Coverage Report

Created: 2025-10-10 06:20

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/capstonenext/arch/X86/X86Disassembler.c
Line
Count
Source
1
//===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
2
//
3
//                     The LLVM Compiler Infrastructure
4
//
5
// This file is distributed under the University of Illinois Open Source
6
// License. See LICENSE.TXT for details.
7
//
8
//===----------------------------------------------------------------------===//
9
//
10
// This file is part of the X86 Disassembler.
11
// It contains code to translate the data produced by the decoder into
12
//  MCInsts.
13
//
14
// The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
15
// 64-bit X86 instruction sets.  The main decode sequence for an assembly
16
// instruction in this disassembler is:
17
//
18
// 1. Read the prefix bytes and determine the attributes of the instruction.
19
//    These attributes, recorded in enum attributeBits
20
//    (X86DisassemblerDecoderCommon.h), form a bitmask.  The table CONTEXTS_SYM
21
//    provides a mapping from bitmasks to contexts, which are represented by
22
//    enum InstructionContext (ibid.).
23
//
24
// 2. Read the opcode, and determine what kind of opcode it is.  The
25
//    disassembler distinguishes four kinds of opcodes, which are enumerated in
26
//    OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
27
//    (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
28
//    (0x0f 0x3a 0xnn).  Mandatory prefixes are treated as part of the context.
29
//
30
// 3. Depending on the opcode type, look in one of four ClassDecision structures
31
//    (X86DisassemblerDecoderCommon.h).  Use the opcode class to determine which
32
//    OpcodeDecision (ibid.) to look the opcode in.  Look up the opcode, to get
33
//    a ModRMDecision (ibid.).
34
//
35
// 4. Some instructions, such as escape opcodes or extended opcodes, or even
36
//    instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
37
//    ModR/M byte to complete decode.  The ModRMDecision's type is an entry from
38
//    ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
39
//    ModR/M byte is required and how to interpret it.
40
//
41
// 5. After resolving the ModRMDecision, the disassembler has a unique ID
42
//    of type InstrUID (X86DisassemblerDecoderCommon.h).  Looking this ID up in
43
//    INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
44
//    meanings of its operands.
45
//
46
// 6. For each operand, its encoding is an entry from OperandEncoding
47
//    (X86DisassemblerDecoderCommon.h) and its type is an entry from
48
//    OperandType (ibid.).  The encoding indicates how to read it from the
49
//    instruction; the type indicates how to interpret the value once it has
50
//    been read.  For example, a register operand could be stored in the R/M
51
//    field of the ModR/M byte, the REG field of the ModR/M byte, or added to
52
//    the main opcode.  This is orthogonal from its meaning (an GPR or an XMM
53
//    register, for instance).  Given this information, the operands can be
54
//    extracted and interpreted.
55
//
56
// 7. As the last step, the disassembler translates the instruction information
57
//    and operands into a format understandable by the client - in this case, an
58
//    MCInst for use by the MC infrastructure.
59
//
60
// The disassembler is broken broadly into two parts: the table emitter that
61
// emits the instruction decode tables discussed above during compilation, and
62
// the disassembler itself.  The table emitter is documented in more detail in
63
// utils/TableGen/X86DisassemblerEmitter.h.
64
//
65
// X86Disassembler.cpp contains the code responsible for step 7, and for
66
//   invoking the decoder to execute steps 1-6.
67
// X86DisassemblerDecoderCommon.h contains the definitions needed by both the
68
//   table emitter and the disassembler.
69
// X86DisassemblerDecoder.h contains the public interface of the decoder,
70
//   factored out into C for possible use by other projects.
71
// X86DisassemblerDecoder.c contains the source code of the decoder, which is
72
//   responsible for steps 1-6.
73
//
74
//===----------------------------------------------------------------------===//
75
76
/* Capstone Disassembly Engine */
77
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013-2019 */
78
79
#ifdef CAPSTONE_HAS_X86
80
81
#ifdef _MSC_VER
82
// disable MSVC's warning on strncpy()
83
#pragma warning(disable : 4996)
84
// disable MSVC's warning on strncpy()
85
#pragma warning(disable : 28719)
86
#endif
87
88
#include <capstone/platform.h>
89
90
#if defined(CAPSTONE_HAS_OSXKERNEL)
91
#include <Availability.h>
92
#endif
93
94
#include <string.h>
95
96
#include "../../cs_priv.h"
97
98
#include "X86BaseInfo.h"
99
#include "X86Disassembler.h"
100
#include "X86DisassemblerDecoderCommon.h"
101
#include "X86DisassemblerDecoder.h"
102
#include "../../MCInst.h"
103
#include "../../utils.h"
104
#include "X86Mapping.h"
105
106
#define GET_REGINFO_ENUM
107
#define GET_REGINFO_MC_DESC
108
#include "X86GenRegisterInfo.inc"
109
110
#define GET_INSTRINFO_ENUM
111
#ifdef CAPSTONE_X86_REDUCE
112
#include "X86GenInstrInfo_reduce.inc"
113
#else
114
#include "X86GenInstrInfo.inc"
115
#endif
116
117
// Fill-ins to make the compiler happy.  These constants are never actually
118
//   assigned; they are just filler to make an automatically-generated switch
119
//   statement work.
120
enum {
121
  X86_BX_SI = 500,
122
  X86_BX_DI = 501,
123
  X86_BP_SI = 502,
124
  X86_BP_DI = 503,
125
  X86_sib = 504,
126
  X86_sib64 = 505
127
};
128
129
//
130
// Private code that translates from struct InternalInstructions to MCInsts.
131
//
132
133
/// translateRegister - Translates an internal register to the appropriate LLVM
134
///   register, and appends it as an operand to an MCInst.
135
///
136
/// @param mcInst     - The MCInst to append to.
137
/// @param reg        - The Reg to append.
138
static void translateRegister(MCInst *mcInst, Reg reg)
139
174k
{
140
38.8M
#define ENTRY(x) X86_##x,
141
174k
  static const uint16_t llvmRegnums[] = { ALL_REGS 0 };
142
174k
#undef ENTRY
143
144
174k
  uint16_t llvmRegnum = llvmRegnums[reg];
145
174k
  MCOperand_CreateReg0(mcInst, llvmRegnum);
146
174k
}
147
148
static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
149
  0, // SEG_OVERRIDE_NONE
150
  X86_CS, X86_SS, X86_DS, X86_ES, X86_FS, X86_GS
151
};
152
153
/// translateSrcIndex   - Appends a source index operand to an MCInst.
154
///
155
/// @param mcInst       - The MCInst to append to.
156
/// @param insn         - The internal instruction.
157
static bool translateSrcIndex(MCInst *mcInst, InternalInstruction *insn)
158
10.5k
{
159
10.5k
  unsigned baseRegNo;
160
161
10.5k
  if (insn->mode == MODE_64BIT)
162
5.15k
    baseRegNo = insn->hasAdSize ? X86_ESI : X86_RSI;
163
5.36k
  else if (insn->mode == MODE_32BIT)
164
1.86k
    baseRegNo = insn->hasAdSize ? X86_SI : X86_ESI;
165
3.50k
  else {
166
    // assert(insn->mode == MODE_16BIT);
167
3.50k
    baseRegNo = insn->hasAdSize ? X86_ESI : X86_SI;
168
3.50k
  }
169
170
10.5k
  MCOperand_CreateReg0(mcInst, baseRegNo);
171
172
10.5k
  MCOperand_CreateReg0(mcInst, segmentRegnums[insn->segmentOverride]);
173
174
10.5k
  return false;
175
10.5k
}
176
177
/// translateDstIndex   - Appends a destination index operand to an MCInst.
178
///
179
/// @param mcInst       - The MCInst to append to.
180
/// @param insn         - The internal instruction.
181
static bool translateDstIndex(MCInst *mcInst, InternalInstruction *insn)
182
13.6k
{
183
13.6k
  unsigned baseRegNo;
184
185
13.6k
  if (insn->mode == MODE_64BIT)
186
5.42k
    baseRegNo = insn->hasAdSize ? X86_EDI : X86_RDI;
187
8.27k
  else if (insn->mode == MODE_32BIT)
188
3.49k
    baseRegNo = insn->hasAdSize ? X86_DI : X86_EDI;
189
4.77k
  else {
190
    // assert(insn->mode == MODE_16BIT);
191
4.77k
    baseRegNo = insn->hasAdSize ? X86_EDI : X86_DI;
192
4.77k
  }
193
194
13.6k
  MCOperand_CreateReg0(mcInst, baseRegNo);
195
196
13.6k
  return false;
197
13.6k
}
198
199
/// translateImmediate  - Appends an immediate operand to an MCInst.
