Coverage Report

Created: 2025-08-26 06:30

/src/capstonev5/arch/X86/X86DisassemblerDecoder.c
Line
Count
Source (jump to first uncovered line)
1
/*===-- X86DisassemblerDecoder.c - Disassembler decoder ------------*- C -*-===*
2
 *
3
 *                     The LLVM Compiler Infrastructure
4
 *
5
 * This file is distributed under the University of Illinois Open Source
6
 * License. See LICENSE.TXT for details.
7
 *
8
 *===----------------------------------------------------------------------===*
9
 *
10
 * This file is part of the X86 Disassembler.
11
 * It contains the implementation of the instruction decoder.
12
 * Documentation for the disassembler can be found in X86Disassembler.h.
13
 *
14
 *===----------------------------------------------------------------------===*/
15
16
/* Capstone Disassembly Engine */
17
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013-2019 */
18
19
#ifdef CAPSTONE_HAS_X86
20
21
#include <stdarg.h>   /* for va_*()       */
22
#if defined(CAPSTONE_HAS_OSXKERNEL)
23
#include <libkern/libkern.h>
24
#else
25
#include <stdlib.h>   /* for exit()       */
26
#endif
27
28
#include <string.h>
29
30
#include "../../cs_priv.h"
31
#include "../../utils.h"
32
33
#include "X86DisassemblerDecoder.h"
34
#include "X86Mapping.h"
35
36
/// Specifies whether a ModR/M byte is needed and (if so) which
37
/// instruction each possible value of the ModR/M byte corresponds to.  Once
38
/// this information is known, we have narrowed down to a single instruction.
39
struct ModRMDecision {
40
  uint8_t modrm_type;
41
  uint16_t instructionIDs;
42
};
43
44
/// Specifies which set of ModR/M->instruction tables to look at
45
/// given a particular opcode.
46
struct OpcodeDecision {
47
  struct ModRMDecision modRMDecisions[256];
48
};
49
50
/// Specifies which opcode->instruction tables to look at given
51
/// a particular context (set of attributes).  Since there are many possible
52
/// contexts, the decoder first uses CONTEXTS_SYM to determine which context
53
/// applies given a specific set of attributes.  Hence there are only IC_max
54
/// entries in this table, rather than 2^(ATTR_max).
55
struct ContextDecision {
56
  struct OpcodeDecision opcodeDecisions[IC_max];
57
};
58
59
#ifdef CAPSTONE_X86_REDUCE
60
#include "X86GenDisassemblerTables_reduce.inc"
61
#include "X86GenDisassemblerTables_reduce2.inc"
62
#include "X86Lookup16_reduce.inc"
63
#else
64
#include "X86GenDisassemblerTables.inc"
65
#include "X86GenDisassemblerTables2.inc"
66
#include "X86Lookup16.inc"
67
#endif
68
69
/*
70
 * contextForAttrs - Client for the instruction context table.  Takes a set of
71
 *   attributes and returns the appropriate decode context.
72
 *
73
 * @param attrMask  - Attributes, from the enumeration attributeBits.
74
 * @return          - The InstructionContext to use when looking up an
75
 *                    an instruction with these attributes.
76
 */
77
static InstructionContext contextForAttrs(uint16_t attrMask)
78
913k
{
79
913k
  return CONTEXTS_SYM[attrMask];
80
913k
}
81
82
/*
83
 * modRMRequired - Reads the appropriate instruction table to determine whether
84
 *   the ModR/M byte is required to decode a particular instruction.
85
 *
86
 * @param type        - The opcode type (i.e., how many bytes it has).
87
 * @param insnContext - The context for the instruction, as returned by
88
 *                      contextForAttrs.
89
 * @param opcode      - The last byte of the instruction's opcode, not counting
90
 *                      ModR/M extensions and escapes.
91
 * @return            - true if the ModR/M byte is required, false otherwise.
92
 */
93
static int modRMRequired(OpcodeType type,
94
    InstructionContext insnContext,
95
    uint16_t opcode)
96
913k
{
97
913k
  const struct OpcodeDecision *decision = NULL;
98
913k
  const uint8_t *indextable = NULL;
99
913k
  unsigned int index;
100
101
913k
  switch (type) {
102
0
    default: break;
103
731k
    case ONEBYTE:
104
731k
      decision = ONEBYTE_SYM;
105
731k
      indextable = index_x86DisassemblerOneByteOpcodes;
106
731k
      break;
107
91.3k
    case TWOBYTE:
108
91.3k
      decision = TWOBYTE_SYM;
109
91.3k
      indextable = index_x86DisassemblerTwoByteOpcodes;
110
91.3k
      break;
111
30.2k
    case THREEBYTE_38:
112
30.2k
      decision = THREEBYTE38_SYM;
113
30.2k
      indextable = index_x86DisassemblerThreeByte38Opcodes;
114
30.2k
      break;
115
42.0k
    case THREEBYTE_3A:
116
42.0k
      decision = THREEBYTE3A_SYM;
117
42.0k
      indextable = index_x86DisassemblerThreeByte3AOpcodes;
118
42.0k
      break;
119
0
#ifndef CAPSTONE_X86_REDUCE
120
15.0k
    case XOP8_MAP:
121
15.0k
      decision = XOP8_MAP_SYM;
122
15.0k
      indextable = index_x86DisassemblerXOP8Opcodes;
123
15.0k
      break;
124
1.08k
    case XOP9_MAP:
125
1.08k
      decision = XOP9_MAP_SYM;
126
1.08k
      indextable = index_x86DisassemblerXOP9Opcodes;
127
1.08k
      break;
128
1.05k
    case XOPA_MAP:
129
1.05k
      decision = XOPA_MAP_SYM;
130
1.05k
      indextable = index_x86DisassemblerXOPAOpcodes;
131
1.05k
      break;
132
1.35k
    case THREEDNOW_MAP:
133
      // 3DNow instructions always have ModRM byte
134
1.35k
      return true;
135
913k
#endif
136
913k
  }
137
138
  // return decision->opcodeDecisions[insnContext].modRMDecisions[opcode].modrm_type != MODRM_ONEENTRY;
139
911k
  index = indextable[insnContext];
140
911k
  if (index)
141
905k
    return decision[index - 1].modRMDecisions[opcode].modrm_type != MODRM_ONEENTRY;
142
5.98k
  else
143
5.98k
    return false;
144
911k
}
145
146
/*
147
 * decode - Reads the appropriate instruction table to obtain the unique ID of
148
 *   an instruction.
149
 *
150
 * @param type        - See modRMRequired().
151
 * @param insnContext - See modRMRequired().
152
 * @param opcode      - See modRMRequired().
153
 * @param modRM       - The ModR/M byte if required, or any value if not.
154
 * @return            - The UID of the instruction, or 0 on failure.
155
 */
156
static InstrUID decode(OpcodeType type,
157
                       InstructionContext insnContext,
158
                       uint8_t opcode,
159
                       uint8_t modRM)
160
911k
{
161
911k
  const struct ModRMDecision *dec = NULL;
162
911k
  unsigned int index;
163
911k
  static const struct OpcodeDecision emptyDecision = { 0 };
164
165
911k
  switch (type) {
166
0
    default: break; // never reach
167
729k
    case ONEBYTE:
168
      // dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
169
729k
      index = index_x86DisassemblerOneByteOpcodes[insnContext];
170
729k
      if (index)
171
729k
        dec = &ONEBYTE_SYM[index - 1].modRMDecisions[opcode];
172
201
      else
173
201
        dec = &emptyDecision.modRMDecisions[opcode];
174
729k
      break;
175
91.2k
    case TWOBYTE:
176
      //dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
177
91.2k
      index = index_x86DisassemblerTwoByteOpcodes[insnContext];
178
91.2k
      if (index)
179
89.9k
        dec = &TWOBYTE_SYM[index - 1].modRMDecisions[opcode];
180
1.34k
      else
181
1.34k
        dec = &emptyDecision.modRMDecisions[opcode];
182
91.2k
      break;
183
30.2k
    case THREEBYTE_38:
184
      // dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
185
30.2k
      index = index_x86DisassemblerThreeByte38Opcodes[insnContext];
186
30.2k
      if (index)
187
29.7k
        dec = &THREEBYTE38_SYM[index - 1].modRMDecisions[opcode];
188
446
      else
189
446
        dec = &emptyDecision.modRMDecisions[opcode];
190
30.2k
      break;
191
42.0k
    case THREEBYTE_3A:
192
      //dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
193
42.0k
      index = index_x86DisassemblerThreeByte3AOpcodes[insnContext];
194
42.0k
      if (index)
195
41.6k
        dec = &THREEBYTE3A_SYM[index - 1].modRMDecisions[opcode];
196
315
      else
197
315
        dec = &emptyDecision.modRMDecisions[opcode];
198
42.0k
      break;
199
0
#ifndef CAPSTONE_X86_REDUCE
200
15.0k
    case XOP8_MAP:
201
      // dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
202
15.0k
      index = index_x86DisassemblerXOP8Opcodes[insnContext];
203
15.0k
      if (index)
204
11.9k
        dec = &XOP8_MAP_SYM[index - 1].modRMDecisions[opcode];
205
3.12k
      else
206
3.12k
        dec = &emptyDecision.modRMDecisions[opcode];
207
15.0k
      break;
208
1.08k
    case XOP9_MAP:
209
      // dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
210
1.08k
      index = index_x86DisassemblerXOP9Opcodes[insnContext];
211
1.08k
      if (index)
212
808
        dec = &XOP9_MAP_SYM[index - 1].modRMDecisions[opcode];
213
278
      else
214
278
        dec = &emptyDecision.modRMDecisions[opcode];
215
1.08k
      break;
216
1.05k
    case XOPA_MAP:
217
      // dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
218
1.05k
      index = index_x86DisassemblerXOPAOpcodes[insnContext];
219
1.05k
      if (index)
220
787
        dec = &XOPA_MAP_SYM[index - 1].modRMDecisions[opcode];
221
272
      else
222
272
        dec = &emptyDecision.modRMDecisions[opcode];
223
1.05k
      break;
224
1.35k
    case THREEDNOW_MAP:
225
      // dec = &THREEDNOW_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
226
1.35k
      index = index_x86Disassembler3DNowOpcodes[insnContext];
227
1.35k
      if (index)
228
878
        dec = &THREEDNOW_MAP_SYM[index - 1].modRMDecisions[opcode];
229
479
      else
230
479
        dec = &emptyDecision.modRMDecisions[opcode];
231
1.35k
      break;
232
911k
#endif
233
911k
  }
234
235
911k
  switch (dec->modrm_type) {
236
0
    default:
237
      // debug("Corrupt table!  Unknown modrm_type");
238
0
      return 0;
239
406k
    case MODRM_ONEENTRY:
240
406k
      return modRMTable[dec->instructionIDs];
241
383k
    case MODRM_SPLITRM:
242
383k
      if (modFromModRM(modRM) == 0x3)
243
90.5k
        return modRMTable[dec->instructionIDs + 1];
244
293k
      return modRMTable[dec->instructionIDs];
245
101k
    case MODRM_SPLITREG:
246
101k
      if (modFromModRM(modRM) == 0x3)
247
30.2k
        return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3) + 8];
248
70.7k
      return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
249
19.6k
    case MODRM_SPLITMISC:
250
19.6k
      if (modFromModRM(modRM) == 0x3)
251
2.88k
        return modRMTable[dec->instructionIDs+(modRM & 0x3f) + 8];
252
16.7k
      return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
253
0
    case MODRM_FULL:
254
0
      return modRMTable[dec->instructionIDs+modRM];
255
911k
  }
256
911k
}
257
258
/*
259
 * specifierForUID - Given a UID, returns the name and operand specification for
260
 *   that instruction.
261
 *
262
 * @param uid - The unique ID for the instruction.  This should be returned by
263
 *              decode(); specifierForUID will not check bounds.
264
 * @return    - A pointer to the specification for that instruction.
265
 */
266
static const struct InstructionSpecifier *specifierForUID(InstrUID uid)
267
752k
{
268
752k
  return &INSTRUCTIONS_SYM[uid];
269
752k
}
270
271
/*
272
 * consumeByte - Uses the reader function provided by the user to consume one
273
 *   byte from the instruction's memory and advance the cursor.
274
 *
275
 * @param insn  - The instruction with the reader function to use.  The cursor
276
 *                for this instruction is advanced.
277
 * @param byte  - A pointer to a pre-allocated memory buffer to be populated
278
 *                with the data read.
279
 * @return      - 0 if the read was successful; nonzero otherwise.
280
 */
281
static int consumeByte(struct InternalInstruction* insn, uint8_t* byte)
282
2.58M
{
283
2.58M
  int ret = insn->reader(insn->readerArg, byte, insn->readerCursor);
284
285
2.58M
  if (!ret)
286
2.58M
    ++(insn->readerCursor);
287
288
2.58M
  return ret;
289
2.58M
}
290
291
/*
292
 * lookAtByte - Like consumeByte, but does not advance the cursor.
293
 *
294
 * @param insn  - See consumeByte().
295
 * @param byte  - See consumeByte().
296
 * @return      - See consumeByte().
