/src/capstonenext/arch/X86/X86DisassemblerDecoder.c
Line | Count | Source |
1 | | /*===-- X86DisassemblerDecoder.c - Disassembler decoder ------------*- C -*-===* |
2 | | * |
3 | | * The LLVM Compiler Infrastructure |
4 | | * |
5 | | * This file is distributed under the University of Illinois Open Source |
6 | | * License. See LICENSE.TXT for details. |
7 | | * |
8 | | *===----------------------------------------------------------------------===* |
9 | | * |
10 | | * This file is part of the X86 Disassembler. |
11 | | * It contains the implementation of the instruction decoder. |
12 | | * Documentation for the disassembler can be found in X86Disassembler.h. |
13 | | * |
14 | | *===----------------------------------------------------------------------===*/ |
15 | | |
16 | | /* Capstone Disassembly Engine */ |
17 | | /* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013-2019 */ |
18 | | |
19 | | #ifdef CAPSTONE_HAS_X86 |
20 | | |
21 | | #include <stdarg.h> /* for va_*() */ |
22 | | #if defined(CAPSTONE_HAS_OSXKERNEL) |
23 | | #include <libkern/libkern.h> |
24 | | #else |
25 | | #include <stdlib.h> /* for exit() */ |
26 | | #endif |
27 | | |
28 | | #include <string.h> |
29 | | |
30 | | #include "../../cs_priv.h" |
31 | | #include "../../utils.h" |
32 | | |
33 | | #include "X86DisassemblerDecoder.h" |
34 | | #include "X86Mapping.h" |
35 | | |
36 | | /// Specifies whether a ModR/M byte is needed and (if so) which |
37 | | /// instruction each possible value of the ModR/M byte corresponds to. Once |
38 | | /// this information is known, we have narrowed down to a single instruction. |
39 | | struct ModRMDecision { |
40 | | uint8_t modrm_type; |
41 | | uint16_t instructionIDs; |
42 | | }; |
43 | | |
44 | | /// Specifies which set of ModR/M->instruction tables to look at |
45 | | /// given a particular opcode. |
46 | | struct OpcodeDecision { |
47 | | struct ModRMDecision modRMDecisions[256]; |
48 | | }; |
49 | | |
50 | | /// Specifies which opcode->instruction tables to look at given |
51 | | /// a particular context (set of attributes). Since there are many possible |
52 | | /// contexts, the decoder first uses CONTEXTS_SYM to determine which context |
53 | | /// applies given a specific set of attributes. Hence there are only IC_max |
54 | | /// entries in this table, rather than 2^(ATTR_max). |
55 | | struct ContextDecision { |
56 | | struct OpcodeDecision opcodeDecisions[IC_max]; |
57 | | }; |
58 | | |
59 | | #ifdef CAPSTONE_X86_REDUCE |
60 | | #include "X86GenDisassemblerTables_reduce.inc" |
61 | | #include "X86GenDisassemblerTables_reduce2.inc" |
62 | | #include "X86Lookup16_reduce.inc" |
63 | | #else |
64 | | #include "X86GenDisassemblerTables.inc" |
65 | | #include "X86GenDisassemblerTables2.inc" |
66 | | #include "X86Lookup16.inc" |
67 | | #endif |
68 | | |
69 | | /* |
70 | | * contextForAttrs - Client for the instruction context table. Takes a set of |
71 | | * attributes and returns the appropriate decode context. |
72 | | * |
73 | | * @param attrMask - Attributes, from the enumeration attributeBits. |
74 | | * @return - The InstructionContext to use when looking up an |
75 | | * an instruction with these attributes. |
76 | | */ |
77 | | static InstructionContext contextForAttrs(uint16_t attrMask) |
78 | 319k | { |
79 | 319k | return CONTEXTS_SYM[attrMask]; |
80 | 319k | } |
81 | | |
82 | | /* |
83 | | * modRMRequired - Reads the appropriate instruction table to determine whether |
84 | | * the ModR/M byte is required to decode a particular instruction. |
85 | | * |
86 | | * @param type - The opcode type (i.e., how many bytes it has). |
87 | | * @param insnContext - The context for the instruction, as returned by |
88 | | * contextForAttrs. |
89 | | * @param opcode - The last byte of the instruction's opcode, not counting |
90 | | * ModR/M extensions and escapes. |
91 | | * @return - true if the ModR/M byte is required, false otherwise. |
92 | | */ |