200
///
201
/// @param mcInst       - The MCInst to append to.
202
/// @param immediate    - The immediate value to append.
203
/// @param operand      - The operand, as stored in the descriptor table.
204
/// @param insn         - The internal instruction.
205
static void translateImmediate(MCInst *mcInst, uint64_t immediate,
206
             const OperandSpecifier *operand,
207
             InternalInstruction *insn)
208
65.3k
{
209
65.3k
  OperandType type;
210
211
65.3k
  type = (OperandType)operand->type;
212
65.3k
  if (type == TYPE_REL) {
213
    //isBranch = true;
214
    //pcrel = insn->startLocation + insn->immediateOffset + insn->immediateSize;
215
14.6k
    switch (operand->encoding) {
216
0
    default:
217
0
      break;
218
476
    case ENCODING_Iv:
219
476
      switch (insn->displacementSize) {
220
0
      default:
221
0
        break;
222
0
      case 1:
223
0
        if (immediate & 0x80)
224
0
          immediate |= ~(0xffull);
225
0
        break;
226
115
      case 2:
227
115
        if (immediate & 0x8000)
228
34
          immediate |= ~(0xffffull);
229
115
        break;
230
361
      case 4:
231
361
        if (immediate & 0x80000000)
232
221
          immediate |= ~(0xffffffffull);
233
361
        break;
234
0
      case 8:
235
0
        break;
236
476
      }
237
476
      break;
238
13.4k
    case ENCODING_IB:
239
13.4k
      if (immediate & 0x80)
240
4.31k
        immediate |= ~(0xffull);
241
13.4k
      break;
242
241
    case ENCODING_IW:
243
241
      if (immediate & 0x8000)
244
53
        immediate |= ~(0xffffull);
245
241
      break;
246
495
    case ENCODING_ID:
247
495
      if (immediate & 0x80000000)
248
267
        immediate |= ~(0xffffffffull);
249
495
      break;
250
14.6k
    }
251
14.6k
  } // By default sign-extend all X86 immediates based on their encoding.
252
50.6k
  else if (type == TYPE_IMM) {
253
27.0k
    switch (operand->encoding) {
254
8.39k
    default:
255
8.39k
      break;
256
16.0k
    case ENCODING_IB:
257
16.0k
      if (immediate & 0x80)
258
5.01k
        immediate |= ~(0xffull);
259
16.0k
      break;
260
1.75k
    case ENCODING_IW:
261
1.75k
      if (immediate & 0x8000)
262
694
        immediate |= ~(0xffffull);
263
1.75k
      break;
264
721
    case ENCODING_ID:
265
721
      if (immediate & 0x80000000)
266
381
        immediate |= ~(0xffffffffull);
267
721
      break;
268
198
    case ENCODING_IO:
269
198
      break;
270
27.0k
    }
271
27.0k
  } else if (type == TYPE_IMM3) {
272
3.40k
#ifndef CAPSTONE_X86_REDUCE
273
    // Check for immediates that printSSECC can't handle.
274
3.40k
    if (immediate >= 8) {
275
2.45k
      unsigned NewOpc = 0;
276
277
2.45k
      switch (MCInst_getOpcode(mcInst)) {
278
0
      default:
279
0
        break; // never reach
280
7
      case X86_CMPPDrmi:
281
7
        NewOpc = X86_CMPPDrmi_alt;
282
7
        break;
283
11
      case X86_CMPPDrri:
284
11
        NewOpc = X86_CMPPDrri_alt;
285
11
        break;
286
188
      case X86_CMPPSrmi:
287
188
        NewOpc = X86_CMPPSrmi_alt;
288
188
        break;
289
257
      case X86_CMPPSrri:
290
257
        NewOpc = X86_CMPPSrri_alt;
291
257
        break;
292
248
      case X86_CMPSDrm:
293
248
        NewOpc = X86_CMPSDrm_alt;
294
248
        break;
295
211
      case X86_CMPSDrr:
296
211
        NewOpc = X86_CMPSDrr_alt;
297
211
        break;
298
38
      case X86_CMPSSrm:
299
38
        NewOpc = X86_CMPSSrm_alt;
300
38
        break;
301
60
      case X86_CMPSSrr:
302
60
        NewOpc = X86_CMPSSrr_alt;
303
60
        break;
304
44
      case X86_VPCOMBri:
305
44
        NewOpc = X86_VPCOMBri_alt;
306
44
        break;
307
5
      case X86_VPCOMBmi:
308
5
        NewOpc = X86_VPCOMBmi_alt;
309
5
        break;
310
10
      case X86_VPCOMWri:
311
10
        NewOpc = X86_VPCOMWri_alt;
312
10
        break;
313
41
      case X86_VPCOMWmi:
314
41
        NewOpc = X86_VPCOMWmi_alt;
315
41
        break;
316
221
      case X86_VPCOMDri:
317
221
        NewOpc = X86_VPCOMDri_alt;
318
221
        break;
319
45
      case X86_VPCOMDmi:
320
45
        NewOpc = X86_VPCOMDmi_alt;
321
45
        break;
322
54
      case X86_VPCOMQri:
323
54
        NewOpc = X86_VPCOMQri_alt;
324
54
        break;
325
194
      case X86_VPCOMQmi:
326
194
        NewOpc = X86_VPCOMQmi_alt;
327
194
        break;
328
244
      case X86_VPCOMUBri:
329
244
        NewOpc = X86_VPCOMUBri_alt;
330
244
        break;
331
8
      case X86_VPCOMUBmi:
332
8
        NewOpc = X86_VPCOMUBmi_alt;
333
8
        break;
334
37
      case X86_VPCOMUWri:
335
37
        NewOpc = X86_VPCOMUWri_alt;
336
37
        break;
337
50
      case X86_VPCOMUWmi:
338
50
        NewOpc = X86_VPCOMUWmi_alt;
339
50
        break;
340
388
      case X86_VPCOMUDri:
341
388
        NewOpc = X86_VPCOMUDri_alt;
342
388
        break;
343
82
      case X86_VPCOMUDmi:
344
82
        NewOpc = X86_VPCOMUDmi_alt;
345
82
        break;
346
8
      case X86_VPCOMUQri:
347
8
        NewOpc = X86_VPCOMUQri_alt;
348
8
        break;
349
3
      case X86_VPCOMUQmi:
350
3
        NewOpc = X86_VPCOMUQmi_alt;
351
3
        break;
352
2.45k
      }
353
354
      // Switch opcode to the one that doesn't get special printing.
355
2.45k
      if (NewOpc != 0) {
356
2.45k
        MCInst_setOpcode(mcInst, NewOpc);
357
2.45k
      }
358
2.45k
    }
359
3.40k
#endif
360
20.2k
  } else if (type == TYPE_IMM5) {
361
3.73k
#ifndef CAPSTONE_X86_REDUCE
362
    // Check for immediates that printAVXCC can't handle.