297
 */
298
static int lookAtByte(struct InternalInstruction* insn, uint8_t* byte)
299
313k
{
300
313k
  return insn->reader(insn->readerArg, byte, insn->readerCursor);
301
313k
}
302
303
static void unconsumeByte(struct InternalInstruction* insn)
304
868k
{
305
868k
  insn->readerCursor--;
306
868k
}
307
308
#define CONSUME_FUNC(name, type)                                  \
309
131k
  static int name(struct InternalInstruction* insn, type* ptr) {  \
310
131k
    type combined = 0;                                            \
311
131k
    unsigned offset;                                              \
312
425k
    for (offset = 0; offset < sizeof(type); ++offset) {           \
313
295k
      uint8_t byte;                                               \
314
295k
      int ret = insn->reader(insn->readerArg,                     \
315
295k
                             &byte,                               \
316
295k
                             insn->readerCursor + offset);        \
317
295k
      if (ret)                                                    \
318
295k
        return ret;                                               \
319
295k
      combined = combined | ((uint64_t)byte << (offset * 8));     \
320
294k
    }                                                             \
321
131k
    *ptr = combined;                                              \
322
130k
    insn->readerCursor += sizeof(type);                           \
323
130k
    return 0;                                                     \
324
131k
  }
X86DisassemblerDecoder.c:consumeInt8
Line
Count
Source
309
55.6k
  static int name(struct InternalInstruction* insn, type* ptr) {  \
310
55.6k
    type combined = 0;                                            \
311
55.6k
    unsigned offset;                                              \
312
111k
    for (offset = 0; offset < sizeof(type); ++offset) {           \
313
55.6k
      uint8_t byte;                                               \
314
55.6k
      int ret = insn->reader(insn->readerArg,                     \
315
55.6k
                             &byte,                               \
316
55.6k
                             insn->readerCursor + offset);        \
317
55.6k
      if (ret)                                                    \
318
55.6k
        return ret;                                               \
319
55.6k
      combined = combined | ((uint64_t)byte << (offset * 8));     \
320
55.4k
    }                                                             \
321
55.6k
    *ptr = combined;                                              \
322
55.4k
    insn->readerCursor += sizeof(type);                           \
323
55.4k
    return 0;                                                     \
324
55.6k
  }
X86DisassemblerDecoder.c:consumeInt16
Line
Count
Source
309
11.6k
  static int name(struct InternalInstruction* insn, type* ptr) {  \
310
11.6k
    type combined = 0;                                            \
311
11.6k
    unsigned offset;                                              \
312
34.8k
    for (offset = 0; offset < sizeof(type); ++offset) {           \
313
23.2k
      uint8_t byte;                                               \
314
23.2k
      int ret = insn->reader(insn->readerArg,                     \
315
23.2k
                             &byte,                               \
316
23.2k
                             insn->readerCursor + offset);        \
317
23.2k
      if (ret)                                                    \
318
23.2k
        return ret;                                               \
319
23.2k
      combined = combined | ((uint64_t)byte << (offset * 8));     \
320
23.2k
    }                                                             \
321
11.6k
    *ptr = combined;                                              \
322
11.5k
    insn->readerCursor += sizeof(type);                           \
323
11.5k
    return 0;                                                     \
324
11.6k
  }
X86DisassemblerDecoder.c:consumeInt32
Line
Count
Source
309
17.3k
  static int name(struct InternalInstruction* insn, type* ptr) {  \
310
17.3k
    type combined = 0;                                            \
311
17.3k
    unsigned offset;                                              \
312
85.9k
    for (offset = 0; offset < sizeof(type); ++offset) {           \
313
68.8k
      uint8_t byte;                                               \
314
68.8k
      int ret = insn->reader(insn->readerArg,                     \
315
68.8k
                             &byte,                               \
316
68.8k
                             insn->readerCursor + offset);        \
317
68.8k
      if (ret)                                                    \
318
68.8k
        return ret;                                               \
319
68.8k
      combined = combined | ((uint64_t)byte << (offset * 8));     \
320
68.6k
    }                                                             \
321
17.3k
    *ptr = combined;                                              \
322
17.0k
    insn->readerCursor += sizeof(type);                           \
323
17.0k
    return 0;                                                     \
324
17.3k
  }
X86DisassemblerDecoder.c:consumeUInt16
Line
Count
Source
309
25.5k
  static int name(struct InternalInstruction* insn, type* ptr) {  \
310
25.5k
    type combined = 0;                                            \
311
25.5k
    unsigned offset;                                              \
312
76.4k
    for (offset = 0; offset < sizeof(type); ++offset) {           \
313
51.0k
      uint8_t byte;                                               \
314
51.0k
      int ret = insn->reader(insn->readerArg,                     \
315
51.0k
                             &byte,                               \
316
51.0k
                             insn->readerCursor + offset);        \
317
51.0k
      if (ret)                                                    \
318
51.0k
        return ret;                                               \
319
51.0k
      combined = combined | ((uint64_t)byte << (offset * 8));     \
320
50.8k
    }                                                             \
321
25.5k
    *ptr = combined;                                              \
322
25.3k
    insn->readerCursor += sizeof(type);                           \
323
25.3k
    return 0;                                                     \
324
25.5k
  }
X86DisassemblerDecoder.c:consumeUInt32
Line
Count
Source
309
17.5k
  static int name(struct InternalInstruction* insn, type* ptr) {  \
310
17.5k
    type combined = 0;                                            \
311
17.5k
    unsigned offset;                                              \
312
86.6k
    for (offset = 0; offset < sizeof(type); ++offset) {           \
313
69.4k
      uint8_t byte;                                               \
314
69.4k
      int ret = insn->reader(insn->readerArg,                     \
315
69.4k
                             &byte,                               \
316
69.4k
                             insn->readerCursor + offset);        \
317
69.4k
      if (ret)                                                    \
318
69.4k
        return ret;                                               \
319
69.4k
      combined = combined | ((uint64_t)byte << (offset * 8));     \
320
69.1k
    }                                                             \
321
17.5k
    *ptr = combined;                                              \
322
17.2k
    insn->readerCursor += sizeof(type);                           \
323
17.2k
    return 0;                                                     \
324
17.5k
  }
X86DisassemblerDecoder.c:consumeUInt64
Line
Count
Source
309
3.43k
  static int name(struct InternalInstruction* insn, type* ptr) {  \
310
3.43k
    type combined = 0;                                            \
311
3.43k
    unsigned offset;                                              \
312
30.5k
    for (offset = 0; offset < sizeof(type); ++offset) {           \
313
27.1k
      uint8_t byte;                                               \
314
27.1k
      int ret = insn->reader(insn->readerArg,                     \
315
27.1k
                             &byte,                               \
316
27.1k
                             insn->readerCursor + offset);        \
317
27.1k
      if (ret)                                                    \
318
27.1k
        return ret;                                               \
319
27.1k
      combined = combined | ((uint64_t)byte << (offset * 8));     \
320
27.1k
    }                                                             \
321
3.43k
    *ptr = combined;                                              \
322
3.36k
    insn->readerCursor += sizeof(type);                           \
323
3.36k
    return 0;                                                     \
324
3.43k
  }
325
326
/*
327
 * consume* - Use the reader function provided by the user to consume data
328
 *   values of various sizes from the instruction's memory and advance the
329
 *   cursor appropriately.  These readers perform endian conversion.
330
 *
331
 * @param insn    - See consumeByte().
332
 * @param ptr     - A pointer to a pre-allocated memory of appropriate size to
333
 *                  be populated with the data read.
334
 * @return        - See consumeByte().
335
 */
336
CONSUME_FUNC(consumeInt8, int8_t)
337
CONSUME_FUNC(consumeInt16, int16_t)
338
CONSUME_FUNC(consumeInt32, int32_t)
339
CONSUME_FUNC(consumeUInt16, uint16_t)
340
CONSUME_FUNC(consumeUInt32, uint32_t)
341
CONSUME_FUNC(consumeUInt64, uint64_t)
342
343
static bool isREX(struct InternalInstruction *insn, uint8_t prefix)
344
696k
{
345
696k
  if (insn->mode == MODE_64BIT)
346
272k
    return prefix >= 0x40 && prefix <= 0x4f;
347
348
424k
  return false;
349
696k
}
350
351
/*
352
 * setPrefixPresent - Marks that a particular prefix is present as mandatory
353
 *
354
 * @param insn      - The instruction to be marked as having the prefix.
355
 * @param prefix    - The prefix that is present.
356
 */
357
static void setPrefixPresent(struct InternalInstruction *insn, uint8_t prefix)
358
142k
{
359
142k
  uint8_t nextByte;
360
361
142k
  switch (prefix) {
362
38.9k
    case 0xf0:  // LOCK
363
38.9k
      insn->hasLockPrefix = true;
364
38.9k
      insn->repeatPrefix = 0;
365
38.9k
      break;
366
367
30.3k
    case 0xf2:  // REPNE/REPNZ
368
53.8k
    case 0xf3:  // REP or REPE/REPZ
369
53.8k
      if (lookAtByte(insn, &nextByte))
370
42
        break;
371
      // TODO:
372
      //  1. There could be several 0x66
373
      //  2. if (nextByte == 0x66) and nextNextByte != 0x0f then
374
      //      it's not mandatory prefix
375
      //  3. if (nextByte >= 0x40 && nextByte <= 0x4f) it's REX and we need
376
      //     0x0f exactly after it to be mandatory prefix
377
53.8k
      if (isREX(insn, nextByte) || nextByte == 0x0f || nextByte == 0x66)
378
        // The last of 0xf2 /0xf3 is mandatory prefix
379
15.8k
        insn->mandatoryPrefix = prefix;
380
381
53.8k
      insn->repeatPrefix = prefix;
382
53.8k
      insn->hasLockPrefix = false;
383
53.8k
      break;
384
385
20.0k
    case 0x66:
386
20.0k
      if (lookAtByte(insn, &nextByte))
387
36
        break;
388
      // 0x66 can't overwrite existing mandatory prefix and should be ignored
389
20.0k
      if (!insn->mandatoryPrefix && (nextByte == 0x0f || isREX(insn, nextByte)))
390
7.69k
        insn->mandatoryPrefix = prefix;
391
20.0k
      break;
392
142k
  }
393
142k
}
394
395
/*
396
 * readPrefixes - Consumes all of an instruction's prefix bytes, and marks the
397
 *   instruction as having them.  Also sets the instruction's default operand,
398
 *   address, and other relevant data sizes to report operands correctly.
399
 *
400
 * @param insn  - The instruction whose prefixes are to be read.
401
 * @return      - 0 if the instruction could be read until the end of the prefix
402
 *                bytes, and no prefixes conflicted; nonzero otherwise.
403
 */
404
static int readPrefixes(struct InternalInstruction* insn)
405
666k
{
406
666k
  bool isPrefix = true;
407
666k
  uint8_t byte = 0;
408
666k
  uint8_t nextByte;
409
410
1.47M
  while (isPrefix) {
411
809k
    if (insn->mode == MODE_64BIT) {
412
      // eliminate consecutive redundant REX bytes in front
413
320k
      if (consumeByte(insn, &byte))
414
158
        return -1;
415
416
320k
      if ((byte & 0xf0) == 0x40) {
417
61.2k
        while(true) {
418
61.2k
          if (lookAtByte(insn, &byte))  // out of input code
419
120
            return -1;
420
61.1k
          if ((byte & 0xf0) == 0x40) {
421
            // another REX prefix, but we only remember the last one
422
7.68k
            if (consumeByte(insn, &byte))
423
0
              return -1;
424
7.68k
          } else
425
53.4k
            break;
426
61.1k
        }
427
428
        // recover the last REX byte if next byte is not a legacy prefix
429
53.4k
        switch (byte) {
430
1.05k
          case 0xf2:  /* REPNE/REPNZ */
431
2.13k
          case 0xf3:  /* REP or REPE/REPZ */
432
4.06k
          case 0xf0:  /* LOCK */
433
4.44k
          case 0x2e:  /* CS segment override -OR- Branch not taken */
434
4.90k
          case 0x36:  /* SS segment override -OR- Branch taken */
435
5.19k
          case 0x3e:  /* DS segment override */
436
5.46k
          case 0x26:  /* ES segment override */
437
5.80k
          case 0x64:  /* FS segment override */
438
6.04k
          case 0x65:  /* GS segment override */
439
7.76k
          case 0x66:  /* Operand-size override */
440
8.46k
          case 0x67:  /* Address-size override */
441
8.46k
            break;
442
44.9k
          default:    /* Not a prefix byte */
443
44.9k
            unconsumeByte(insn);
444
44.9k
            break;
445
53.4k
        }
446
267k
      } else {
447
267k
        unconsumeByte(insn);
448
267k
      }
449
320k
    }
450
451
    /* If we fail reading prefixes, just stop here and let the opcode reader deal with it */
452
809k
    if (consumeByte(insn, &byte))
453
155
      return -1;
454
455
809k
    if (insn->readerCursor - 1 == insn->startLocation
456
809k
        && (byte == 0xf2 || byte == 0xf3)) {
457
      // prefix requires next byte
458
45.2k
      if (lookAtByte(insn, &nextByte))
459
120
        return -1;
460
461
      /*
462
       * If the byte is 0xf2 or 0xf3, and any of the following conditions are
463
       * met:
464
       * - it is followed by a LOCK (0xf0) prefix
465
       * - it is followed by an xchg instruction
466
       * then it should be disassembled as a xacquire/xrelease not repne/rep.
467
       */
468
45.0k
      if (((nextByte == 0xf0) ||
469
45.0k
        ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90))) {
470
2.99k
        insn->xAcquireRelease = byte;
471
2.99k
      }
472
473
      /*
474
       * Also if the byte is 0xf3, and the following condition is met:
475
       * - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
476
       *                       "mov mem, imm" (opcode 0xc6/0xc7) instructions.
477
       * then it should be disassembled as an xrelease not rep.
