/Bernoulli_distribution) `Bernoulli(p)`.
19
///
20
/// This distribution describes a single boolean random variable, which is true
21
/// with probability `p` and false with probability `1 - p`.
22
/// It is a special case of the Binomial distribution with `n = 1`.
23
///
24
/// # Plot
25
///
26
/// The following plot shows the Bernoulli distribution with `p = 0.1`,
27
/// `p = 0.5`, and `p = 0.9`.
28
///
29
/// ![Bernoulli distribution](https://raw.githubusercontent.com/rust-random/charts/main/charts/bernoulli.svg)
30
///
31
/// # Example
32
///
33
/// ```rust
34
/// use rand::distr::{Bernoulli, Distribution};
35
///
36
/// let d = Bernoulli::new(0.3).unwrap();
37
/// let v = d.sample(&mut rand::rng());
38
/// println!("{} is from a Bernoulli distribution", v);
39
/// ```
40
///
41
/// # Precision
42
///
43
/// This `Bernoulli` distribution uses 64 bits from the RNG (a `u64`),
44
/// so only probabilities that are multiples of 2<sup>-64</sup> can be
45
/// represented.
46
#[derive(Clone, Copy, Debug, PartialEq)]
47
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
48
pub struct Bernoulli {
49
    /// Probability of success, relative to the maximal integer.
50
    p_int: u64,
51
}
52
53
// To sample from the Bernoulli distribution we use a method that compares a
54
// random `u64` value `v < (p * 2^64)`.
55
//
56
// If `p == 1.0`, the integer `v` to compare against can not represented as a
57
// `u64`. We manually set it to `u64::MAX` instead (2^64 - 1 instead of 2^64).
58
// Note that  value of `p < 1.0` can never result in `u64::MAX`, because an
59
// `f64` only has 53 bits of precision, and the next largest value of `p` will
60
// result in `2^64 - 2048`.
61
//
62
// Also there is a 100% theoretical concern: if someone consistently wants to
63
// generate `true` using the Bernoulli distribution (i.e. by using a probability
64
// of `1.0`), just using `u64::MAX` is not enough. On average it would return
65
// false once every 2^64 iterations. Some people apparently care about this
66
// case.
67
//
68
// That is why we special-case `u64::MAX` to always return `true`, without using
69
// the RNG, and pay the performance price for all uses that *are* reasonable.
70
// Luckily, if `new()` and `sample` are close, the compiler can optimize out the
71
// extra check.
72
const ALWAYS_TRUE: u64 = u64::MAX;
73
74
// This is just `2.0.powi(64)`, but written this way because it is not available
75
// in `no_std` mode.
76
const SCALE: f64 = 2.0 * (1u64 << 63) as f64;
77
78
/// Error type returned from [`Bernoulli::new`].
79
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
80
pub enum BernoulliError {
81
    /// `p < 0` or `p > 1`.
82
    InvalidProbability,
83
}
84
85
impl fmt::Display for BernoulliError {
86
0
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
87
0
        f.write_str(match self {
88
0
            BernoulliError::InvalidProbability => "p is outside [0, 1] in Bernoulli distribution",
89
0
        })
90
0
    }
91
}
92
93
#[cfg(feature = "std")]
94
impl std::error::Error for BernoulliError {}
95
96
impl Bernoulli {
97
    /// Construct a new `Bernoulli` with the given probability of success `p`.
98
    ///
99
    /// # Precision
100
    ///
101
    /// For `p = 1.0`, the resulting distribution will always generate true.
102
    /// For `p = 0.0`, the resulting distribution will always generate false.
103
    ///
104
    /// This method is accurate for any input `p` in the range `[0, 1]` which is
105
    /// a multiple of 2<sup>-64</sup>. (Note that not all multiples of
106
    /// 2<sup>-64</sup> in `[0, 1]` can be represented as a `f64`.)
107
    #[inline]
108
0
    pub fn new(p: f64) -> Result<Bernoulli, BernoulliError> {
109
0
        if !(0.0..1.0).contains(&p) {
110
0
            if p == 1.0 {
111
0
                return Ok(Bernoulli { p_int: ALWAYS_TRUE });
112
0
            }
113
0
            return Err(BernoulliError::InvalidProbability);
114
0
        }
115
0
        Ok(Bernoulli {
116
0
            p_int: (p * SCALE) as u64,
117
0
        })
118
0
    }
119
120
    /// Construct a new `Bernoulli` with the probability of success of
121
    /// `numerator`-in-`denominator`. I.e. `new_ratio(2, 3)` will return
122
    /// a `Bernoulli` with a 2-in-3 chance, or about 67%, of returning `true`.
123
    ///
124
    /// return `true`. If `numerator == 0` it will always return `false`.