363
3.73k
    if (immediate >= 32) {
364
2.97k
      unsigned NewOpc = 0;
365
366
2.97k
      switch (MCInst_getOpcode(mcInst)) {
367
1.09k
      default:
368
1.09k
        break; // unexpected opcode
369
1.09k
      case X86_VCMPPDrmi:
370
13
        NewOpc = X86_VCMPPDrmi_alt;
371
13
        break;
372
29
      case X86_VCMPPDrri:
373
29
        NewOpc = X86_VCMPPDrri_alt;
374
29
        break;
375
9
      case X86_VCMPPSrmi:
376
9
        NewOpc = X86_VCMPPSrmi_alt;
377
9
        break;
378
5
      case X86_VCMPPSrri:
379
5
        NewOpc = X86_VCMPPSrri_alt;
380
5
        break;
381
162
      case X86_VCMPSDrm:
382
162
        NewOpc = X86_VCMPSDrm_alt;
383
162
        break;
384
44
      case X86_VCMPSDrr:
385
44
        NewOpc = X86_VCMPSDrr_alt;
386
44
        break;
387
54
      case X86_VCMPSSrm:
388
54
        NewOpc = X86_VCMPSSrm_alt;
389
54
        break;
390
17
      case X86_VCMPSSrr:
391
17
        NewOpc = X86_VCMPSSrr_alt;
392
17
        break;
393
6
      case X86_VCMPPDYrmi:
394
6
        NewOpc = X86_VCMPPDYrmi_alt;
395
6
        break;
396
49
      case X86_VCMPPDYrri:
397
49
        NewOpc = X86_VCMPPDYrri_alt;
398
49
        break;
399
20
      case X86_VCMPPSYrmi:
400
20
        NewOpc = X86_VCMPPSYrmi_alt;
401
20
        break;
402
214
      case X86_VCMPPSYrri:
403
214
        NewOpc = X86_VCMPPSYrri_alt;
404
214
        break;
405
50
      case X86_VCMPPDZrmi:
406
50
        NewOpc = X86_VCMPPDZrmi_alt;
407
50
        break;
408
8
      case X86_VCMPPDZrri:
409
8
        NewOpc = X86_VCMPPDZrri_alt;
410
8
        break;
411
71
      case X86_VCMPPDZrrib:
412
71
        NewOpc = X86_VCMPPDZrrib_alt;
413
71
        break;
414
57
      case X86_VCMPPSZrmi:
415
57
        NewOpc = X86_VCMPPSZrmi_alt;
416
57
        break;
417
26
      case X86_VCMPPSZrri:
418
26
        NewOpc = X86_VCMPPSZrri_alt;
419
26
        break;
420
140
      case X86_VCMPPSZrrib:
421
140
        NewOpc = X86_VCMPPSZrrib_alt;
422
140
        break;
423
9
      case X86_VCMPPDZ128rmi:
424
9
        NewOpc = X86_VCMPPDZ128rmi_alt;
425
9
        break;
426
13
      case X86_VCMPPDZ128rri:
427
13
        NewOpc = X86_VCMPPDZ128rri_alt;
428
13
        break;
429
73
      case X86_VCMPPSZ128rmi:
430
73
        NewOpc = X86_VCMPPSZ128rmi_alt;
431
73
        break;
432
40
      case X86_VCMPPSZ128rri:
433
40
        NewOpc = X86_VCMPPSZ128rri_alt;
434
40
        break;
435
48
      case X86_VCMPPDZ256rmi:
436
48
        NewOpc = X86_VCMPPDZ256rmi_alt;
437
48
        break;
438
36
      case X86_VCMPPDZ256rri:
439
36
        NewOpc = X86_VCMPPDZ256rri_alt;
440
36
        break;
441
106
      case X86_VCMPPSZ256rmi:
442
106
        NewOpc = X86_VCMPPSZ256rmi_alt;
443
106
        break;
444
185
      case X86_VCMPPSZ256rri:
445
185
        NewOpc = X86_VCMPPSZ256rri_alt;
446
185
        break;
447
16
      case X86_VCMPSDZrm_Int:
448
16
        NewOpc = X86_VCMPSDZrmi_alt;
449
16
        break;
450
9
      case X86_VCMPSDZrr_Int:
451
9
        NewOpc = X86_VCMPSDZrri_alt;
452
9
        break;
453
157
      case X86_VCMPSDZrrb_Int:
454
157
        NewOpc = X86_VCMPSDZrrb_alt;
455
157
        break;
456
30
      case X86_VCMPSSZrm_Int:
457
30
        NewOpc = X86_VCMPSSZrmi_alt;
458
30
        break;
459
137
      case X86_VCMPSSZrr_Int:
460
137
        NewOpc = X86_VCMPSSZrri_alt;
461
137
        break;
462
40
      case X86_VCMPSSZrrb_Int:
463
40
        NewOpc = X86_VCMPSSZrrb_alt;
464
40
        break;
465
2.97k
      }
466
467
      // Switch opcode to the one that doesn't get special printing.
468
2.97k
      if (NewOpc != 0) {
469
1.87k
        MCInst_setOpcode(mcInst, NewOpc);
470
1.87k
      }
471
2.97k
    }
472
3.73k
#endif
473
16.4k
  } else if (type == TYPE_AVX512ICC) {
474
4.08k
#ifndef CAPSTONE_X86_REDUCE
475
4.08k
    if (immediate >= 8 || ((immediate & 0x3) == 3)) {
476
2.06k
      unsigned NewOpc = 0;
477
2.06k
      switch (MCInst_getOpcode(mcInst)) {
478
0
      default: // llvm_unreachable("unexpected opcode");
479
319
      case X86_VPCMPBZ128rmi:
480
319
        NewOpc = X86_VPCMPBZ128rmi_alt;
481
319
        break;
482
4
      case X86_VPCMPBZ128rmik:
483
4
        NewOpc = X86_VPCMPBZ128rmik_alt;
484
4
        break;
485
39
      case X86_VPCMPBZ128rri:
486
39
        NewOpc = X86_VPCMPBZ128rri_alt;
487
39
        break;
488
27
      case X86_VPCMPBZ128rrik:
489
27
        NewOpc = X86_VPCMPBZ128rrik_alt;
490
27
        break;
491
45
      case X86_VPCMPBZ256rmi:
492
45
        NewOpc = X86_VPCMPBZ256rmi_alt;
493
45
        break;
494
0
      case X86_VPCMPBZ256rmik:
495
0
        NewOpc = X86_VPCMPBZ256rmik_alt;
496
0
        break;
497
1
      case X86_VPCMPBZ256rri:
498
1
        NewOpc = X86_VPCMPBZ256rri_alt;
499
1
        break;
500
2
      case X86_VPCMPBZ256rrik:
501
2
        NewOpc = X86_VPCMPBZ256rrik_alt;
502
2
        break;
503
118
      case X86_VPCMPBZrmi:
504
118
        NewOpc = X86_VPCMPBZrmi_alt;
505
118
        break;
506
1
      case X86_VPCMPBZrmik:
507
1
        NewOpc = X86_VPCMPBZrmik_alt;
508
1
        break;
509
15
      case X86_VPCMPBZrri:
510
15
        NewOpc = X86_VPCMPBZrri_alt;
511
15
        break;
512
1
      case X86_VPCMPBZrrik:
513
1
        NewOpc = X86_VPCMPBZrrik_alt;
514
1
        break;
515
0
      case X86_VPCMPDZ128rmi:
516
0
        NewOpc = X86_VPCMPDZ128rmi_alt;
517
0
        break;
518
17
      case X86_VPCMPDZ128rmib:
519
17
        NewOpc = X86_VPCMPDZ128rmib_alt;
520
17
        break;
521
160
      case X86_VPCMPDZ128rmibk:
522
160
        NewOpc = X86_VPCMPDZ128rmibk_alt;
523
160
        break;
524
0
      case X86_VPCMPDZ128rmik:
525
0
        NewOpc = X86_VPCMPDZ128rmik_alt;
526
0
        break;
527
0
      case X86_VPCMPDZ128rri:
528
0
        NewOpc = X86_VPCMPDZ128rri_alt;
529
0
        break;
530
39
      case X86_VPCMPDZ128rrik:
531
39
        NewOpc = X86_VPCMPDZ128rrik_alt;
532
39
        break;
533
0
      case X86_VPCMPDZ256rmi:
534
0
        NewOpc = X86_VPCMPDZ256rmi_alt;
535
0
