Combine.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to you under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.calcite.rel.core;
import org.apache.calcite.linq4j.Ord;
import org.apache.calcite.plan.RelOptCluster;
import org.apache.calcite.plan.RelOptCost;
import org.apache.calcite.plan.RelOptPlanner;
import org.apache.calcite.plan.RelTraitSet;
import org.apache.calcite.rel.AbstractRelNode;
import org.apache.calcite.rel.RelNode;
import org.apache.calcite.rel.RelWriter;
import org.apache.calcite.rel.metadata.RelMetadataQuery;
import org.apache.calcite.rel.type.RelDataType;
import org.apache.calcite.rel.type.RelDataTypeFactory;
import com.google.common.collect.ImmutableList;
import java.util.List;
/**
* A relational operator that combines multiple relational expressions into a single root.
* This is used for multi-root optimization in the VolcanoPlanner.
*/
public class Combine extends AbstractRelNode {
protected final ImmutableList<RelNode> inputs;
/** Creates a Combine. */
public static Combine create(RelOptCluster cluster, RelTraitSet traitSet, List<RelNode> inputs) {
return new Combine(cluster, traitSet, inputs);
}
public Combine(RelOptCluster cluster, RelTraitSet traitSet, List<RelNode> inputs) {
super(cluster, traitSet);
this.inputs = ImmutableList.copyOf(inputs);
}
@Override public List<RelNode> getInputs() {
return inputs;
}
@Override public RelWriter explainTerms(RelWriter pw) {
super.explainTerms(pw);
for (Ord<RelNode> ord : Ord.zip(inputs)) {
pw.input("input#" + ord.i, ord.e);
}
return pw;
}
@Override protected RelDataType deriveRowType() {
// Combine represents multiple independent result sets that are not merged.
// Each input maintains its own row type and is accessed independently.
//
// We use a struct type where each field represents one of the input queries.
// This allows metadata and optimization rules to understand the structure
// while making it clear that results are not unified into a single stream.
RelDataTypeFactory typeFactory = getCluster().getTypeFactory();
RelDataTypeFactory.Builder builder = typeFactory.builder();
for (int i = 0; i < inputs.size(); i++) {
RelNode input = inputs.get(i);
// Create a field for each input with its row type
// Field names are "QUERY_0", "QUERY_1", etc.
builder.add("QUERY_" + i, input.getRowType());
}
return builder.build();
}
@Override public RelOptCost computeSelfCost(RelOptPlanner planner, RelMetadataQuery mq) {
// The self cost of Combine is minimal - it's just a structural operator
// that binds multiple queries together for optimization purposes.
// The real cost comes from executing all the inputs (handled by getCumulativeCost).
// We add a tiny cost to represent the overhead of managing multiple result sets
double rowCount = 0;
for (RelNode input : inputs) {
Double inputRows = mq.getRowCount(input);
rowCount += inputRows;
}
// Very small CPU cost for result set management
// No I/O cost since Combine doesn't read data itself
return planner.getCostFactory().makeCost(
rowCount,
rowCount * 0.01, // minimal CPU cost
0); // no I/O
}
}