/src/c-blosc/blosc/shuffle.c
Line | Count | Source |
1 | | /********************************************************************* |
2 | | Blosc - Blocked Shuffling and Compression Library |
3 | | |
4 | | Author: Francesc Alted <francesc@blosc.org> |
5 | | Creation date: 2009-05-20 |
6 | | |
7 | | See LICENSE.txt for details about copyright and rights to use. |
8 | | **********************************************************************/ |
9 | | |
10 | | #include "shuffle.h" |
11 | | #include "blosc-common.h" |
12 | | #include "shuffle-generic.h" |
13 | | #include "bitshuffle-generic.h" |
14 | | #include "blosc-comp-features.h" |
15 | | #include <stdio.h> |
16 | | |
17 | | #if defined(_WIN32) |
18 | | #include "win32/pthread.h" |
19 | | #else |
20 | | #include <pthread.h> |
21 | | #endif |
22 | | |
23 | | #if !defined(__clang__) && defined(__GNUC__) && defined(__GNUC_MINOR__) && \ |
24 | | __GNUC__ >= 5 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) |
25 | | #define HAVE_CPU_FEAT_INTRIN |
26 | | #endif |
27 | | |
28 | | |
29 | | /* Include hardware-accelerated shuffle/unshuffle routines based on |
30 | | the target architecture. Note that a target architecture may support |
31 | | more than one type of acceleration!*/ |
32 | | #if defined(SHUFFLE_AVX2_ENABLED) |
33 | | #include "shuffle-avx2.h" |
34 | | #include "bitshuffle-avx2.h" |
35 | | #endif /* defined(SHUFFLE_AVX2_ENABLED) */ |
36 | | |
37 | | #if defined(SHUFFLE_SSE2_ENABLED) |
38 | | #include "shuffle-sse2.h" |
39 | | #include "bitshuffle-sse2.h" |
40 | | #endif /* defined(SHUFFLE_SSE2_ENABLED) */ |
41 | | |
42 | | |
43 | | /* Define function pointer types for shuffle/unshuffle routines. */ |
44 | | typedef void(*shuffle_func)(const size_t, const size_t, const uint8_t*, const uint8_t*); |
45 | | typedef void(*unshuffle_func)(const size_t, const size_t, const uint8_t*, const uint8_t*); |
46 | | typedef int64_t(*bitshuffle_func)(void*, void*, const size_t, const size_t, void*); |
47 | | typedef int64_t(*bitunshuffle_func)(void*, void*, const size_t, const size_t, void*); |
48 | | |
49 | | /* An implementation of shuffle/unshuffle routines. */ |
50 | | typedef struct shuffle_implementation { |
51 | | /* Name of this implementation. */ |
52 | | const char* name; |
53 | | /* Function pointer to the shuffle routine for this implementation. */ |
54 | | shuffle_func shuffle; |
55 | | /* Function pointer to the unshuffle routine for this implementation. */ |
56 | | unshuffle_func unshuffle; |
57 | | /* Function pointer to the bitshuffle routine for this implementation. */ |
58 | | bitshuffle_func bitshuffle; |
59 | | /* Function pointer to the bitunshuffle routine for this implementation. */ |
60 | | bitunshuffle_func bitunshuffle; |
61 | | } shuffle_implementation_t; |
62 | | |
63 | | typedef enum { |
64 | | BLOSC_HAVE_NOTHING = 0, |
65 | | BLOSC_HAVE_SSE2 = 1, |
66 | | BLOSC_HAVE_AVX2 = 2 |
67 | | } blosc_cpu_features; |
68 | | |
69 | | /* Detect hardware and set function pointers to the best shuffle/unshuffle |
70 | | implementations supported by the host processor for Intel/i686 |
71 | | */ |
72 | | #if (defined(__x86_64__) || defined(_M_X64) || defined(__i386__) || defined(_M_IX86)) \ |
73 | | && (defined(SHUFFLE_AVX2_ENABLED) || defined(SHUFFLE_SSE2_ENABLED)) |
74 | | |
75 | | /* Disabled the __builtin_cpu_supports() call, as it has issues with |