93 | | static int modRMRequired(OpcodeType type, InstructionContext insnContext, |
94 | | uint16_t opcode) |
95 | 319k | { |
96 | 319k | const struct OpcodeDecision *decision = NULL; |
97 | 319k | const uint8_t *indextable = NULL; |
98 | 319k | unsigned int index; |
99 | | |
100 | 319k | switch (type) { |
101 | 0 | default: |
102 | 0 | break; |
103 | 259k | case ONEBYTE: |
104 | 259k | decision = ONEBYTE_SYM; |
105 | 259k | indextable = index_x86DisassemblerOneByteOpcodes; |
106 | 259k | break; |
107 | 28.7k | case TWOBYTE: |
108 | 28.7k | decision = TWOBYTE_SYM; |
109 | 28.7k | indextable = index_x86DisassemblerTwoByteOpcodes; |
110 | 28.7k | break; |
111 | 9.51k | case THREEBYTE_38: |
112 | 9.51k | decision = THREEBYTE38_SYM; |
113 | 9.51k | indextable = index_x86DisassemblerThreeByte38Opcodes; |
114 | 9.51k | break; |
115 | 16.7k | case THREEBYTE_3A: |
116 | 16.7k | decision = THREEBYTE3A_SYM; |
117 | 16.7k | indextable = index_x86DisassemblerThreeByte3AOpcodes; |
118 | 16.7k | break; |
119 | 0 | #ifndef CAPSTONE_X86_REDUCE |
120 | 4.33k | case XOP8_MAP: |
121 | 4.33k | decision = XOP8_MAP_SYM; |
122 | 4.33k | indextable = index_x86DisassemblerXOP8Opcodes; |
123 | 4.33k | break; |
124 | 631 | case XOP9_MAP: |
125 | 631 | decision = XOP9_MAP_SYM; |
126 | 631 | indextable = index_x86DisassemblerXOP9Opcodes; |
127 | 631 | break; |
128 | 100 | case XOPA_MAP: |
129 | 100 | decision = XOPA_MAP_SYM; |
130 | 100 | indextable = index_x86DisassemblerXOPAOpcodes; |
131 | 100 | break; |
132 | 336 | case THREEDNOW_MAP: |
133 | | // 3DNow instructions always have ModRM byte |
134 | 336 | return true; |
135 | 319k | #endif |
136 | 319k | } |
137 | | |
138 | | // return decision->opcodeDecisions[insnContext].modRMDecisions[opcode].modrm_type != MODRM_ONEENTRY; |
139 | 319k | index = indextable[insnContext]; |
140 | 319k | if (index) |
141 | 317k | return decision[index - 1].modRMDecisions[opcode].modrm_type != |
142 | 317k | MODRM_ONEENTRY; |
143 | 1.76k | else |
144 | 1.76k | return false; |
145 | 319k | } |
146 | | |
147 | | /* |
148 | | * decode - Reads the appropriate instruction table to obtain the unique ID of |
149 | | * an instruction. |
150 | | * |
151 | | * @param type - See modRMRequired(). |
152 | | * @param insnContext - See modRMRequired(). |
153 | | * @param opcode - See modRMRequired(). |
154 | | * @param modRM - The ModR/M byte if required, or any value if not. |
155 | | * @return - The UID of the instruction, or 0 on failure. |
156 | | */ |
157 | | static InstrUID decode(OpcodeType type, InstructionContext insnContext, |
158 | | uint8_t opcode, uint8_t modRM) |
159 | 318k | { |
160 | 318k | const struct ModRMDecision *dec = NULL; |
161 | 318k | unsigned int index; |
162 | 318k | static const struct OpcodeDecision emptyDecision = { 0 }; |
163 | | |
164 | 318k | switch (type) { |
165 | 0 | default: |
166 | 0 | break; // never reach |
167 | 258k | case ONEBYTE: |
168 | | // dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
169 | 258k | index = index_x86DisassemblerOneByteOpcodes[insnContext]; |
170 | 258k | if (index) |
171 | 258k | dec = &ONEBYTE_SYM[index - 1].modRMDecisions[opcode]; |
172 | 25 | else |
173 | 25 | dec = &emptyDecision.modRMDecisions[opcode]; |
174 | 258k | break; |
175 | 28.7k | case TWOBYTE: |
176 | | //dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
177 | 28.7k | index = index_x86DisassemblerTwoByteOpcodes[insnContext]; |
178 | 28.7k | if (index) |
179 | 28.3k | dec = &TWOBYTE_SYM[index - 1].modRMDecisions[opcode]; |
180 | 372 | else |
181 | 372 | dec = &emptyDecision.modRMDecisions[opcode]; |
182 | 28.7k | break; |
183 | 9.50k | case THREEBYTE_38: |
184 | | // dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
185 | 9.50k | index = index_x86DisassemblerThreeByte38Opcodes[insnContext]; |
186 | 9.50k | if (index) |
187 | 9.30k | dec = &THREEBYTE38_SYM[index - 1].modRMDecisions[opcode]; |
188 | 204 | else |
189 | 204 | dec = &emptyDecision.modRMDecisions[opcode]; |