478
       */
479
45.0k
      if (byte == 0xf3 && (nextByte == 0x88 || nextByte == 0x89 ||
480
19.4k
            nextByte == 0xc6 || nextByte == 0xc7)) {
481
696
        insn->xAcquireRelease = byte;
482
696
      }
483
484
45.0k
      if (isREX(insn, nextByte)) {
485
5.70k
        uint8_t nnextByte;
486
487
        // Go to REX prefix after the current one
488
5.70k
        if (consumeByte(insn, &nnextByte))
489
0
          return -1;
490
491
        // We should be able to read next byte after REX prefix
492
5.70k
        if (lookAtByte(insn, &nnextByte))
493
11
          return -1;
494
495
5.69k
        unconsumeByte(insn);
496
5.69k
      }
497
45.0k
    }
498
499
808k
    switch (byte) {
500
38.9k
      case 0xf0:  /* LOCK */
501
69.3k
      case 0xf2:  /* REPNE/REPNZ */
502
92.8k
      case 0xf3:  /* REP or REPE/REPZ */
503
        // only accept the last prefix
504
92.8k
        setPrefixPresent(insn, byte);
505
92.8k
        insn->prefix0 = byte;
506
92.8k
        break;
507
508
5.48k
      case 0x2e:  /* CS segment override -OR- Branch not taken */
509
7.35k
      case 0x36:  /* SS segment override -OR- Branch taken */
510
10.8k
      case 0x3e:  /* DS segment override */
511
13.4k
      case 0x26:  /* ES segment override */
512
18.7k
      case 0x64:  /* FS segment override */
513
22.0k
      case 0x65:  /* GS segment override */
514
22.0k
        switch (byte) {
515
5.48k
          case 0x2e:
516
5.48k
            insn->segmentOverride = SEG_OVERRIDE_CS;
517
5.48k
            insn->prefix1 = byte;
518
5.48k
            break;
519
1.87k
          case 0x36:
520
1.87k
            insn->segmentOverride = SEG_OVERRIDE_SS;
521
1.87k
            insn->prefix1 = byte;
522
1.87k
            break;
523
3.46k
          case 0x3e:
524
3.46k
            insn->segmentOverride = SEG_OVERRIDE_DS;
525
3.46k
            insn->prefix1 = byte;
526
3.46k
            break;
527
2.58k
          case 0x26:
528
2.58k
            insn->segmentOverride = SEG_OVERRIDE_ES;
529
2.58k
            insn->prefix1 = byte;
530
2.58k
            break;
531
5.35k
          case 0x64:
532
5.35k
            insn->segmentOverride = SEG_OVERRIDE_FS;
533
5.35k
            insn->prefix1 = byte;
534
5.35k
            break;
535
3.25k
          case 0x65:
536
3.25k
            insn->segmentOverride = SEG_OVERRIDE_GS;
537
3.25k
            insn->prefix1 = byte;
538
3.25k
            break;
539
0
          default:
540
            // debug("Unhandled override");
541
0
            return -1;
542
22.0k
        }
543
22.0k
        setPrefixPresent(insn, byte);
544
22.0k
        break;
545
546
20.0k
      case 0x66:  /* Operand-size override */
547
20.0k
        insn->hasOpSize = true;
548
20.0k
        setPrefixPresent(insn, byte);
549
20.0k
        insn->prefix2 = byte;
550
20.0k
        break;
551
552
7.92k
      case 0x67:  /* Address-size override */
553
7.92k
        insn->hasAdSize = true;
554
7.92k
        setPrefixPresent(insn, byte);
555
7.92k
        insn->prefix3 = byte;
556
7.92k
        break;
557
666k
      default:    /* Not a prefix byte */
558
666k
        isPrefix = false;
559
666k
        break;
560
808k
    }
561
808k
  }
562
563
666k
  insn->vectorExtensionType = TYPE_NO_VEX_XOP;
564
565
666k
  if (byte == 0x62) {
566
59.1k
    uint8_t byte1, byte2;
567
568
59.1k
    if (consumeByte(insn, &byte1)) {
569
      // dbgprintf(insn, "Couldn't read second byte of EVEX prefix");
570
63
      return -1;
571
63
    }
572
573
59.1k
    if (lookAtByte(insn, &byte2)) {
574
      // dbgprintf(insn, "Couldn't read third byte of EVEX prefix");
575
73
      unconsumeByte(insn); /* unconsume byte1 */
576
73
      unconsumeByte(insn); /* unconsume byte  */
577
59.0k
    } else {
578
59.0k
      if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) &&
579
59.0k
          ((~byte1 & 0xc) == 0xc) && ((byte2 & 0x4) == 0x4)) {
580
53.9k
        insn->vectorExtensionType = TYPE_EVEX;
581
53.9k
      } else {
582
5.03k
        unconsumeByte(insn); /* unconsume byte1 */
583
5.03k
        unconsumeByte(insn); /* unconsume byte  */
584
5.03k
      }
585
59.0k
    }
586
587
59.1k
    if (insn->vectorExtensionType == TYPE_EVEX) {
588
53.9k
      insn->vectorExtensionPrefix[0] = byte;
589
53.9k
      insn->vectorExtensionPrefix[1] = byte1;
590
53.9k
      if (consumeByte(insn, &insn->vectorExtensionPrefix[2])) {
591
        // dbgprintf(insn, "Couldn't read third byte of EVEX prefix");
592
0
        return -1;
593
0
      }
594
595
53.9k
      if (consumeByte(insn, &insn->vectorExtensionPrefix[3])) {
596
        // dbgprintf(insn, "Couldn't read fourth byte of EVEX prefix");
597
30
        return -1;
598
30
      }
599
600
      /* We simulate the REX prefix for simplicity's sake */
601
53.9k
      if (insn->mode == MODE_64BIT) {
602
24.0k
        insn->rexPrefix = 0x40
603
24.0k
          | (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3)
604
24.0k
          | (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2)
605
24.0k
          | (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1)
606
24.0k
          | (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0);
607
24.0k
      }
608
609
      // dbgprintf(insn, "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
610
      //    insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
611
      //    insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]);
612
53.9k
    }
613
606k
  } else if (byte == 0xc4) {
614
4.91k
    uint8_t byte1;
615
616
4.91k
    if (lookAtByte(insn, &byte1)) {
617
      // dbgprintf(insn, "Couldn't read second byte of VEX");
618
11
      return -1;
619
11
    }
620
621
4.89k
    if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
622
4.49k
      insn->vectorExtensionType = TYPE_VEX_3B;
623
401
    else
624
401
      unconsumeByte(insn);
625
626
4.89k
    if (insn->vectorExtensionType == TYPE_VEX_3B) {
627
4.49k
      insn->vectorExtensionPrefix[0] = byte;
628
4.49k
      consumeByte(insn, &insn->vectorExtensionPrefix[1]);
629
4.49k
      consumeByte(insn, &insn->vectorExtensionPrefix[2]);
630
631
      /* We simulate the REX prefix for simplicity's sake */
632
4.49k
      if (insn->mode == MODE_64BIT)
633
2.87k
        insn->rexPrefix = 0x40
634
2.87k
          | (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3)
635
2.87k
          | (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2)
636
2.87k
          | (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1)
637
2.87k
          | (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0);
638
639
      // dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
640
      //    insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
641
      //    insn->vectorExtensionPrefix[2]);
642
4.49k
    }
643
602k
  } else if (byte == 0xc5) {
644
9.94k
    uint8_t byte1;
645
646
9.94k
    if (lookAtByte(insn, &byte1)) {
647
      // dbgprintf(insn, "Couldn't read second byte of VEX");
648
22
      return -1;
649
22
    }
650
651
9.91k
    if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
652
8.68k
      insn->vectorExtensionType = TYPE_VEX_2B;
653
1.23k
    else
654
1.23k
      unconsumeByte(insn);
655
656
9.91k
    if (insn->vectorExtensionType == TYPE_VEX_2B) {
657
8.68k
      insn->vectorExtensionPrefix[0] = byte;
658
8.68k
      consumeByte(insn, &insn->vectorExtensionPrefix[1]);
659
660
8.68k
      if (insn->mode == MODE_64BIT)
661
1.30k
        insn->rexPrefix = 0x40
662
1.30k
          | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);
663
664
8.68k
      switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
665
3.28k
        default:
666
3.28k
          break;
667
5.39k
        case VEX_PREFIX_66:
668
5.39k
          insn->hasOpSize = true;
669
5.39k
          break;
670
8.68k
      }
671
672
      // dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx",
673
      //    insn->vectorExtensionPrefix[0],
674
      //    insn->vectorExtensionPrefix[1]);
675
8.68k
    }
676
592k
  } else if (byte == 0x8f) {
677
8.78k
    uint8_t byte1;
678
679
8.78k
    if (lookAtByte(insn, &byte1)) {
680
      // dbgprintf(insn, "Couldn't read second byte of XOP");
681
14
      return -1;
682
14
    }
683
684
8.77k
    if ((byte1 & 0x38) != 0x0) /* 0 in these 3 bits is a POP instruction. */
685
8.00k
      insn->vectorExtensionType = TYPE_XOP;
686
769
    else
687
769
      unconsumeByte(insn);
688
689
8.77k
    if (insn->vectorExtensionType == TYPE_XOP) {
690
8.00k
      insn->vectorExtensionPrefix[0] = byte;
691
8.00k
      consumeByte(insn, &insn->vectorExtensionPrefix[1]);
692
8.00k
      consumeByte(insn, &insn->vectorExtensionPrefix[2]);
693
694
      /* We simulate the REX prefix for simplicity's sake */
695
8.00k
      if (insn->mode == MODE_64BIT)
696
2.88k
        insn->rexPrefix = 0x40
697
2.88k
          | (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3)
698
2.88k
          | (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2)
699
2.88k
          | (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1)
700
2.88k
          | (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);
701
702
8.00k
      switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
703
7.98k
        default:
704
7.98k
          break;
705
7.98k
        case VEX_PREFIX_66:
706
17
          insn->hasOpSize = true;
707
17
          break;
708
8.00k
      }
709
710
      // dbgprintf(insn, "Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
711
      //    insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
712
      //    insn->vectorExtensionPrefix[2]);
713
8.00k
    }
714
583k
  } else if (isREX(insn, byte)) {
715
44.9k
    if (lookAtByte(insn, &nextByte))
716
0
      return -1;
717
718
44.9k
    insn->rexPrefix = byte;
719
    // dbgprintf(insn, "Found REX prefix 0x%hhx", byte);
720
44.9k
  } else
721
538k
    unconsumeByte(insn);
722
723
666k
  if (insn->mode == MODE_16BIT) {
724
218k
    insn->registerSize = (insn->hasOpSize ? 4 : 2);
725
218k
    insn->addressSize = (insn->hasAdSize ? 4 : 2);
726
218k
    insn->displacementSize = (insn->hasAdSize ? 4 : 2);
727
218k
    insn->immediateSize = (insn->hasOpSize ? 4 : 2);
728
218k
    insn->immSize = (insn->hasOpSize ? 4 : 2);
729
447k
  } else if (insn->mode == MODE_32BIT) {
730
193k
    insn->registerSize = (insn->hasOpSize ? 2 : 4);
731
193k
    insn->addressSize = (insn->hasAdSize ? 2 : 4);
732
193k
    insn->displacementSize = (insn->hasAdSize ? 2 : 4);
733
193k
    insn->immediateSize = (insn->hasOpSize ? 2 : 4);
734
193k
    insn->immSize = (insn->hasOpSize ? 2 : 4);
735
254k
  } else if (insn->mode == MODE_64BIT) {
736
254k
    if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
737
48.7k
      insn->registerSize       = 8;
738
48.7k
      insn->addressSize = (insn->hasAdSize ? 4 : 8);
739
48.7k
      insn->displacementSize   = 4;
740
48.7k
      insn->immediateSize      = 4;
741
48.7k
      insn->immSize      = 4;
742
205k
    } else {
743
205k
      insn->registerSize = (insn->hasOpSize ? 2 : 4);
744
205k
      insn->addressSize = (insn->hasAdSize ? 4 : 8);
745
205k
      insn->displacementSize = (insn->hasOpSize ? 2 : 4);
746
205k
      insn->immediateSize = (insn->hasOpSize ? 2 : 4);
747
205k
      insn->immSize      = (insn->hasOpSize ? 4 : 8);
748
205k
    }
749
254k
  }
750
751
666k
  return 0;
752
666k
}
753
754
static int readModRM(struct InternalInstruction* insn);
755
756
/*
757
 * readOpcode - Reads the opcode (excepting the ModR/M byte in the case of
758
 *   extended or escape opcodes).
759
 *
760
 * @param insn  - The instruction whose opcode is to be read.
761
 * @return      - 0 if the opcode could be read successfully; nonzero otherwise.
762
 */
763
static int readOpcode(struct InternalInstruction* insn)
764
666k
{
765
666k
  uint8_t current;
766
767
  // dbgprintf(insn, "readOpcode()");
768
769
666k
  insn->opcodeType = ONEBYTE;
770
771
666k
  if (insn->vectorExtensionType == TYPE_EVEX) {
772
53.9k
    switch (mmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
773
4
      default:
774
        // dbgprintf(insn, "Unhandled mm field for instruction (0x%hhx)",
775
        //    mmFromEVEX2of4(insn->vectorExtensionPrefix[1]));
776
4
        return -1;
777
14.8k
      case VEX_LOB_0F:
778
14.8k
        insn->opcodeType = TWOBYTE;
779
14.8k
        return consumeByte(insn, &insn->opcode);
780
16.3k
      case VEX_LOB_0F38:
781
16.3k
        insn->opcodeType = THREEBYTE_38;
782
16.3k
        return consumeByte(insn, &insn->opcode);
783
22.7k
      case VEX_LOB_0F3A:
784
22.7k
        insn->opcodeType = THREEBYTE_3A;
785
22.7k
        return consumeByte(insn, &insn->opcode);
786
53.9k
    }
787
612k
  } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
788
4.49k
    switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
789
18
      default:
790
        // dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
791
        //    mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]));
792
18
        return -1;
793
859
      case VEX_LOB_0F:
794
        //insn->twoByteEscape = 0x0f;
795
859
        insn->opcodeType = TWOBYTE;
796
859
        return consumeByte(insn, &insn->opcode);
797
2.66k
      case VEX_LOB_0F38:
798
        //insn->twoByteEscape = 0x0f;
799
2.66k
        insn->opcodeType = THREEBYTE_38;
800
2.66k
        return consumeByte(insn, &insn->opcode);
801
959
      case VEX_LOB_0F3A:
802
        //insn->twoByteEscape = 0x0f;
803
959
        insn->opcodeType = THREEBYTE_3A;
804
959
        return consumeByte(insn, &insn->opcode);
805
4.49k
    }
806
607k
  } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
807
    //insn->twoByteEscape = 0x0f;
808
8.68k
    insn->opcodeType = TWOBYTE;
809
8.68k
    return consumeByte(insn, &insn->opcode);
810
598k
  } else if (insn->vectorExtensionType == TYPE_XOP) {
811
8.00k
    switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
812
30
      default:
813
        // dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
814
        //    mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]));
815
30
        return -1;
816
7.41k
      case XOP_MAP_SELECT_8:
817
7.41k
        insn->opcodeType = XOP8_MAP;
818
7.41k
        return consumeByte(insn, &insn->opcode);
819
292
      case XOP_MAP_SELECT_9:
820
292
        insn->opcodeType = XOP9_MAP;
821
292
        return consumeByte(insn, &insn->opcode);
822
271
      case XOP_MAP_SELECT_A:
823
271
        insn->opcodeType = XOPA_MAP;
824
271
        return consumeByte(insn, &insn->opcode);
825
8.00k
    }
826
8.00k
  }
827
828
590k
  if (consumeByte(insn, &current))
829
0
    return -1;
830
831
    // save this first byte for MOVcr, MOVdr, MOVrc, MOVrd
832
590k
    insn->firstByte = current;
833
834
590k
  if (current == 0x0f) {
835
    // dbgprintf(insn, "Found a two-byte escape prefix (0x%hhx)", current);
836
41.6k
    insn->twoByteEscape = current;
837
838
41.6k
    if (consumeByte(insn, &current))
839
68
      return -1;
840
841
41.5k
    if (current == 0x38) {
842
      // dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
843
860
      if (consumeByte(insn, &current))
844
1
        return -1;
845
846
859
      insn->opcodeType = THREEBYTE_38;
847
40.6k
    } else if (current == 0x3a) {
848
      // dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
849
987
      if (consumeByte(insn, &current))
850
2
        return -1;
851
852
985
      insn->opcodeType = THREEBYTE_3A;
853
39.7k
    } else if (current == 0x0f) {
854
      // dbgprintf(insn, "Found a 3dnow escape prefix (0x%hhx)", current);
855
      // Consume operands before the opcode to comply with the 3DNow encoding
856
706
      if (readModRM(insn))
857
14
        return -1;
858
859
692
      if (consumeByte(insn, &current))
860
2
        return -1;
861
862
690
      insn->opcodeType = THREEDNOW_MAP;
863
38.9k
    } else {
864
      // dbgprintf(insn, "Didn't find a three-byte escape prefix");
865
38.9k
      insn->opcodeType = TWOBYTE;
866
38.9k
    }
867
549k
  } else if (insn->mandatoryPrefix)
868
    // The opcode with mandatory prefix must start with opcode escape.