76 | | new versions of gcc (like 5.3.1 in forthcoming ubuntu/xenial: |
77 | | "undefined symbol: __cpu_model" |
78 | | For a similar report, see: |
79 | | https://lists.fedoraproject.org/archives/list/devel@lists.fedoraproject.org/thread/ZM2L65WIZEEQHHLFERZYD5FAG7QY2OGB/ |
80 | | */ |
81 | | #if defined(HAVE_CPU_FEAT_INTRIN) && 0 |
82 | | static blosc_cpu_features blosc_get_cpu_features(void) { |
83 | | blosc_cpu_features cpu_features = BLOSC_HAVE_NOTHING; |
84 | | if (__builtin_cpu_supports("sse2")) { |
85 | | cpu_features |= BLOSC_HAVE_SSE2; |
86 | | } |
87 | | if (__builtin_cpu_supports("avx2")) { |
88 | | cpu_features |= BLOSC_HAVE_AVX2; |
89 | | } |
90 | | return cpu_features; |
91 | | } |
92 | | #else |
93 | | |
94 | | #if defined(_MSC_VER) && !defined(__clang__) |
95 | | #include <intrin.h> /* Needed for __cpuid */ |
96 | | |
97 | | /* _xgetbv is only supported by VS2010 SP1 and newer versions of VS. */ |
98 | | #if _MSC_FULL_VER >= 160040219 |
99 | | #include <immintrin.h> /* Needed for _xgetbv */ |
100 | | #define blosc_internal_xgetbv _xgetbv |
101 | | #elif defined(_M_IX86) |
102 | | |
103 | | /* Implement _xgetbv for VS2008 and VS2010 RTM with 32-bit (x86) targets. */ |
104 | | |
105 | | static uint64_t blosc_internal_xgetbv(uint32_t xcr) { |
106 | | uint32_t xcr0, xcr1; |
107 | | __asm { |
108 | | mov ecx, xcr |
109 | | _asm _emit 0x0f _asm _emit 0x01 _asm _emit 0xd0 |
110 | | mov xcr0, eax |
111 | | mov xcr1, edx |
112 | | } |
113 | | return ((uint64_t)xcr1 << 32) | xcr0; |
114 | | } |
115 | | |
116 | | #elif defined(_M_X64) |
117 | | |
118 | | /* Implement _xgetbv for VS2008 and VS2010 RTM with 64-bit (x64) targets. |
119 | | These compilers don't support any of the newer acceleration ISAs |
120 | | (e.g., AVX2) supported by blosc, and all x64 hardware supports SSE2 |
121 | | which means we can get away with returning a hard-coded value from |
122 | | this implementation of _xgetbv. */ |
123 | | |
124 | | static __inline uint64_t blosc_internal_xgetbv(uint32_t xcr) { |
125 | | /* A 64-bit OS must have XMM save support. */ |
126 | | return (xcr == 0 ? (1UL << 1) : 0UL); |
127 | | } |
128 | | |
129 | | #else |
130 | | |
131 | | /* Hardware detection for any other MSVC targets (e.g., ARM) |
132 | | isn't implemented at this time. */ |
133 | | #error This version of c-blosc only supports x86 and x64 targets with MSVC. |
134 | | |
135 | | #endif /* _MSC_FULL_VER >= 160040219 */ |
136 | | |
137 | | #define blosc_internal_cpuid __cpuid |
138 | | |
139 | | #else |
140 | | |
141 | | /* Implement the __cpuid and __cpuidex intrinsics for GCC, Clang, |
142 | | and others using inline assembly. */ |
143 | | __attribute__((always_inline)) |
144 | | static inline void |
145 | 3 | blosc_internal_cpuidex(int32_t cpuInfo[4], int32_t function_id, int32_t subfunction_id) { |
146 | 3 | __asm__ __volatile__ ( |
147 | | # if defined(__i386__) && defined (__PIC__) |
148 | | /* Can't clobber ebx with PIC running under 32-bit, so it needs to be manually restored. |
149 | | https://software.intel.com/en-us/articles/how-to-detect-new-instruction-support-in-the-4th-generation-intel-core-processor-family |
150 | | */ |
151 | | "movl %%ebx, %%edi\n\t" |
152 | | "cpuid\n\t" |
153 | | "xchgl %%ebx, %%edi": |
154 | | "=D" (cpuInfo[1]), |
155 | | #else |
156 | 3 | "cpuid": |
157 | 3 | "=b" (cpuInfo[1]), |