190 | 9.50k | break; |
191 | 16.7k | case THREEBYTE_3A: |
192 | | //dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
193 | 16.7k | index = index_x86DisassemblerThreeByte3AOpcodes[insnContext]; |
194 | 16.7k | if (index) |
195 | 16.5k | dec = &THREEBYTE3A_SYM[index - 1].modRMDecisions[opcode]; |
196 | 121 | else |
197 | 121 | dec = &emptyDecision.modRMDecisions[opcode]; |
198 | 16.7k | break; |
199 | 0 | #ifndef CAPSTONE_X86_REDUCE |
200 | 4.33k | case XOP8_MAP: |
201 | | // dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
202 | 4.33k | index = index_x86DisassemblerXOP8Opcodes[insnContext]; |
203 | 4.33k | if (index) |
204 | 3.40k | dec = &XOP8_MAP_SYM[index - 1].modRMDecisions[opcode]; |
205 | 923 | else |
206 | 923 | dec = &emptyDecision.modRMDecisions[opcode]; |
207 | 4.33k | break; |
208 | 631 | case XOP9_MAP: |
209 | | // dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
210 | 631 | index = index_x86DisassemblerXOP9Opcodes[insnContext]; |
211 | 631 | if (index) |
212 | 537 | dec = &XOP9_MAP_SYM[index - 1].modRMDecisions[opcode]; |
213 | 94 | else |
214 | 94 | dec = &emptyDecision.modRMDecisions[opcode]; |
215 | 631 | break; |
216 | 100 | case XOPA_MAP: |
217 | | // dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
218 | 100 | index = index_x86DisassemblerXOPAOpcodes[insnContext]; |
219 | 100 | if (index) |
220 | 70 | dec = &XOPA_MAP_SYM[index - 1].modRMDecisions[opcode]; |
221 | 30 | else |
222 | 30 | dec = &emptyDecision.modRMDecisions[opcode]; |
223 | 100 | break; |
224 | 336 | case THREEDNOW_MAP: |
225 | | // dec = &THREEDNOW_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; |
226 | 336 | index = index_x86Disassembler3DNowOpcodes[insnContext]; |
227 | 336 | if (index) |
228 | 268 | dec = &THREEDNOW_MAP_SYM[index - 1] |
229 | 268 | .modRMDecisions[opcode]; |
230 | 68 | else |
231 | 68 | dec = &emptyDecision.modRMDecisions[opcode]; |
232 | 336 | break; |
233 | 318k | #endif |
234 | 318k | } |
235 | | |
236 | 318k | switch (dec->modrm_type) { |
237 | 0 | default: |
238 | | // debug("Corrupt table! Unknown modrm_type"); |
239 | 0 | return 0; |
240 | 144k | case MODRM_ONEENTRY: |
241 | 144k | return modRMTable[dec->instructionIDs]; |
242 | 133k | case MODRM_SPLITRM: |
243 | 133k | if (modFromModRM(modRM) == 0x3) |
244 | 31.9k | return modRMTable[dec->instructionIDs + 1]; |
245 | 101k | return modRMTable[dec->instructionIDs]; |
246 | 34.4k | case MODRM_SPLITREG: |
247 | 34.4k | if (modFromModRM(modRM) == 0x3) |
248 | 9.83k | return modRMTable[dec->instructionIDs + |
249 | 9.83k | ((modRM & 0x38) >> 3) + 8]; |
250 | 24.5k | return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)]; |
251 | 6.35k | case MODRM_SPLITMISC: |
252 | 6.35k | if (modFromModRM(modRM) == 0x3) |
253 | 1.72k | return modRMTable[dec->instructionIDs + (modRM & 0x3f) + |
254 | 1.72k | 8]; |
255 | 4.63k | return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)]; |
256 | 0 | case MODRM_FULL: |
257 | 0 | return modRMTable[dec->instructionIDs + modRM]; |
258 | 318k | } |
259 | 318k | } |
260 | | |
261 | | /* |
262 | | * specifierForUID - Given a UID, returns the name and operand specification for |
263 | | * that instruction. |
264 | | * |
265 | | * @param uid - The unique ID for the instruction. This should be returned by |
266 | | * decode(); specifierForUID will not check bounds. |
267 | | * @return - A pointer to the specification for that instruction. |
268 | | */ |
269 | | static const struct InstructionSpecifier *specifierForUID(InstrUID uid) |
270 | 267k | { |
271 | 267k | return &INSTRUCTIONS_SYM[uid]; |
272 | 267k | } |
273 | | |
274 | | /* |
275 | | * consumeByte - Uses the reader function provided by the user to consume one |
276 | | * byte from the instruction's memory and advance the cursor. |
277 | | * |
278 | | * @param insn - The instruction with the reader function to use. The cursor |
279 | | * for this instruction is advanced. |