        break;
536
12
      case X86_VPCMPDZ256rmib:
537
12
        NewOpc = X86_VPCMPDZ256rmib_alt;
538
12
        break;
539
3
      case X86_VPCMPDZ256rmibk:
540
3
        NewOpc = X86_VPCMPDZ256rmibk_alt;
541
3
        break;
542
1
      case X86_VPCMPDZ256rmik:
543
1
        NewOpc = X86_VPCMPDZ256rmik_alt;
544
1
        break;
545
5
      case X86_VPCMPDZ256rri:
546
5
        NewOpc = X86_VPCMPDZ256rri_alt;
547
5
        break;
548
0
      case X86_VPCMPDZ256rrik:
549
0
        NewOpc = X86_VPCMPDZ256rrik_alt;
550
0
        break;
551
16
      case X86_VPCMPDZrmi:
552
16
        NewOpc = X86_VPCMPDZrmi_alt;
553
16
        break;
554
0
      case X86_VPCMPDZrmib:
555
0
        NewOpc = X86_VPCMPDZrmib_alt;
556
0
        break;
557
54
      case X86_VPCMPDZrmibk:
558
54
        NewOpc = X86_VPCMPDZrmibk_alt;
559
54
        break;
560
41
      case X86_VPCMPDZrmik:
561
41
        NewOpc = X86_VPCMPDZrmik_alt;
562
41
        break;
563
2
      case X86_VPCMPDZrri:
564
2
        NewOpc = X86_VPCMPDZrri_alt;
565
2
        break;
566
9
      case X86_VPCMPDZrrik:
567
9
        NewOpc = X86_VPCMPDZrrik_alt;
568
9
        break;
569
4
      case X86_VPCMPQZ128rmi:
570
4
        NewOpc = X86_VPCMPQZ128rmi_alt;
571
4
        break;
572
33
      case X86_VPCMPQZ128rmib:
573
33
        NewOpc = X86_VPCMPQZ128rmib_alt;
574
33
        break;
575
2
      case X86_VPCMPQZ128rmibk:
576
2
        NewOpc = X86_VPCMPQZ128rmibk_alt;
577
2
        break;
578
0
      case X86_VPCMPQZ128rmik:
579
0
        NewOpc = X86_VPCMPQZ128rmik_alt;
580
0
        break;
581
130
      case X86_VPCMPQZ128rri:
582
130
        NewOpc = X86_VPCMPQZ128rri_alt;
583
130
        break;
584
0
      case X86_VPCMPQZ128rrik:
585
0
        NewOpc = X86_VPCMPQZ128rrik_alt;
586
0
        break;
587
16
      case X86_VPCMPQZ256rmi:
588
16
        NewOpc = X86_VPCMPQZ256rmi_alt;
589
16
        break;
590
9
      case X86_VPCMPQZ256rmib:
591
9
        NewOpc = X86_VPCMPQZ256rmib_alt;
592
9
        break;
593
226
      case X86_VPCMPQZ256rmibk:
594
226
        NewOpc = X86_VPCMPQZ256rmibk_alt;
595
226
        break;
596
19
      case X86_VPCMPQZ256rmik:
597
19
        NewOpc = X86_VPCMPQZ256rmik_alt;
598
19
        break;
599
32
      case X86_VPCMPQZ256rri:
600
32
        NewOpc = X86_VPCMPQZ256rri_alt;
601
32
        break;
602
1
      case X86_VPCMPQZ256rrik:
603
1
        NewOpc = X86_VPCMPQZ256rrik_alt;
604
1
        break;
605
7
      case X86_VPCMPQZrmi:
606
7
        NewOpc = X86_VPCMPQZrmi_alt;
607
7
        break;
608
16
      case X86_VPCMPQZrmib:
609
16
        NewOpc = X86_VPCMPQZrmib_alt;
610
16
        break;
611
31
      case X86_VPCMPQZrmibk:
612
31
        NewOpc = X86_VPCMPQZrmibk_alt;
613
31
        break;
614
58
      case X86_VPCMPQZrmik:
615
58
        NewOpc = X86_VPCMPQZrmik_alt;
616
58
        break;
617
5
      case X86_VPCMPQZrri:
618
5
        NewOpc = X86_VPCMPQZrri_alt;
619
5
        break;
620
0
      case X86_VPCMPQZrrik:
621
0
        NewOpc = X86_VPCMPQZrrik_alt;
622
0
        break;
623
0
      case X86_VPCMPUBZ128rmi:
624
0
        NewOpc = X86_VPCMPUBZ128rmi_alt;
625
0
        break;
626
0
      case X86_VPCMPUBZ128rmik:
627
0
        NewOpc = X86_VPCMPUBZ128rmik_alt;
628
0
        break;
629
3
      case X86_VPCMPUBZ128rri:
630
3
        NewOpc = X86_VPCMPUBZ128rri_alt;
631
3
        break;
632
0
      case X86_VPCMPUBZ128rrik:
633
0
        NewOpc = X86_VPCMPUBZ128rrik_alt;
634
0
        break;
635
0
      case X86_VPCMPUBZ256rmi:
636
0
        NewOpc = X86_VPCMPUBZ256rmi_alt;
637
0
        break;
638
1
      case X86_VPCMPUBZ256rmik:
639
1
        NewOpc = X86_VPCMPUBZ256rmik_alt;
640
1
        break;
641
3
      case X86_VPCMPUBZ256rri:
642
3
        NewOpc = X86_VPCMPUBZ256rri_alt;
643
3
        break;
644
4
      case X86_VPCMPUBZ256rrik:
645
4
        NewOpc = X86_VPCMPUBZ256rrik_alt;
646
4
        break;
647
31
      case X86_VPCMPUBZrmi:
648
31
        NewOpc = X86_VPCMPUBZrmi_alt;
649
31
        break;
650
1
      case X86_VPCMPUBZrmik:
651
1
        NewOpc = X86_VPCMPUBZrmik_alt;
652
1
        break;
653
0
      case X86_VPCMPUBZrri:
654
0
        NewOpc = X86_VPCMPUBZrri_alt;
655
0
        break;
656
6
      case X86_VPCMPUBZrrik:
657
6
        NewOpc = X86_VPCMPUBZrrik_alt;
658
6
        break;
659
45
      case X86_VPCMPUDZ128rmi:
660
45
        NewOpc = X86_VPCMPUDZ128rmi_alt;
661
45
        break;
662
0
      case X86_VPCMPUDZ128rmib:
663
0
        NewOpc = X86_VPCMPUDZ128rmib_alt;
664
0
        break;
665
4
      case X86_VPCMPUDZ128rmibk:
666
4
        NewOpc = X86_VPCMPUDZ128rmibk_alt;
667
4
        break;
668
19
      case X86_VPCMPUDZ128rmik:
669
19
        NewOpc = X86_VPCMPUDZ128rmik_alt;
670
19
        break;
671
0
      case X86_VPCMPUDZ128rri:
672
0
        NewOpc = X86_VPCMPUDZ128rri_alt;
673
0
        break;
674
0
      case X86_VPCMPUDZ128rrik:
675
0
        NewOpc = X86_VPCMPUDZ128rrik_alt;
676
0
        break;
677
0
      case X86_VPCMPUDZ256rmi:
678
0
        NewOpc = X86_VPCMPUDZ256rmi_alt;
679
0
        break;
680
11
      case X86_VPCMPUDZ256rmib:
681
11
        NewOpc = X86_VPCMPUDZ256rmib_alt;
682
11
        break;
683
2
      case X86_VPCMPUDZ256rmibk:
684
2
        NewOpc = X86_VPCMPUDZ256rmibk_alt;
685
2
        break;
686
0
      case X86_VPCMPUDZ256rmik:
687
0
        NewOpc = X86_VPCMPUDZ256rmik_alt;
688
0
        break;
689
1
      case X86_VPCMPUDZ256rri:
690
1
        NewOpc = X86_VPCMPUDZ256rri_alt;
691
1
        break;
692
0
      case X86_VPCMPUDZ256rrik:
693
0
        NewOpc = X86_VPCMPUDZ256rrik_alt;
694
0
        break;
695
0
      case X86_VPCMPUDZrmi:
696
0
        NewOpc = X86_VPCMPUDZrmi_alt;
697
0
        break;
698
35
      case X86_VPCMPUDZrmib:
699
35
        NewOpc = X86_VPCMPUDZrmib_alt;
700
35
        break;
701
0
      case X86_VPCMPUDZrmibk:
702
0
        NewOpc = X86_VPCMPUDZrmibk_alt;
703
0
        break;
704
9
      case X86_VPCMPUDZrmik:
705
9
        NewOpc = X86_VPCMPUDZrmik_alt;
706
9
        break;