158 | 3 | #endif /* defined(__i386) && defined(__PIC__) */ |
159 | 3 | "=a" (cpuInfo[0]), |
160 | 3 | "=c" (cpuInfo[2]), |
161 | 3 | "=d" (cpuInfo[3]) : |
162 | 3 | "a" (function_id), "c" (subfunction_id) |
163 | 3 | ); |
164 | 3 | } |
165 | | |
166 | 3 | #define blosc_internal_cpuid(cpuInfo, function_id) blosc_internal_cpuidex(cpuInfo, function_id, 0) |
167 | | |
168 | 1 | #define _XCR_XFEATURE_ENABLED_MASK 0 |
169 | | |
170 | | /* Reads the content of an extended control register. |
171 | | https://software.intel.com/en-us/articles/how-to-detect-new-instruction-support-in-the-4th-generation-intel-core-processor-family |
172 | | */ |
173 | | static inline uint64_t |
174 | 1 | blosc_internal_xgetbv(uint32_t xcr) { |
175 | 1 | uint32_t eax, edx; |
176 | 1 | __asm__ __volatile__ ( |
177 | | /* "xgetbv" |
178 | | This is specified as raw instruction bytes due to some older compilers |
179 | | having issues with the mnemonic form. |
180 | | */ |
181 | 1 | ".byte 0x0f, 0x01, 0xd0": |
182 | 1 | "=a" (eax), |
183 | 1 | "=d" (edx) : |
184 | 1 | "c" (xcr) |
185 | 1 | ); |
186 | 1 | return ((uint64_t)edx << 32) | eax; |
187 | 1 | } |
188 | | |
189 | | #endif /* defined(_MSC_FULL_VER) */ |
190 | | |
191 | | #ifndef _XCR_XFEATURE_ENABLED_MASK |
192 | | #define _XCR_XFEATURE_ENABLED_MASK 0x0 |
193 | | #endif |
194 | | |
195 | 1 | static blosc_cpu_features blosc_get_cpu_features(void) { |
196 | 1 | blosc_cpu_features result = BLOSC_HAVE_NOTHING; |
197 | 1 | int32_t max_basic_function_id; |
198 | | /* Holds the values of eax, ebx, ecx, edx set by the `cpuid` instruction */ |
199 | 1 | int32_t cpu_info[4]; |
200 | 1 | int sse2_available; |
201 | 1 | int sse3_available; |
202 | 1 | int ssse3_available; |
203 | 1 | int sse41_available; |
204 | 1 | int sse42_available; |
205 | 1 | int xsave_available; |
206 | 1 | int xsave_enabled_by_os; |
207 | 1 | int avx2_available = 0; |
208 | 1 | int avx512bw_available = 0; |
209 | 1 | int xmm_state_enabled = 0; |
210 | 1 | int ymm_state_enabled = 0; |
211 | 1 | int zmm_state_enabled = 0; |
212 | 1 | uint64_t xcr0_contents; |
213 | 1 | char* envvar; |
214 | | |
215 | | /* Get the number of basic functions available. */ |
216 | 1 | blosc_internal_cpuid(cpu_info, 0); |
217 | 1 | max_basic_function_id = cpu_info[0]; |
218 | | |
219 | | /* Check for SSE-based features and required OS support */ |
220 | 1 | blosc_internal_cpuid(cpu_info, 1); |
221 | 1 | sse2_available = (cpu_info[3] & (1 << 26)) != 0; |
222 | 1 | sse3_available = (cpu_info[2] & (1 << 0)) != 0; |
223 | 1 | ssse3_available = (cpu_info[2] & (1 << 9)) != 0; |
224 | 1 | sse41_available = (cpu_info[2] & (1 << 19)) != 0; |
225 | 1 | sse42_available = (cpu_info[2] & (1 << 20)) != 0; |
226 | | |
227 | 1 | xsave_available = (cpu_info[2] & (1 << 26)) != 0; |
228 | 1 | xsave_enabled_by_os = (cpu_info[2] & (1 << 27)) != 0; |
229 | | |
230 | | /* Check for AVX-based features, if the processor supports extended features. */ |
231 | 1 | if (max_basic_function_id >= 7) { |
232 | 1 | blosc_internal_cpuid(cpu_info, 7); |
233 | 1 | avx2_available = (cpu_info[1] & (1 << 5)) != 0; |
234 | 1 | avx512bw_available = (cpu_info[1] & (1 << 30)) != 0; |
235 | 1 | } |
236 | | |
237 | | /* Even if certain features are supported by the CPU, they may not be supported |
238 | | by the OS (in which case using them would crash the process or system). |
