/src/c-blosc2/internal-complibs/zlib-ng-2.0.7/deflate.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* deflate.c -- compress data using the deflation algorithm |
2 | | * Copyright (C) 1995-2016 Jean-loup Gailly and Mark Adler |
3 | | * For conditions of distribution and use, see copyright notice in zlib.h |
4 | | */ |
5 | | |
6 | | /* |
7 | | * ALGORITHM |
8 | | * |
9 | | * The "deflation" process depends on being able to identify portions |
10 | | * of the input text which are identical to earlier input (within a |
11 | | * sliding window trailing behind the input currently being processed). |
12 | | * |
13 | | * The most straightforward technique turns out to be the fastest for |
14 | | * most input files: try all possible matches and select the longest. |
15 | | * The key feature of this algorithm is that insertions into the string |
16 | | * dictionary are very simple and thus fast, and deletions are avoided |
17 | | * completely. Insertions are performed at each input character, whereas |
18 | | * string matches are performed only when the previous match ends. So it |
19 | | * is preferable to spend more time in matches to allow very fast string |
20 | | * insertions and avoid deletions. The matching algorithm for small |
21 | | * strings is inspired from that of Rabin & Karp. A brute force approach |
22 | | * is used to find longer strings when a small match has been found. |
23 | | * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze |
24 | | * (by Leonid Broukhis). |
25 | | * A previous version of this file used a more sophisticated algorithm |
26 | | * (by Fiala and Greene) which is guaranteed to run in linear amortized |
27 | | * time, but has a larger average cost, uses more memory and is patented. |
28 | | * However the F&G algorithm may be faster for some highly redundant |
29 | | * files if the parameter max_chain_length (described below) is too large. |
30 | | * |
31 | | * ACKNOWLEDGEMENTS |
32 | | * |
33 | | * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and |
34 | | * I found it in 'freeze' written by Leonid Broukhis. |
35 | | * Thanks to many people for bug reports and testing. |
36 | | * |
37 | | * REFERENCES |
38 | | * |
39 | | * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". |
40 | | * Available in https://tools.ietf.org/html/rfc1951 |
41 | | * |
42 | | * A description of the Rabin and Karp algorithm is given in the book |
43 | | * "Algorithms" by R. Sedgewick, Addison-Wesley, p252. |
44 | | * |
45 | | * Fiala,E.R., and Greene,D.H. |
46 | | * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 |
47 | | * |
48 | | */ |
49 | | |
50 | | #include "zbuild.h" |
51 | | #include "deflate.h" |
52 | | #include "deflate_p.h" |
53 | | #include "functable.h" |
54 | | |
55 | | const char PREFIX(deflate_copyright)[] = " deflate 1.2.11 Copyright 1995-2022 Jean-loup Gailly and Mark Adler "; |
56 | | /* |
57 | | If you use the zlib library in a product, an acknowledgment is welcome |
58 | | in the documentation of your product. If for some reason you cannot |
59 | | include such an acknowledgment, I would appreciate that you keep this |
60 | | copyright string in the executable of your product. |
61 | | */ |
62 | | |
63 | | /* =========================================================================== |
64 | | * Architecture-specific hooks. |
65 | | */ |
66 | | #ifdef S390_DFLTCC_DEFLATE |
67 | | # include "arch/s390/dfltcc_deflate.h" |
68 | | #else |
69 | | /* Memory management for the deflate state. Useful for allocating arch-specific extension blocks. */ |
70 | 0 | # define ZALLOC_STATE(strm, items, size) ZALLOC(strm, items, size) |
71 | 0 | # define ZFREE_STATE(strm, addr) ZFREE(strm, addr) |
72 | 0 | # define ZCOPY_STATE(dst, src, size) memcpy(dst, src, size) |
73 | | /* Memory management for the window. Useful for allocation the aligned window. */ |
74 | 0 | # define ZALLOC_WINDOW(strm, items, size) ZALLOC(strm, items, size) |
75 | 0 | # define TRY_FREE_WINDOW(strm, addr) TRY_FREE(strm, addr) |
76 | | /* Invoked at the beginning of deflateSetDictionary(). Useful for checking arch-specific window data. */ |
77 | 0 | # define DEFLATE_SET_DICTIONARY_HOOK(strm, dict, dict_len) do {} while (0) |
78 | | /* Invoked at the beginning of deflateGetDictionary(). Useful for adjusting arch-specific window data. */ |
79 | 0 | # define DEFLATE_GET_DICTIONARY_HOOK(strm, dict, dict_len) do {} while (0) |
80 | | /* Invoked at the end of deflateResetKeep(). Useful for initializing arch-specific extension blocks. */ |
81 | 0 | # define DEFLATE_RESET_KEEP_HOOK(strm) do {} while (0) |
82 | | /* Invoked at the beginning of deflateParams(). Useful for updating arch-specific compression parameters. */ |
83 | 0 | # define DEFLATE_PARAMS_HOOK(strm, level, strategy, hook_flush) do {} while (0) |
84 | | /* Returns whether the last deflate(flush) operation did everything it's supposed to do. */ |
85 | 0 | # define DEFLATE_DONE(strm, flush) 1 |
86 | | /* Adjusts the upper bound on compressed data length based on compression parameters and uncompressed data length. |
87 | | * Useful when arch-specific deflation code behaves differently than regular zlib-ng algorithms. */ |
88 | 0 | # define DEFLATE_BOUND_ADJUST_COMPLEN(strm, complen, sourceLen) do {} while (0) |
89 | | /* Returns whether an optimistic upper bound on compressed data length should *not* be used. |
90 | | * Useful when arch-specific deflation code behaves differently than regular zlib-ng algorithms. */ |
91 | 0 | # define DEFLATE_NEED_CONSERVATIVE_BOUND(strm) 0 |
92 | | /* Invoked for each deflate() call. Useful for plugging arch-specific deflation code. */ |
93 | 0 | # define DEFLATE_HOOK(strm, flush, bstate) 0 |
94 | | /* Returns whether zlib-ng should compute a checksum. Set to 0 if arch-specific deflation code already does that. */ |
95 | 0 | # define DEFLATE_NEED_CHECKSUM(strm) 1 |
96 | | /* Returns whether reproducibility parameter can be set to a given value. */ |
97 | | # define DEFLATE_CAN_SET_REPRODUCIBLE(strm, reproducible) 1 |
98 | | #endif |
99 | | |
100 | | /* =========================================================================== |
101 | | * Function prototypes. |
102 | | */ |
103 | | typedef block_state (*compress_func) (deflate_state *s, int flush); |
104 | | /* Compression function. Returns the block state after the call. */ |
105 | | |
106 | | static int deflateStateCheck (PREFIX3(stream) *strm); |
107 | | static block_state deflate_stored (deflate_state *s, int flush); |
108 | | Z_INTERNAL block_state deflate_fast (deflate_state *s, int flush); |
109 | | Z_INTERNAL block_state deflate_quick (deflate_state *s, int flush); |
110 | | #ifndef NO_MEDIUM_STRATEGY |
111 | | Z_INTERNAL block_state deflate_medium (deflate_state *s, int flush); |
112 | | #endif |
113 | | Z_INTERNAL block_state deflate_slow (deflate_state *s, int flush); |
114 | | static block_state deflate_rle (deflate_state *s, int flush); |
115 | | static block_state deflate_huff (deflate_state *s, int flush); |
116 | | static void lm_init (deflate_state *s); |
117 | | Z_INTERNAL unsigned read_buf (PREFIX3(stream) *strm, unsigned char *buf, unsigned size); |
118 | | |
119 | | extern void crc_reset(deflate_state *const s); |
120 | | #ifdef X86_PCLMULQDQ_CRC |
121 | | extern void crc_finalize(deflate_state *const s); |
122 | | #endif |
123 | | extern void copy_with_crc(PREFIX3(stream) *strm, unsigned char *dst, unsigned long size); |
124 | | |
125 | | /* =========================================================================== |
126 | | * Local data |
127 | | */ |
128 | | |
129 | | /* Values for max_lazy_match, good_match and max_chain_length, depending on |
130 | | * the desired pack level (0..9). The values given below have been tuned to |
131 | | * exclude worst case performance for pathological files. Better values may be |
132 | | * found for specific files. |
133 | | */ |
134 | | typedef struct config_s { |
135 | | uint16_t good_length; /* reduce lazy search above this match length */ |
136 | | uint16_t max_lazy; /* do not perform lazy search above this match length */ |
137 | | uint16_t nice_length; /* quit search above this match length */ |
138 | | uint16_t max_chain; |
139 | | compress_func func; |
140 | | } config; |
141 | | |
142 | | static const config configuration_table[10] = { |
143 | | /* good lazy nice chain */ |
144 | | /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ |
145 | | |
146 | | #ifndef NO_QUICK_STRATEGY |
147 | | /* 1 */ {4, 4, 8, 4, deflate_quick}, |
148 | | /* 2 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */ |
149 | | #else |
150 | | /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */ |
151 | | /* 2 */ {4, 5, 16, 8, deflate_fast}, |
152 | | #endif |
153 | | |
154 | | /* 3 */ {4, 6, 32, 32, deflate_fast}, |
155 | | |
156 | | #ifdef NO_MEDIUM_STRATEGY |
157 | | /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */ |
158 | | /* 5 */ {8, 16, 32, 32, deflate_slow}, |
159 | | /* 6 */ {8, 16, 128, 128, deflate_slow}, |
160 | | #else |
161 | | /* 4 */ {4, 4, 16, 16, deflate_medium}, /* lazy matches */ |
162 | | /* 5 */ {8, 16, 32, 32, deflate_medium}, |
163 | | /* 6 */ {8, 16, 128, 128, deflate_medium}, |
164 | | #endif |
165 | | |
166 | | /* 7 */ {8, 32, 128, 256, deflate_slow}, |
167 | | /* 8 */ {32, 128, 258, 1024, deflate_slow}, |
168 | | /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */ |
169 | | |
170 | | /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 |
171 | | * For deflate_fast() (levels <= 3) good is ignored and lazy has a different |
172 | | * meaning. |
173 | | */ |
174 | | |
175 | | /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */ |
176 | 0 | #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0)) |