280 | | * @param byte - A pointer to a pre-allocated memory buffer to be populated |
281 | | * with the data read. |
282 | | * @return - 0 if the read was successful; nonzero otherwise. |
283 | | */ |
284 | | static int consumeByte(struct InternalInstruction *insn, uint8_t *byte) |
285 | 886k | { |
286 | 886k | int ret = insn->reader(insn->readerArg, byte, insn->readerCursor); |
287 | | |
288 | 886k | if (!ret) |
289 | 885k | ++(insn->readerCursor); |
290 | | |
291 | 886k | return ret; |
292 | 886k | } |
293 | | |
294 | | /* |
295 | | * lookAtByte - Like consumeByte, but does not advance the cursor. |
296 | | * |
297 | | * @param insn - See consumeByte(). |
298 | | * @param byte - See consumeByte(). |
299 | | * @return - See consumeByte(). |
300 | | */ |
301 | | static int lookAtByte(struct InternalInstruction *insn, uint8_t *byte) |
302 | 108k | { |
303 | 108k | return insn->reader(insn->readerArg, byte, insn->readerCursor); |
304 | 108k | } |
305 | | |
306 | | static void unconsumeByte(struct InternalInstruction *insn) |
307 | 294k | { |
308 | 294k | insn->readerCursor--; |
309 | 294k | } |
310 | | |
311 | | #define CONSUME_FUNC(name, type) \ |
312 | | static int name(struct InternalInstruction *insn, type *ptr) \ |
313 | 46.4k | { \ |
314 | 46.4k | type combined = 0; \ |
315 | 46.4k | unsigned offset; \ |
316 | 144k | for (offset = 0; offset < sizeof(type); ++offset) { \ |
317 | 98.2k | uint8_t byte; \ |
318 | 98.2k | int ret = insn->reader(insn->readerArg, &byte, \ |
319 | 98.2k | insn->readerCursor + offset); \ |
320 | 98.2k | if (ret) \ |
321 | 98.2k | return ret; \ |
322 | 98.2k | combined = combined | \ |
323 | 97.8k | ((uint64_t)byte << (offset * 8)); \ |
324 | 97.8k | } \ |
325 | 46.4k | *ptr = combined; \ |
326 | 46.0k | insn->readerCursor += sizeof(type); \ |
327 | 46.0k | return 0; \ |
328 | 46.4k | } X86DisassemblerDecoder.c:consumeInt8 Line | Count | Source | 313 | 22.0k | { \ | 314 | 22.0k | type combined = 0; \ | 315 | 22.0k | unsigned offset; \ | 316 | 43.9k | for (offset = 0; offset < sizeof(type); ++offset) { \ | 317 | 22.0k | uint8_t byte; \ | 318 | 22.0k | int ret = insn->reader(insn->readerArg, &byte, \ | 319 | 22.0k | insn->readerCursor + offset); \ | 320 | 22.0k | if (ret) \ | 321 | 22.0k | return ret; \ | 322 | 22.0k | combined = combined | \ | 323 | 21.9k | ((uint64_t)byte << (offset * 8)); \ | 324 | 21.9k | } \ | 325 | 22.0k | *ptr = combined; \ | 326 | 21.9k | insn->readerCursor += sizeof(type); \ | 327 | 21.9k | return 0; \ | 328 | 22.0k | } |
X86DisassemblerDecoder.c:consumeInt16 Line | Count | Source | 313 | 4.49k | { \ | 314 | 4.49k | type combined = 0; \ | 315 | 4.49k | unsigned offset; \ | 316 | 13.4k | for (offset = 0; offset < sizeof(type); ++offset) { \ | 317 | 8.98k | uint8_t byte; \ | 318 | 8.98k | int ret = insn->reader(insn->readerArg, &byte, \ | 319 | 8.98k | insn->readerCursor + offset); \ | 320 | 8.98k | if (ret) \ | 321 | 8.98k | return ret; \ | 322 | 8.98k | combined = combined | \ | 323 | 8.96k | ((uint64_t)byte << (offset * 8)); \ | 324 | 8.96k | } \ | 325 | 4.49k | *ptr = combined; \ | 326 | 4.47k | insn->readerCursor += sizeof(type); \ | 327 | 4.47k | return 0; \ | 328 | 4.49k | } |
X86DisassemblerDecoder.c:consumeInt32 Line | Count | Source | 313 | 5.04k | { \ | 314 | 5.04k | type combined = 0; \ | 315 | 5.04k | unsigned offset; \ | 316 | 24.9k | for (offset = 0; offset < sizeof(type); ++offset) { \ | 317 | 20.0k | uint8_t byte; \ | 318 | 20.0k | int ret = insn->reader(insn->readerArg, &byte, \ | 319 | 20.0k | insn->readerCursor + offset); \ | 320 | 20.0k | if (ret) \ | 321 | 20.0k | return ret; \ | 322 | 20.0k | combined = combined | \ | 323 | 19.9k | ((uint64_t)byte << (offset * 8)); \ | 324 | 19.9k | } \ | 325 | 5.04k | *ptr = combined; \ | 326 | 4.95k | insn->readerCursor += sizeof(type); \ | 327 | 4.95k | return 0; \ | 328 | 5.04k | } |