239 | | If xsave is available and enabled by the OS, check the contents of the |
240 | | extended control register XCR0 to see if the CPU features are enabled. */ |
241 | 1 | #if defined(_XCR_XFEATURE_ENABLED_MASK) |
242 | 1 | if (xsave_available && xsave_enabled_by_os && ( |
243 | 1 | sse2_available || sse3_available || ssse3_available |
244 | 0 | || sse41_available || sse42_available |
245 | 1 | || avx2_available || avx512bw_available)) { |
246 | | /* Determine which register states can be restored by the OS. */ |
247 | 1 | xcr0_contents = blosc_internal_xgetbv(_XCR_XFEATURE_ENABLED_MASK); |
248 | | |
249 | 1 | xmm_state_enabled = (xcr0_contents & (1UL << 1)) != 0; |
250 | 1 | ymm_state_enabled = (xcr0_contents & (1UL << 2)) != 0; |
251 | | |
252 | | /* Require support for both the upper 256-bits of zmm0-zmm15 to be |
253 | | restored as well as all of zmm16-zmm31 and the opmask registers. */ |
254 | 1 | zmm_state_enabled = (xcr0_contents & 0x70) == 0x70; |
255 | 1 | } |
256 | 1 | #endif /* defined(_XCR_XFEATURE_ENABLED_MASK) */ |
257 | | |
258 | 1 | envvar = getenv("BLOSC_PRINT_SHUFFLE_ACCEL"); |
259 | 1 | if (envvar != NULL) { |
260 | 0 | printf("Shuffle CPU Information:\n"); |
261 | 0 | printf("SSE2 available: %s\n", sse2_available ? "True" : "False"); |
262 | 0 | printf("SSE3 available: %s\n", sse3_available ? "True" : "False"); |
263 | 0 | printf("SSSE3 available: %s\n", ssse3_available ? "True" : "False"); |
264 | 0 | printf("SSE4.1 available: %s\n", sse41_available ? "True" : "False"); |
265 | 0 | printf("SSE4.2 available: %s\n", sse42_available ? "True" : "False"); |
266 | 0 | printf("AVX2 available: %s\n", avx2_available ? "True" : "False"); |
267 | 0 | printf("AVX512BW available: %s\n", avx512bw_available ? "True" : "False"); |
268 | 0 | printf("XSAVE available: %s\n", xsave_available ? "True" : "False"); |
269 | 0 | printf("XSAVE enabled: %s\n", xsave_enabled_by_os ? "True" : "False"); |
270 | 0 | printf("XMM state enabled: %s\n", xmm_state_enabled ? "True" : "False"); |
271 | 0 | printf("YMM state enabled: %s\n", ymm_state_enabled ? "True" : "False"); |
272 | 0 | printf("ZMM state enabled: %s\n", zmm_state_enabled ? "True" : "False"); |
273 | 0 | } |
274 | | |
275 | | /* Using the gathered CPU information, determine which implementation to use. */ |
276 | | /* technically could fail on sse2 cpu on os without xmm support, but that |
277 | | * shouldn't exist anymore */ |
278 | 1 | if (sse2_available) { |
279 | 1 | result |= BLOSC_HAVE_SSE2; |
280 | 1 | } |
281 | 1 | if (xmm_state_enabled && ymm_state_enabled && avx2_available) { |
282 | 1 | result |= BLOSC_HAVE_AVX2; |
283 | 1 | } |
284 | 1 | return result; |
285 | 1 | } |
286 | | #endif |
287 | | |
288 | | #else /* No hardware acceleration supported for the target architecture. */ |
289 | | #if defined(_MSC_VER) |
290 | | #pragma message("Hardware-acceleration detection not implemented for the target architecture. Only the generic shuffle/unshuffle routines will be available.") |
291 | | #else |
292 | | #warning Hardware-acceleration detection not implemented for the target architecture. Only the generic shuffle/unshuffle routines will be available. |
293 | | #endif |
294 | | |
295 | | static blosc_cpu_features blosc_get_cpu_features(void) { |
296 | | return BLOSC_HAVE_NOTHING; |
297 | | } |
298 | | |
299 | | #endif |
300 | | |