177 | | |
178 | | |
179 | | /* =========================================================================== |
180 | | * Initialize the hash table. prev[] will be initialized on the fly. |
181 | | */ |
182 | 0 | #define CLEAR_HASH(s) do { \ |
183 | 0 | memset((unsigned char *)s->head, 0, HASH_SIZE * sizeof(*s->head)); \ |
184 | 0 | } while (0) |
185 | | |
186 | | /* =========================================================================== |
187 | | * Slide the hash table when sliding the window down (could be avoided with 32 |
188 | | * bit values at the expense of memory usage). We slide even when level == 0 to |
189 | | * keep the hash table consistent if we switch back to level > 0 later. |
190 | | */ |
191 | 0 | Z_INTERNAL void slide_hash_c(deflate_state *s) { |
192 | 0 | Pos *p; |
193 | 0 | unsigned n; |
194 | 0 | unsigned int wsize = s->w_size; |
195 | |
|
196 | 0 | n = HASH_SIZE; |
197 | 0 | p = &s->head[n]; |
198 | | #ifdef NOT_TWEAK_COMPILER |
199 | | do { |
200 | | unsigned m; |
201 | | m = *--p; |
202 | | *p = (Pos)(m >= wsize ? m-wsize : 0); |
203 | | } while (--n); |
204 | | #else |
205 | | /* As of I make this change, gcc (4.8.*) isn't able to vectorize |
206 | | * this hot loop using saturated-subtraction on x86-64 architecture. |
207 | | * To avoid this defect, we can change the loop such that |
208 | | * o. the pointer advance forward, and |
209 | | * o. demote the variable 'm' to be local to the loop, and |
210 | | * choose type "Pos" (instead of 'unsigned int') for the |
211 | | * variable to avoid unnecessary zero-extension. |
212 | | */ |
213 | 0 | { |
214 | 0 | unsigned int i; |
215 | 0 | Pos *q = p - n; |
216 | 0 | for (i = 0; i < n; i++) { |
217 | 0 | Pos m = *q; |
218 | 0 | Pos t = (Pos)wsize; |
219 | 0 | *q++ = (Pos)(m >= t ? m-t: 0); |
220 | 0 | } |
221 | 0 | } |
222 | 0 | #endif /* NOT_TWEAK_COMPILER */ |
223 | |
|
224 | 0 | n = wsize; |
225 | 0 | p = &s->prev[n]; |
226 | | #ifdef NOT_TWEAK_COMPILER |
227 | | do { |
228 | | unsigned m; |
229 | | m = *--p; |
230 | | *p = (Pos)(m >= wsize ? m-wsize : 0); |
231 | | /* If n is not on any hash chain, prev[n] is garbage but |
232 | | * its value will never be used. |
233 | | */ |
234 | | } while (--n); |
235 | | #else |
236 | 0 | { |
237 | 0 | unsigned int i; |
238 | 0 | Pos *q = p - n; |
239 | 0 | for (i = 0; i < n; i++) { |
240 | 0 | Pos m = *q; |
241 | 0 | Pos t = (Pos)wsize; |
242 | 0 | *q++ = (Pos)(m >= t ? m-t: 0); |
243 | 0 | } |
244 | 0 | } |
245 | 0 | #endif /* NOT_TWEAK_COMPILER */ |
246 | 0 | } |
247 | | |
248 | | /* ========================================================================= */ |
249 | 0 | int32_t Z_EXPORT PREFIX(deflateInit_)(PREFIX3(stream) *strm, int32_t level, const char *version, int32_t stream_size) { |
250 | 0 | return PREFIX(deflateInit2_)(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, Z_DEFAULT_STRATEGY, version, stream_size); |
251 | | /* Todo: ignore strm->next_in if we use it as window */ |
252 | 0 | } |
253 | | |
254 | | /* ========================================================================= */ |
255 | | int32_t Z_EXPORT PREFIX(deflateInit2_)(PREFIX3(stream) *strm, int32_t level, int32_t method, int32_t windowBits, |
256 | 0 | int32_t memLevel, int32_t strategy, const char *version, int32_t stream_size) { |
257 | 0 | uint32_t window_padding = 0; |
258 | 0 | deflate_state *s; |
259 | 0 | int wrap = 1; |
260 | 0 | static const char my_version[] = PREFIX2(VERSION); |
261 | |
|
262 | | #if defined(X86_FEATURES) |
263 | | x86_check_features(); |
264 | | #elif defined(ARM_FEATURES) |
265 | | arm_check_features(); |
266 | | #endif |
267 | |
|
268 | 0 | if (version == NULL || version[0] != my_version[0] || stream_size != sizeof(PREFIX3(stream))) { |
269 | 0 | return Z_VERSION_ERROR; |
270 | 0 | } |
271 | 0 | if (strm == NULL) |
272 | 0 | return Z_STREAM_ERROR; |
273 | | |
274 | 0 | strm->msg = NULL; |
275 | 0 | if (strm->zalloc == NULL) { |
276 | 0 | strm->zalloc = zng_calloc; |
277 | 0 | strm->opaque = NULL; |
278 | 0 | } |
279 | 0 | if (strm->zfree == NULL) |
280 | 0 | strm->zfree = zng_cfree; |
281 | |
|
282 | 0 | if (level == Z_DEFAULT_COMPRESSION) |
283 | 0 | level = 6; |
284 | |
|
285 | 0 | if (windowBits < 0) { /* suppress zlib wrapper */ |
286 | 0 | wrap = 0; |
287 | 0 | if (windowBits < -15) |
288 | 0 | return Z_STREAM_ERROR; |
289 | 0 | windowBits = -windowBits; |
290 | 0 | #ifdef GZIP |
291 | 0 | } else if (windowBits > 15) { |
292 | 0 | wrap = 2; /* write gzip wrapper instead */ |
293 | 0 | windowBits -= 16; |
294 | 0 | #endif |
295 | 0 | } |
296 | 0 | if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || windowBits < 8 || |
297 | 0 | windowBits > 15 || level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED || |
298 | 0 | (windowBits == 8 && wrap != 1)) { |
299 | 0 | return Z_STREAM_ERROR; |
300 | 0 | } |
301 | 0 | if (windowBits == 8) |
302 | 0 | windowBits = 9; /* until 256-byte window bug fixed */ |
303 | |
|
304 | 0 | s = (deflate_state *) ZALLOC_STATE(strm, 1, sizeof(deflate_state)); |
305 | 0 | if (s == NULL) |
306 | 0 | return Z_MEM_ERROR; |
307 | 0 | strm->state = (struct internal_state *)s; |
308 | 0 | s->strm = strm; |
309 | 0 | s->status = INIT_STATE; /* to pass state test in deflateReset() */ |
310 | |
|
311 | 0 | s->wrap = wrap; |
312 | 0 | s->gzhead = NULL; |
313 | 0 | s->w_bits = (unsigned int)windowBits; |
314 | 0 | s->w_size = 1 << s->w_bits; |
315 | 0 | s->w_mask = s->w_size - 1; |
316 | |
|
317 | | #ifdef X86_PCLMULQDQ_CRC |
318 | | window_padding = 8; |
319 | | #endif |
320 | |
|
321 | 0 | s->window = (unsigned char *) ZALLOC_WINDOW(strm, s->w_size + window_padding, 2*sizeof(unsigned char)); |
322 | 0 | s->prev = (Pos *) ZALLOC(strm, s->w_size, sizeof(Pos)); |
323 | 0 | memset(s->prev, 0, s->w_size * sizeof(Pos)); |
324 | 0 | s->head = (Pos *) ZALLOC(strm, HASH_SIZE, sizeof(Pos)); |
325 | |
|
326 | 0 | s->high_water = 0; /* nothing written to s->window yet */ |
327 | |
|
328 | 0 | s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ |
329 | | |
330 | | /* We overlay pending_buf and sym_buf. This works since the average size |
331 | | * for length/distance pairs over any compressed block is assured to be 31 |
332 | | * bits or less. |
333 | | * |
334 | | * Analysis: The longest fixed codes are a length code of 8 bits plus 5 |
335 | | * extra bits, for lengths 131 to 257. The longest fixed distance codes are |
336 | | * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest |
337 | | * possible fixed-codes length/distance pair is then 31 bits total. |
338 | | * |
339 | | * sym_buf starts one-fourth of the way into pending_buf. So there are |
340 | | * three bytes in sym_buf for every four bytes in pending_buf. Each symbol |
341 | | * in sym_buf is three bytes -- two for the distance and one for the |
342 | | * literal/length. As each symbol is consumed, the pointer to the next |
343 | | * sym_buf value to read moves forward three bytes. From that symbol, up to |
344 | | * 31 bits are written to pending_buf. The closest the written pending_buf |
345 | | * bits gets to the next sym_buf symbol to read is just before the last |
346 | | * code is written. At that time, 31*(n-2) bits have been written, just |
347 | | * after 24*(n-2) bits have been consumed from sym_buf. sym_buf starts at |
348 | | * 8*n bits into pending_buf. (Note that the symbol buffer fills when n-1 |
349 | | * symbols are written.) The closest the writing gets to what is unread is |
350 | | * then n+14 bits. Here n is lit_bufsize, which is 16384 by default, and |
351 | | * can range from 128 to 32768. |
352 | | * |
353 | | * Therefore, at a minimum, there are 142 bits of space between what is |
354 | | * written and what is read in the overlain buffers, so the symbols cannot |
355 | | * be overwritten by the compressed data. That space is actually 139 bits, |
356 | | * due to the three-bit fixed-code block header. |
357 | | * |
358 | | * That covers the case where either Z_FIXED is specified, forcing fixed |
359 | | * codes, or when the use of fixed codes is chosen, because that choice |
360 | | * results in a smaller compressed block than dynamic codes. That latter |
361 | | * condition then assures that the above analysis also covers all dynamic |
362 | | * blocks. A dynamic-code block will only be chosen to be emitted if it has |
363 | | * fewer bits than a fixed-code block would for the same set of symbols. |
364 | | * Therefore its average symbol length is assured to be less than 31. So |
365 | | * the compressed data for a dynamic block also cannot overwrite the |
366 | | * symbols from which it is being constructed. |
367 | | */ |
368 | |
|
369 | 0 | s->pending_buf = (unsigned char *) ZALLOC(strm, s->lit_bufsize, 4); |
370 | 0 | s->pending_buf_size = s->lit_bufsize * 4; |
371 | |
|
372 | 0 | if (s->window == NULL || s->prev == NULL || s->head == NULL || s->pending_buf == NULL) { |
373 | 0 | s->status = FINISH_STATE; |
374 | 0 | strm->msg = ERR_MSG(Z_MEM_ERROR); |
375 | 0 | PREFIX(deflateEnd)(strm); |
376 | 0 | return Z_MEM_ERROR; |
377 | 0 | } |
378 | 0 | s->sym_buf = s->pending_buf + s->lit_bufsize; |
379 | 0 | s->sym_end = (s->lit_bufsize - 1) * 3; |
380 | | /* We avoid equality with lit_bufsize*3 because of wraparound at 64K |
381 | | * on 16 bit machines and because stored blocks are restricted to |
382 | | * 64K-1 bytes. |
383 | | */ |
384 | |
|
385 | 0 | s->level = level; |
386 | 0 | s->strategy = strategy; |
387 | 0 | s->block_open = 0; |
388 | 0 | s->reproducible = 0; |
389 | |
|
390 | 0 | return PREFIX(deflateReset)(strm); |
391 | 0 | } |
392 | | |
393 | | /* ========================================================================= |