X86DisassemblerDecoder.c:consumeUInt16 Line | Count | Source | 313 | 7.93k | { \ | 314 | 7.93k | type combined = 0; \ | 315 | 7.93k | unsigned offset; \ | 316 | 23.6k | for (offset = 0; offset < sizeof(type); ++offset) { \ | 317 | 15.8k | uint8_t byte; \ | 318 | 15.8k | int ret = insn->reader(insn->readerArg, &byte, \ | 319 | 15.8k | insn->readerCursor + offset); \ | 320 | 15.8k | if (ret) \ | 321 | 15.8k | return ret; \ | 322 | 15.8k | combined = combined | \ | 323 | 15.7k | ((uint64_t)byte << (offset * 8)); \ | 324 | 15.7k | } \ | 325 | 7.93k | *ptr = combined; \ | 326 | 7.86k | insn->readerCursor += sizeof(type); \ | 327 | 7.86k | return 0; \ | 328 | 7.93k | } |
X86DisassemblerDecoder.c:consumeUInt32 Line | Count | Source | 313 | 5.96k | { \ | 314 | 5.96k | type combined = 0; \ | 315 | 5.96k | unsigned offset; \ | 316 | 29.4k | for (offset = 0; offset < sizeof(type); ++offset) { \ | 317 | 23.6k | uint8_t byte; \ | 318 | 23.6k | int ret = insn->reader(insn->readerArg, &byte, \ | 319 | 23.6k | insn->readerCursor + offset); \ | 320 | 23.6k | if (ret) \ | 321 | 23.6k | return ret; \ | 322 | 23.6k | combined = combined | \ | 323 | 23.5k | ((uint64_t)byte << (offset * 8)); \ | 324 | 23.5k | } \ | 325 | 5.96k | *ptr = combined; \ | 326 | 5.85k | insn->readerCursor += sizeof(type); \ | 327 | 5.85k | return 0; \ | 328 | 5.96k | } |
X86DisassemblerDecoder.c:consumeUInt64 Line | Count | Source | 313 | 986 | { \ | 314 | 986 | type combined = 0; \ | 315 | 986 | unsigned offset; \ | 316 | 8.76k | for (offset = 0; offset < sizeof(type); ++offset) { \ | 317 | 7.79k | uint8_t byte; \ | 318 | 7.79k | int ret = insn->reader(insn->readerArg, &byte, \ | 319 | 7.79k | insn->readerCursor + offset); \ | 320 | 7.79k | if (ret) \ | 321 | 7.79k | return ret; \ | 322 | 7.79k | combined = combined | \ | 323 | 7.77k | ((uint64_t)byte << (offset * 8)); \ | 324 | 7.77k | } \ | 325 | 986 | *ptr = combined; \ | 326 | 963 | insn->readerCursor += sizeof(type); \ | 327 | 963 | return 0; \ | 328 | 986 | } |
|
329 | | |
330 | | /* |
331 | | * consume* - Use the reader function provided by the user to consume data |
332 | | * values of various sizes from the instruction's memory and advance the |
333 | | * cursor appropriately. These readers perform endian conversion. |
334 | | * |
335 | | * @param insn - See consumeByte(). |
336 | | * @param ptr - A pointer to a pre-allocated memory of appropriate size to |
337 | | * be populated with the data read. |
338 | | * @return - See consumeByte(). |
339 | | */ |
340 | | CONSUME_FUNC(consumeInt8, int8_t) |
341 | | CONSUME_FUNC(consumeInt16, int16_t) |
342 | | CONSUME_FUNC(consumeInt32, int32_t) |
343 | | CONSUME_FUNC(consumeUInt16, uint16_t) |
344 | | CONSUME_FUNC(consumeUInt32, uint32_t) |
345 | | CONSUME_FUNC(consumeUInt64, uint64_t) |
346 | | |
347 | | static bool isREX(struct InternalInstruction *insn, uint8_t prefix) |
348 | 246k | { |
349 | 246k | if (insn->mode == MODE_64BIT) |
350 | 84.4k | return prefix >= 0x40 && prefix <= 0x4f; |
351 | | |
352 | 162k | return false; |
353 | 246k | } |
354 | | |
355 | | /* |
356 | | * setPrefixPresent - Marks that a particular prefix is present as mandatory |
357 | | * |
358 | | * @param insn - The instruction to be marked as having the prefix. |
359 | | * @param prefix - The prefix that is present. |
360 | | */ |
361 | | static void setPrefixPresent(struct InternalInstruction *insn, uint8_t prefix) |
362 | 51.0k | { |
363 | 51.0k | uint8_t nextByte; |
364 | | |
365 | 51.0k | switch (prefix) { |
366 | 11.7k | case 0xf0: // LOCK |
367 | 11.7k | insn->hasLockPrefix = true; |
368 | 11.7k | insn->repeatPrefix = 0; |
369 | 11.7k | break; |
370 | | |
371 | 9.52k | case 0xf2: // REPNE/REPNZ |
372 | 21.0k | case 0xf3: // REP or REPE/REPZ |
373 | 21.0k | if (lookAtByte(insn, &nextByte)) |
374 | 19 | break; |
375 | | // TODO: |
376 | | // 1. There could be several 0x66 |
377 | | // 2. if (nextByte == 0x66) and nextNextByte != 0x0f then |
378 | | // it's not mandatory prefix |
379 | | // 3. if (nextByte >= 0x40 && nextByte <= 0x4f) it's REX and we need |