869
    // If not it's legacy repeat prefix
870
10.6k
    insn->mandatoryPrefix = 0;
871
872
  /*
873
   * At this point we have consumed the full opcode.
874
   * Anything we consume from here on must be unconsumed.
875
   */
876
877
590k
  insn->opcode = current;
878
879
590k
  return 0;
880
590k
}
881
882
// Hacky for FEMMS
883
#define GET_INSTRINFO_ENUM
884
#ifndef CAPSTONE_X86_REDUCE
885
#include "X86GenInstrInfo.inc"
886
#else
887
#include "X86GenInstrInfo_reduce.inc"
888
#endif
889
890
/*
891
 * getIDWithAttrMask - Determines the ID of an instruction, consuming
892
 *   the ModR/M byte as appropriate for extended and escape opcodes,
893
 *   and using a supplied attribute mask.
894
 *
895
 * @param instructionID - A pointer whose target is filled in with the ID of the
896
 *                        instruction.
897
 * @param insn          - The instruction whose ID is to be determined.
898
 * @param attrMask      - The attribute mask to search.
899
 * @return              - 0 if the ModR/M could be read when needed or was not
900
 *                        needed; nonzero otherwise.
901
 */
902
static int getIDWithAttrMask(uint16_t *instructionID,
903
                             struct InternalInstruction* insn,
904
                             uint16_t attrMask)
905
913k
{
906
913k
  bool hasModRMExtension;
907
908
913k
  InstructionContext instructionClass = contextForAttrs(attrMask);
909
910
913k
  hasModRMExtension = modRMRequired(insn->opcodeType,
911
913k
      instructionClass,
912
913k
      insn->opcode);
913
914
913k
  if (hasModRMExtension) {
915
506k
    if (readModRM(insn))
916
1.76k
      return -1;
917
918
505k
    *instructionID = decode(insn->opcodeType,
919
505k
        instructionClass,
920
505k
        insn->opcode,
921
505k
        insn->modRM);
922
505k
  } else {
923
406k
    *instructionID = decode(insn->opcodeType,
924
406k
        instructionClass,
925
406k
        insn->opcode,
926
406k
        0);
927
406k
  }
928
929
911k
  return 0;
930
913k
}
931
932
/*
933
 * is16BitEquivalent - Determines whether two instruction names refer to
934
 * equivalent instructions but one is 16-bit whereas the other is not.
935
 *
936
 * @param orig  - The instruction ID that is not 16-bit
937
 * @param equiv - The instruction ID that is 16-bit
938
 */
939
static bool is16BitEquivalent(unsigned orig, unsigned equiv)
940
201k
{
941
201k
  size_t i;
942
201k
  uint16_t idx;
943
944
201k
  if ((idx = x86_16_bit_eq_lookup[orig]) != 0) {
945
95.7k
    for (i = idx - 1; i < ARR_SIZE(x86_16_bit_eq_tbl) && x86_16_bit_eq_tbl[i].first == orig; i++) {
946
92.4k
      if (x86_16_bit_eq_tbl[i].second == equiv)
947
89.1k
        return true;
948
92.4k
    }
949
92.4k
  }
950
951
112k
  return false;
952
201k
}
953
954
/*
955
 * is64Bit - Determines whether this instruction is a 64-bit instruction.
956
 *
957
 * @param name - The instruction that is not 16-bit
958
 */
959
static bool is64Bit(uint16_t id)
960
14.6k
{
961
14.6k
  unsigned int i = find_insn(id);
962
14.6k
  if (i != -1) {
963
14.6k
    return insns[i].is64bit;
964
14.6k
  }
965
966
  // not found??
967
64
  return false;
968
14.6k
}
969
970
/*
971
 * getID - Determines the ID of an instruction, consuming the ModR/M byte as
972
 *   appropriate for extended and escape opcodes.  Determines the attributes and
973
 *   context for the instruction before doing so.
974
 *
975
 * @param insn  - The instruction whose ID is to be determined.
976
 * @return      - 0 if the ModR/M could be read when needed or was not needed;
977
 *                nonzero otherwise.
978
 */
979
static int getID(struct InternalInstruction *insn)
980
665k
{
981
665k
  uint16_t attrMask;
982
665k
  uint16_t instructionID;
983
984
665k
  attrMask = ATTR_NONE;
985
986
665k
  if (insn->mode == MODE_64BIT)
987
254k
    attrMask |= ATTR_64BIT;
988
989
665k
  if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
990
75.0k
    attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX;
991
992
75.0k
    if (insn->vectorExtensionType == TYPE_EVEX) {
993
53.9k
      switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
994
46.2k
        case VEX_PREFIX_66:
995
46.2k
          attrMask |= ATTR_OPSIZE;
996
46.2k
          break;
997
1.09k
        case VEX_PREFIX_F3:
998
1.09k
          attrMask |= ATTR_XS;
999
1.09k
          break;
1000
2.16k
        case VEX_PREFIX_F2:
1001
2.16k
          attrMask |= ATTR_XD;
1002
2.16k
          break;
1003
53.9k
      }
1004
1005
53.9k
      if (zFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1006
5.81k
        attrMask |= ATTR_EVEXKZ;
1007
53.9k
      if (bFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1008
19.9k
        attrMask |= ATTR_EVEXB;
1009
53.9k
      if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1010
36.0k
        attrMask |= ATTR_EVEXK;
1011
53.9k
      if (lFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1012
23.3k
        attrMask |= ATTR_EVEXL;
1013
53.9k
      if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
1014
26.1k
        attrMask |= ATTR_EVEXL2;
1015
53.9k
    } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
1016
4.45k
      switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
1017
3.60k
        case VEX_PREFIX_66:
1018
3.60k
          attrMask |= ATTR_OPSIZE;
1019
3.60k
          break;
1020
397
        case VEX_PREFIX_F3:
1021
397
          attrMask |= ATTR_XS;
1022
397
          break;
1023
369
        case VEX_PREFIX_F2:
1024
369
          attrMask |= ATTR_XD;
1025
369
          break;
1026
4.45k
      }
1027
1028
4.45k
      if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
1029
1.76k
        attrMask |= ATTR_VEXL;
1030
16.6k
    } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
1031
8.66k
      switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
1032
5.39k
        case VEX_PREFIX_66:
1033
5.39k
          attrMask |= ATTR_OPSIZE;
1034
5.39k
          break;
1035
1.31k
        case VEX_PREFIX_F3:
1036
1.31k
          attrMask |= ATTR_XS;
1037
1.31k
          break;
1038
320
        case VEX_PREFIX_F2:
1039
320
          attrMask |= ATTR_XD;
1040
320
          break;
1041
8.66k
      }
1042
1043
8.66k
      if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
1044
7.52k
        attrMask |= ATTR_VEXL;
1045
8.66k
    } else if (insn->vectorExtensionType == TYPE_XOP) {
1046
7.96k
      switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
1047
7
        case VEX_PREFIX_66:
1048
7
          attrMask |= ATTR_OPSIZE;
1049
7
          break;
1050
7
        case VEX_PREFIX_F3:
1051
7
          attrMask |= ATTR_XS;
1052
7
          break;
1053
13
        case VEX_PREFIX_F2:
1054
13
          attrMask |= ATTR_XD;
1055
13
          break;
1056
7.96k
      }
1057
1058
7.96k
      if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
1059
84
        attrMask |= ATTR_VEXL;
1060
7.96k
    } else {
1061
0
      return -1;
1062
0
    }
1063
590k
  } else if (!insn->mandatoryPrefix) {
1064
    // If we don't have mandatory prefix we should use legacy prefixes here
1065
578k
    if (insn->hasOpSize && (insn->mode != MODE_16BIT))
1066
10.7k
      attrMask |= ATTR_OPSIZE;
1067
578k
    if (insn->hasAdSize)
1068
6.42k
      attrMask |= ATTR_ADSIZE;
1069
578k
    if (insn->opcodeType == ONEBYTE) {
1070
549k
      if (insn->repeatPrefix == 0xf3 && (insn->opcode == 0x90))
1071
        // Special support for PAUSE
1072
285
        attrMask |= ATTR_XS;
1073
549k
    } else {
1074
29.4k
      if (insn->repeatPrefix == 0xf2)
1075
674
        attrMask |= ATTR_XD;
1076
28.7k
      else if (insn->repeatPrefix == 0xf3)
1077
590
        attrMask |= ATTR_XS;
1078
29.4k
    }
1079
578k
  } else {
1080
12.0k
    switch (insn->mandatoryPrefix) {
1081
4.38k
      case 0xf2:
1082
4.38k
        attrMask |= ATTR_XD;
1083
4.38k
        break;
1084
3.68k
      case 0xf3:
1085
3.68k
        attrMask |= ATTR_XS;
1086
3.68k
        break;
1087
4.00k
      case 0x66:
1088
4.00k
        if (insn->mode != MODE_16BIT)
1089
3.50k
          attrMask |= ATTR_OPSIZE;
1090
4.00k
        break;
1091
0
      case 0x67:
1092
0
        attrMask |= ATTR_ADSIZE;
1093
0
        break;
1094
12.0k
    }
1095
1096
12.0k
  }
1097
1098
665k
  if (insn->rexPrefix & 0x08) {
1099
48.6k
    attrMask |= ATTR_REXW;
1100
48.6k
    attrMask &= ~ATTR_ADSIZE;
1101
48.6k
  }
1102
1103
  /*
1104
   * JCXZ/JECXZ need special handling for 16-bit mode because the meaning
1105
   * of the AdSize prefix is inverted w.r.t. 32-bit mode.
1106
   */
1107
665k
  if (insn->mode == MODE_16BIT && insn->opcodeType == ONEBYTE &&
1108
665k
      insn->opcode == 0xE3)
1109
739
    attrMask ^= ATTR_ADSIZE;
1110
1111
  /*
1112
   * In 64-bit mode all f64 superscripted opcodes ignore opcode size prefix
1113
   * CALL/JMP/JCC instructions need to ignore 0x66 and consume 4 bytes
1114
   */
1115
665k
  if ((insn->mode == MODE_64BIT) && insn->hasOpSize) {
1116
11.3k
    switch (insn->opcode) {
1117
259
      case 0xE8:
1118
495
      case 0xE9:
1119
        // Take care of psubsb and other mmx instructions.
1120
495
        if (insn->opcodeType == ONEBYTE) {
1121
404
          attrMask ^= ATTR_OPSIZE;
1122
404
          insn->immediateSize = 4;
1123
404
          insn->displacementSize = 4;
1124
404
        }
1125
495
        break;
1126
357
      case 0x82:
1127
696
      case 0x83:
1128
900
      case 0x84:
1129
1.10k
      case 0x85:
1130
1.29k
      case 0x86:
1131
2.10k
      case 0x87:
1132
2.20k
      case 0x88:
1133
2.40k
      case 0x89:
1134
2.63k
      case 0x8A:
1135
2.85k
      case 0x8B:
1136
3.07k
      case 0x8C:
1137
3.14k
      case 0x8D:
1138
3.36k
      case 0x8E:
1139
3.58k
      case 0x8F:
1140
        // Take care of lea and three byte ops.
1141
3.58k
        if (insn->opcodeType == TWOBYTE) {
1142
378
          attrMask ^= ATTR_OPSIZE;
1143
378
          insn->immediateSize = 4;
1144
378
          insn->displacementSize = 4;
1145
378
        }
1146
3.58k
        break;
1147
11.3k
    }
1148
11.3k
  }
1149
1150
  /* The following clauses compensate for limitations of the tables. */
1151
665k
  if (insn->mode != MODE_64BIT &&
1152
665k
      insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
1153
43.9k
    if (getIDWithAttrMask(&instructionID, insn, attrMask)) {
1154
34
      return -1;
1155
34
    }
1156
1157
    /*
1158
     * The tables can't distinquish between cases where the W-bit is used to
1159
     * select register size and cases where its a required part of the opcode.
1160
     */
1161
43.9k
    if ((insn->vectorExtensionType == TYPE_EVEX &&
1162
43.9k
          wFromEVEX3of4(insn->vectorExtensionPrefix[2])) ||
1163
43.9k
        (insn->vectorExtensionType == TYPE_VEX_3B &&
1164
30.6k
         wFromVEX3of3(insn->vectorExtensionPrefix[2])) ||
1165
43.9k
        (insn->vectorExtensionType == TYPE_XOP &&
1166
29.7k
         wFromXOP3of3(insn->vectorExtensionPrefix[2]))) {
1167
14.6k
      uint16_t instructionIDWithREXW;
1168
1169
14.6k
      if (getIDWithAttrMask(&instructionIDWithREXW,
1170
14.6k
            insn, attrMask | ATTR_REXW)) {
1171
6
        insn->instructionID = instructionID;
1172
6
        insn->spec = specifierForUID(instructionID);
1173
6
        return 0;
1174
6
      }
1175
1176
      // If not a 64-bit instruction. Switch the opcode.
1177
14.6k
      if (!is64Bit(instructionIDWithREXW)) {
1178
13.3k
        insn->instructionID = instructionIDWithREXW;
1179
13.3k
        insn->spec = specifierForUID(instructionIDWithREXW);
1180
1181
13.3k
        return 0;
1182
13.3k
      }
1183
14.6k
    }
1184
43.9k
  }
1185
1186
  /*
1187
   * Absolute moves, umonitor, and movdir64b need special handling.