394 | | * Check for a valid deflate stream state. Return 0 if ok, 1 if not. |
395 | | */ |
396 | 0 | static int deflateStateCheck (PREFIX3(stream) *strm) { |
397 | 0 | deflate_state *s; |
398 | 0 | if (strm == NULL || strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) |
399 | 0 | return 1; |
400 | 0 | s = strm->state; |
401 | 0 | if (s == NULL || s->strm != strm || (s->status != INIT_STATE && |
402 | 0 | #ifdef GZIP |
403 | 0 | s->status != GZIP_STATE && |
404 | 0 | s->status != EXTRA_STATE && |
405 | 0 | s->status != NAME_STATE && |
406 | 0 | s->status != COMMENT_STATE && |
407 | 0 | s->status != HCRC_STATE && |
408 | 0 | #endif |
409 | 0 | s->status != BUSY_STATE && |
410 | 0 | s->status != FINISH_STATE)) |
411 | 0 | return 1; |
412 | 0 | return 0; |
413 | 0 | } |
414 | | |
415 | | /* ========================================================================= */ |
416 | 0 | int32_t Z_EXPORT PREFIX(deflateSetDictionary)(PREFIX3(stream) *strm, const uint8_t *dictionary, uint32_t dictLength) { |
417 | 0 | deflate_state *s; |
418 | 0 | unsigned int str, n; |
419 | 0 | int wrap; |
420 | 0 | uint32_t avail; |
421 | 0 | const unsigned char *next; |
422 | |
|
423 | 0 | if (deflateStateCheck(strm) || dictionary == NULL) |
424 | 0 | return Z_STREAM_ERROR; |
425 | 0 | s = strm->state; |
426 | 0 | wrap = s->wrap; |
427 | 0 | if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead) |
428 | 0 | return Z_STREAM_ERROR; |
429 | | |
430 | | /* when using zlib wrappers, compute Adler-32 for provided dictionary */ |
431 | 0 | if (wrap == 1) |
432 | 0 | strm->adler = functable.adler32(strm->adler, dictionary, dictLength); |
433 | 0 | DEFLATE_SET_DICTIONARY_HOOK(strm, dictionary, dictLength); /* hook for IBM Z DFLTCC */ |
434 | 0 | s->wrap = 0; /* avoid computing Adler-32 in read_buf */ |
435 | | |
436 | | /* if dictionary would fill window, just replace the history */ |
437 | 0 | if (dictLength >= s->w_size) { |
438 | 0 | if (wrap == 0) { /* already empty otherwise */ |
439 | 0 | CLEAR_HASH(s); |
440 | 0 | s->strstart = 0; |
441 | 0 | s->block_start = 0; |
442 | 0 | s->insert = 0; |
443 | 0 | } |
444 | 0 | dictionary += dictLength - s->w_size; /* use the tail */ |
445 | 0 | dictLength = s->w_size; |
446 | 0 | } |
447 | | |
448 | | /* insert dictionary into window and hash */ |
449 | 0 | avail = strm->avail_in; |
450 | 0 | next = strm->next_in; |
451 | 0 | strm->avail_in = dictLength; |
452 | 0 | strm->next_in = (z_const unsigned char *)dictionary; |
453 | 0 | fill_window(s); |
454 | 0 | while (s->lookahead >= MIN_MATCH) { |
455 | 0 | str = s->strstart; |
456 | 0 | n = s->lookahead - (MIN_MATCH-1); |
457 | 0 | functable.insert_string(s, str, n); |
458 | 0 | s->strstart = str + n; |
459 | 0 | s->lookahead = MIN_MATCH-1; |
460 | 0 | fill_window(s); |
461 | 0 | } |
462 | 0 | s->strstart += s->lookahead; |
463 | 0 | s->block_start = (int)s->strstart; |
464 | 0 | s->insert = s->lookahead; |
465 | 0 | s->lookahead = 0; |
466 | 0 | s->prev_length = MIN_MATCH-1; |
467 | 0 | s->match_available = 0; |
468 | 0 | strm->next_in = (z_const unsigned char *)next; |
469 | 0 | strm->avail_in = avail; |
470 | 0 | s->wrap = wrap; |
471 | 0 | return Z_OK; |
472 | 0 | } |
473 | | |
474 | | /* ========================================================================= */ |
475 | 0 | int32_t Z_EXPORT PREFIX(deflateGetDictionary)(PREFIX3(stream) *strm, uint8_t *dictionary, uint32_t *dictLength) { |
476 | 0 | deflate_state *s; |
477 | 0 | unsigned int len; |
478 | |
|
479 | 0 | if (deflateStateCheck(strm)) |
480 | 0 | return Z_STREAM_ERROR; |
481 | 0 | DEFLATE_GET_DICTIONARY_HOOK(strm, dictionary, dictLength); /* hook for IBM Z DFLTCC */ |
482 | 0 | s = strm->state; |
483 | 0 | len = s->strstart + s->lookahead; |
484 | 0 | if (len > s->w_size) |
485 | 0 | len = s->w_size; |
486 | 0 | if (dictionary != NULL && len) |
487 | 0 | memcpy(dictionary, s->window + s->strstart + s->lookahead - len, len); |
488 | 0 | if (dictLength != NULL) |
489 | 0 | *dictLength = len; |
490 | 0 | return Z_OK; |
491 | 0 | } |
492 | | |
493 | | /* ========================================================================= */ |
494 | 0 | int32_t Z_EXPORT PREFIX(deflateResetKeep)(PREFIX3(stream) *strm) { |
495 | 0 | deflate_state *s; |
496 | |
|
497 | 0 | if (deflateStateCheck(strm)) |
498 | 0 | return Z_STREAM_ERROR; |
499 | | |
500 | 0 | strm->total_in = strm->total_out = 0; |
501 | 0 | strm->msg = NULL; /* use zfree if we ever allocate msg dynamically */ |
502 | 0 | strm->data_type = Z_UNKNOWN; |
503 | |
|
504 | 0 | s = (deflate_state *)strm->state; |
505 | 0 | s->pending = 0; |
506 | 0 | s->pending_out = s->pending_buf; |
507 | |
|
508 | 0 | if (s->wrap < 0) |
509 | 0 | s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */ |
510 | |
|
511 | 0 | s->status = |
512 | 0 | #ifdef GZIP |
513 | 0 | s->wrap == 2 ? GZIP_STATE : |
514 | 0 | #endif |
515 | 0 | INIT_STATE; |
516 | |
|
517 | 0 | #ifdef GZIP |
518 | 0 | if (s->wrap == 2) |
519 | 0 | crc_reset(s); |
520 | 0 | else |
521 | 0 | #endif |
522 | 0 | strm->adler = ADLER32_INITIAL_VALUE; |
523 | 0 | s->last_flush = -2; |
524 | |
|
525 | 0 | zng_tr_init(s); |
526 | |
|
527 | 0 | DEFLATE_RESET_KEEP_HOOK(strm); /* hook for IBM Z DFLTCC */ |
528 | |
|
529 | 0 | return Z_OK; |
530 | 0 | } |
531 | | |
532 | | /* ========================================================================= */ |
533 | 0 | int32_t Z_EXPORT PREFIX(deflateReset)(PREFIX3(stream) *strm) { |
534 | 0 | int ret; |
535 | |
|
536 | 0 | ret = PREFIX(deflateResetKeep)(strm); |
537 | 0 | if (ret == Z_OK) |
538 | 0 | lm_init(strm->state); |
539 | 0 | return ret; |
540 | 0 | } |
541 | | |
542 | | /* ========================================================================= */ |
543 | 0 | int32_t Z_EXPORT PREFIX(deflateSetHeader)(PREFIX3(stream) *strm, PREFIX(gz_headerp) head) { |
544 | 0 | if (deflateStateCheck(strm) || strm->state->wrap != 2) |
545 | 0 | return Z_STREAM_ERROR; |
546 | 0 | strm->state->gzhead = head; |
547 | 0 | return Z_OK; |
548 | 0 | } |
549 | | |
550 | | /* ========================================================================= */ |
551 | 0 | int32_t Z_EXPORT PREFIX(deflatePending)(PREFIX3(stream) *strm, uint32_t *pending, int32_t *bits) { |
552 | 0 | if (deflateStateCheck(strm)) |
553 | 0 | return Z_STREAM_ERROR; |
554 | 0 | if (pending != NULL) |
555 | 0 | *pending = strm->state->pending; |
556 | 0 | if (bits != NULL) |
557 | 0 | *bits = strm->state->bi_valid; |
558 | 0 | return Z_OK; |
559 | 0 | } |
560 | | |
561 | | /* ========================================================================= */ |
562 | 0 | int32_t Z_EXPORT PREFIX(deflatePrime)(PREFIX3(stream) *strm, int32_t bits, int32_t value) { |
563 | 0 | deflate_state *s; |
564 | 0 | uint64_t value64 = (uint64_t)value; |
565 | 0 | int32_t put; |
566 | |
|
567 | 0 | if (deflateStateCheck(strm)) |
568 | 0 | return Z_STREAM_ERROR; |
569 | 0 | s = strm->state; |
570 | 0 | if (bits < 0 || bits > BIT_BUF_SIZE || bits > (int32_t)(sizeof(value) << 3) || |
571 | 0 | s->sym_buf < s->pending_out + ((BIT_BUF_SIZE + 7) >> 3)) |
572 | 0 | return Z_BUF_ERROR; |
573 | 0 | do { |
574 | 0 | put = BIT_BUF_SIZE - s->bi_valid; |
575 | 0 | if (put > bits) |
576 | 0 | put = bits; |
577 | 0 | if (s->bi_valid == 0) |
578 | 0 | s->bi_buf = value64; |
579 | 0 | else |
580 | 0 | s->bi_buf |= (value64 & ((UINT64_C(1) << put) - 1)) << s->bi_valid; |
581 | 0 | s->bi_valid += put; |
582 | 0 | zng_tr_flush_bits(s); |
583 | 0 | value64 >>= put; |
584 | 0 | bits -= put; |
585 | 0 | } while (bits); |
586 | 0 | return Z_OK; |
587 | 0 | } |
588 | | |
589 | | /* ========================================================================= */ |
590 | 0 | int32_t Z_EXPORT PREFIX(deflateParams)(PREFIX3(stream) *strm, int32_t level, int32_t strategy) { |
591 | 0 | deflate_state *s; |
592 | 0 | compress_func func; |
593 | 0 | int hook_flush = Z_NO_FLUSH; |
594 | |
|
595 | 0 | if (deflateStateCheck(strm)) |
596 | 0 | return Z_STREAM_ERROR; |
597 | 0 | s = strm->state; |
598 | |
|
599 | 0 | if (level == Z_DEFAULT_COMPRESSION) |
600 | 0 | level = 6; |
601 | 0 | if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) |
602 | 0 | return Z_STREAM_ERROR; |
603 | 0 | DEFLATE_PARAMS_HOOK(strm, level, strategy, &hook_flush); /* hook for IBM Z DFLTCC */ |
604 | 0 | func = configuration_table[s->level].func; |
605 | |
|
606 | 0 | if (((strategy != s->strategy || func != configuration_table[level].func) && s->last_flush != -2) |
607 | 0 | || hook_flush != Z_NO_FLUSH) { |
608 | | /* Flush the last buffer. Use Z_BLOCK mode, unless the hook requests a "stronger" one. */ |
609 | 0 | int flush = RANK(hook_flush) > RANK(Z_BLOCK) ? hook_flush : Z_BLOCK; |
610 | 0 | int err = PREFIX(deflate)(strm, flush); |
611 | 0 | if (err == Z_STREAM_ERROR) |
612 | 0 | return err; |
613 | 0 | if (strm->avail_in || ((int)s->strstart - s->block_start) + s->lookahead || !DEFLATE_DONE(strm, flush)) |
614 | 0 | return Z_BUF_ERROR; |
615 | 0 | } |
616 | 0 | if (s->level != level) { |
617 | 0 | if (s->level == 0 && s->matches != 0) { |
618 | 0 | if (s->matches == 1) { |
619 | 0 | functable.slide_hash(s); |
620 | 0 | } else { |
621 | 0 | CLEAR_HASH(s); |
622 | 0 | } |
623 | 0 | s->matches = 0; |
624 | 0 | } |
625 | 0 | s->level = level; |
626 | 0 | s->max_lazy_match = configuration_table[level].max_lazy; |
627 | 0 | s->good_match = configuration_table[level].good_length; |
628 | 0 | s->nice_match = configuration_table[level].nice_length; |
629 | 0 | s->max_chain_length = configuration_table[level].max_chain; |
630 | 0 | } |
631 | 0 | s->strategy = strategy; |
632 | 0 | return Z_OK; |
633 | 0 | } |
634 | | |
635 | | /* ========================================================================= */ |