125
    /// For `numerator > denominator` and `denominator == 0`, this returns an
126
    /// error. Otherwise, for `numerator == denominator`, samples are always
127
    /// true; for `numerator == 0` samples are always false.
128
    #[inline]
129
0
    pub fn from_ratio(numerator: u32, denominator: u32) -> Result<Bernoulli, BernoulliError> {
130
0
        if numerator > denominator || denominator == 0 {
131
0
            return Err(BernoulliError::InvalidProbability);
132
0
        }
133
0
        if numerator == denominator {
134
0
            return Ok(Bernoulli { p_int: ALWAYS_TRUE });
135
0
        }
136
0
        let p_int = ((f64::from(numerator) / f64::from(denominator)) * SCALE) as u64;
137
0
        Ok(Bernoulli { p_int })
138
0
    }
139
140
    #[inline]
141
    /// Returns the probability (`p`) of the distribution.
142
    ///
143
    /// This value may differ slightly from the input due to loss of precision.
144
0
    pub fn p(&self) -> f64 {
145
0
        if self.p_int == ALWAYS_TRUE {
146
0
            1.0
147
        } else {
148
0
            (self.p_int as f64) / SCALE
149
        }
150
0
    }
151
}
152
153
impl Distribution<bool> for Bernoulli {
154
    #[inline]
155
0
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> bool {
156
0
        // Make sure to always return true for p = 1.0.
157
0
        if self.p_int == ALWAYS_TRUE {
158
0
            return true;
159
0
        }
160
0
        let v: u64 = rng.random();
161
0
        v < self.p_int
162
0
    }
163
}
164
165
#[cfg(test)]
166
mod test {
167
    use super::Bernoulli;
168
    use crate::distr::Distribution;
169
    use crate::Rng;
170
171
    #[test]
172
    #[cfg(feature = "serde")]
173
    fn test_serializing_deserializing_bernoulli() {
174
        let coin_flip = Bernoulli::new(0.5).unwrap();
175
        let de_coin_flip: Bernoulli =
176
            bincode::deserialize(&bincode::serialize(&coin_flip).unwrap()).unwrap();
177
178
        assert_eq!(coin_flip.p_int, de_coin_flip.p_int);
179
    }
180
181
    #[test]
182
    fn test_trivial() {
183
        // We prefer to be explicit here.
184
        #![allow(clippy::bool_assert_comparison)]
185
186
        let mut r = crate::test::rng(1);
187
        let always_false = Bernoulli::new(0.0).unwrap();
188
        let always_true = Bernoulli::new(1.0).unwrap();
189
        for _ in 0..5 {
190
            assert_eq!(r.sample::<bool, _>(&always_false), false);
191
            assert_eq!(r.sample::<bool, _>(&always_true), true);
192
            assert_eq!(Distribution::<bool>::sample(&always_false, &mut r), false);
193
            assert_eq!(Distribution::<bool>::sample(&always_true, &mut r), true);
194
        }
195
    }
196
197
    #[test]
198
    #[cfg_attr(miri, ignore)] // Miri is too slow
199
    fn test_average() {
200
        const P: f64 = 0.3;
201
        const NUM: u32 = 3;
202
        const DENOM: u32 = 10;
203
        let d1 = Bernoulli::new(P).unwrap();
204
        let d2 = Bernoulli::from_ratio(NUM, DENOM).unwrap();
205
        const N: u32 = 100_000;
206
207
        let mut sum1: u32 = 0;
208
        let mut sum2: u32 = 0;
209
        let mut rng = crate::test::rng(2);
210
        for _ in 0..N {
211
            if d1.sample(&mut rng) {
212
                sum1 += 1;
213
            }
214
            if d2.sample(&mut rng) {
215
                sum2 += 1;
216
            }
217
        }
218
        let avg1 = (sum1 as f64) / (N as f64);
219
        assert!((avg1 - P).abs() < 5e-3);
220
221
        let avg2 = (sum2 as f64) / (N as f64);
222
        assert!((avg2 - (NUM as f64) / (DENOM as f64)).abs() < 5e-3);
223
    }
224
225
    #[test]
226
    fn value_stability() {
227
        let mut rng = crate::test::rng(3);
228
        let distr = Bernoulli::new(0.4532).unwrap();
229
        let mut buf = [false; 10];
230
        for x in &mut buf {
231
            *x = rng.sample(distr);
232
        }
233
        assert_eq!(
234
            buf,
235
            [true, false, false, true, false, false, true, true, true, true]
236
        );
237
    }
238
239
    #[test]
240
    fn bernoulli_distributions_can_be_compared() {
241
        assert_eq!(Bernoulli::new(1.0), Bernoulli::new(1.0));
242
    }
243
}