1188
   * -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are
1189
   *  inverted w.r.t.
1190
   * -For 32-bit mode we need to ensure the ADSIZE prefix is observed in
1191
   *  any position.
1192
   */
1193
652k
  if ((insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) ||
1194
652k
      (insn->opcodeType == TWOBYTE && (insn->opcode == 0xAE)) ||
1195
652k
      (insn->opcodeType == THREEBYTE_38 && insn->opcode == 0xF8)) {
1196
    /* Make sure we observed the prefixes in any position. */
1197
9.55k
    if (insn->hasAdSize)
1198
338
      attrMask |= ATTR_ADSIZE;
1199
1200
9.55k
    if (insn->hasOpSize)
1201
180
      attrMask |= ATTR_OPSIZE;
1202
1203
    /* In 16-bit, invert the attributes. */
1204
9.55k
    if (insn->mode == MODE_16BIT) {
1205
2.88k
      attrMask ^= ATTR_ADSIZE;
1206
1207
      /* The OpSize attribute is only valid with the absolute moves. */
1208
2.88k
      if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0))
1209
2.58k
        attrMask ^= ATTR_OPSIZE;
1210
2.88k
    }
1211
1212
9.55k
    if (getIDWithAttrMask(&instructionID, insn, attrMask)) {
1213
8
      return -1;
1214
8
    }
1215
1216
9.54k
    insn->instructionID = instructionID;
1217
9.54k
    insn->spec = specifierForUID(instructionID);
1218
1219
9.54k
    return 0;
1220
9.55k
  }
1221
642k
  if (getIDWithAttrMask(&instructionID, insn, attrMask)) {
1222
1.71k
    return -1;
1223
1.71k
  }
1224
1225
641k
  if ((insn->mode == MODE_16BIT || insn->hasOpSize) &&
1226
641k
      !(attrMask & ATTR_OPSIZE)) {
1227
    /*
1228
     * The instruction tables make no distinction between instructions that
1229
     * allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
1230
     * particular spot (i.e., many MMX operations).  In general we're
1231
     * conservative, but in the specific case where OpSize is present but not
1232
     * in the right place we check if there's a 16-bit operation.
1233
     */
1234
201k
    const struct InstructionSpecifier *spec;
1235
201k
    uint16_t instructionIDWithOpsize;
1236
1237
201k
    spec = specifierForUID(instructionID);
1238
1239
201k
    if (getIDWithAttrMask(&instructionIDWithOpsize,
1240
201k
          insn,
1241
201k
          attrMask | ATTR_OPSIZE)) {
1242
      /*
1243
       * ModRM required with OpSize but not present; give up and return version
1244
       * without OpSize set
1245
       */
1246
3
      insn->instructionID = instructionID;
1247
3
      insn->spec = spec;
1248
1249
3
      return 0;
1250
3
    }
1251
1252
201k
    if (is16BitEquivalent(instructionID, instructionIDWithOpsize) &&
1253
201k
        (insn->mode == MODE_16BIT) ^ insn->hasOpSize) {
1254
88.0k
      insn->instructionID = instructionIDWithOpsize;
1255
88.0k
      insn->spec = specifierForUID(instructionIDWithOpsize);
1256
113k
    } else {
1257
113k
      insn->instructionID = instructionID;
1258
113k
      insn->spec = spec;
1259
113k
    }
1260
1261
201k
    return 0;
1262
201k
  }
1263
1264
439k
  if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
1265
439k
      insn->rexPrefix & 0x01) {
1266
    /*
1267
     * NOOP shouldn't decode as NOOP if REX.b is set. Instead
1268
     * it should decode as XCHG %r8, %eax.
1269
     */
1270
341
    const struct InstructionSpecifier *spec;
1271
341
    uint16_t instructionIDWithNewOpcode;
1272
341
    const struct InstructionSpecifier *specWithNewOpcode;
1273
1274
341
    spec = specifierForUID(instructionID);
1275
1276
    /* Borrow opcode from one of the other XCHGar opcodes */
1277
341
    insn->opcode = 0x91;
1278
1279
341
    if (getIDWithAttrMask(&instructionIDWithNewOpcode, insn, attrMask)) {
1280
0
      insn->opcode = 0x90;
1281
1282
0
      insn->instructionID = instructionID;
1283
0
      insn->spec = spec;
1284
1285
0
      return 0;
1286
0
    }
1287
1288
341
    specWithNewOpcode = specifierForUID(instructionIDWithNewOpcode);
1289
1290
    /* Change back */
1291
341
    insn->opcode = 0x90;
1292
1293
341
    insn->instructionID = instructionIDWithNewOpcode;
1294
341
    insn->spec = specWithNewOpcode;
1295
1296
341
    return 0;
1297
341
  }
1298
1299
438k
  insn->instructionID = instructionID;
1300
438k
  insn->spec = specifierForUID(insn->instructionID);
1301
1302
438k
  return 0;
1303
439k
}
1304
1305
/*
1306
 * readSIB - Consumes the SIB byte to determine addressing information for an
1307
 *   instruction.
1308
 *
1309
 * @param insn  - The instruction whose SIB byte is to be read.
1310
 * @return      - 0 if the SIB byte was successfully read; nonzero otherwise.
1311
 */
1312
static int readSIB(struct InternalInstruction* insn)
1313
19.3k
{
1314
19.3k
  SIBBase sibBaseBase = SIB_BASE_NONE;
1315
19.3k
  uint8_t index, base;
1316
1317
  // dbgprintf(insn, "readSIB()");
1318
1319
19.3k
  if (insn->consumedSIB)
1320
0
    return 0;
1321
1322
19.3k
  insn->consumedSIB = true;
1323
1324
19.3k
  switch (insn->addressSize) {
1325
0
    case 2:
1326
      // dbgprintf(insn, "SIB-based addressing doesn't work in 16-bit mode");
1327
0
      return -1;
1328
8.19k
    case 4:
1329
8.19k
      insn->sibIndexBase = SIB_INDEX_EAX;
1330
8.19k
      sibBaseBase = SIB_BASE_EAX;
1331
8.19k
      break;
1332
11.1k
    case 8:
1333
11.1k
      insn->sibIndexBase = SIB_INDEX_RAX;
1334
11.1k
      sibBaseBase = SIB_BASE_RAX;
1335
11.1k
      break;
1336
19.3k
  }
1337
1338
19.3k
  if (consumeByte(insn, &insn->sib))
1339
26
    return -1;
1340
1341
19.2k
  index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);
1342
1343
19.2k
  if (index == 0x4) {
1344
4.16k
    insn->sibIndex = SIB_INDEX_NONE;
1345
15.1k
  } else {
1346
15.1k
    insn->sibIndex = (SIBIndex)(insn->sibIndexBase + index);
1347
15.1k
  }
1348
1349
19.2k
  insn->sibScale = 1 << scaleFromSIB(insn->sib);
1350
1351
19.2k
  base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);
1352
1353
19.2k
  switch (base) {
1354
1.96k
    case 0x5:
1355
2.59k
    case 0xd:
1356
2.59k
      switch (modFromModRM(insn->modRM)) {
1357
1.42k
        case 0x0:
1358
1.42k
          insn->eaDisplacement = EA_DISP_32;
1359
1.42k
          insn->sibBase = SIB_BASE_NONE;
1360
1.42k
          break;
1361
606
        case 0x1:
1362
606
          insn->eaDisplacement = EA_DISP_8;
1363
606
          insn->sibBase = (SIBBase)(sibBaseBase + base);
1364
606
          break;
1365
560
        case 0x2:
1366
560
          insn->eaDisplacement = EA_DISP_32;
1367
560
          insn->sibBase = (SIBBase)(sibBaseBase + base);
1368
560
          break;
1369
0
        case 0x3:
1370
          // debug("Cannot have Mod = 0b11 and a SIB byte");
1371
0
          return -1;
1372
2.59k
      }
1373
2.59k
      break;
1374
16.6k
    default:
1375
16.6k
      insn->sibBase = (SIBBase)(sibBaseBase + base);
1376
16.6k
      break;
1377
19.2k
  }
1378
1379
19.2k
  return 0;
1380
19.2k
}
1381
1382
/*
1383
 * readDisplacement - Consumes the displacement of an instruction.
1384
 *
1385
 * @param insn  - The instruction whose displacement is to be read.
1386
 * @return      - 0 if the displacement byte was successfully read; nonzero
1387
 *                otherwise.
1388
 */
1389
static int readDisplacement(struct InternalInstruction* insn)
1390
121k
{
1391
121k
  int8_t d8;
1392
121k
  int16_t d16;
1393
121k
  int32_t d32;
1394
1395
  // dbgprintf(insn, "readDisplacement()");
1396
1397
121k
  if (insn->consumedDisplacement)
1398
0
    return 0;
1399
1400
121k
  insn->consumedDisplacement = true;
1401
121k
  insn->displacementOffset = insn->readerCursor - insn->startLocation;
1402
1403
121k
  switch (insn->eaDisplacement) {
1404
36.9k
    case EA_DISP_NONE:
1405
36.9k
      insn->consumedDisplacement = false;
1406
36.9k
      break;
1407
55.6k
    case EA_DISP_8:
1408
55.6k
      if (consumeInt8(insn, &d8))
1409
181
        return -1;
1410
55.4k
      insn->displacement = d8;
1411
55.4k
      break;
1412
11.6k
    case EA_DISP_16:
1413
11.6k
      if (consumeInt16(insn, &d16))
1414
72
        return -1;
1415
11.5k
      insn->displacement = d16;
1416
11.5k
      break;
1417
17.3k
    case EA_DISP_32:
1418
17.3k
      if (consumeInt32(insn, &d32))
1419
236
        return -1;
1420
17.0k
      insn->displacement = d32;
1421
17.0k
      break;
1422
121k
  }
1423
1424
1425
121k
  return 0;
1426
121k
}
1427
1428
/*
1429
 * readModRM - Consumes all addressing information (ModR/M byte, SIB byte, and
1430
 *   displacement) for an instruction and interprets it.
1431
 *
1432
 * @param insn  - The instruction whose addressing information is to be read.
1433
 * @return      - 0 if the information was successfully read; nonzero otherwise.
1434
 */
1435
static int readModRM(struct InternalInstruction* insn)
1436
1.15M
{
1437
1.15M
  uint8_t mod, rm, reg, evexrm;
1438
1439
  // dbgprintf(insn, "readModRM()");
1440
1441
1.15M
  if (insn->consumedModRM)
1442
780k
    return 0;
1443
1444
371k
  insn->modRMOffset = (uint8_t)(insn->readerCursor - insn->startLocation);
1445
1446
371k
  if (consumeByte(insn, &insn->modRM))
1447
1.26k
    return -1;
1448
1449
369k
  insn->consumedModRM = true;
1450
1451
  // save original ModRM for later reference
1452
369k
  insn->orgModRM = insn->modRM;
1453
1454
  // handle MOVcr, MOVdr, MOVrc, MOVrd by pretending they have MRM.mod = 3
1455
369k
  if ((insn->firstByte == 0x0f && insn->opcodeType == TWOBYTE) &&
1456
369k
      (insn->opcode >= 0x20 && insn->opcode <= 0x23 ))
1457
654
    insn->modRM |= 0xC0;
1458
1459
369k
  mod = modFromModRM(insn->modRM);
1460
369k
  rm  = rmFromModRM(insn->modRM);
1461
369k
  reg = regFromModRM(insn->modRM);
1462
1463
  /*
1464
   * This goes by insn->registerSize to pick the correct register, which messes
1465
   * up if we're using (say) XMM or 8-bit register operands.  That gets fixed in
1466
   * fixupReg().
1467
   */
1468
369k
  switch (insn->registerSize) {
1469
128k
    case 2:
1470
128k
      insn->regBase = MODRM_REG_AX;
1471
128k
      insn->eaRegBase = EA_REG_AX;
1472
128k
      break;
1473
202k
    case 4:
1474
202k
      insn->regBase = MODRM_REG_EAX;
1475
202k
      insn->eaRegBase = EA_REG_EAX;
1476
202k
      break;
1477
38.4k
    case 8:
1478
38.4k
      insn->regBase = MODRM_REG_RAX;
1479
38.4k
      insn->eaRegBase = EA_REG_RAX;
1480
38.4k
      break;
1481
369k
  }
1482
1483
369k
  reg |= rFromREX(insn->rexPrefix) << 3;
1484
369k
  rm  |= bFromREX(insn->rexPrefix) << 3;
1485
1486
369k
  evexrm = 0;
1487
369k
  if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT) {
1488
23.9k
    reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
1489
23.9k
    evexrm = xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
1490
23.9k
  }
1491
1492
369k
  insn->reg = (Reg)(insn->regBase + reg);
1493
1494
369k
  switch (insn->addressSize) {
1495
117k
    case 2: {
1496
117k
      EABase eaBaseBase = EA_BASE_BX_SI;
1497
1498
117k
      switch (mod) {
1499
68.2k
        case 0x0:
1500
68.2k
          if (rm == 0x6) {
1501
2.61k
            insn->eaBase = EA_BASE_NONE;
1502
2.61k
            insn->eaDisplacement = EA_DISP_16;
1503
2.61k
            if (readDisplacement(insn))
1504
16
              return -1;
1505
65.5k
          } else {
1506
65.5k
            insn->eaBase = (EABase)(eaBaseBase + rm);
1507
65.5k
            insn->eaDisplacement = EA_DISP_NONE;
1508
65.5k
          }
1509
68.1k
          break;
1510
68.1k
        case 0x1:
1511
16.2k
          insn->eaBase = (EABase)(eaBaseBase + rm);
1512
16.2k
          insn->eaDisplacement = EA_DISP_8;
1513
16.2k
          insn->displacementSize = 1;
1514
16.2k
          if (readDisplacement(insn))
1515
50
            return -1;
1516
16.2k
          break;
1517
16.2k
        case 0x2:
1518
9.04k
          insn->eaBase = (EABase)(eaBaseBase + rm);
1519
9.04k
          insn->eaDisplacement = EA_DISP_16;
1520
9.04k
          if (readDisplacement(insn))
1521
56
            return -1;
1522
8.98k
          break;
1523
24.4k
        case 0x3:
1524
24.4k
          insn->eaBase = (EABase)(insn->eaRegBase + rm);
1525
24.4k
          if (readDisplacement(insn))
1526
0
            return -1;
1527
24.4k
          break;
1528
117k
      }
1529
117k
      break;
1530
117k
    }
1531
1532
117k
    case 4:
1533
251k
    case 8: {
1534
251k
      EABase eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
1535
1536
251k
      switch (mod) {
1537
0
        default: break;
1538
130k
        case 0x0:
1539
130k
          insn->eaDisplacement = EA_DISP_NONE; /* readSIB may override this */
1540
          // In determining whether RIP-relative mode is used (rm=5),
1541
          // or whether a SIB byte is present (rm=4),
1542
          // the extension bits (REX.b and EVEX.x) are ignored.