707
0
      case X86_VPCMPUDZrri:
708
0
        NewOpc = X86_VPCMPUDZrri_alt;
709
0
        break;
710
35
      case X86_VPCMPUDZrrik:
711
35
        NewOpc = X86_VPCMPUDZrrik_alt;
712
35
        break;
713
0
      case X86_VPCMPUQZ128rmi:
714
0
        NewOpc = X86_VPCMPUQZ128rmi_alt;
715
0
        break;
716
0
      case X86_VPCMPUQZ128rmib:
717
0
        NewOpc = X86_VPCMPUQZ128rmib_alt;
718
0
        break;
719
10
      case X86_VPCMPUQZ128rmibk:
720
10
        NewOpc = X86_VPCMPUQZ128rmibk_alt;
721
10
        break;
722
0
      case X86_VPCMPUQZ128rmik:
723
0
        NewOpc = X86_VPCMPUQZ128rmik_alt;
724
0
        break;
725
9
      case X86_VPCMPUQZ128rri:
726
9
        NewOpc = X86_VPCMPUQZ128rri_alt;
727
9
        break;
728
0
      case X86_VPCMPUQZ128rrik:
729
0
        NewOpc = X86_VPCMPUQZ128rrik_alt;
730
0
        break;
731
0
      case X86_VPCMPUQZ256rmi:
732
0
        NewOpc = X86_VPCMPUQZ256rmi_alt;
733
0
        break;
734
43
      case X86_VPCMPUQZ256rmib:
735
43
        NewOpc = X86_VPCMPUQZ256rmib_alt;
736
43
        break;
737
2
      case X86_VPCMPUQZ256rmibk:
738
2
        NewOpc = X86_VPCMPUQZ256rmibk_alt;
739
2
        break;
740
9
      case X86_VPCMPUQZ256rmik:
741
9
        NewOpc = X86_VPCMPUQZ256rmik_alt;
742
9
        break;
743
1
      case X86_VPCMPUQZ256rri:
744
1
        NewOpc = X86_VPCMPUQZ256rri_alt;
745
1
        break;
746
11
      case X86_VPCMPUQZ256rrik:
747
11
        NewOpc = X86_VPCMPUQZ256rrik_alt;
748
11
        break;
749
0
      case X86_VPCMPUQZrmi:
750
0
        NewOpc = X86_VPCMPUQZrmi_alt;
751
0
        break;
752
0
      case X86_VPCMPUQZrmib:
753
0
        NewOpc = X86_VPCMPUQZrmib_alt;
754
0
        break;
755
17
      case X86_VPCMPUQZrmibk:
756
17
        NewOpc = X86_VPCMPUQZrmibk_alt;
757
17
        break;
758
79
      case X86_VPCMPUQZrmik:
759
79
        NewOpc = X86_VPCMPUQZrmik_alt;
760
79
        break;
761
18
      case X86_VPCMPUQZrri:
762
18
        NewOpc = X86_VPCMPUQZrri_alt;
763
18
        break;
764
1
      case X86_VPCMPUQZrrik:
765
1
        NewOpc = X86_VPCMPUQZrrik_alt;
766
1
        break;
767
0
      case X86_VPCMPUWZ128rmi:
768
0
        NewOpc = X86_VPCMPUWZ128rmi_alt;
769
0
        break;
770
0
      case X86_VPCMPUWZ128rmik:
771
0
        NewOpc = X86_VPCMPUWZ128rmik_alt;
772
0
        break;
773
0
      case X86_VPCMPUWZ128rri:
774
0
        NewOpc = X86_VPCMPUWZ128rri_alt;
775
0
        break;
776
4
      case X86_VPCMPUWZ128rrik:
777
4
        NewOpc = X86_VPCMPUWZ128rrik_alt;
778
4
        break;
779
0
      case X86_VPCMPUWZ256rmi:
780
0
        NewOpc = X86_VPCMPUWZ256rmi_alt;
781
0
        break;
782
0
      case X86_VPCMPUWZ256rmik:
783
0
        NewOpc = X86_VPCMPUWZ256rmik_alt;
784
0
        break;
785
8
      case X86_VPCMPUWZ256rri:
786
8
        NewOpc = X86_VPCMPUWZ256rri_alt;
787
8
        break;
788
1
      case X86_VPCMPUWZ256rrik:
789
1
        NewOpc = X86_VPCMPUWZ256rrik_alt;
790
1
        break;
791
30
      case X86_VPCMPUWZrmi:
792
30
        NewOpc = X86_VPCMPUWZrmi_alt;
793
30
        break;
794
33
      case X86_VPCMPUWZrmik:
795
33
        NewOpc = X86_VPCMPUWZrmik_alt;
796
33
        break;
797
10
      case X86_VPCMPUWZrri:
798
10
        NewOpc = X86_VPCMPUWZrri_alt;
799
10
        break;
800
2
      case X86_VPCMPUWZrrik:
801
2
        NewOpc = X86_VPCMPUWZrrik_alt;
802
2
        break;
803
0
      case X86_VPCMPWZ128rmi:
804
0
        NewOpc = X86_VPCMPWZ128rmi_alt;
805
0
        break;
806
0
      case X86_VPCMPWZ128rmik:
807
0
        NewOpc = X86_VPCMPWZ128rmik_alt;
808
0
        break;
809
0
      case X86_VPCMPWZ128rri:
810
0
        NewOpc = X86_VPCMPWZ128rri_alt;
811
0
        break;
812
0
      case X86_VPCMPWZ128rrik:
813
0
        NewOpc = X86_VPCMPWZ128rrik_alt;
814
0
        break;
815
2
      case X86_VPCMPWZ256rmi:
816
2
        NewOpc = X86_VPCMPWZ256rmi_alt;
817
2
        break;
818
31
      case X86_VPCMPWZ256rmik:
819
31
        NewOpc = X86_VPCMPWZ256rmik_alt;
820
31
        break;
821
0
      case X86_VPCMPWZ256rri:
822
0
        NewOpc = X86_VPCMPWZ256rri_alt;
823
0
        break;
824
0
      case X86_VPCMPWZ256rrik:
825
0
        NewOpc = X86_VPCMPWZ256rrik_alt;
826
0
        break;
827
2
      case X86_VPCMPWZrmi:
828
2
        NewOpc = X86_VPCMPWZrmi_alt;
829
2
        break;
830
6
      case X86_VPCMPWZrmik:
831
6
        NewOpc = X86_VPCMPWZrmik_alt;
832
6
        break;
833
0
      case X86_VPCMPWZrri:
834
0
        NewOpc = X86_VPCMPWZrri_alt;
835
0
        break;
836
6
      case X86_VPCMPWZrrik:
837
6
        NewOpc = X86_VPCMPWZrrik_alt;
838
6
        break;
839
2.06k
      }
840
841
      // Switch opcode to the one that doesn't get special printing.
842
2.06k
      if (NewOpc != 0) {
843
2.06k
        MCInst_setOpcode(mcInst, NewOpc);
844
2.06k
      }
845
2.06k
    }
846
4.08k
#endif
847
4.08k
  }
848
849
65.3k
  switch (type) {
850
496
  case TYPE_XMM:
851
496
    MCOperand_CreateReg0(mcInst,
852
496
             X86_XMM0 + ((uint32_t)immediate >> 4));
853
496
    return;
854
485
  case TYPE_YMM:
855
485
    MCOperand_CreateReg0(mcInst,
856
485
             X86_YMM0 + ((uint32_t)immediate >> 4));
857
485
    return;
858
0
  case TYPE_ZMM:
859
0
    MCOperand_CreateReg0(mcInst,
860
0
             X86_ZMM0 + ((uint32_t)immediate >> 4));
861
0
    return;
862
64.3k
  default:
863
    // operand is 64 bits wide.  Do nothing.
864
64.3k
    break;
865
65.3k
  }
866
867
64.3k
  MCOperand_CreateImm0(mcInst, immediate);
868
869
64.3k
  if (type == TYPE_MOFFS) {
870
2.40k
    MCOperand_CreateReg0(mcInst,
871
2.40k
             segmentRegnums[insn->segmentOverride]);
872
2.40k
  }
873
64.3k
}
874
875
/// translateRMRegister - Translates a register stored in the R/M field of the
876
///   ModR/M byte to its LLVM equivalent and appends it to an MCInst.
877
/// @param mcInst       - The MCInst to append to.
878
/// @param insn         - The internal instruction to extract the R/M field
879
///                       from.