636 | 0 | int32_t Z_EXPORT PREFIX(deflateTune)(PREFIX3(stream) *strm, int32_t good_length, int32_t max_lazy, int32_t nice_length, int32_t max_chain) { |
637 | 0 | deflate_state *s; |
638 | |
|
639 | 0 | if (deflateStateCheck(strm)) |
640 | 0 | return Z_STREAM_ERROR; |
641 | 0 | s = strm->state; |
642 | 0 | s->good_match = (unsigned int)good_length; |
643 | 0 | s->max_lazy_match = (unsigned int)max_lazy; |
644 | 0 | s->nice_match = nice_length; |
645 | 0 | s->max_chain_length = (unsigned int)max_chain; |
646 | 0 | return Z_OK; |
647 | 0 | } |
648 | | |
649 | | /* ========================================================================= |
650 | | * For the default windowBits of 15 and memLevel of 8, this function returns |
651 | | * a close to exact, as well as small, upper bound on the compressed size. |
652 | | * They are coded as constants here for a reason--if the #define's are |
653 | | * changed, then this function needs to be changed as well. The return |
654 | | * value for 15 and 8 only works for those exact settings. |
655 | | * |
656 | | * For any setting other than those defaults for windowBits and memLevel, |
657 | | * the value returned is a conservative worst case for the maximum expansion |
658 | | * resulting from using fixed blocks instead of stored blocks, which deflate |
659 | | * can emit on compressed data for some combinations of the parameters. |
660 | | * |
661 | | * This function could be more sophisticated to provide closer upper bounds for |
662 | | * every combination of windowBits and memLevel. But even the conservative |
663 | | * upper bound of about 14% expansion does not seem onerous for output buffer |
664 | | * allocation. |
665 | | */ |
666 | 0 | unsigned long Z_EXPORT PREFIX(deflateBound)(PREFIX3(stream) *strm, unsigned long sourceLen) { |
667 | 0 | deflate_state *s; |
668 | 0 | unsigned long complen, wraplen; |
669 | | |
670 | | /* conservative upper bound for compressed data */ |
671 | 0 | complen = sourceLen + ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5; |
672 | 0 | DEFLATE_BOUND_ADJUST_COMPLEN(strm, complen, sourceLen); /* hook for IBM Z DFLTCC */ |
673 | | |
674 | | /* if can't get parameters, return conservative bound plus zlib wrapper */ |
675 | 0 | if (deflateStateCheck(strm)) |
676 | 0 | return complen + 6; |
677 | | |
678 | | /* compute wrapper length */ |
679 | 0 | s = strm->state; |
680 | 0 | switch (s->wrap) { |
681 | 0 | case 0: /* raw deflate */ |
682 | 0 | wraplen = 0; |
683 | 0 | break; |
684 | 0 | case 1: /* zlib wrapper */ |
685 | 0 | wraplen = ZLIB_WRAPLEN + (s->strstart ? 4 : 0); |
686 | 0 | break; |
687 | 0 | #ifdef GZIP |
688 | 0 | case 2: /* gzip wrapper */ |
689 | 0 | wraplen = GZIP_WRAPLEN; |
690 | 0 | if (s->gzhead != NULL) { /* user-supplied gzip header */ |
691 | 0 | unsigned char *str; |
692 | 0 | if (s->gzhead->extra != NULL) { |
693 | 0 | wraplen += 2 + s->gzhead->extra_len; |
694 | 0 | } |
695 | 0 | str = s->gzhead->name; |
696 | 0 | if (str != NULL) { |
697 | 0 | do { |
698 | 0 | wraplen++; |
699 | 0 | } while (*str++); |
700 | 0 | } |
701 | 0 | str = s->gzhead->comment; |
702 | 0 | if (str != NULL) { |
703 | 0 | do { |
704 | 0 | wraplen++; |
705 | 0 | } while (*str++); |
706 | 0 | } |
707 | 0 | if (s->gzhead->hcrc) |
708 | 0 | wraplen += 2; |
709 | 0 | } |
710 | 0 | break; |
711 | 0 | #endif |
712 | 0 | default: /* for compiler happiness */ |
713 | 0 | wraplen = ZLIB_WRAPLEN; |
714 | 0 | } |
715 | | |
716 | | /* if not default parameters, return conservative bound */ |
717 | 0 | if (DEFLATE_NEED_CONSERVATIVE_BOUND(strm) || /* hook for IBM Z DFLTCC */ |
718 | 0 | s->w_bits != 15 || HASH_BITS < 15) { |
719 | 0 | if (s->level == 0) { |
720 | | /* upper bound for stored blocks with length 127 (memLevel == 1) -- |
721 | | ~4% overhead plus a small constant */ |
722 | 0 | complen = sourceLen + (sourceLen >> 5) + (sourceLen >> 7) + (sourceLen >> 11) + 7; |
723 | 0 | } |
724 | |
|
725 | 0 | return complen + wraplen; |
726 | 0 | } |
727 | | |
728 | 0 | #ifndef NO_QUICK_STRATEGY |
729 | 0 | return sourceLen /* The source size itself */ |
730 | 0 | + (sourceLen == 0 ? 1 : 0) /* Always at least one byte for any input */ |
731 | 0 | + (sourceLen < 9 ? 1 : 0) /* One extra byte for lengths less than 9 */ |
732 | 0 | + DEFLATE_QUICK_OVERHEAD(sourceLen) /* Source encoding overhead, padded to next full byte */ |
733 | 0 | + DEFLATE_BLOCK_OVERHEAD /* Deflate block overhead bytes */ |
734 | 0 | + wraplen; /* none, zlib or gzip wrapper */ |
735 | | #else |
736 | | return sourceLen + (sourceLen >> 4) + 7 + wraplen; |
737 | | #endif |
738 | 0 | } |
739 | | |
740 | | /* ========================================================================= |
741 | | * Flush as much pending output as possible. All deflate() output, except for |
742 | | * some deflate_stored() output, goes through this function so some |
743 | | * applications may wish to modify it to avoid allocating a large |
744 | | * strm->next_out buffer and copying into it. (See also read_buf()). |
745 | | */ |
746 | 0 | Z_INTERNAL void flush_pending(PREFIX3(stream) *strm) { |
747 | 0 | uint32_t len; |
748 | 0 | deflate_state *s = strm->state; |
749 | |
|
750 | 0 | zng_tr_flush_bits(s); |
751 | 0 | len = s->pending; |
752 | 0 | if (len > strm->avail_out) |
753 | 0 | len = strm->avail_out; |
754 | 0 | if (len == 0) |
755 | 0 | return; |
756 | | |
757 | 0 | Tracev((stderr, "[FLUSH]")); |
758 | 0 | memcpy(strm->next_out, s->pending_out, len); |
759 | 0 | strm->next_out += len; |
760 | 0 | s->pending_out += len; |
761 | 0 | strm->total_out += len; |
762 | 0 | strm->avail_out -= len; |
763 | 0 | s->pending -= len; |
764 | 0 | if (s->pending == 0) |
765 | 0 | s->pending_out = s->pending_buf; |
766 | 0 | } |
767 | | |
768 | | /* =========================================================================== |
769 | | * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1]. |
770 | | */ |
771 | | #define HCRC_UPDATE(beg) \ |
772 | 0 | do { \ |
773 | 0 | if (s->gzhead->hcrc && s->pending > (beg)) \ |
774 | 0 | strm->adler = PREFIX(crc32)(strm->adler, s->pending_buf + (beg), s->pending - (beg)); \ |
775 | 0 | } while (0) |
776 | | |
777 | | /* ========================================================================= */ |
778 | 0 | int32_t Z_EXPORT PREFIX(deflate)(PREFIX3(stream) *strm, int32_t flush) { |
779 | 0 | int32_t old_flush; /* value of flush param for previous deflate call */ |
780 | 0 | deflate_state *s; |
781 | |
|
782 | 0 | if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) |
783 | 0 | return Z_STREAM_ERROR; |
784 | 0 | s = strm->state; |
785 | |
|
786 | 0 | if (strm->next_out == NULL || (strm->avail_in != 0 && strm->next_in == NULL) |
787 | 0 | || (s->status == FINISH_STATE && flush != Z_FINISH)) { |
788 | 0 | ERR_RETURN(strm, Z_STREAM_ERROR); |
789 | 0 | } |
790 | 0 | if (strm->avail_out == 0) { |
791 | 0 | ERR_RETURN(strm, Z_BUF_ERROR); |
792 | 0 | } |
793 | | |
794 | 0 | old_flush = s->last_flush; |
795 | 0 | s->last_flush = flush; |
796 | | |
797 | | /* Flush as much pending output as possible */ |
798 | 0 | if (s->pending != 0) { |
799 | 0 | flush_pending(strm); |
800 | 0 | if (strm->avail_out == 0) { |
801 | | /* Since avail_out is 0, deflate will be called again with |
802 | | * more output space, but possibly with both pending and |
803 | | * avail_in equal to zero. There won't be anything to do, |
804 | | * but this is not an error situation so make sure we |
805 | | * return OK instead of BUF_ERROR at next call of deflate: |
806 | | */ |
807 | 0 | s->last_flush = -1; |
808 | 0 | return Z_OK; |
809 | 0 | } |
810 | | |
811 | | /* Make sure there is something to do and avoid duplicate consecutive |
812 | | * flushes. For repeated and useless calls with Z_FINISH, we keep |
813 | | * returning Z_STREAM_END instead of Z_BUF_ERROR. |
814 | | */ |
815 | 0 | } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) && flush != Z_FINISH) { |
816 | 0 | ERR_RETURN(strm, Z_BUF_ERROR); |
817 | 0 | } |
818 | | |
819 | | /* User must not provide more input after the first FINISH: */ |
820 | 0 | if (s->status == FINISH_STATE && strm->avail_in != 0) { |
821 | 0 | ERR_RETURN(strm, Z_BUF_ERROR); |
822 | 0 | } |
823 | | |
824 | | /* Write the header */ |
825 | 0 | if (s->status == INIT_STATE && s->wrap == 0) |
826 | 0 | s->status = BUSY_STATE; |
827 | 0 | if (s->status == INIT_STATE) { |
828 | | /* zlib header */ |
829 | 0 | unsigned int header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8; |
830 | 0 | unsigned int level_flags; |
831 | |
|
832 | 0 | if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2) |
833 | 0 | level_flags = 0; |
834 | 0 | else if (s->level < 6) |
835 | 0 | level_flags = 1; |
836 | 0 | else if (s->level == 6) |
837 | 0 | level_flags = 2; |
838 | 0 | else |
839 | 0 | level_flags = 3; |
840 | 0 | header |= (level_flags << 6); |
841 | 0 | if (s->strstart != 0) |
842 | 0 | header |= PRESET_DICT; |
843 | 0 | header += 31 - (header % 31); |
844 | |
|
845 | 0 | put_short_msb(s, (uint16_t)header); |
846 | | |
847 | | /* Save the adler32 of the preset dictionary: */ |
848 | 0 | if (s->strstart != 0) |
849 | 0 | put_uint32_msb(s, strm->adler); |
850 | 0 | strm->adler = ADLER32_INITIAL_VALUE; |
851 | 0 | s->status = BUSY_STATE; |
852 | | |
853 | | /* Compression must start with an empty pending buffer */ |
854 | 0 | flush_pending(strm); |
855 | 0 | if (s->pending != 0) { |
856 | 0 | s->last_flush = -1; |
857 | 0 | return Z_OK; |
858 | 0 | } |
859 | 0 | } |
860 | 0 | #ifdef GZIP |
861 | 0 | if (s->status == GZIP_STATE) { |
862 | | /* gzip header */ |
863 | 0 | crc_reset(s); |
864 | 0 | put_byte(s, 31); |
865 | 0 | put_byte(s, 139); |
866 | 0 | put_byte(s, 8); |