1543
130k
          switch (rm & 7) {
1544
13.9k
            case 0x4: // SIB byte is present
1545
13.9k
              insn->eaBase = (insn->addressSize == 4 ?
1546
7.93k
                  EA_BASE_sib : EA_BASE_sib64);
1547
13.9k
              if (readSIB(insn) || readDisplacement(insn))
1548
22
                return -1;
1549
13.9k
              break;
1550
13.9k
            case 0x5: // RIP-relative
1551
2.67k
              insn->eaBase = EA_BASE_NONE;
1552
2.67k
              insn->eaDisplacement = EA_DISP_32;
1553
2.67k
              if (readDisplacement(insn))
1554
28
                return -1;
1555
2.64k
              break;
1556
113k
            default:
1557
113k
              insn->eaBase = (EABase)(eaBaseBase + rm);
1558
113k
              break;
1559
130k
          }
1560
130k
          break;
1561
130k
        case 0x1:
1562
39.4k
          insn->displacementSize = 1;
1563
          /* FALLTHROUGH */
1564
52.6k
        case 0x2:
1565
52.6k
          insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
1566
52.6k
          switch (rm & 7) {
1567
5.33k
            case 0x4: // SIB byte is present
1568
5.33k
              insn->eaBase = EA_BASE_sib;
1569
5.33k
              if (readSIB(insn) || readDisplacement(insn))
1570
40
                return -1;
1571
5.29k
              break;
1572
47.2k
            default:
1573
47.2k
              insn->eaBase = (EABase)(eaBaseBase + rm);
1574
47.2k
              if (readDisplacement(insn))
1575
303
                return -1;
1576
46.9k
              break;
1577
52.6k
          }
1578
52.2k
          break;
1579
69.1k
        case 0x3:
1580
69.1k
          insn->eaDisplacement = EA_DISP_NONE;
1581
69.1k
          insn->eaBase = (EABase)(insn->eaRegBase + rm + evexrm);
1582
69.1k
          break;
1583
251k
      }
1584
1585
251k
      break;
1586
251k
    }
1587
369k
  } /* switch (insn->addressSize) */
1588
1589
369k
  return 0;
1590
369k
}
1591
1592
#define GENERIC_FIXUP_FUNC(name, base, prefix, mask)      \
1593
  static uint16_t name(struct InternalInstruction *insn,  \
1594
                       OperandType type,                  \
1595
                       uint8_t index,                     \
1596
422k
                       uint8_t *valid) {                  \
1597
422k
    *valid = 1;                                           \
1598
422k
    switch (type) {                                       \
1599
0
    default:                                              \
1600
0
      *valid = 0;                                         \
1601
0
      return 0;                                           \
1602
90.2k
    case TYPE_Rv:                                         \
1603
90.2k
      return base + index;                                \
1604
122k
    case TYPE_R8:                                         \
1605
122k
      index &= mask;                                      \
1606
122k
      if (index > 0xf)                                    \
1607
122k
        *valid = 0;                                       \
1608
122k
      if (insn->rexPrefix &&                              \
1609
122k
         index >= 4 && index <= 7) {                      \
1610
1.86k
        return prefix##_SPL + (index - 4);                \
1611
120k
      } else {                                            \
1612
120k
        return prefix##_AL + index;                       \
1613
120k
      }                                                   \
1614
122k
    case TYPE_R16:                                        \
1615
5.48k
      index &= mask;                                      \
1616
5.48k
      if (index > 0xf)                                    \
1617
5.48k
        *valid = 0;                                       \
1618
5.48k
      return prefix##_AX + index;                         \
1619
122k
    case TYPE_R32:                                        \
1620
2.23k
      index &= mask;                                      \
1621
2.23k
      if (index > 0xf)                                    \
1622
2.23k
        *valid = 0;                                       \
1623
2.23k
      return prefix##_EAX + index;                        \
1624
122k
    case TYPE_R64:                                        \
1625
13.6k
      index &= mask;                                      \
1626
13.6k
      if (index > 0xf)                                    \
1627
13.6k
        *valid = 0;                                       \
1628
13.6k
      return prefix##_RAX + index;                        \
1629
122k
    case TYPE_ZMM:                                        \
1630
40.7k
      return prefix##_ZMM0 + index;                       \
1631
122k
    case TYPE_YMM:                                        \
1632
32.2k
      return prefix##_YMM0 + index;                       \
1633
122k
    case TYPE_XMM:                                        \
1634
74.3k
      return prefix##_XMM0 + index;                       \
1635
122k
    case TYPE_VK:                                         \
1636
26.7k
      index &= 0xf;                                       \
1637
26.7k
      if (index > 7)                                      \
1638
26.7k
        *valid = 0;                                       \
1639
26.7k
      return prefix##_K0 + index;                         \
1640
122k
    case TYPE_MM64:                                       \
1641
6.24k
      return prefix##_MM0 + (index & 0x7);                \
1642
122k
    case TYPE_SEGMENTREG:                                 \
1643
1.26k
      if ((index & 7) > 5)                                \
1644
1.26k
        *valid = 0;                                       \
1645
1.26k
      return prefix##_ES + (index & 7);                   \
1646
122k
    case TYPE_DEBUGREG:                                   \
1647
275
      return prefix##_DR0 + index;                        \
1648
122k
    case TYPE_CONTROLREG:                                 \
1649
379
      return prefix##_CR0 + index;                        \
1650
122k
    case TYPE_BNDR:                                       \
1651
6.48k
      if (index > 3)                                      \
1652
6.48k
        *valid = 0;                                       \
1653
6.48k
      return prefix##_BND0 + index;                       \
1654
122k
    case TYPE_MVSIBX:                                     \
1655
0
      return prefix##_XMM0 + index;                       \
1656
122k
    case TYPE_MVSIBY:                                     \
1657
0
      return prefix##_YMM0 + index;                       \
1658
122k
    case TYPE_MVSIBZ:                                     \
1659
0
      return prefix##_ZMM0 + index;                       \
1660
422k
    }                                                     \
1661
422k
  }
X86DisassemblerDecoder.c:fixupRegValue
Line
Count
Source
1596
331k
                       uint8_t *valid) {                  \
1597
331k
    *valid = 1;                                           \
1598
331k
    switch (type) {                                       \
1599
0
    default:                                              \
1600
0
      *valid = 0;                                         \
1601
0
      return 0;                                           \
1602
66.5k
    case TYPE_Rv:                                         \
1603
66.5k
      return base + index;                                \
1604
98.8k
    case TYPE_R8:                                         \
1605
98.8k
      index &= mask;                                      \
1606
98.8k
      if (index > 0xf)                                    \
1607
98.8k
        *valid = 0;                                       \
1608
98.8k
      if (insn->rexPrefix &&                              \
1609
98.8k
         index >= 4 && index <= 7) {                      \
1610
936
        return prefix##_SPL + (index - 4);                \
1611
97.8k
      } else {                                            \
1612
97.8k
        return prefix##_AL + index;                       \
1613
97.8k
      }                                                   \
1614
98.8k
    case TYPE_R16:                                        \
1615
4.19k
      index &= mask;                                      \
1616
4.19k
      if (index > 0xf)                                    \
1617
4.19k
        *valid = 0;                                       \
1618
4.19k
      return prefix##_AX + index;                         \
1619
98.8k
    case TYPE_R32:                                        \
1620
1.22k
      index &= mask;                                      \
1621
1.22k
      if (index > 0xf)                                    \
1622
1.22k
        *valid = 0;                                       \
1623
1.22k
      return prefix##_EAX + index;                        \
1624
98.8k
    case TYPE_R64:                                        \
1625
8.96k
      index &= mask;                                      \
1626
8.96k
      if (index > 0xf)                                    \
1627
8.96k
        *valid = 0;                                       \
1628
8.96k
      return prefix##_RAX + index;                        \
1629
98.8k
    case TYPE_ZMM:                                        \
1630
33.1k
      return prefix##_ZMM0 + index;                       \
1631
98.8k
    case TYPE_YMM:                                        \
1632
25.1k
      return prefix##_YMM0 + index;                       \
1633
98.8k
    case TYPE_XMM:                                        \
1634
58.0k
      return prefix##_XMM0 + index;                       \
1635
98.8k
    case TYPE_VK:                                         \
1636
24.5k
      index &= 0xf;                                       \
1637
24.5k
      if (index > 7)                                      \
1638
24.5k
        *valid = 0;                                       \
1639
24.5k
      return prefix##_K0 + index;                         \
1640
98.8k
    case TYPE_MM64:                                       \
1641
3.75k
      return prefix##_MM0 + (index & 0x7);                \
1642
98.8k
    case TYPE_SEGMENTREG:                                 \
1643
1.26k
      if ((index & 7) > 5)                                \
1644
1.26k
        *valid = 0;                                       \
1645
1.26k
      return prefix##_ES + (index & 7);                   \
1646
98.8k
    case TYPE_DEBUGREG:                                   \
1647
275
      return prefix##_DR0 + index;                        \
1648
98.8k
    case TYPE_CONTROLREG:                                 \
1649
379
      return prefix##_CR0 + index;                        \
1650
98.8k
    case TYPE_BNDR:                                       \
1651
5.68k
      if (index > 3)                                      \
1652
5.68k
        *valid = 0;                                       \
1653
5.68k
      return prefix##_BND0 + index;                       \
1654
98.8k
    case TYPE_MVSIBX:                                     \
1655
0
      return prefix##_XMM0 + index;                       \
1656
98.8k
    case TYPE_MVSIBY:                                     \
1657
0
      return prefix##_YMM0 + index;                       \
1658
98.8k
    case TYPE_MVSIBZ:                                     \
1659
0
      return prefix##_ZMM0 + index;                       \
1660
331k
    }                                                     \
1661
331k
  }
X86DisassemblerDecoder.c:fixupRMValue
Line
Count
Source
1596
90.5k
                       uint8_t *valid) {                  \
1597
90.5k
    *valid = 1;                                           \
1598
90.5k
    switch (type) {                                       \
1599
0
    default:                                              \
1600
0
      *valid = 0;                                         \
1601
0
      return 0;                                           \
1602
23.7k
    case TYPE_Rv:                                         \
1603
23.7k
      return base + index;                                \
1604
23.3k
    case TYPE_R8:                                         \
1605
23.3k
      index &= mask;                                      \
1606
23.3k
      if (index > 0xf)                                    \
1607
23.3k
        *valid = 0;                                       \
1608
23.3k
      if (insn->rexPrefix &&                              \
1609
23.3k
         index >= 4 && index <= 7) {                      \
1610
925
        return prefix##_SPL + (index - 4);                \
1611
22.4k
      } else {                                            \
1612
22.4k
        return prefix##_AL + index;                       \
1613
22.4k
      }                                                   \
1614
23.3k
    case TYPE_R16:                                        \
1615
1.29k
      index &= mask;                                      \
1616
1.29k
      if (index > 0xf)                                    \
1617
1.29k
        *valid = 0;                                       \
1618
1.29k
      return prefix##_AX + index;                         \
1619
23.3k
    case TYPE_R32:                                        \
1620
1.01k
      index &= mask;                                      \
1621
1.01k
      if (index > 0xf)                                    \
1622
1.01k
        *valid = 0;                                       \
1623
1.01k
      return prefix##_EAX + index;                        \
1624
23.3k
    case TYPE_R64:                                        \
1625
4.65k
      index &= mask;                                      \
1626
4.65k
      if (index > 0xf)                                    \
1627
4.65k
        *valid = 0;                                       \
1628
4.65k
      return prefix##_RAX + index;                        \
1629
23.3k
    case TYPE_ZMM:                                        \
1630
7.60k
      return prefix##_ZMM0 + index;                       \
1631
23.3k
    case TYPE_YMM:                                        \
1632
7.06k
      return prefix##_YMM0 + index;                       \
1633
23.3k
    case TYPE_XMM:                                        \
1634
16.3k
      return prefix##_XMM0 + index;                       \
1635
23.3k
    case TYPE_VK:                                         \
1636
2.19k
      index &= 0xf;                                       \
1637
2.19k
      if (index > 7)                                      \
1638
2.19k
        *valid = 0;                                       \
1639
2.19k
      return prefix##_K0 + index;                         \
1640
23.3k
    case TYPE_MM64:                                       \
1641
2.48k
      return prefix##_MM0 + (index & 0x7);                \
1642
23.3k
    case TYPE_SEGMENTREG:                                 \
1643
0
      if ((index & 7) > 5)                                \
1644
0
        *valid = 0;                                       \
1645
0
      return prefix##_ES + (index & 7);                   \
1646
23.3k
    case TYPE_DEBUGREG:                                   \
1647
0
      return prefix##_DR0 + index;                        \
1648
23.3k
    case TYPE_CONTROLREG:                                 \
1649
0
      return prefix##_CR0 + index;                        \
1650
23.3k
    case TYPE_BNDR:                                       \
1651
799
      if (index > 3)                                      \
1652
799
        *valid = 0;                                       \
1653
799
      return prefix##_BND0 + index;                       \
1654
23.3k
    case TYPE_MVSIBX:                                     \
1655
0
      return prefix##_XMM0 + index;                       \
1656
23.3k
    case TYPE_MVSIBY:                                     \
1657
0
      return prefix##_YMM0 + index;                       \
1658
23.3k
    case TYPE_MVSIBZ:                                     \
1659
0
      return prefix##_ZMM0 + index;                       \
1660
90.5k
    }                                                     \
1661
90.5k
  }
1662
1663
/*
1664
 * fixup*Value - Consults an operand type to determine the meaning of the
1665
 *   reg or R/M field.  If the operand is an XMM operand, for example, an
1666
 *   operand would be XMM0 instead of AX, which readModRM() would otherwise
1667
 *   misinterpret it as.
1668
 *
1669
 * @param insn  - The instruction containing the operand.
1670
 * @param type  - The operand type.
1671
 * @param index - The existing value of the field as reported by readModRM().