301 | 1 | static shuffle_implementation_t get_shuffle_implementation(void) { |
302 | 1 | blosc_cpu_features cpu_features = blosc_get_cpu_features(); |
303 | 1 | shuffle_implementation_t impl_generic; |
304 | | |
305 | 1 | #if defined(SHUFFLE_AVX2_ENABLED) |
306 | 1 | if (cpu_features & BLOSC_HAVE_AVX2) { |
307 | 1 | shuffle_implementation_t impl_avx2; |
308 | 1 | impl_avx2.name = "avx2"; |
309 | 1 | impl_avx2.shuffle = (shuffle_func)blosc_internal_shuffle_avx2; |
310 | 1 | impl_avx2.unshuffle = (unshuffle_func)blosc_internal_unshuffle_avx2; |
311 | 1 | impl_avx2.bitshuffle = (bitshuffle_func)blosc_internal_bshuf_trans_bit_elem_avx2; |
312 | 1 | impl_avx2.bitunshuffle = (bitunshuffle_func)blosc_internal_bshuf_untrans_bit_elem_avx2; |
313 | 1 | return impl_avx2; |
314 | 1 | } |
315 | 0 | #endif /* defined(SHUFFLE_AVX2_ENABLED) */ |
316 | | |
317 | 0 | #if defined(SHUFFLE_SSE2_ENABLED) |
318 | 0 | if (cpu_features & BLOSC_HAVE_SSE2) { |
319 | 0 | shuffle_implementation_t impl_sse2; |
320 | 0 | impl_sse2.name = "sse2"; |
321 | 0 | impl_sse2.shuffle = (shuffle_func)blosc_internal_shuffle_sse2; |
322 | 0 | impl_sse2.unshuffle = (unshuffle_func)blosc_internal_unshuffle_sse2; |
323 | 0 | impl_sse2.bitshuffle = (bitshuffle_func)blosc_internal_bshuf_trans_bit_elem_sse2; |
324 | 0 | impl_sse2.bitunshuffle = (bitunshuffle_func)blosc_internal_bshuf_untrans_bit_elem_sse2; |
325 | 0 | return impl_sse2; |
326 | 0 | } |
327 | 0 | #endif /* defined(SHUFFLE_SSE2_ENABLED) */ |
328 | | |
329 | | /* Processor doesn't support any of the hardware-accelerated implementations, |
330 | | so use the generic implementation. */ |
331 | 0 | impl_generic.name = "generic"; |
332 | 0 | impl_generic.shuffle = (shuffle_func)blosc_internal_shuffle_generic; |
333 | 0 | impl_generic.unshuffle = (unshuffle_func)blosc_internal_unshuffle_generic; |
334 | 0 | impl_generic.bitshuffle = (bitshuffle_func)blosc_internal_bshuf_trans_bit_elem_scal; |
335 | 0 | impl_generic.bitunshuffle = (bitunshuffle_func)blosc_internal_bshuf_untrans_bit_elem_scal; |
336 | 0 | return impl_generic; |
337 | 0 | } |
338 | | |
339 | | |
340 | | /* Flag indicating whether the implementation has been initialized. */ |
341 | | static pthread_once_t implementation_initialized = PTHREAD_ONCE_INIT; |
342 | | |
343 | | /* The dynamically-chosen shuffle/unshuffle implementation. |
344 | | This is only safe to use once `implementation_initialized` is set. */ |
345 | | static shuffle_implementation_t host_implementation; |
346 | | |
347 | 1 | static void set_host_implementation(void) { |
348 | 1 | host_implementation = get_shuffle_implementation(); |
349 | 1 | } |
350 | | |
351 | | /* Initialize the shuffle implementation, if necessary. */ |
352 | | #if defined(__GNUC__) || defined(__clang__) |
353 | | __attribute__((always_inline)) |
354 | | #endif |
355 | | static |
356 | | #if defined(_MSC_VER) |
357 | | __forceinline |
358 | | #else |
359 | | BLOSC_INLINE |
360 | | #endif |
361 | 106k | void init_shuffle_implementation(void) { |
362 | 106k | pthread_once(&implementation_initialized, &set_host_implementation); |
363 | 106k | } |
364 | | |
365 | | /* Shuffle a block by dynamically dispatching to the appropriate |
366 | | hardware-accelerated routine at run-time. */ |
367 | | void |
368 | | blosc_internal_shuffle(const size_t bytesoftype, const size_t blocksize, |
369 | 0 | const uint8_t* _src, const uint8_t* _dest) { |