380 | | // 0x0f exactly after it to be mandatory prefix |
381 | 21.0k | if (isREX(insn, nextByte) || nextByte == 0x0f || |
382 | 15.8k | nextByte == 0x66) |
383 | | // The last of 0xf2 /0xf3 is mandatory prefix |
384 | 5.58k | insn->mandatoryPrefix = prefix; |
385 | | |
386 | 21.0k | insn->repeatPrefix = prefix; |
387 | 21.0k | insn->hasLockPrefix = false; |
388 | 21.0k | break; |
389 | | |
390 | 6.21k | case 0x66: |
391 | 6.21k | if (lookAtByte(insn, &nextByte)) |
392 | 18 | break; |
393 | | // 0x66 can't overwrite existing mandatory prefix and should be ignored |
394 | 6.20k | if (!insn->mandatoryPrefix && |
395 | 5.59k | (nextByte == 0x0f || isREX(insn, nextByte))) |
396 | 1.99k | insn->mandatoryPrefix = prefix; |
397 | 6.20k | break; |
398 | 51.0k | } |
399 | 51.0k | } |
400 | | |
401 | | /* |
402 | | * readPrefixes - Consumes all of an instruction's prefix bytes, and marks the |
403 | | * instruction as having them. Also sets the instruction's default operand, |
404 | | * address, and other relevant data sizes to report operands correctly. |
405 | | * |
406 | | * @param insn - The instruction whose prefixes are to be read. |
407 | | * @return - 0 if the instruction could be read until the end of the prefix |
408 | | * bytes, and no prefixes conflicted; nonzero otherwise. |
409 | | */ |
410 | | static int readPrefixes(struct InternalInstruction *insn) |
411 | 233k | { |
412 | 233k | bool isPrefix = true; |
413 | 233k | uint8_t byte = 0; |
414 | 233k | uint8_t nextByte; |
415 | | |
416 | 517k | while (isPrefix) { |
417 | 284k | if (insn->mode == MODE_64BIT) { |
418 | | // eliminate consecutive redundant REX bytes in front |
419 | 98.5k | if (consumeByte(insn, &byte)) |
420 | 50 | return -1; |
421 | | |
422 | 98.5k | if ((byte & 0xf0) == 0x40) { |
423 | 20.2k | while (true) { |
424 | 20.2k | if (lookAtByte( |
425 | 20.2k | insn, |
426 | 20.2k | &byte)) // out of input code |
427 | 36 | return -1; |
428 | 20.1k | if ((byte & 0xf0) == 0x40) { |
429 | | // another REX prefix, but we only remember the last one |
430 | 3.36k | if (consumeByte(insn, &byte)) |
431 | 0 | return -1; |
432 | 3.36k | } else |
433 | 16.8k | break; |
434 | 20.1k | } |
435 | | |
436 | | // recover the last REX byte if next byte is not a legacy prefix |
437 | 16.8k | switch (byte) { |
438 | 242 | case 0xf2: /* REPNE/REPNZ */ |
439 | 1.21k | case 0xf3: /* REP or REPE/REPZ */ |
440 | 1.96k | case 0xf0: /* LOCK */ |
441 | 2.15k | case 0x2e: /* CS segment override -OR- Branch not taken */ |
442 | 2.17k | case 0x36: /* SS segment override -OR- Branch taken */ |
443 | 2.36k | case 0x3e: /* DS segment override */ |
444 | 2.37k | case 0x26: /* ES segment override */ |
445 | 2.58k | case 0x64: /* FS segment override */ |
446 | 2.61k | case 0x65: /* GS segment override */ |
447 | 2.84k | case 0x66: /* Operand-size override */ |
448 | 3.27k | case 0x67: /* Address-size override */ |
449 | 3.27k | break; |
450 | 13.5k | default: /* Not a prefix byte */ |
451 | 13.5k | unconsumeByte(insn); |
452 | 13.5k | break; |
453 | 16.8k | } |
454 | 81.6k | } else { |
455 | 81.6k | unconsumeByte(insn); |
456 | 81.6k | } |
457 | 98.5k | } |
458 | | |
459 | | /* If we fail reading prefixes, just stop here and let the opcode reader deal with it */ |
460 | 284k | if (consumeByte(insn, &byte)) |
461 | 75 | return -1; |
462 | | |
463 | 284k | if (insn->readerCursor - 1 == insn->startLocation && |
464 | 231k | (byte == 0xf2 || byte == 0xf3)) { |
465 | | // prefix requires next byte |
466 | 16.8k | if (lookAtByte(insn, &nextByte)) |
467 | 40 | return -1; |
468 | | |
469 | | /* |
470 | | * If the byte is 0xf2 or 0xf3, and any of the following conditions are |
471 | | * met: |
472 | | * - it is followed by a LOCK (0xf0) prefix |
473 | | * - it is followed by an xchg instruction |
474 | | * then it should be disassembled as a xacquire/xrelease not repne/rep. |
475 | | */ |
476 | 16.8k | if (((nextByte == 0xf0) || |