1672
 * @param valid - The address of a uint8_t.  The target is set to 1 if the
1673
 *                field is valid for the register class; 0 if not.
1674
 * @return      - The proper value.
1675
 */
1676
GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG, 0x1f)
1677
GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG, 0xf)
1678
1679
/*
1680
 * fixupReg - Consults an operand specifier to determine which of the
1681
 *   fixup*Value functions to use in correcting readModRM()'ss interpretation.
1682
 *
1683
 * @param insn  - See fixup*Value().
1684
 * @param op    - The operand specifier.
1685
 * @return      - 0 if fixup was successful; -1 if the register returned was
1686
 *                invalid for its class.
1687
 */
1688
static int fixupReg(struct InternalInstruction *insn,
1689
                    const struct OperandSpecifier *op)
1690
693k
{
1691
693k
  uint8_t valid;
1692
1693
693k
  switch ((OperandEncoding)op->encoding) {
1694
0
    default:
1695
      // debug("Expected a REG or R/M encoding in fixupReg");
1696
0
      return -1;
1697
54.4k
    case ENCODING_VVVV:
1698
54.4k
      insn->vvvv = (Reg)fixupRegValue(insn,
1699
54.4k
          (OperandType)op->type,
1700
54.4k
          insn->vvvv,
1701
54.4k
          &valid);
1702
54.4k
      if (!valid)
1703
1
        return -1;
1704
54.4k
      break;
1705
277k
    case ENCODING_REG:
1706
277k
      insn->reg = (Reg)fixupRegValue(insn,
1707
277k
          (OperandType)op->type,
1708
277k
          insn->reg - insn->regBase,
1709
277k
          &valid);
1710
277k
      if (!valid)
1711
14
        return -1;
1712
277k
      break;
1713
2.34M
    CASE_ENCODING_RM:
1714
2.34M
      if (insn->eaBase >= insn->eaRegBase) {
1715
90.5k
        insn->eaBase = (EABase)fixupRMValue(insn,
1716
90.5k
            (OperandType)op->type,
1717
90.5k
            insn->eaBase - insn->eaRegBase,
1718
90.5k
            &valid);
1719
90.5k
        if (!valid)
1720
2
          return -1;
1721
90.5k
      }
1722
361k
      break;
1723
693k
  }
1724
1725
692k
  return 0;
1726
693k
}
1727
1728
/*
1729
 * readOpcodeRegister - Reads an operand from the opcode field of an
1730
 *   instruction and interprets it appropriately given the operand width.
1731
 *   Handles AddRegFrm instructions.
1732
 *
1733
 * @param insn  - the instruction whose opcode field is to be read.
1734
 * @param size  - The width (in bytes) of the register being specified.
1735
 *                1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
1736
 *                RAX.
1737
 * @return      - 0 on success; nonzero otherwise.
1738
 */
1739
static int readOpcodeRegister(struct InternalInstruction* insn, uint8_t size)
1740
65.0k
{
1741
65.0k
  if (size == 0)
1742
49.0k
    size = insn->registerSize;
1743
1744
65.0k
  switch (size) {
1745
5.50k
    case 1:
1746
5.50k
      insn->opcodeRegister = (Reg)(MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3)
1747
5.50k
            | (insn->opcode & 7)));
1748
5.50k
      if (insn->rexPrefix &&
1749
5.50k
          insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
1750
5.50k
          insn->opcodeRegister < MODRM_REG_AL + 0x8) {
1751
215
        insn->opcodeRegister = (Reg)(MODRM_REG_SPL
1752
215
            + (insn->opcodeRegister - MODRM_REG_AL - 4));
1753
215
      }
1754
1755
5.50k
      break;
1756
17.6k
    case 2:
1757
17.6k
      insn->opcodeRegister = (Reg)(MODRM_REG_AX
1758
17.6k
          + ((bFromREX(insn->rexPrefix) << 3)
1759
17.6k
            | (insn->opcode & 7)));
1760
17.6k
      break;
1761
30.9k
    case 4:
1762
30.9k
      insn->opcodeRegister = (Reg)(MODRM_REG_EAX
1763
30.9k
          + ((bFromREX(insn->rexPrefix) << 3)
1764
30.9k
            | (insn->opcode & 7)));
1765
30.9k
      break;
1766
10.8k
    case 8:
1767
10.8k
      insn->opcodeRegister = (Reg)(MODRM_REG_RAX
1768
10.8k
          + ((bFromREX(insn->rexPrefix) << 3)
1769
10.8k
            | (insn->opcode & 7)));
1770
10.8k
      break;
1771
65.0k
  }
1772
1773
65.0k
  return 0;
1774
65.0k
}
1775
1776
/*
1777
 * readImmediate - Consumes an immediate operand from an instruction, given the
1778
 *   desired operand size.
1779
 *
1780
 * @param insn  - The instruction whose operand is to be read.
1781
 * @param size  - The width (in bytes) of the operand.
1782
 * @return      - 0 if the immediate was successfully consumed; nonzero
1783
 *                otherwise.
1784
 */
1785
static int readImmediate(struct InternalInstruction* insn, uint8_t size)
1786
189k
{
1787
189k
  uint8_t imm8;
1788
189k
  uint16_t imm16;
1789
189k
  uint32_t imm32;
1790
189k
  uint64_t imm64;
1791
1792
189k
  if (insn->numImmediatesConsumed == 2) {
1793
    // debug("Already consumed two immediates");
1794
0
    return -1;
1795
0
  }
1796
1797
189k
  if (size == 0)
1798
0
    size = insn->immediateSize;
1799
189k
  else
1800
189k
    insn->immediateSize = size;
1801
1802
189k
  insn->immediateOffset = insn->readerCursor - insn->startLocation;
1803
1804
189k
  switch (size) {
1805
143k
    case 1:
1806
143k
      if (consumeByte(insn, &imm8))
1807
488
        return -1;
1808
1809
142k
      insn->immediates[insn->numImmediatesConsumed] = imm8;
1810
142k
      break;
1811
25.5k
    case 2:
1812
25.5k
      if (consumeUInt16(insn, &imm16))
1813
197
        return -1;
1814
1815
25.3k
      insn->immediates[insn->numImmediatesConsumed] = imm16;
1816
25.3k
      break;
1817
17.5k
    case 4:
1818
17.5k
      if (consumeUInt32(insn, &imm32))
1819
310
        return -1;
1820
1821
17.2k
      insn->immediates[insn->numImmediatesConsumed] = imm32;
1822
17.2k
      break;
1823
3.43k
    case 8:
1824
3.43k
      if (consumeUInt64(insn, &imm64))
1825
67
        return -1;
1826
3.36k
      insn->immediates[insn->numImmediatesConsumed] = imm64;
1827
3.36k
      break;
1828
189k
  }
1829
1830
188k
  insn->numImmediatesConsumed++;
1831
1832
188k
  return 0;
1833
189k
}
1834
1835
/*
1836
 * readVVVV - Consumes vvvv from an instruction if it has a VEX prefix.
1837
 *
1838
 * @param insn  - The instruction whose operand is to be read.
1839
 * @return      - 0 if the vvvv was successfully consumed; nonzero
1840
 *                otherwise.
1841
 */
1842
static int readVVVV(struct InternalInstruction* insn)
1843
662k
{
1844
662k
  int vvvv;
1845
1846
662k
  if (insn->vectorExtensionType == TYPE_EVEX)
1847
53.7k
    vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 |
1848
53.7k
        vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2]));
1849
609k
  else if (insn->vectorExtensionType == TYPE_VEX_3B)
1850
4.41k
    vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]);
1851
604k
  else if (insn->vectorExtensionType == TYPE_VEX_2B)
1852
8.61k
    vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]);
1853
596k
  else if (insn->vectorExtensionType == TYPE_XOP)
1854
7.89k
    vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]);
1855
588k
  else
1856
588k
    return -1;
1857
1858
74.6k
  if (insn->mode != MODE_64BIT)
1859
43.7k
    vvvv &= 0xf; // Can only clear bit 4. Bit 3 must be cleared later.
1860
1861
74.6k
  insn->vvvv = (Reg)vvvv;
1862
1863
74.6k
  return 0;
1864
662k
}
1865
1866
/*
1867
 * readMaskRegister - Reads an mask register from the opcode field of an
1868
 *   instruction.
1869
 *
1870
 * @param insn    - The instruction whose opcode field is to be read.
1871
 * @return        - 0 on success; nonzero otherwise.
1872
 */
1873
static int readMaskRegister(struct InternalInstruction* insn)
1874
37.1k
{
1875
37.1k
  if (insn->vectorExtensionType != TYPE_EVEX)
1876
0
    return -1;
1877
1878
37.1k
  insn->writemask = (Reg)(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]));
1879
1880
37.1k
  return 0;
1881
37.1k
}
1882
1883
/*
1884
 * readOperands - Consults the specifier for an instruction and consumes all
1885
 *   operands for that instruction, interpreting them as it goes.
1886
 *
1887
 * @param insn  - The instruction whose operands are to be read and interpreted.
1888
 * @return      - 0 if all operands could be read; nonzero otherwise.
1889
 */
1890
static int readOperands(struct InternalInstruction* insn)
1891
662k
{
1892
662k
  int hasVVVV, needVVVV;
1893
662k
  int sawRegImm = 0;
1894
662k
  int i;
1895
1896
  /* If non-zero vvvv specified, need to make sure one of the operands
1897
     uses it. */
1898
662k
  hasVVVV = !readVVVV(insn);
1899
662k
  needVVVV = hasVVVV && (insn->vvvv != 0);
1900
1901
4.63M
  for (i = 0; i < X86_MAX_OPERANDS; ++i) {
1902
3.97M
    const OperandSpecifier *op = &x86OperandSets[insn->spec->operands][i];
1903
3.97M
    switch (op->encoding) {
1904
2.74M
      case ENCODING_NONE:
1905
2.78M
      case ENCODING_SI:
1906
2.82M
      case ENCODING_DI:
1907
2.82M
        break;
1908
1909
27.6k
      CASE_ENCODING_VSIB:
1910
        // VSIB can use the V2 bit so check only the other bits.
1911
27.6k
        if (needVVVV)
1912
3.17k
          needVVVV = hasVVVV & ((insn->vvvv & 0xf) != 0);
1913
1914
27.6k
        if (readModRM(insn))
1915
0
          return -1;
1916
1917
        // Reject if SIB wasn't used.
1918
5.04k
        if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
1919
7
          return -1;
1920
1921
        // If sibIndex was set to SIB_INDEX_NONE, index offset is 4.
1922
5.04k
        if (insn->sibIndex == SIB_INDEX_NONE)
1923
314
          insn->sibIndex = (SIBIndex)(insn->sibIndexBase + 4);
1924
1925
        // If EVEX.v2 is set this is one of the 16-31 registers.
1926
5.04k
        if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT &&
1927
5.04k
            v2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
1928
2.05k
          insn->sibIndex = (SIBIndex)(insn->sibIndex + 16);
1929
1930
        // Adjust the index register to the correct size.
1931
5.04k
        switch (op->type) {
1932
0
          default:
1933
            // debug("Unhandled VSIB index type");
1934
0
            return -1;
1935
2.17k
          case TYPE_MVSIBX:
1936
2.17k
            insn->sibIndex = (SIBIndex)(SIB_INDEX_XMM0 +
1937
2.17k
                (insn->sibIndex - insn->sibIndexBase));
1938
2.17k
            break;
1939
1.41k
          case TYPE_MVSIBY:
1940
1.41k
            insn->sibIndex = (SIBIndex)(SIB_INDEX_YMM0 +
1941
1.41k
                (insn->sibIndex - insn->sibIndexBase));
1942
1.41k
            break;
1943
1.46k
          case TYPE_MVSIBZ:
1944
1.46k
            insn->sibIndex = (SIBIndex)(SIB_INDEX_ZMM0 +
1945
1.46k
                (insn->sibIndex - insn->sibIndexBase));
1946
1.46k
            break;
1947
5.04k
        }
1948
1949
        // Apply the AVX512 compressed displacement scaling factor.
1950
5.04k
        if (op->encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1951
422
          insn->displacement *= 1 << (op->encoding - ENCODING_VSIB);
1952
5.04k
        break;
1953
1954
277k
      case ENCODING_REG:
1955
4.28M
      CASE_ENCODING_RM:
1956
4.28M
        if (readModRM(insn))
1957
0
          return -1;
1958
1959
638k
        if (fixupReg(insn, op))
1960
16
          return -1;
1961
1962
        // Apply the AVX512 compressed displacement scaling factor.