867 | 0 | if (s->gzhead == NULL) { |
868 | 0 | put_uint32(s, 0); |
869 | 0 | put_byte(s, 0); |
870 | 0 | put_byte(s, s->level == 9 ? 2 : |
871 | 0 | (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? 4 : 0)); |
872 | 0 | put_byte(s, OS_CODE); |
873 | 0 | s->status = BUSY_STATE; |
874 | | |
875 | | /* Compression must start with an empty pending buffer */ |
876 | 0 | flush_pending(strm); |
877 | 0 | if (s->pending != 0) { |
878 | 0 | s->last_flush = -1; |
879 | 0 | return Z_OK; |
880 | 0 | } |
881 | 0 | } else { |
882 | 0 | put_byte(s, (s->gzhead->text ? 1 : 0) + |
883 | 0 | (s->gzhead->hcrc ? 2 : 0) + |
884 | 0 | (s->gzhead->extra == NULL ? 0 : 4) + |
885 | 0 | (s->gzhead->name == NULL ? 0 : 8) + |
886 | 0 | (s->gzhead->comment == NULL ? 0 : 16) |
887 | 0 | ); |
888 | 0 | put_uint32(s, s->gzhead->time); |
889 | 0 | put_byte(s, s->level == 9 ? 2 : (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? 4 : 0)); |
890 | 0 | put_byte(s, s->gzhead->os & 0xff); |
891 | 0 | if (s->gzhead->extra != NULL) |
892 | 0 | put_short(s, (uint16_t)s->gzhead->extra_len); |
893 | 0 | if (s->gzhead->hcrc) |
894 | 0 | strm->adler = PREFIX(crc32)(strm->adler, s->pending_buf, s->pending); |
895 | 0 | s->gzindex = 0; |
896 | 0 | s->status = EXTRA_STATE; |
897 | 0 | } |
898 | 0 | } |
899 | 0 | if (s->status == EXTRA_STATE) { |
900 | 0 | if (s->gzhead->extra != NULL) { |
901 | 0 | uint32_t beg = s->pending; /* start of bytes to update crc */ |
902 | 0 | uint32_t left = (s->gzhead->extra_len & 0xffff) - s->gzindex; |
903 | |
|
904 | 0 | while (s->pending + left > s->pending_buf_size) { |
905 | 0 | uint32_t copy = s->pending_buf_size - s->pending; |
906 | 0 | memcpy(s->pending_buf + s->pending, s->gzhead->extra + s->gzindex, copy); |
907 | 0 | s->pending = s->pending_buf_size; |
908 | 0 | HCRC_UPDATE(beg); |
909 | 0 | s->gzindex += copy; |
910 | 0 | flush_pending(strm); |
911 | 0 | if (s->pending != 0) { |
912 | 0 | s->last_flush = -1; |
913 | 0 | return Z_OK; |
914 | 0 | } |
915 | 0 | beg = 0; |
916 | 0 | left -= copy; |
917 | 0 | } |
918 | 0 | memcpy(s->pending_buf + s->pending, s->gzhead->extra + s->gzindex, left); |
919 | 0 | s->pending += left; |
920 | 0 | HCRC_UPDATE(beg); |
921 | 0 | s->gzindex = 0; |
922 | 0 | } |
923 | 0 | s->status = NAME_STATE; |
924 | 0 | } |
925 | 0 | if (s->status == NAME_STATE) { |
926 | 0 | if (s->gzhead->name != NULL) { |
927 | 0 | uint32_t beg = s->pending; /* start of bytes to update crc */ |
928 | 0 | unsigned char val; |
929 | |
|
930 | 0 | do { |
931 | 0 | if (s->pending == s->pending_buf_size) { |
932 | 0 | HCRC_UPDATE(beg); |
933 | 0 | flush_pending(strm); |
934 | 0 | if (s->pending != 0) { |
935 | 0 | s->last_flush = -1; |
936 | 0 | return Z_OK; |
937 | 0 | } |
938 | 0 | beg = 0; |
939 | 0 | } |
940 | 0 | val = s->gzhead->name[s->gzindex++]; |
941 | 0 | put_byte(s, val); |
942 | 0 | } while (val != 0); |
943 | 0 | HCRC_UPDATE(beg); |
944 | 0 | s->gzindex = 0; |
945 | 0 | } |
946 | 0 | s->status = COMMENT_STATE; |
947 | 0 | } |
948 | 0 | if (s->status == COMMENT_STATE) { |
949 | 0 | if (s->gzhead->comment != NULL) { |
950 | 0 | uint32_t beg = s->pending; /* start of bytes to update crc */ |
951 | 0 | unsigned char val; |
952 | |
|
953 | 0 | do { |
954 | 0 | if (s->pending == s->pending_buf_size) { |
955 | 0 | HCRC_UPDATE(beg); |
956 | 0 | flush_pending(strm); |
957 | 0 | if (s->pending != 0) { |
958 | 0 | s->last_flush = -1; |
959 | 0 | return Z_OK; |
960 | 0 | } |
961 | 0 | beg = 0; |
962 | 0 | } |
963 | 0 | val = s->gzhead->comment[s->gzindex++]; |
964 | 0 | put_byte(s, val); |
965 | 0 | } while (val != 0); |
966 | 0 | HCRC_UPDATE(beg); |
967 | 0 | } |
968 | 0 | s->status = HCRC_STATE; |
969 | 0 | } |
970 | 0 | if (s->status == HCRC_STATE) { |
971 | 0 | if (s->gzhead->hcrc) { |
972 | 0 | if (s->pending + 2 > s->pending_buf_size) { |
973 | 0 | flush_pending(strm); |
974 | 0 | if (s->pending != 0) { |
975 | 0 | s->last_flush = -1; |
976 | 0 | return Z_OK; |
977 | 0 | } |
978 | 0 | } |
979 | 0 | put_short(s, (uint16_t)strm->adler); |
980 | 0 | crc_reset(s); |
981 | 0 | } |
982 | 0 | s->status = BUSY_STATE; |
983 | | |
984 | | /* Compression must start with an empty pending buffer */ |
985 | 0 | flush_pending(strm); |
986 | 0 | if (s->pending != 0) { |
987 | 0 | s->last_flush = -1; |
988 | 0 | return Z_OK; |
989 | 0 | } |
990 | 0 | } |
991 | 0 | #endif |
992 | | |
993 | | /* Start a new block or continue the current one. |
994 | | */ |
995 | 0 | if (strm->avail_in != 0 || s->lookahead != 0 || (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { |
996 | 0 | block_state bstate; |
997 | |
|
998 | 0 | bstate = DEFLATE_HOOK(strm, flush, &bstate) ? bstate : /* hook for IBM Z DFLTCC */ |
999 | 0 | s->level == 0 ? deflate_stored(s, flush) : |
1000 | 0 | s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) : |
1001 | 0 | s->strategy == Z_RLE ? deflate_rle(s, flush) : |
1002 | 0 | (*(configuration_table[s->level].func))(s, flush); |
1003 | |
|
1004 | 0 | if (bstate == finish_started || bstate == finish_done) { |
1005 | 0 | s->status = FINISH_STATE; |
1006 | 0 | } |
1007 | 0 | if (bstate == need_more || bstate == finish_started) { |
1008 | 0 | if (strm->avail_out == 0) { |
1009 | 0 | s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ |
1010 | 0 | } |
1011 | 0 | return Z_OK; |
1012 | | /* If flush != Z_NO_FLUSH && avail_out == 0, the next call |
1013 | | * of deflate should use the same flush parameter to make sure |
1014 | | * that the flush is complete. So we don't have to output an |
1015 | | * empty block here, this will be done at next call. This also |
1016 | | * ensures that for a very small output buffer, we emit at most |
1017 | | * one empty block. |
1018 | | */ |
1019 | 0 | } |
1020 | 0 | if (bstate == block_done) { |
1021 | 0 | if (flush == Z_PARTIAL_FLUSH) { |
1022 | 0 | zng_tr_align(s); |
1023 | 0 | } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */ |
1024 | 0 | zng_tr_stored_block(s, (char*)0, 0L, 0); |
1025 | | /* For a full flush, this empty block will be recognized |
1026 | | * as a special marker by inflate_sync(). |
1027 | | */ |
1028 | 0 | if (flush == Z_FULL_FLUSH) { |
1029 | 0 | CLEAR_HASH(s); /* forget history */ |
1030 | 0 | if (s->lookahead == 0) { |
1031 | 0 | s->strstart = 0; |
1032 | 0 | s->block_start = 0; |
1033 | 0 | s->insert = 0; |
1034 | 0 | } |
1035 | 0 | } |
1036 | 0 | } |
1037 | 0 | flush_pending(strm); |
1038 | 0 | if (strm->avail_out == 0) { |
1039 | 0 | s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ |
1040 | 0 | return Z_OK; |
1041 | 0 | } |
1042 | 0 | } |
1043 | 0 | } |
1044 | | |
1045 | 0 | if (flush != Z_FINISH) |
1046 | 0 | return Z_OK; |
1047 | | |
1048 | | /* Write the trailer */ |
1049 | 0 | #ifdef GZIP |
1050 | 0 | if (s->wrap == 2) { |
1051 | | # ifdef X86_PCLMULQDQ_CRC |
1052 | | crc_finalize(s); |
1053 | | # endif |
1054 | 0 | put_uint32(s, strm->adler); |
1055 | 0 | put_uint32(s, (uint32_t)strm->total_in); |
1056 | 0 | } else |
1057 | 0 | #endif |
1058 | 0 | if (s->wrap == 1) |
1059 | 0 | put_uint32_msb(s, strm->adler); |
1060 | 0 | flush_pending(strm); |
1061 | | /* If avail_out is zero, the application will call deflate again |
1062 | | * to flush the rest. |
1063 | | */ |
1064 | 0 | if (s->wrap > 0) |
1065 | 0 | s->wrap = -s->wrap; /* write the trailer only once! */ |
1066 | 0 | if (s->pending == 0) { |
1067 | 0 | Assert(s->bi_valid == 0, "bi_buf not flushed"); |
1068 | 0 | return Z_STREAM_END; |
1069 | 0 | } |
1070 | 0 | return Z_OK; |
1071 | 0 | } |
1072 | | |
1073 | | /* ========================================================================= */ |
1074 | 0 | int32_t Z_EXPORT PREFIX(deflateEnd)(PREFIX3(stream) *strm) { |
1075 | 0 | int32_t status; |
1076 | |
|
1077 | 0 | if (deflateStateCheck(strm)) |
1078 | 0 | return Z_STREAM_ERROR; |
1079 | | |
1080 | 0 | status = strm->state->status; |
1081 | | |
1082 | | /* Deallocate in reverse order of allocations: */ |
1083 | 0 | TRY_FREE(strm, strm->state->pending_buf); |
1084 | 0 | TRY_FREE(strm, strm->state->head); |
1085 | 0 | TRY_FREE(strm, strm->state->prev); |
1086 | 0 | TRY_FREE_WINDOW(strm, strm->state->window); |
1087 | |
|
1088 | 0 | ZFREE_STATE(strm, strm->state); |
1089 | 0 | strm->state = NULL; |
1090 | |
|
1091 | 0 | return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; |
1092 | 0 | } |
1093 | | |
1094 | | /* ========================================================================= |
1095 | | * Copy the source state to the destination state. |
1096 | | */ |
1097 | 0 | int32_t Z_EXPORT PREFIX(deflateCopy)(PREFIX3(stream) *dest, PREFIX3(stream) *source) { |
1098 | 0 | deflate_state *ds; |
1099 | 0 | deflate_state *ss; |
1100 | 0 | uint32_t window_padding = 0; |
1101 | |
|
1102 | 0 | if (deflateStateCheck(source) || dest == NULL) |
1103 | 0 | return Z_STREAM_ERROR; |
1104 | | |
1105 | 0 | ss = source->state; |
1106 | |
|
1107 | 0 | memcpy((void *)dest, (void *)source, sizeof(PREFIX3(stream))); |
1108 | |
|
1109 | 0 | ds = (deflate_state *) ZALLOC_STATE(dest, 1, sizeof(deflate_state)); |
1110 | 0 | if (ds == NULL) |
1111 | 0 | return Z_MEM_ERROR; |
1112 | 0 | dest->state = (struct internal_state *) ds; |
1113 | 0 | ZCOPY_STATE((void *)ds, (void *)ss, sizeof(deflate_state)); |
1114 | 0 | ds->strm = dest; |
1115 | |
|
1116 | | #ifdef X86_PCLMULQDQ_CRC |
1117 | | window_padding = 8; |
1118 | | #endif |
1119 | |
|
1120 | 0 | ds->window = (unsigned char *) ZALLOC_WINDOW(dest, ds->w_size + window_padding, 2*sizeof(unsigned char)); |
1121 | 0 | ds->prev = (Pos *) ZALLOC(dest, ds->w_size, sizeof(Pos)); |
1122 | 0 | ds->head = (Pos *) ZALLOC(dest, HASH_SIZE, sizeof(Pos)); |
1123 | 0 | ds->pending_buf = (unsigned char *) ZALLOC(dest, ds->lit_bufsize, 4); |
1124 | |
|