880
/// @return             - 0 on success; -1 otherwise
881
static bool translateRMRegister(MCInst *mcInst, InternalInstruction *insn)
882
46.6k
{
883
46.6k
  if (insn->eaBase == EA_BASE_sib || insn->eaBase == EA_BASE_sib64) {
884
    //debug("A R/M register operand may not have a SIB byte");
885
0
    return true;
886
0
  }
887
888
46.6k
  switch (insn->eaBase) {
889
0
  case EA_BASE_NONE:
890
    //debug("EA_BASE_NONE for ModR/M base");
891
0
    return true;
892
0
#define ENTRY(x) case EA_BASE_##x:
893
0
    ALL_EA_BASES
894
0
#undef ENTRY
895
    //debug("A R/M register operand may not have a base; "
896
    //      "the operand must be a register.");
897
0
    return true;
898
0
#define ENTRY(x) \
899
46.6k
  case EA_REG_##x: \
900
46.6k
    MCOperand_CreateReg0(mcInst, X86_##x); \
901
46.6k
    break;
902
0
    ALL_REGS
903
0
#undef ENTRY
904
0
  default:
905
    //debug("Unexpected EA base register");
906
0
    return true;
907
46.6k
  }
908
909
46.6k
  return false;
910
46.6k
}
911
912
/// translateRMMemory - Translates a memory operand stored in the Mod and R/M
913
///   fields of an internal instruction (and possibly its SIB byte) to a memory
914
///   operand in LLVM's format, and appends it to an MCInst.
915
///
916
/// @param mcInst       - The MCInst to append to.
917
/// @param insn         - The instruction to extract Mod, R/M, and SIB fields
918
///                       from.
919
/// @return             - 0 on success; nonzero otherwise
920
static bool translateRMMemory(MCInst *mcInst, InternalInstruction *insn)
921
95.2k
{
922
  // Addresses in an MCInst are represented as five operands:
923
  //   1. basereg       (register)  The R/M base, or (if there is a SIB) the
924
  //                                SIB base
925
  //   2. scaleamount   (immediate) 1, or (if there is a SIB) the specified
926
  //                                scale amount
927
  //   3. indexreg      (register)  x86_registerNONE, or (if there is a SIB)
928
  //                                the index (which is multiplied by the
929
  //                                scale amount)
930
  //   4. displacement  (immediate) 0, or the displacement if there is one
931
  //   5. segmentreg    (register)  x86_registerNONE for now, but could be set
932
  //                                if we have segment overrides
933
95.2k
  int scaleAmount, indexReg;
934
935
95.2k
  if (insn->eaBase == EA_BASE_sib || insn->eaBase == EA_BASE_sib64) {
936
6.40k
    if (insn->sibBase != SIB_BASE_NONE) {
937
6.13k
      switch (insn->sibBase) {
938
0
#define ENTRY(x) \
939
6.13k
  case SIB_BASE_##x: \
940
6.13k
    MCOperand_CreateReg0(mcInst, X86_##x); \
941
6.13k
    break;
942
0
        ALL_SIB_BASES
943
0
#undef ENTRY
944
0
      default:
945
        //debug("Unexpected sibBase");
946
0
        return true;
947
6.13k
      }
948
6.13k
    } else {
949
272
      MCOperand_CreateReg0(mcInst, 0);
950
272
    }
951
952
6.40k
    if (insn->sibIndex != SIB_INDEX_NONE) {
953
5.22k
      switch (insn->sibIndex) {
954
0
      default:
955
        //debug("Unexpected sibIndex");
956
0
        return true;
957
0
#define ENTRY(x) \
958
5.22k
  case SIB_INDEX_##x: \
959
5.22k
    indexReg = X86_##x; \
960
5.22k
    break;
961
0
        EA_BASES_32BIT
962
17
        EA_BASES_64BIT
963
36
        REGS_XMM
964
3
        REGS_YMM
965
5.22k
        REGS_ZMM
966
5.22k
#undef ENTRY
967
5.22k
      }
968
5.22k
    } else {
969
      // Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present,
970
      // but no index is used and modrm alone should have been enough.
971
      // -No base register in 32-bit mode. In 64-bit mode this is used to
972
      //  avoid rip-relative addressing.
973
      // -Any base register used other than ESP/RSP/R12D/R12. Using these as a
974
      //  base always requires a SIB byte.
975
      // -A scale other than 1 is used.
976
1.18k
      if (insn->sibScale != 1 ||
977
503
          (insn->sibBase == SIB_BASE_NONE &&
978
50
           insn->mode != MODE_64BIT) ||
979
499
          (insn->sibBase != SIB_BASE_NONE &&
980
453
           insn->sibBase != SIB_BASE_ESP &&
981
252
           insn->sibBase != SIB_BASE_RSP &&
982
194
           insn->sibBase != SIB_BASE_R12D &&
983
785
           insn->sibBase != SIB_BASE_R12)) {
984
785
        indexReg = insn->addressSize == 4 ? X86_EIZ :
985
785
                    X86_RIZ;
986
785
      } else
987
395
        indexReg = 0;
988
1.18k
    }
989
990
6.40k
    scaleAmount = insn->sibScale;
991
88.8k
  } else {
992
88.8k
    switch (insn->eaBase) {
993
1.74k
    case EA_BASE_NONE:
994
1.74k
      if (insn->eaDisplacement == EA_DISP_NONE) {
995
        //debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
996
0
        return true;
997
0
      }
998
1.74k
      if (insn->mode == MODE_64BIT) {
999
340
        if (insn->prefix3 ==
1000
340
            0x67) // address-size prefix overrides RIP relative addressing
1001
9
          MCOperand_CreateReg0(mcInst, X86_EIP);
1002
331
        else
1003
          // Section 2.2.1.6
1004
331
          MCOperand_CreateReg0(
1005
331
            mcInst, insn->addressSize == 4 ?
1006
0
                X86_EIP :
1007
331
                X86_RIP);
1008
1.40k
      } else {
1009
1.40k
        MCOperand_CreateReg0(mcInst, 0);
1010
1.40k
      }
1011
1012
1.74k
      indexReg = 0;
1013
1.74k
      break;
1014
10.9k
    case EA_BASE_BX_SI:
1015
10.9k
      MCOperand_CreateReg0(mcInst, X86_BX);
1016
10.9k
      indexReg = X86_SI;
1017
10.9k
      break;
1018
4.59k
    case EA_BASE_BX_DI:
1019
4.59k
      MCOperand_CreateReg0(mcInst, X86_BX);
1020
4.59k
      indexReg = X86_DI;
1021
4.59k
      break;
1022
3.15k
    case EA_BASE_BP_SI:
1023
3.15k
      MCOperand_CreateReg0(mcInst, X86_BP);
1024
3.15k
      indexReg = X86_SI;
1025
3.15k
      break;
1026
2.57k
    case EA_BASE_BP_DI:
1027
2.57k
      MCOperand_CreateReg0(mcInst, X86_BP);
1028
2.57k
      indexReg = X86_DI;
1029
2.57k
      break;
1030
65.7k
    default:
1031
65.7k
      indexReg = 0;
1032
65.7k
      switch (insn->eaBase) {
1033
0
      default:
1034
        //debug("Unexpected eaBase");
1035
0
        return true;
1036
        // Here, we will use the fill-ins defined above.  However,
1037
        //   BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
1038
        //   sib and sib64 were handled in the top-level if, so they're only
1039
        //   placeholders to keep the compiler happy.
1040
0
#define ENTRY(x) \
1041
65.7k
  case EA_BASE_##x: \
1042
65.7k
    MCOperand_CreateReg0(mcInst, X86_##x); \
1043
65.7k
    break;
1044
0
        ALL_EA_BASES
1045
0
#undef ENTRY
1046
1.36k
#define ENTRY(x) case EA_REG_##x:
1047
454
        ALL_REGS
1048
0
#undef ENTRY
1049
        //debug("A R/M memory operand may not be a register; "
1050
        //      "the base field must be a base.");
1051
0
        return true;
1052
65.7k
      }
1053
88.8k
    }
1054
1055
88.8k
    scaleAmount = 1;
1056
88.8k
  }
1057
1058
95.2k
  MCOperand_CreateImm0(mcInst, scaleAmount);
1059
95.2k
  MCOperand_CreateReg0(mcInst, indexReg);
1060
95.2k
  MCOperand_CreateImm0(mcInst, insn->displacement);
1061
1062
95.2k
  MCOperand_CreateReg0(mcInst, segmentRegnums[insn->segmentOverride]);
1063
1064
95.2k
  return false;
1065
95.2k
}
1066
1067
/// translateRM - Translates an operand stored in the R/M (and possibly SIB)
1068
///   byte of an instruction to LLVM form, and appends it to an MCInst.