1963
638k
        if (op->encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1964
55.0k
          insn->displacement *= 1 << (op->encoding - ENCODING_RM);
1965
638k
        break;
1966
1967
143k
      case ENCODING_IB:
1968
143k
        if (sawRegImm) {
1969
          /* Saw a register immediate so don't read again and instead split the
1970
             previous immediate.  FIXME: This is a hack. */
1971
644
          insn->immediates[insn->numImmediatesConsumed] =
1972
644
            insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
1973
644
          ++insn->numImmediatesConsumed;
1974
644
          break;
1975
644
        }
1976
143k
        if (readImmediate(insn, 1))
1977
488
          return -1;
1978
142k
        if (op->type == TYPE_XMM || op->type == TYPE_YMM)
1979
1.09k
          sawRegImm = 1;
1980
142k
        break;
1981
1982
8.79k
      case ENCODING_IW:
1983
8.79k
        if (readImmediate(insn, 2))
1984
44
          return -1;
1985
8.74k
        break;
1986
1987
8.74k
      case ENCODING_ID:
1988
3.22k
        if (readImmediate(insn, 4))
1989
60
          return -1;
1990
3.16k
        break;
1991
1992
3.16k
      case ENCODING_IO:
1993
506
        if (readImmediate(insn, 8))
1994
10
          return -1;
1995
496
        break;
1996
1997
25.8k
      case ENCODING_Iv:
1998
25.8k
        if (readImmediate(insn, insn->immediateSize))
1999
359
          return -1;
2000
25.5k
        break;
2001
2002
25.5k
      case ENCODING_Ia:
2003
8.14k
        if (readImmediate(insn, insn->addressSize))
2004
101
          return -1;
2005
        /* Direct memory-offset (moffset) immediate will get mapped
2006
           to memory operand later. We want the encoding info to
2007
           reflect that as well. */
2008
8.04k
        insn->displacementOffset = insn->immediateOffset;
2009
8.04k
        insn->consumedDisplacement = true;
2010
8.04k
        insn->displacementSize = insn->immediateSize;
2011
8.04k
        insn->displacement = insn->immediates[insn->numImmediatesConsumed - 1];
2012
8.04k
        insn->immediateOffset = 0;
2013
8.04k
        insn->immediateSize = 0;
2014
8.04k
        break;
2015
2016
3.14k
      case ENCODING_IRC:
2017
3.14k
        insn->RC = (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 1) |
2018
3.14k
          lFromEVEX4of4(insn->vectorExtensionPrefix[3]);
2019
3.14k
        break;
2020
2021
5.50k
      case ENCODING_RB:
2022
5.50k
        if (readOpcodeRegister(insn, 1))
2023
0
          return -1;
2024
5.50k
        break;
2025
2026
5.50k
      case ENCODING_RW:
2027
0
        if (readOpcodeRegister(insn, 2))
2028
0
          return -1;
2029
0
        break;
2030
2031
0
      case ENCODING_RD:
2032
0
        if (readOpcodeRegister(insn, 4))
2033
0
          return -1;
2034
0
        break;
2035
2036
10.5k
      case ENCODING_RO:
2037
10.5k
        if (readOpcodeRegister(insn, 8))
2038
0
          return -1;
2039
10.5k
        break;
2040
2041
49.0k
      case ENCODING_Rv:
2042
49.0k
        if (readOpcodeRegister(insn, 0))
2043
0
          return -1;
2044
49.0k
        break;
2045
2046
49.0k
      case ENCODING_FP:
2047
1.95k
        break;
2048
2049
54.4k
      case ENCODING_VVVV:
2050
54.4k
        if (!hasVVVV)
2051
0
          return -1;
2052
2053
54.4k
        needVVVV = 0; /* Mark that we have found a VVVV operand. */
2054
2055
54.4k
        if (insn->mode != MODE_64BIT)
2056
31.5k
          insn->vvvv = (Reg)(insn->vvvv & 0x7);
2057
2058
54.4k
        if (fixupReg(insn, op))
2059
1
          return -1;
2060
54.4k
        break;
2061
2062
54.4k
      case ENCODING_WRITEMASK:
2063
37.1k
        if (readMaskRegister(insn))
2064
0
          return -1;
2065
37.1k
        break;
2066
2067
152k
      case ENCODING_DUP:
2068
152k
        break;
2069
2070
0
      default:
2071
        // dbgprintf(insn, "Encountered an operand with an unknown encoding.");
2072
0
        return -1;
2073
3.97M
    }
2074
3.97M
  }
2075
2076
  /* If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail */
2077
661k
  if (needVVVV)
2078
12
    return -1;
2079
2080
661k
  return 0;
2081
661k
}
2082
2083
// return True if instruction is illegal to use with prefixes
2084
// This also check & fix the isPrefixNN when a prefix is irrelevant.
2085
static bool checkPrefix(struct InternalInstruction *insn)
2086
663k
{
2087
  // LOCK prefix
2088
663k
  if (insn->hasLockPrefix) {
2089
34.1k
    switch(insn->instructionID) {
2090
185
      default:
2091
        // invalid LOCK
2092
185
        return true;
2093
2094
      // nop dword [rax]
2095
199
      case X86_NOOPL:
2096
2097
      // DEC
2098
457
      case X86_DEC16m:
2099
869
      case X86_DEC32m:
2100
1.27k
      case X86_DEC64m:
2101
1.43k
      case X86_DEC8m:
2102
2103
      // ADC
2104
1.63k
      case X86_ADC16mi:
2105
2.02k
      case X86_ADC16mi8:
2106
2.24k
      case X86_ADC16mr:
2107
2.31k
      case X86_ADC32mi:
2108
2.73k
      case X86_ADC32mi8:
2109
2.99k
      case X86_ADC32mr:
2110
3.13k
      case X86_ADC64mi32:
2111
3.22k
      case X86_ADC64mi8:
2112
3.44k
      case X86_ADC64mr:
2113
3.52k
      case X86_ADC8mi:
2114
3.72k
      case X86_ADC8mi8:
2115
4.04k
      case X86_ADC8mr:
2116
4.24k
      case X86_ADC8rm:
2117
4.78k
      case X86_ADC16rm:
2118
5.01k
      case X86_ADC32rm:
2119
5.11k
      case X86_ADC64rm:
2120
2121
      // ADD
2122
5.33k
      case X86_ADD16mi:
2123
5.59k
      case X86_ADD16mi8:
2124
5.80k
      case X86_ADD16mr:
2125
6.01k
      case X86_ADD32mi:
2126
6.10k
      case X86_ADD32mi8:
2127
6.45k
      case X86_ADD32mr:
2128
6.53k
      case X86_ADD64mi32:
2129
7.07k
      case X86_ADD64mi8:
2130
7.16k
      case X86_ADD64mr:
2131
7.37k
      case X86_ADD8mi:
2132
7.46k
      case X86_ADD8mi8:
2133
8.11k
      case X86_ADD8mr:
2134
8.34k
      case X86_ADD8rm:
2135
8.68k
      case X86_ADD16rm:
2136
9.06k
      case X86_ADD32rm:
2137
9.27k
      case X86_ADD64rm:
2138
2139
      // AND
2140
9.36k
      case X86_AND16mi:
2141
9.48k
      case X86_AND16mi8:
2142
9.74k
      case X86_AND16mr:
2143
9.93k
      case X86_AND32mi:
2144
10.0k
      case X86_AND32mi8:
2145
10.4k
      case X86_AND32mr:
2146
10.7k
      case X86_AND64mi32:
2147
10.7k
      case X86_AND64mi8:
2148
10.9k
      case X86_AND64mr:
2149
11.1k
      case X86_AND8mi:
2150
11.6k
      case X86_AND8mi8:
2151
11.8k
      case X86_AND8mr:
2152
12.0k
      case X86_AND8rm:
2153
12.3k
      case X86_AND16rm:
2154
12.5k
      case X86_AND32rm:
2155
12.8k
      case X86_AND64rm:
2156
2157
      // BTC
2158
13.0k
      case X86_BTC16mi8:
2159
13.1k
      case X86_BTC16mr:
2160
13.4k
      case X86_BTC32mi8:
2161
13.6k
      case X86_BTC32mr:
2162
13.7k
      case X86_BTC64mi8:
2163
13.9k
      case X86_BTC64mr:
2164
2165
      // BTR
2166
14.0k
      case X86_BTR16mi8:
2167
14.2k
      case X86_BTR16mr:
2168
14.3k
      case X86_BTR32mi8:
2169
14.5k
      case X86_BTR32mr:
2170
14.6k
      case X86_BTR64mi8:
2171
14.7k
      case X86_BTR64mr:
2172
2173
      // BTS
2174
14.9k
      case X86_BTS16mi8:
2175
15.1k
      case X86_BTS16mr:
2176
15.3k
      case X86_BTS32mi8:
2177
15.4k
      case X86_BTS32mr:
2178
15.6k
      case X86_BTS64mi8:
2179
15.8k
      case X86_BTS64mr:
2180
2181
      // CMPXCHG
2182
16.1k
      case X86_CMPXCHG16B:
2183
16.2k
      case X86_CMPXCHG16rm:
2184
16.2k
      case X86_CMPXCHG32rm:
2185
16.3k
      case X86_CMPXCHG64rm:
2186
16.5k
      case X86_CMPXCHG8rm:
2187
16.7k
      case X86_CMPXCHG8B:
2188
2189
      // INC
2190
16.9k
      case X86_INC16m:
2191
17.2k
      case X86_INC32m:
2192
17.5k
      case X86_INC64m:
2193
17.7k
      case X86_INC8m:
2194
2195
      // NEG
2196
17.9k
      case X86_NEG16m:
2197
18.1k
      case X86_NEG32m:
2198
18.2k
      case X86_NEG64m:
2199
18.3k
      case X86_NEG8m:
2200
2201
      // NOT
2202
18.5k
      case X86_NOT16m:
2203
18.8k
      case X86_NOT32m:
2204
18.8k
      case X86_NOT64m:
2205
19.0k
      case X86_NOT8m:
2206
2207
      // OR
2208
19.0k
      case X86_OR16mi:
2209
19.1k
      case X86_OR16mi8:
2210
19.4k
      case X86_OR16mr:
2211
19.5k
      case X86_OR32mi:
2212
19.6k
      case X86_OR32mi8:
2213
19.9k
      case X86_OR32mr:
2214
20.1k
      case X86_OR64mi32:
2215
20.3k
      case X86_OR64mi8:
2216
20.4k
      case X86_OR64mr:
2217
20.6k
      case X86_OR8mi8:
2218
21.0k
      case X86_OR8mi:
2219
21.3k
      case X86_OR8mr:
2220
21.6k
      case X86_OR8rm:
2221
21.9k
      case X86_OR16rm:
2222
22.1k
      case X86_OR32rm:
2223
22.3k
      case X86_OR64rm:
2224
2225
      // SBB
2226
22.6k
      case X86_SBB16mi:
2227
22.8k
      case X86_SBB16mi8:
2228
22.9k
      case X86_SBB16mr:
2229
23.0k
      case X86_SBB32mi:
2230
23.3k
      case X86_SBB32mi8:
2231
23.5k
      case X86_SBB32mr:
2232
23.5k
      case X86_SBB64mi32:
2233
23.8k
      case X86_SBB64mi8:
2234
24.5k
      case X86_SBB64mr:
2235
24.7k
      case X86_SBB8mi:
2236
24.9k
      case X86_SBB8mi8:
2237
25.3k
      case X86_SBB8mr:
2238
2239
      // SUB
2240
25.6k
      case X86_SUB16mi:
2241
25.8k
      case X86_SUB16mi8:
2242
26.0k
      case X86_SUB16mr:
2243
26.2k
      case X86_SUB32mi:
2244
26.5k
      case X86_SUB32mi8:
2245
26.8k
      case X86_SUB32mr:
2246
26.9k
      case X86_SUB64mi32:
2247
27.4k
      case X86_SUB64mi8:
2248
27.7k
      case X86_SUB64mr:
2249
28.0k
      case X86_SUB8mi8:
2250
28.2k
      case X86_SUB8mi:
2251
28.4k
      case X86_SUB8mr:
2252
28.6k
      case X86_SUB8rm:
2253
28.8k
      case X86_SUB16rm:
2254
29.1k
      case X86_SUB32rm:
2255
29.2k
      case X86_SUB64rm:
2256
2257
      // XADD
2258
29.3k
      case X86_XADD16rm:
2259
29.4k
      case X86_XADD32rm:
2260
29.8k
      case X86_XADD64rm:
2261
29.8k
      case X86_XADD8rm:
2262
2263
      // XCHG
2264
30.0k
      case X86_XCHG16rm:
2265
30.2k
      case X86_XCHG32rm:
2266
30.3k
      case X86_XCHG64rm:
2267
30.5k
      case X86_XCHG8rm:
2268
2269
      // XOR
2270
30.6k
      case X86_XOR16mi:
2271
30.7k
      case X86_XOR16mi8:
2272
30.9k
      case X86_XOR16mr:
2273
31.1k
      case X86_XOR32mi:
2274
31.3k
      case X86_XOR32mi8:
2275
31.7k
      case X86_XOR32mr:
2276
31.8k
      case X86_XOR64mi32:
2277
32.0k
      case X86_XOR64mi8:
2278
32.2k
      case X86_XOR64mr:
2279
32.4k
      case X86_XOR8mi8:
2280
32.6k
      case X86_XOR8mi:
2281
32.8k
      case X86_XOR8mr:
2282
32.9k
      case X86_XOR8rm:
2283
33.1k
      case X86_XOR16rm:
2284
33.4k
      case X86_XOR32rm:
2285
33.9k
      case X86_XOR64rm:
2286
2287
        // this instruction can be used with LOCK prefix
2288
33.9k
        return false;
2289
34.1k
    }
2290
34.1k
  }
2291
2292
#if 0
2293
  // REPNE prefix
2294
  if (insn->repeatPrefix) {
2295
    // 0xf2 can be a part of instruction encoding, but not really a prefix.
2296
    // In such a case, clear it.
2297
    if (insn->twoByteEscape == 0x0f) {
2298
      insn->prefix0 = 0;
2299
    }
2300
  }
2301
#endif
2302
2303
  // no invalid prefixes
2304
628k
  return false;
2305
663k
}
2306
2307
/*
2308
 * decodeInstruction - Reads and interprets a full instruction provided by the
2309
 *   user.
2310
 *
2311
 * @param insn      - A pointer to the instruction to be populated.  Must be
2312
 *                    pre-allocated.
2313
 * @param reader    - The function to be used to read the instruction's bytes.
2314
 * @param readerArg - A generic argument to be passed to the reader to store
2315
 *                    any internal state.
2316
 * @param startLoc  - The address (in the reader's address space) of the first
2317
 *                    byte in the instruction.
2318
 * @param mode      - The mode (real mode, IA-32e, or IA-32e in 64-bit mode) to
2319
 *                    decode the instruction in.
2320
 * @return          - 0 if instruction is valid; nonzero if not.
2321
 */
2322
int decodeInstruction(struct InternalInstruction *insn,
2323
    byteReader_t reader,
2324
    const void *readerArg,
2325
    uint64_t startLoc,
2326
    DisassemblerMode mode)
2327
666k
{
2328
666k
  insn->reader = reader;
2329
666k
  insn->readerArg = readerArg;
2330
666k
  insn->startLocation = startLoc;
2331
666k
  insn->readerCursor = startLoc;
2332
666k
  insn->mode = mode;
2333
666k
  insn->numImmediatesConsumed = 0;
2334
2335
666k
  if (readPrefixes(insn) ||
2336
666k
      readOpcode(insn) ||
2337
666k
      getID(insn) ||
2338
666k
      insn->instructionID == 0 ||
2339
666k
      checkPrefix(insn) ||
2340
666k
      readOperands(insn))
2341
4.95k
    return -1;
2342
2343
661k
  insn->length = (size_t)(insn->readerCursor - insn->startLocation);
2344
2345
  // instruction length must be <= 15 to be valid
2346
661k
  if (insn->length > 15)
2347
29
    return -1;
2348
2349
661k
  if (insn->operandSize == 0)
2350
661k
    insn->operandSize = insn->registerSize;
2351
2352
661k
  insn->operands = &x86OperandSets[insn->spec->operands][0];
2353
2354
661k
  return 0;
2355
661k
}
2356
2357
#endif
2358