1125 | 0 | if (ds->window == NULL || ds->prev == NULL || ds->head == NULL || ds->pending_buf == NULL) { |
1126 | 0 | PREFIX(deflateEnd)(dest); |
1127 | 0 | return Z_MEM_ERROR; |
1128 | 0 | } |
1129 | | |
1130 | 0 | memcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(unsigned char)); |
1131 | 0 | memcpy((void *)ds->prev, (void *)ss->prev, ds->w_size * sizeof(Pos)); |
1132 | 0 | memcpy((void *)ds->head, (void *)ss->head, HASH_SIZE * sizeof(Pos)); |
1133 | 0 | memcpy(ds->pending_buf, ss->pending_buf, ds->pending_buf_size); |
1134 | |
|
1135 | 0 | ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf); |
1136 | 0 | ds->sym_buf = ds->pending_buf + ds->lit_bufsize; |
1137 | |
|
1138 | 0 | ds->l_desc.dyn_tree = ds->dyn_ltree; |
1139 | 0 | ds->d_desc.dyn_tree = ds->dyn_dtree; |
1140 | 0 | ds->bl_desc.dyn_tree = ds->bl_tree; |
1141 | |
|
1142 | 0 | return Z_OK; |
1143 | 0 | } |
1144 | | |
1145 | | /* =========================================================================== |
1146 | | * Read a new buffer from the current input stream, update the adler32 |
1147 | | * and total number of bytes read. All deflate() input goes through |
1148 | | * this function so some applications may wish to modify it to avoid |
1149 | | * allocating a large strm->next_in buffer and copying from it. |
1150 | | * (See also flush_pending()). |
1151 | | */ |
1152 | 0 | Z_INTERNAL unsigned read_buf(PREFIX3(stream) *strm, unsigned char *buf, unsigned size) { |
1153 | 0 | uint32_t len = strm->avail_in; |
1154 | |
|
1155 | 0 | if (len > size) |
1156 | 0 | len = size; |
1157 | 0 | if (len == 0) |
1158 | 0 | return 0; |
1159 | | |
1160 | 0 | strm->avail_in -= len; |
1161 | |
|
1162 | 0 | if (!DEFLATE_NEED_CHECKSUM(strm)) { |
1163 | 0 | memcpy(buf, strm->next_in, len); |
1164 | 0 | #ifdef GZIP |
1165 | 0 | } else if (strm->state->wrap == 2) { |
1166 | 0 | copy_with_crc(strm, buf, len); |
1167 | 0 | #endif |
1168 | 0 | } else { |
1169 | 0 | memcpy(buf, strm->next_in, len); |
1170 | 0 | if (strm->state->wrap == 1) |
1171 | 0 | strm->adler = functable.adler32(strm->adler, buf, len); |
1172 | 0 | } |
1173 | 0 | strm->next_in += len; |
1174 | 0 | strm->total_in += len; |
1175 | |
|
1176 | 0 | return len; |
1177 | 0 | } |
1178 | | |
1179 | | /* =========================================================================== |
1180 | | * Initialize the "longest match" routines for a new zlib stream |
1181 | | */ |
1182 | 0 | static void lm_init(deflate_state *s) { |
1183 | 0 | s->window_size = 2 * s->w_size; |
1184 | |
|
1185 | 0 | CLEAR_HASH(s); |
1186 | | |
1187 | | /* Set the default configuration parameters: |
1188 | | */ |
1189 | 0 | s->max_lazy_match = configuration_table[s->level].max_lazy; |
1190 | 0 | s->good_match = configuration_table[s->level].good_length; |
1191 | 0 | s->nice_match = configuration_table[s->level].nice_length; |
1192 | 0 | s->max_chain_length = configuration_table[s->level].max_chain; |
1193 | |
|
1194 | 0 | s->strstart = 0; |
1195 | 0 | s->block_start = 0; |
1196 | 0 | s->lookahead = 0; |
1197 | 0 | s->insert = 0; |
1198 | 0 | s->prev_length = MIN_MATCH-1; |
1199 | 0 | s->match_available = 0; |
1200 | 0 | s->match_start = 0; |
1201 | 0 | } |
1202 | | |
1203 | | #ifdef ZLIB_DEBUG |
1204 | | #define EQUAL 0 |
1205 | | /* result of memcmp for equal strings */ |
1206 | | |
1207 | | /* =========================================================================== |
1208 | | * Check that the match at match_start is indeed a match. |
1209 | | */ |
1210 | | void check_match(deflate_state *s, Pos start, Pos match, int length) { |
1211 | | /* check that the match length is valid*/ |
1212 | | if (length < MIN_MATCH || length > MAX_MATCH) { |
1213 | | fprintf(stderr, " start %u, match %u, length %d\n", start, match, length); |
1214 | | z_error("invalid match length"); |
1215 | | } |
1216 | | /* check that the match isn't at the same position as the start string */ |
1217 | | if (match == start) { |
1218 | | fprintf(stderr, " start %u, match %u, length %d\n", start, match, length); |
1219 | | z_error("invalid match position"); |
1220 | | } |
1221 | | /* check that the match is indeed a match */ |
1222 | | if (memcmp(s->window + match, s->window + start, length) != EQUAL) { |
1223 | | int32_t i = 0; |
1224 | | fprintf(stderr, " start %u, match %u, length %d\n", start, match, length); |
1225 | | do { |
1226 | | fprintf(stderr, " %03d: match [%02x] start [%02x]\n", i++, s->window[match++], s->window[start++]); |
1227 | | } while (--length != 0); |
1228 | | z_error("invalid match"); |
1229 | | } |
1230 | | if (z_verbose > 1) { |
1231 | | fprintf(stderr, "\\[%u,%d]", start-match, length); |
1232 | | do { |
1233 | | putc(s->window[start++], stderr); |
1234 | | } while (--length != 0); |
1235 | | } |
1236 | | } |
1237 | | #else |
1238 | | # define check_match(s, start, match, length) |
1239 | | #endif /* ZLIB_DEBUG */ |
1240 | | |
1241 | | /* =========================================================================== |
1242 | | * Fill the window when the lookahead becomes insufficient. |
1243 | | * Updates strstart and lookahead. |
1244 | | * |
1245 | | * IN assertion: lookahead < MIN_LOOKAHEAD |
1246 | | * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD |
1247 | | * At least one byte has been read, or avail_in == 0; reads are |
1248 | | * performed for at least two bytes (required for the zip translate_eol |
1249 | | * option -- not supported here). |
1250 | | */ |
1251 | | |
1252 | 0 | void Z_INTERNAL fill_window(deflate_state *s) { |
1253 | 0 | unsigned n; |
1254 | 0 | unsigned int more; /* Amount of free space at the end of the window. */ |
1255 | 0 | unsigned int wsize = s->w_size; |
1256 | |
|
1257 | 0 | Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead"); |
1258 | |
|
1259 | 0 | do { |
1260 | 0 | more = s->window_size - s->lookahead - s->strstart; |
1261 | | |
1262 | | /* If the window is almost full and there is insufficient lookahead, |
1263 | | * move the upper half to the lower one to make room in the upper half. |
1264 | | */ |
1265 | 0 | if (s->strstart >= wsize+MAX_DIST(s)) { |
1266 | 0 | memcpy(s->window, s->window+wsize, (unsigned)wsize); |
1267 | 0 | if (s->match_start >= wsize) { |
1268 | 0 | s->match_start -= wsize; |
1269 | 0 | } else { |
1270 | 0 | s->match_start = 0; |
1271 | 0 | s->prev_length = 0; |
1272 | 0 | } |
1273 | 0 | s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ |
1274 | 0 | s->block_start -= (int)wsize; |
1275 | 0 | if (s->insert > s->strstart) |
1276 | 0 | s->insert = s->strstart; |
1277 | 0 | functable.slide_hash(s); |
1278 | 0 | more += wsize; |
1279 | 0 | } |
1280 | 0 | if (s->strm->avail_in == 0) |
1281 | 0 | break; |
1282 | | |
1283 | | /* If there was no sliding: |
1284 | | * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && |
1285 | | * more == window_size - lookahead - strstart |
1286 | | * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) |
1287 | | * => more >= window_size - 2*WSIZE + 2 |
1288 | | * In the BIG_MEM or MMAP case (not yet supported), |
1289 | | * window_size == input_size + MIN_LOOKAHEAD && |
1290 | | * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. |
1291 | | * Otherwise, window_size == 2*WSIZE so more >= 2. |
1292 | | * If there was sliding, more >= WSIZE. So in all cases, more >= 2. |
1293 | | */ |
1294 | 0 | Assert(more >= 2, "more < 2"); |
1295 | |
|
1296 | 0 | n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more); |
1297 | 0 | s->lookahead += n; |
1298 | | |
1299 | | /* Initialize the hash value now that we have some input: */ |
1300 | 0 | if (s->lookahead + s->insert >= MIN_MATCH) { |
1301 | 0 | unsigned int str = s->strstart - s->insert; |
1302 | 0 | if (str >= 1) |
1303 | 0 | functable.quick_insert_string(s, str + 2 - MIN_MATCH); |
1304 | | #if MIN_MATCH != 3 |
1305 | | #error Call insert_string() MIN_MATCH-3 more times |
1306 | | while (s->insert) { |
1307 | | functable.quick_insert_string(s, str); |
1308 | | str++; |
1309 | | s->insert--; |
1310 | | if (s->lookahead + s->insert < MIN_MATCH) |
1311 | | break; |
1312 | | } |
1313 | | #else |
1314 | 0 | unsigned int count; |
1315 | 0 | if (UNLIKELY(s->lookahead == 1)) { |
1316 | 0 | count = s->insert - 1; |
1317 | 0 | } else { |
1318 | 0 | count = s->insert; |
1319 | 0 | } |
1320 | 0 | if (count > 0) { |
1321 | 0 | functable.insert_string(s, str, count); |
1322 | 0 | s->insert -= count; |
1323 | 0 | } |
1324 | 0 | #endif |
1325 | 0 | } |
1326 | | /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, |
1327 | | * but this is not important since only literal bytes will be emitted. |
1328 | | */ |
1329 | 0 | } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); |
1330 | | |
1331 | | /* If the WIN_INIT bytes after the end of the current data have never been |
1332 | | * written, then zero those bytes in order to avoid memory check reports of |
1333 | | * the use of uninitialized (or uninitialised as Julian writes) bytes by |
1334 | | * the longest match routines. Update the high water mark for the next |
1335 | | * time through here. WIN_INIT is set to MAX_MATCH since the longest match |
1336 | | * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead. |
1337 | | */ |
1338 | 0 | if (s->high_water < s->window_size) { |
1339 | 0 | unsigned int curr = s->strstart + s->lookahead; |
1340 | 0 | unsigned int init; |
1341 | |
|
1342 | 0 | if (s->high_water < curr) { |
1343 | | /* Previous high water mark below current data -- zero WIN_INIT |
1344 | | * bytes or up to end of window, whichever is less. |
1345 | | */ |
1346 | 0 | init = s->window_size - curr; |
1347 | 0 | if (init > WIN_INIT) |
1348 | 0 | init = WIN_INIT; |
1349 | 0 | memset(s->window + curr, 0, init); |
1350 | 0 | s->high_water = curr + init; |