477 | 16.1k | ((nextByte & 0xfe) == 0x86 || |
478 | 15.7k | (nextByte & 0xf8) == 0x90))) { |
479 | 1.13k | insn->xAcquireRelease = byte; |
480 | 1.13k | } |
481 | | |
482 | | /* |
483 | | * Also if the byte is 0xf3, and the following condition is met: |
484 | | * - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or |
485 | | * "mov mem, imm" (opcode 0xc6/0xc7) instructions. |
486 | | * then it should be disassembled as an xrelease not rep. |
487 | | */ |
488 | 16.8k | if (byte == 0xf3 && |
489 | 9.25k | (nextByte == 0x88 || nextByte == 0x89 || |
490 | 9.08k | nextByte == 0xc6 || nextByte == 0xc7)) { |
491 | 188 | insn->xAcquireRelease = byte; |
492 | 188 | } |
493 | | |
494 | 16.8k | if (isREX(insn, nextByte)) { |
495 | 2.52k | uint8_t nnextByte; |
496 | | |
497 | | // Go to REX prefix after the current one |
498 | 2.52k | if (consumeByte(insn, &nnextByte)) |
499 | 0 | return -1; |
500 | | |
501 | | // We should be able to read next byte after REX prefix |
502 | 2.52k | if (lookAtByte(insn, &nnextByte)) |
503 | 1 | return -1; |
504 | | |
505 | 2.52k | unconsumeByte(insn); |
506 | 2.52k | } |
507 | 16.8k | } |
508 | | |
509 | 284k | switch (byte) { |
510 | 11.7k | case 0xf0: /* LOCK */ |
511 | 21.2k | case 0xf2: /* REPNE/REPNZ */ |
512 | 32.7k | case 0xf3: /* REP or REPE/REPZ */ |
513 | | // only accept the last prefix |
514 | 32.7k | setPrefixPresent(insn, byte); |
515 | 32.7k | insn->prefix0 = byte; |
516 | 32.7k | break; |
517 | | |
518 | 3.78k | case 0x2e: /* CS segment override -OR- Branch not taken */ |
519 | 4.38k | case 0x36: /* SS segment override -OR- Branch taken */ |
520 | 5.29k | case 0x3e: /* DS segment override */ |
521 | 6.65k | case 0x26: /* ES segment override */ |
522 | 7.90k | case 0x64: /* FS segment override */ |
523 | 9.26k | case 0x65: /* GS segment override */ |
524 | 9.26k | switch (byte) { |
525 | 3.78k | case 0x2e: |
526 | 3.78k | insn->segmentOverride = SEG_OVERRIDE_CS; |
527 | 3.78k | insn->prefix1 = byte; |
528 | 3.78k | break; |
529 | 599 | case 0x36: |
530 | 599 | insn->segmentOverride = SEG_OVERRIDE_SS; |
531 | 599 | insn->prefix1 = byte; |
532 | 599 | break; |
533 | 909 | case 0x3e: |
534 | 909 | insn->segmentOverride = SEG_OVERRIDE_DS; |
535 | 909 | insn->prefix1 = byte; |
536 | 909 | break; |
537 | 1.36k | case 0x26: |
538 | 1.36k | insn->segmentOverride = SEG_OVERRIDE_ES; |
539 | 1.36k | insn->prefix1 = byte; |
540 | 1.36k | break; |
541 | 1.25k | case 0x64: |
542 | 1.25k | insn->segmentOverride = SEG_OVERRIDE_FS; |
543 | 1.25k | insn->prefix1 = byte; |
544 | 1.25k | break; |
545 | 1.35k | case 0x65: |
546 | 1.35k | insn->segmentOverride = SEG_OVERRIDE_GS; |
547 | 1.35k | insn->prefix1 = byte; |
548 | 1.35k | break; |
549 | 0 | default: |
550 | | // debug("Unhandled override"); |
551 | 0 | return -1; |
552 | 9.26k | } |
553 | 9.26k | setPrefixPresent(insn, byte); |
554 | 9.26k | break; |
555 | | |
556 | 6.21k | case 0x66: /* Operand-size override */ |
557 | 6.21k | insn->hasOpSize = true; |
558 | 6.21k | setPrefixPresent(insn, byte); |
559 | 6.21k | insn->prefix2 = byte; |
560 | 6.21k | break; |
561 | | |
562 | 2.73k | case 0x67: /* Address-size override */ |
563 | 2.73k | insn->hasAdSize = true; |
564 | 2.73k | setPrefixPresent(insn, byte); |
565 | 2.73k | insn->prefix3 = byte; |
566 | 2.73k | break; |
567 | 233k | default: /* Not a prefix byte */ |
568 | 233k | isPrefix = false; |
569 | 233k | break; |
570 | 284k | } |
571 | 284k | } |
572 | | |
573 | 233k | insn->vectorExtensionType = TYPE_NO_VEX_XOP; |
574 | | |
575 | 233k | if (byte == 0x62) { |
576 | 18.8k | uint8_t byte1, byte2; |
577 | | |
578 | 18.8k | if (consumeByte(insn, &byte1)) { |
579 | | // dbgprintf(insn, "Couldn't read second byte of EVEX prefix"); |
580 | 21 | return -1; |
581 | 21 | } |
582 | | |
583 | 18.8k | if (lookAtByte(insn, &byte2)) { |
584 | | // dbgprintf(insn, "Couldn't read third byte of EVEX prefix"); |
585 | 26 | unconsumeByte(insn); /* unconsume byte1 */ |