1069
///
1070
/// @param mcInst       - The MCInst to append to.
1071
/// @param operand      - The operand, as stored in the descriptor table.
1072
/// @param insn         - The instruction to extract Mod, R/M, and SIB fields
1073
///                       from.
1074
/// @return             - 0 on success; nonzero otherwise
1075
static bool translateRM(MCInst *mcInst, const OperandSpecifier *operand,
1076
      InternalInstruction *insn)
1077
141k
{
1078
141k
  switch (operand->type) {
1079
0
  default:
1080
    //debug("Unexpected type for a R/M operand");
1081
0
    return true;
1082
14.7k
  case TYPE_R8:
1083
14.9k
  case TYPE_R16:
1084
15.0k
  case TYPE_R32:
1085
16.9k
  case TYPE_R64:
1086
32.1k
  case TYPE_Rv:
1087
32.4k
  case TYPE_MM64:
1088
38.8k
  case TYPE_XMM:
1089
42.1k
  case TYPE_YMM:
1090
45.1k
  case TYPE_ZMM:
1091
46.2k
  case TYPE_VK:
1092
46.2k
  case TYPE_DEBUGREG:
1093
46.2k
  case TYPE_CONTROLREG:
1094
46.6k
  case TYPE_BNDR:
1095
46.6k
    return translateRMRegister(mcInst, insn);
1096
94.0k
  case TYPE_M:
1097
94.7k
  case TYPE_MVSIBX:
1098
94.9k
  case TYPE_MVSIBY:
1099
95.2k
  case TYPE_MVSIBZ:
1100
95.2k
    return translateRMMemory(mcInst, insn);
1101
141k
  }
1102
141k
}
1103
1104
/// translateFPRegister - Translates a stack position on the FPU stack to its
1105
///   LLVM form, and appends it to an MCInst.
1106
///
1107
/// @param mcInst       - The MCInst to append to.
1108
/// @param stackPos     - The stack position to translate.
1109
static void translateFPRegister(MCInst *mcInst, uint8_t stackPos)
1110
1.44k
{
1111
1.44k
  MCOperand_CreateReg0(mcInst, X86_ST0 + stackPos);
1112
1.44k
}
1113
1114
/// translateMaskRegister - Translates a 3-bit mask register number to
1115
///   LLVM form, and appends it to an MCInst.
1116
///
1117
/// @param mcInst       - The MCInst to append to.
1118
/// @param maskRegNum   - Number of mask register from 0 to 7.
1119
/// @return             - false on success; true otherwise.
1120
static bool translateMaskRegister(MCInst *mcInst, uint8_t maskRegNum)
1121
13.0k
{
1122
13.0k
  if (maskRegNum >= 8) {
1123
    // debug("Invalid mask register number");
1124
0
    return true;
1125
0
  }
1126
1127
13.0k
  MCOperand_CreateReg0(mcInst, X86_K0 + maskRegNum);
1128
1129
13.0k
  return false;
1130
13.0k
}
1131
1132
/// translateOperand - Translates an operand stored in an internal instruction
1133
///   to LLVM's format and appends it to an MCInst.
1134
///
1135
/// @param mcInst       - The MCInst to append to.
1136
/// @param operand      - The operand, as stored in the descriptor table.
1137
/// @param insn         - The internal instruction.
1138
/// @return             - false on success; true otherwise.
1139
static bool translateOperand(MCInst *mcInst, const OperandSpecifier *operand,
1140
           InternalInstruction *insn)
1141
473k
{
1142
473k
  switch (operand->encoding) {
1143
119k
  case ENCODING_REG:
1144
119k
    translateRegister(mcInst, insn->reg);
1145
119k
    return false;
1146
13.0k
  case ENCODING_WRITEMASK:
1147
13.0k
    return translateMaskRegister(mcInst, insn->writemask);
1148
913k
CASE_ENCODING_RM:
1149
913k
CASE_ENCODING_VSIB:
1150
141k
    return translateRM(mcInst, operand, insn);
1151
50.6k
  case ENCODING_IB:
1152
52.6k
  case ENCODING_IW:
1153
53.8k
  case ENCODING_ID:
1154
54.0k
  case ENCODING_IO:
1155
62.9k
  case ENCODING_Iv:
1156
65.3k
  case ENCODING_Ia:
1157
65.3k
    translateImmediate(
1158
65.3k
      mcInst,
1159
65.3k
      insn->immediates[insn->numImmediatesTranslated++],
1160
65.3k
      operand, insn);
1161
65.3k
    return false;
1162
755
  case ENCODING_IRC:
1163
755
    MCOperand_CreateImm0(mcInst, insn->RC);
1164
755
    return false;
1165
10.5k
  case ENCODING_SI:
1166
10.5k
    return translateSrcIndex(mcInst, insn);
1167
13.6k
  case ENCODING_DI:
1168
13.6k
    return translateDstIndex(mcInst, insn);
1169
2.84k
  case ENCODING_RB:
1170
2.84k
  case ENCODING_RW:
1171
2.84k
  case ENCODING_RD:
1172
5.40k
  case ENCODING_RO:
1173
35.8k
  case ENCODING_Rv:
1174
35.8k
    translateRegister(mcInst, insn->opcodeRegister);
1175
35.8k
    return false;
1176
1.44k
  case ENCODING_FP:
1177
1.44k
    translateFPRegister(mcInst, insn->modRM & 7);
1178
1.44k
    return false;
1179
18.6k
  case ENCODING_VVVV:
1180
18.6k
    translateRegister(mcInst, insn->vvvv);
1181
18.6k
    return false;
1182
52.2k
  case ENCODING_DUP:
1183
52.2k
    return translateOperand(
1184
52.2k
      mcInst, &insn->operands[operand->type - TYPE_DUP0],
1185
52.2k
      insn);
1186
0
  default:
1187
    //debug("Unhandled operand encoding during translation");
1188
0
    return true;
1189
473k
  }
1190
473k
}
1191
1192
static bool translateInstruction(MCInst *mcInst, InternalInstruction *insn)
1193
231k
{
1194
231k
  int index;
1195
1196
231k
  if (!insn->spec) {
1197
    //debug("Instruction has no specification");
1198
0
    return true;
1199
0
  }
1200
1201
231k
  MCInst_clear(mcInst);
1202
231k
  MCInst_setOpcode(mcInst, insn->instructionID);
1203
1204
  // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
1205
  // prefix bytes should be disassembled as xrelease and xacquire then set the
1206
  // opcode to those instead of the rep and repne opcodes.