1351 | 0 | } else if (s->high_water < curr + WIN_INIT) { |
1352 | | /* High water mark at or above current data, but below current data |
1353 | | * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up |
1354 | | * to end of window, whichever is less. |
1355 | | */ |
1356 | 0 | init = curr + WIN_INIT - s->high_water; |
1357 | 0 | if (init > s->window_size - s->high_water) |
1358 | 0 | init = s->window_size - s->high_water; |
1359 | 0 | memset(s->window + s->high_water, 0, init); |
1360 | 0 | s->high_water += init; |
1361 | 0 | } |
1362 | 0 | } |
1363 | |
|
1364 | 0 | Assert((unsigned long)s->strstart <= s->window_size - MIN_LOOKAHEAD, |
1365 | 0 | "not enough room for search"); |
1366 | 0 | } |
1367 | | |
1368 | | /* =========================================================================== |
1369 | | * Copy without compression as much as possible from the input stream, return |
1370 | | * the current block state. |
1371 | | * |
1372 | | * In case deflateParams() is used to later switch to a non-zero compression |
1373 | | * level, s->matches (otherwise unused when storing) keeps track of the number |
1374 | | * of hash table slides to perform. If s->matches is 1, then one hash table |
1375 | | * slide will be done when switching. If s->matches is 2, the maximum value |
1376 | | * allowed here, then the hash table will be cleared, since two or more slides |
1377 | | * is the same as a clear. |
1378 | | * |
1379 | | * deflate_stored() is written to minimize the number of times an input byte is |
1380 | | * copied. It is most efficient with large input and output buffers, which |
1381 | | * maximizes the opportunites to have a single copy from next_in to next_out. |
1382 | | */ |
1383 | 0 | static block_state deflate_stored(deflate_state *s, int flush) { |
1384 | | /* Smallest worthy block size when not flushing or finishing. By default |
1385 | | * this is 32K. This can be as small as 507 bytes for memLevel == 1. For |
1386 | | * large input and output buffers, the stored block size will be larger. |
1387 | | */ |
1388 | 0 | unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size); |
1389 | | |
1390 | | /* Copy as many min_block or larger stored blocks directly to next_out as |
1391 | | * possible. If flushing, copy the remaining available input to next_out as |
1392 | | * stored blocks, if there is enough space. |
1393 | | */ |
1394 | 0 | unsigned len, left, have, last = 0; |
1395 | 0 | unsigned used = s->strm->avail_in; |
1396 | 0 | do { |
1397 | | /* Set len to the maximum size block that we can copy directly with the |
1398 | | * available input data and output space. Set left to how much of that |
1399 | | * would be copied from what's left in the window. |
1400 | | */ |
1401 | 0 | len = MAX_STORED; /* maximum deflate stored block length */ |
1402 | 0 | have = (s->bi_valid + 42) >> 3; /* number of header bytes */ |
1403 | 0 | if (s->strm->avail_out < have) /* need room for header */ |
1404 | 0 | break; |
1405 | | /* maximum stored block length that will fit in avail_out: */ |
1406 | 0 | have = s->strm->avail_out - have; |
1407 | 0 | left = (int)s->strstart - s->block_start; /* bytes left in window */ |
1408 | 0 | if (len > (unsigned long)left + s->strm->avail_in) |
1409 | 0 | len = left + s->strm->avail_in; /* limit len to the input */ |
1410 | 0 | if (len > have) |
1411 | 0 | len = have; /* limit len to the output */ |
1412 | | |
1413 | | /* If the stored block would be less than min_block in length, or if |
1414 | | * unable to copy all of the available input when flushing, then try |
1415 | | * copying to the window and the pending buffer instead. Also don't |
1416 | | * write an empty block when flushing -- deflate() does that. |
1417 | | */ |
1418 | 0 | if (len < min_block && ((len == 0 && flush != Z_FINISH) || flush == Z_NO_FLUSH || len != left + s->strm->avail_in)) |
1419 | 0 | break; |
1420 | | |
1421 | | /* Make a dummy stored block in pending to get the header bytes, |
1422 | | * including any pending bits. This also updates the debugging counts. |
1423 | | */ |
1424 | 0 | last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0; |
1425 | 0 | zng_tr_stored_block(s, (char *)0, 0L, last); |
1426 | | |
1427 | | /* Replace the lengths in the dummy stored block with len. */ |
1428 | 0 | s->pending -= 4; |
1429 | 0 | put_short(s, (uint16_t)len); |
1430 | 0 | put_short(s, (uint16_t)~len); |
1431 | | |
1432 | | /* Write the stored block header bytes. */ |
1433 | 0 | flush_pending(s->strm); |
1434 | | |
1435 | | /* Update debugging counts for the data about to be copied. */ |
1436 | 0 | cmpr_bits_add(s, len << 3); |
1437 | 0 | sent_bits_add(s, len << 3); |
1438 | | |
1439 | | /* Copy uncompressed bytes from the window to next_out. */ |
1440 | 0 | if (left) { |
1441 | 0 | if (left > len) |
1442 | 0 | left = len; |
1443 | 0 | memcpy(s->strm->next_out, s->window + s->block_start, left); |
1444 | 0 | s->strm->next_out += left; |
1445 | 0 | s->strm->avail_out -= left; |
1446 | 0 | s->strm->total_out += left; |
1447 | 0 | s->block_start += (int)left; |
1448 | 0 | len -= left; |
1449 | 0 | } |
1450 | | |
1451 | | /* Copy uncompressed bytes directly from next_in to next_out, updating |
1452 | | * the check value. |
1453 | | */ |
1454 | 0 | if (len) { |
1455 | 0 | read_buf(s->strm, s->strm->next_out, len); |
1456 | 0 | s->strm->next_out += len; |
1457 | 0 | s->strm->avail_out -= len; |
1458 | 0 | s->strm->total_out += len; |
1459 | 0 | } |
1460 | 0 | } while (last == 0); |
1461 | | |
1462 | | /* Update the sliding window with the last s->w_size bytes of the copied |
1463 | | * data, or append all of the copied data to the existing window if less |
1464 | | * than s->w_size bytes were copied. Also update the number of bytes to |
1465 | | * insert in the hash tables, in the event that deflateParams() switches to |
1466 | | * a non-zero compression level. |
1467 | | */ |
1468 | 0 | used -= s->strm->avail_in; /* number of input bytes directly copied */ |
1469 | 0 | if (used) { |
1470 | | /* If any input was used, then no unused input remains in the window, |
1471 | | * therefore s->block_start == s->strstart. |
1472 | | */ |
1473 | 0 | if (used >= s->w_size) { /* supplant the previous history */ |
1474 | 0 | s->matches = 2; /* clear hash */ |
1475 | 0 | memcpy(s->window, s->strm->next_in - s->w_size, s->w_size); |
1476 | 0 | s->strstart = s->w_size; |
1477 | 0 | s->insert = s->strstart; |
1478 | 0 | } else { |
1479 | 0 | if (s->window_size - s->strstart <= used) { |
1480 | | /* Slide the window down. */ |
1481 | 0 | s->strstart -= s->w_size; |
1482 | 0 | memcpy(s->window, s->window + s->w_size, s->strstart); |
1483 | 0 | if (s->matches < 2) |
1484 | 0 | s->matches++; /* add a pending slide_hash() */ |
1485 | 0 | if (s->insert > s->strstart) |
1486 | 0 | s->insert = s->strstart; |
1487 | 0 | } |
1488 | 0 | memcpy(s->window + s->strstart, s->strm->next_in - used, used); |
1489 | 0 | s->strstart += used; |
1490 | 0 | s->insert += MIN(used, s->w_size - s->insert); |
1491 | 0 | } |
1492 | 0 | s->block_start = (int)s->strstart; |
1493 | 0 | } |
1494 | 0 | if (s->high_water < s->strstart) |
1495 | 0 | s->high_water = s->strstart; |
1496 | | |
1497 | | /* If the last block was written to next_out, then done. */ |
1498 | 0 | if (last) |
1499 | 0 | return finish_done; |
1500 | | |
1501 | | /* If flushing and all input has been consumed, then done. */ |
1502 | 0 | if (flush != Z_NO_FLUSH && flush != Z_FINISH && s->strm->avail_in == 0 && (int)s->strstart == s->block_start) |
1503 | 0 | return block_done; |
1504 | | |
1505 | | /* Fill the window with any remaining input. */ |
1506 | 0 | have = s->window_size - s->strstart; |
1507 | 0 | if (s->strm->avail_in > have && s->block_start >= (int)s->w_size) { |
1508 | | /* Slide the window down. */ |
1509 | 0 | s->block_start -= (int)s->w_size; |
1510 | 0 | s->strstart -= s->w_size; |
1511 | 0 | memcpy(s->window, s->window + s->w_size, s->strstart); |
1512 | 0 | if (s->matches < 2) |
1513 | 0 | s->matches++; /* add a pending slide_hash() */ |
1514 | 0 | have += s->w_size; /* more space now */ |
1515 | 0 | if (s->insert > s->strstart) |
1516 | 0 | s->insert = s->strstart; |
1517 | 0 | } |
1518 | 0 | if (have > s->strm->avail_in) |
1519 | 0 | have = s->strm->avail_in; |
1520 | 0 | if (have) { |
1521 | 0 | read_buf(s->strm, s->window + s->strstart, have); |
1522 | 0 | s->strstart += have; |
1523 | 0 | s->insert += MIN(have, s->w_size - s->insert); |
1524 | 0 | } |
1525 | 0 | if (s->high_water < s->strstart) |
1526 | 0 | s->high_water = s->strstart; |
1527 | | |
1528 | | /* There was not enough avail_out to write a complete worthy or flushed |
1529 | | * stored block to next_out. Write a stored block to pending instead, if we |
1530 | | * have enough input for a worthy block, or if flushing and there is enough |
1531 | | * room for the remaining input as a stored block in the pending buffer. |
1532 | | */ |
1533 | 0 | have = (s->bi_valid + 42) >> 3; /* number of header bytes */ |
1534 | | /* maximum stored block length that will fit in pending: */ |
1535 | 0 | have = MIN(s->pending_buf_size - have, MAX_STORED); |
1536 | 0 | min_block = MIN(have, s->w_size); |
1537 | 0 | left = (int)s->strstart - s->block_start; |
1538 | 0 | if (left >= min_block || ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH && s->strm->avail_in == 0 && left <= have)) { |
1539 | 0 | len = MIN(left, have); |
1540 | 0 | last = flush == Z_FINISH && s->strm->avail_in == 0 && len == left ? 1 : 0; |
1541 | 0 | zng_tr_stored_block(s, (char *)s->window + s->block_start, len, last); |
1542 | 0 | s->block_start += (int)len; |
1543 | 0 | flush_pending(s->strm); |
1544 | 0 | } |
1545 | | |