370 | | /* Initialize the shuffle implementation if necessary. */ |
371 | 0 | init_shuffle_implementation(); |
372 | | |
373 | | /* The implementation is initialized. |
374 | | Dispatch to it's shuffle routine. */ |
375 | 0 | (host_implementation.shuffle)(bytesoftype, blocksize, _src, _dest); |
376 | 0 | } |
377 | | |
378 | | /* Unshuffle a block by dynamically dispatching to the appropriate |
379 | | hardware-accelerated routine at run-time. */ |
380 | | void |
381 | | blosc_internal_unshuffle(const size_t bytesoftype, const size_t blocksize, |
382 | 0 | const uint8_t* _src, const uint8_t* _dest) { |
383 | | /* Initialize the shuffle implementation if necessary. */ |
384 | 0 | init_shuffle_implementation(); |
385 | | |
386 | | /* The implementation is initialized. |
387 | | Dispatch to it's unshuffle routine. */ |
388 | 0 | (host_implementation.unshuffle)(bytesoftype, blocksize, _src, _dest); |
389 | 0 | } |
390 | | |
391 | | /* Bit-shuffle a block by dynamically dispatching to the appropriate |
392 | | hardware-accelerated routine at run-time. */ |
393 | | int |
394 | | blosc_internal_bitshuffle(const size_t bytesoftype, const size_t blocksize, |
395 | | const uint8_t* const _src, const uint8_t* _dest, |
396 | 89.8k | const uint8_t* _tmp) { |
397 | 89.8k | int size = blocksize / bytesoftype; |
398 | | /* Initialize the shuffle implementation if necessary. */ |
399 | 89.8k | init_shuffle_implementation(); |
400 | | |
401 | 89.8k | if ((size % 8) == 0) { |
402 | | /* The number of elems is a multiple of 8 which is supported by |
403 | | bitshuffle. */ |
404 | 86.2k | int ret = (int)(host_implementation.bitshuffle)((void *) _src, (void *) _dest, |
405 | 86.2k | blocksize / bytesoftype, |
406 | 86.2k | bytesoftype, (void *) _tmp); |
407 | | /* Copy the leftovers */ |
408 | 86.2k | size_t offset = size * bytesoftype; |
409 | 86.2k | memcpy((void *) (_dest + offset), (void *) (_src + offset), blocksize - offset); |
410 | 86.2k | return ret; |
411 | 86.2k | } |
412 | 3.54k | else { |
413 | 3.54k | memcpy((void *) _dest, (void *) _src, blocksize); |
414 | 3.54k | } |
415 | 3.54k | return size; |
416 | 89.8k | } |
417 | | |
418 | | /* Bit-unshuffle a block by dynamically dispatching to the appropriate |
419 | | hardware-accelerated routine at run-time. */ |
420 | | int |
421 | | blosc_internal_bitunshuffle(const size_t bytesoftype, const size_t blocksize, |
422 | | const uint8_t* const _src, const uint8_t* _dest, |
423 | 16.4k | const uint8_t* _tmp) { |
424 | 16.4k | int size = blocksize / bytesoftype; |
425 | | /* Initialize the shuffle implementation if necessary. */ |
426 | 16.4k | init_shuffle_implementation(); |
427 | | |
428 | 16.4k | if ((size % 8) == 0) { |
429 | | /* The number of elems is a multiple of 8 which is supported by |
430 | | bitshuffle. */ |
431 | 16.0k | int ret = (int) (host_implementation.bitunshuffle)((void *) _src, (void *) _dest, |
432 | 16.0k | blocksize / bytesoftype, |
433 | 16.0k | bytesoftype, (void *) _tmp); |
434 | | /* Copy the leftovers */ |
435 | 16.0k | size_t offset = size * bytesoftype; |
436 | 16.0k | memcpy((void *) (_dest + offset), (void *) (_src + offset), blocksize - offset); |
437 | 16.0k | return ret; |
438 | 16.0k | } |
439 | 379 | else { |
440 | 379 | memcpy((void *) _dest, (void *) _src, blocksize); |
441 | 379 | } |
442 | 379 | return size; |
443 | 16.4k | } |