1207
231k
#ifndef CAPSTONE_X86_REDUCE
1208
231k
  if (insn->xAcquireRelease) {
1209
1.31k
    if (MCInst_getOpcode(mcInst) == X86_REP_PREFIX)
1210
0
      MCInst_setOpcode(mcInst, X86_XRELEASE_PREFIX);
1211
1.31k
    else if (MCInst_getOpcode(mcInst) == X86_REPNE_PREFIX)
1212
0
      MCInst_setOpcode(mcInst, X86_XACQUIRE_PREFIX);
1213
1.31k
  }
1214
231k
#endif
1215
1216
231k
  insn->numImmediatesTranslated = 0;
1217
1218
1.62M
  for (index = 0; index < X86_MAX_OPERANDS; ++index) {
1219
1.38M
    if (insn->operands[index].encoding != ENCODING_NONE) {
1220
421k
      if (translateOperand(mcInst, &insn->operands[index],
1221
421k
               insn)) {
1222
0
        return true;
1223
0
      }
1224
421k
    }
1225
1.38M
  }
1226
1227
231k
  return false;
1228
231k
}
1229
1230
static int reader(const struct reader_info *info, uint8_t *byte,
1231
      uint64_t address)
1232
1.09M
{
1233
1.09M
  if (address - info->offset >= info->size)
1234
    // out of buffer range
1235
1.37k
    return -1;
1236
1237
1.09M
  *byte = info->code[address - info->offset];
1238
1239
1.09M
  return 0;
1240
1.09M
}
1241
1242
// copy x86 detail information from internal structure to public structure
1243
static void update_pub_insn(cs_insn *pub, InternalInstruction *inter)
1244
231k
{
1245
231k
  if (inter->vectorExtensionType != 0) {
1246
24.7k
    memcpy(pub->detail->x86.opcode, inter->vectorExtensionPrefix,
1247
24.7k
           sizeof(pub->detail->x86.opcode));
1248
206k
  } else {
1249
206k
    if (inter->twoByteEscape) {
1250
12.8k
      if (inter->threeByteEscape) {
1251
0
        pub->detail->x86.opcode[0] =
1252
0
          inter->twoByteEscape;
1253
0
        pub->detail->x86.opcode[1] =
1254
0
          inter->threeByteEscape;
1255
0
        pub->detail->x86.opcode[2] = inter->opcode;
1256
12.8k
      } else {
1257
12.8k
        pub->detail->x86.opcode[0] =
1258
12.8k
          inter->twoByteEscape;
1259
12.8k
        pub->detail->x86.opcode[1] = inter->opcode;
1260
12.8k
      }
1261
193k
    } else {
1262
193k
      pub->detail->x86.opcode[0] = inter->opcode;
1263
193k
    }
1264
206k
  }
1265
1266
231k
  pub->detail->x86.rex = inter->rexPrefix;
1267
1268
231k
  pub->detail->x86.addr_size = inter->addressSize;
1269
1270
231k
  pub->detail->x86.modrm = inter->orgModRM;
1271
231k
  pub->detail->x86.encoding.modrm_offset = inter->modRMOffset;
1272
1273
231k
  pub->detail->x86.sib = inter->sib;
1274
231k
  pub->detail->x86.sib_index = x86_map_sib_index(inter->sibIndex);
1275
231k
  pub->detail->x86.sib_scale = inter->sibScale;
1276
231k
  pub->detail->x86.sib_base = x86_map_sib_base(inter->sibBase);
1277
1278
231k
  pub->detail->x86.disp = inter->displacement;
1279
231k
  if (inter->consumedDisplacement) {
1280
33.7k
    pub->detail->x86.encoding.disp_offset =
1281
33.7k
      inter->displacementOffset;
1282
33.7k
    pub->detail->x86.encoding.disp_size = inter->displacementSize;
1283
33.7k
  }
1284
1285
231k
  pub->detail->x86.encoding.imm_offset = inter->immediateOffset;
1286
231k
  if (pub->detail->x86.encoding.imm_size == 0 &&
1287
231k
      inter->immediateOffset != 0)
1288
60.9k
    pub->detail->x86.encoding.imm_size = inter->immediateSize;
1289
231k
}
1290
1291
void X86_init(MCRegisterInfo *MRI)
1292
4.26k
{
1293
  // InitMCRegisterInfo(), X86GenRegisterInfo.inc
1294
  // RI->InitMCRegisterInfo(X86RegDesc, 277,
1295
  //                        RA, PC,
1296
  //                        X86MCRegisterClasses, 86,
1297
  //                        X86RegUnitRoots, 162, X86RegDiffLists, X86LaneMaskLists, X86RegStrings,
1298
  //                        X86RegClassStrings,
1299
  //                        X86SubRegIdxLists, 9,
1300
  //                        X86SubRegIdxRanges, X86RegEncodingTable);
1301
  /*
1302
     InitMCRegisterInfo(X86RegDesc, 234,
1303
     RA, PC,
1304
     X86MCRegisterClasses, 79,
1305
     X86RegUnitRoots, 119, X86RegDiffLists, X86RegStrings,
1306
     X86SubRegIdxLists, 7,
1307
     X86SubRegIdxRanges, X86RegEncodingTable);
1308
  */
1309
1310
4.26k
  MCRegisterInfo_InitMCRegisterInfo(MRI, X86RegDesc, 277, 0, 0,
1311
4.26k
            X86MCRegisterClasses, 86, 0, 0,
1312
4.26k
            X86RegDiffLists, 0, X86SubRegIdxLists,
1313
4.26k
            9, 0);
1314
4.26k
}
1315
1316
// Public interface for the disassembler
1317
bool X86_getInstruction(csh ud, const uint8_t *code, size_t code_len,
1318
      MCInst *instr, uint16_t *size, uint64_t address,
1319
      void *_info)
1320
233k
{
1321
233k
  cs_struct *handle = (cs_struct *)(uintptr_t)ud;
1322
233k
  InternalInstruction insn = { 0 };
1323
233k
  struct reader_info info;
1324
233k
  int ret;
1325
233k
  bool result;
1326
1327
233k
  info.code = code;
1328
233k
  info.size = code_len;
1329
233k
  info.offset = address;
1330
1331
233k
  if (instr->flat_insn->detail) {
1332
    // instr->flat_insn->detail initialization: 3 alternatives
1333
1334
    // 1. The whole structure, this is how it's done in other arch disassemblers
1335
    // Probably overkill since cs_detail is huge because of the 36 operands of ARM
1336
1337
    //memset(instr->flat_insn->detail, 0, sizeof(cs_detail));
1338
1339
    // 2. Only the part relevant to x86
1340
233k
    memset(instr->flat_insn->detail, 0,
1341
233k
           offsetof(cs_detail, x86) + sizeof(cs_x86));
1342
1343
    // 3. The relevant part except for x86.operands
1344
    // sizeof(cs_x86) is 0x1c0, sizeof(x86.operands) is 0x180
1345
    // marginally faster, should be okay since x86.op_count is set to 0
1346
1347
    //memset(instr->flat_insn->detail, 0, offsetof(cs_detail, x86)+offsetof(cs_x86, operands));
1348
233k
  }
1349
1350
233k
  if (handle->mode & CS_MODE_16)
1351
76.9k
    ret = decodeInstruction(&insn, reader, &info, address,
1352
76.9k
          MODE_16BIT);
1353
156k
  else if (handle->mode & CS_MODE_32)
1354
78.2k
    ret = decodeInstruction(&insn, reader, &info, address,
1355
78.2k
          MODE_32BIT);
1356
78.1k
  else
1357
78.1k
    ret = decodeInstruction(&insn, reader, &info, address,
1358
78.1k
          MODE_64BIT);
1359
1360
233k
  if (ret) {
1361
    // *size = (uint16_t)(insn.readerCursor - address);
1362
1.70k
    return false;
1363
231k
  } else {
1364
231k
    *size = (uint16_t)insn.length;
1365
1366
231k
    result = (!translateInstruction(instr, &insn)) ? true : false;
1367
231k
    if (result) {
1368
231k
      unsigned Flags = X86_IP_NO_PREFIX;
1369
231k
      instr->imm_size = insn.immSize;
1370
1371
      // copy all prefixes
1372
231k
      instr->x86_prefix[0] = insn.prefix0;
1373
231k
      instr->x86_prefix[1] = insn.prefix1;
1374
231k
      instr->x86_prefix[2] = insn.prefix2;
1375
231k
      instr->x86_prefix[3] = insn.prefix3;
1376
231k
      instr->xAcquireRelease = insn.xAcquireRelease;
1377
1378
231k
      if (handle->detail_opt) {
1379
231k
        update_pub_insn(instr->flat_insn, &insn);
1380
231k
      }
1381
1382
231k
      if (insn.hasAdSize)
1383
1.92k
        Flags |= X86_IP_HAS_AD_SIZE;
1384
1385
231k
      if (!insn.mandatoryPrefix) {
1386
227k
        if (insn.hasOpSize)
1387
4.68k
          Flags |= X86_IP_HAS_OP_SIZE;
1388
1389
227k
        if (insn.repeatPrefix == 0xf2)
1390
6.28k
          Flags |= X86_IP_HAS_REPEAT_NE;
1391
221k
        else if (insn.repeatPrefix == 0xf3 &&
1392
           // It should not be 'pause' f3 90
1393
7.46k
           insn.opcode != 0x90)
1394
7.43k
          Flags |= X86_IP_HAS_REPEAT;
1395
227k
        if (insn.hasLockPrefix)
1396
10.3k
          Flags |= X86_IP_HAS_LOCK;
1397
227k
      }
1398
1399
231k
      instr->flags = Flags;
1400
231k
    }
1401
1402
231k
    return result;
1403
231k
  }
1404
233k
}
1405
1406
#endif