1546 | | /* We've done all we can with the available input and output. */ |
1547 | 0 | return last ? finish_started : need_more; |
1548 | 0 | } |
1549 | | |
1550 | | |
1551 | | /* =========================================================================== |
1552 | | * For Z_RLE, simply look for runs of bytes, generate matches only of distance |
1553 | | * one. Do not maintain a hash table. (It will be regenerated if this run of |
1554 | | * deflate switches away from Z_RLE.) |
1555 | | */ |
1556 | 0 | static block_state deflate_rle(deflate_state *s, int flush) { |
1557 | 0 | int bflush = 0; /* set if current block must be flushed */ |
1558 | 0 | unsigned int prev; /* byte at distance one to match */ |
1559 | 0 | unsigned char *scan, *strend; /* scan goes up to strend for length of run */ |
1560 | 0 | uint32_t match_len = 0; |
1561 | |
|
1562 | 0 | for (;;) { |
1563 | | /* Make sure that we always have enough lookahead, except |
1564 | | * at the end of the input file. We need MAX_MATCH bytes |
1565 | | * for the longest run, plus one for the unrolled loop. |
1566 | | */ |
1567 | 0 | if (s->lookahead <= MAX_MATCH) { |
1568 | 0 | fill_window(s); |
1569 | 0 | if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) |
1570 | 0 | return need_more; |
1571 | 0 | if (s->lookahead == 0) |
1572 | 0 | break; /* flush the current block */ |
1573 | 0 | } |
1574 | | |
1575 | | /* See how many times the previous byte repeats */ |
1576 | 0 | if (s->lookahead >= MIN_MATCH && s->strstart > 0) { |
1577 | 0 | scan = s->window + s->strstart - 1; |
1578 | 0 | prev = *scan; |
1579 | 0 | if (prev == *++scan && prev == *++scan && prev == *++scan) { |
1580 | 0 | strend = s->window + s->strstart + MAX_MATCH; |
1581 | 0 | do { |
1582 | 0 | } while (prev == *++scan && prev == *++scan && |
1583 | 0 | prev == *++scan && prev == *++scan && |
1584 | 0 | prev == *++scan && prev == *++scan && |
1585 | 0 | prev == *++scan && prev == *++scan && |
1586 | 0 | scan < strend); |
1587 | 0 | match_len = MAX_MATCH - (unsigned int)(strend - scan); |
1588 | 0 | if (match_len > s->lookahead) |
1589 | 0 | match_len = s->lookahead; |
1590 | 0 | } |
1591 | 0 | Assert(scan <= s->window + s->window_size - 1, "wild scan"); |
1592 | 0 | } |
1593 | | |
1594 | | /* Emit match if have run of MIN_MATCH or longer, else emit literal */ |
1595 | 0 | if (match_len >= MIN_MATCH) { |
1596 | 0 | check_match(s, s->strstart, s->strstart - 1, match_len); |
1597 | |
|
1598 | 0 | bflush = zng_tr_tally_dist(s, 1, match_len - MIN_MATCH); |
1599 | |
|
1600 | 0 | s->lookahead -= match_len; |
1601 | 0 | s->strstart += match_len; |
1602 | 0 | match_len = 0; |
1603 | 0 | } else { |
1604 | | /* No match, output a literal byte */ |
1605 | 0 | bflush = zng_tr_tally_lit(s, s->window[s->strstart]); |
1606 | 0 | s->lookahead--; |
1607 | 0 | s->strstart++; |
1608 | 0 | } |
1609 | 0 | if (bflush) |
1610 | 0 | FLUSH_BLOCK(s, 0); |
1611 | 0 | } |
1612 | 0 | s->insert = 0; |
1613 | 0 | if (flush == Z_FINISH) { |
1614 | 0 | FLUSH_BLOCK(s, 1); |
1615 | 0 | return finish_done; |
1616 | 0 | } |
1617 | 0 | if (s->sym_next) |
1618 | 0 | FLUSH_BLOCK(s, 0); |
1619 | 0 | return block_done; |
1620 | 0 | } |
1621 | | |
1622 | | /* =========================================================================== |
1623 | | * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table. |
1624 | | * (It will be regenerated if this run of deflate switches away from Huffman.) |
1625 | | */ |
1626 | 0 | static block_state deflate_huff(deflate_state *s, int flush) { |
1627 | 0 | int bflush = 0; /* set if current block must be flushed */ |
1628 | |
|
1629 | 0 | for (;;) { |
1630 | | /* Make sure that we have a literal to write. */ |
1631 | 0 | if (s->lookahead == 0) { |
1632 | 0 | fill_window(s); |
1633 | 0 | if (s->lookahead == 0) { |
1634 | 0 | if (flush == Z_NO_FLUSH) |
1635 | 0 | return need_more; |
1636 | 0 | break; /* flush the current block */ |
1637 | 0 | } |
1638 | 0 | } |
1639 | | |
1640 | | /* Output a literal byte */ |
1641 | 0 | bflush = zng_tr_tally_lit(s, s->window[s->strstart]); |
1642 | 0 | s->lookahead--; |
1643 | 0 | s->strstart++; |
1644 | 0 | if (bflush) |
1645 | 0 | FLUSH_BLOCK(s, 0); |
1646 | 0 | } |
1647 | 0 | s->insert = 0; |
1648 | 0 | if (flush == Z_FINISH) { |
1649 | 0 | FLUSH_BLOCK(s, 1); |
1650 | 0 | return finish_done; |
1651 | 0 | } |
1652 | 0 | if (s->sym_next) |
1653 | 0 | FLUSH_BLOCK(s, 0); |
1654 | 0 | return block_done; |
1655 | 0 | } |
1656 | | |
1657 | | #ifndef ZLIB_COMPAT |
1658 | | /* ========================================================================= |
1659 | | * Checks whether buffer size is sufficient and whether this parameter is a duplicate. |
1660 | | */ |
1661 | | static int32_t deflateSetParamPre(zng_deflate_param_value **out, size_t min_size, zng_deflate_param_value *param) { |
1662 | | int32_t buf_error = param->size < min_size; |
1663 | | |
1664 | | if (*out != NULL) { |
1665 | | (*out)->status = Z_BUF_ERROR; |
1666 | | buf_error = 1; |
1667 | | } |
1668 | | *out = param; |
1669 | | return buf_error; |
1670 | | } |
1671 | | |
1672 | | /* ========================================================================= */ |
1673 | | int32_t Z_EXPORT zng_deflateSetParams(zng_stream *strm, zng_deflate_param_value *params, size_t count) { |
1674 | | size_t i; |
1675 | | deflate_state *s; |
1676 | | zng_deflate_param_value *new_level = NULL; |
1677 | | zng_deflate_param_value *new_strategy = NULL; |
1678 | | zng_deflate_param_value *new_reproducible = NULL; |
1679 | | int param_buf_error; |
1680 | | int version_error = 0; |
1681 | | int buf_error = 0; |
1682 | | int stream_error = 0; |
1683 | | int ret; |
1684 | | int val; |
1685 | | |
1686 | | /* Initialize the statuses. */ |
1687 | | for (i = 0; i < count; i++) |
1688 | | params[i].status = Z_OK; |
1689 | | |
1690 | | /* Check whether the stream state is consistent. */ |
1691 | | if (deflateStateCheck(strm)) |
1692 | | return Z_STREAM_ERROR; |
1693 | | s = strm->state; |
1694 | | |
1695 | | /* Check buffer sizes and detect duplicates. */ |
1696 | | for (i = 0; i < count; i++) { |
1697 | | switch (params[i].param) { |
1698 | | case Z_DEFLATE_LEVEL: |
1699 | | param_buf_error = deflateSetParamPre(&new_level, sizeof(int), ¶ms[i]); |
1700 | | break; |
1701 | | case Z_DEFLATE_STRATEGY: |
1702 | | param_buf_error = deflateSetParamPre(&new_strategy, sizeof(int), ¶ms[i]); |
1703 | | break; |
1704 | | case Z_DEFLATE_REPRODUCIBLE: |
1705 | | param_buf_error = deflateSetParamPre(&new_reproducible, sizeof(int), ¶ms[i]); |
1706 | | break; |
1707 | | default: |
1708 | | params[i].status = Z_VERSION_ERROR; |
1709 | | version_error = 1; |
1710 | | param_buf_error = 0; |
1711 | | break; |
1712 | | } |
1713 | | if (param_buf_error) { |
1714 | | params[i].status = Z_BUF_ERROR; |
1715 | | buf_error = 1; |
1716 | | } |
1717 | | } |
1718 | | /* Exit early if small buffers or duplicates are detected. */ |
1719 | | if (buf_error) |
1720 | | return Z_BUF_ERROR; |
1721 | | |
1722 | | /* Apply changes, remember if there were errors. */ |
1723 | | if (new_level != NULL || new_strategy != NULL) { |
1724 | | ret = PREFIX(deflateParams)(strm, new_level == NULL ? s->level : *(int *)new_level->buf, |
1725 | | new_strategy == NULL ? s->strategy : *(int *)new_strategy->buf); |
1726 | | if (ret != Z_OK) { |
1727 | | if (new_level != NULL) |
1728 | | new_level->status = Z_STREAM_ERROR; |
1729 | | if (new_strategy != NULL) |
1730 | | new_strategy->status = Z_STREAM_ERROR; |
1731 | | stream_error = 1; |
1732 | | } |
1733 | | } |
1734 | | if (new_reproducible != NULL) { |
1735 | | val = *(int *)new_reproducible->buf; |
1736 | | if (DEFLATE_CAN_SET_REPRODUCIBLE(strm, val)) { |
1737 | | s->reproducible = val; |
1738 | | } else { |
1739 | | new_reproducible->status = Z_STREAM_ERROR; |
1740 | | stream_error = 1; |
1741 | | } |
1742 | | } |
1743 | | |
1744 | | /* Report version errors only if there are no real errors. */ |
1745 | | return stream_error ? Z_STREAM_ERROR : (version_error ? Z_VERSION_ERROR : Z_OK); |
1746 | | } |
1747 | | |
1748 | | /* ========================================================================= */ |
1749 | | int32_t Z_EXPORT zng_deflateGetParams(zng_stream *strm, zng_deflate_param_value *params, size_t count) { |
1750 | | deflate_state *s; |
1751 | | size_t i; |
1752 | | int32_t buf_error = 0; |
1753 | | int32_t version_error = 0; |
1754 | | |
1755 | | /* Initialize the statuses. */ |
1756 | | for (i = 0; i < count; i++) |
1757 | | params[i].status = Z_OK; |
1758 | | |
1759 | | /* Check whether the stream state is consistent. */ |
1760 | | if (deflateStateCheck(strm)) |
1761 | | return Z_STREAM_ERROR; |
1762 | | s = strm->state; |
1763 | | |
1764 | | for (i = 0; i < count; i++) { |
1765 | | switch (params[i].param) { |
1766 | | case Z_DEFLATE_LEVEL: |
1767 | | if (params[i].size < sizeof(int)) |
1768 | | params[i].status = Z_BUF_ERROR; |
1769 | | else |
1770 | | *(int *)params[i].buf = s->level; |
1771 | | break; |
1772 | | case Z_DEFLATE_STRATEGY: |
1773 | | if (params[i].size < sizeof(int)) |
1774 | | params[i].status = Z_BUF_ERROR; |
1775 | | else |
1776 | | *(int *)params[i].buf = s->strategy; |
1777 | | break; |
1778 | | case Z_DEFLATE_REPRODUCIBLE: |
1779 | | if (params[i].size < sizeof(int)) |
1780 | | params[i].status = Z_BUF_ERROR; |
1781 | | else |
1782 | | *(int *)params[i].buf = s->reproducible; |
1783 | | break; |
1784 | | default: |
1785 | | params[i].status = Z_VERSION_ERROR; |
1786 | | version_error = 1; |
1787 | | break; |
1788 | | } |
1789 | | if (params[i].status == Z_BUF_ERROR) |
1790 | | buf_error = 1; |
1791 | | } |
1792 | | return buf_error ? Z_BUF_ERROR : (version_error ? Z_VERSION_ERROR : Z_OK); |
1793 | | } |
1794 | | #endif |