586 | 26 | unconsumeByte(insn); /* unconsume byte */ |
587 | 18.7k | } else { |
588 | 18.7k | if ((insn->mode == MODE_64BIT || |
589 | 11.8k | (byte1 & 0xc0) == 0xc0) && |
590 | 17.1k | ((~byte1 & 0xc) == 0xc) && ((byte2 & 0x4) == 0x4)) { |
591 | 17.1k | insn->vectorExtensionType = TYPE_EVEX; |
592 | 17.1k | } else { |
593 | 1.65k | unconsumeByte(insn); /* unconsume byte1 */ |
594 | 1.65k | unconsumeByte(insn); /* unconsume byte */ |
595 | 1.65k | } |
596 | 18.7k | } |
597 | | |
598 | 18.8k | if (insn->vectorExtensionType == TYPE_EVEX) { |
599 | 17.1k | insn->vectorExtensionPrefix[0] = byte; |
600 | 17.1k | insn->vectorExtensionPrefix[1] = byte1; |
601 | 17.1k | if (consumeByte(insn, |
602 | 17.1k | &insn->vectorExtensionPrefix[2])) { |
603 | | // dbgprintf(insn, "Couldn't read third byte of EVEX prefix"); |
604 | 0 | return -1; |
605 | 0 | } |
606 | | |
607 | 17.1k | if (consumeByte(insn, |
608 | 17.1k | &insn->vectorExtensionPrefix[3])) { |
609 | | // dbgprintf(insn, "Couldn't read fourth byte of EVEX prefix"); |
610 | 6 | return -1; |
611 | 6 | } |
612 | | |
613 | | /* We simulate the REX prefix for simplicity's sake */ |
614 | 17.1k | if (insn->mode == MODE_64BIT) { |
615 | 6.90k | insn->rexPrefix = |
616 | 6.90k | 0x40 | |
617 | 6.90k | (wFromEVEX3of4( |
618 | 6.90k | insn->vectorExtensionPrefix[2]) |
619 | 6.90k | << 3) | |
620 | 6.90k | (rFromEVEX2of4( |
621 | 6.90k | insn->vectorExtensionPrefix[1]) |
622 | 6.90k | << 2) | |
623 | 6.90k | (xFromEVEX2of4( |
624 | 6.90k | insn->vectorExtensionPrefix[1]) |
625 | 6.90k | << 1) | |
626 | 6.90k | (bFromEVEX2of4( |
627 | 6.90k | insn->vectorExtensionPrefix[1]) |
628 | 6.90k | << 0); |
629 | 6.90k | } |
630 | | |
631 | | // dbgprintf(insn, "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx", |
632 | | // insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1], |
633 | | // insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]); |
634 | 17.1k | } |
635 | 214k | } else if (byte == 0xc4) { |
636 | 3.06k | uint8_t byte1; |
637 | | |
638 | 3.06k | if (lookAtByte(insn, &byte1)) { |
639 | | // dbgprintf(insn, "Couldn't read second byte of VEX"); |
640 | 1 | return -1; |
641 | 1 | } |
642 | | |
643 | 3.06k | if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) |
644 | 2.63k | insn->vectorExtensionType = TYPE_VEX_3B; |
645 | 429 | else |
646 | 429 | unconsumeByte(insn); |
647 | | |
648 | 3.06k | if (insn->vectorExtensionType == TYPE_VEX_3B) { |
649 | 2.63k | insn->vectorExtensionPrefix[0] = byte; |
650 | 2.63k | consumeByte(insn, &insn->vectorExtensionPrefix[1]); |
651 | 2.63k | consumeByte(insn, &insn->vectorExtensionPrefix[2]); |
652 | | |
653 | | /* We simulate the REX prefix for simplicity's sake */ |
654 | 2.63k | if (insn->mode == MODE_64BIT) |
655 | 810 | insn->rexPrefix = |
656 | 810 | 0x40 | |
657 | 810 | (wFromVEX3of3( |
658 | 810 | insn->vectorExtensionPrefix[2]) |
659 | 810 | << 3) | |
660 | 810 | (rFromVEX2of3( |
661 | 810 | insn->vectorExtensionPrefix[1]) |
662 | 810 | << 2) | |
663 | 810 | (xFromVEX2of3( |
664 | 810 | insn->vectorExtensionPrefix[1]) |
665 | 810 | << 1) | |
666 | 810 | (bFromVEX2of3( |
667 | 810 | insn->vectorExtensionPrefix[1]) |
668 | 810 | << 0); |
669 | | |
670 | | // dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx 0x%hhx", |
671 | | // insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1], |
672 | | // insn->vectorExtensionPrefix[2]); |
673 | 2.63k | } |
674 | 211k | } else if (byte == 0xc5) { |
675 | 3.64k | uint8_t byte1; |
676 | | |
677 | 3.64k | if (lookAtByte(insn, &byte1)) { |
678 | | // dbgprintf(insn, "Couldn't read second byte of VEX"); |
679 | 6 | return -1; |
680 | 6 | } |
681 | | |
682 | 3.64k | if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) |
683 | 2.79k | insn->vectorExtensionType = TYPE_VEX_2B; |
684 | 847 | else |
685 | 847 | unconsumeByte(insn); |
686 | | |
687 | 3.64k | if (insn->vectorExtensionType == TYPE_VEX_2B) { |
688 | 2.79k | insn->vectorExtensionPrefix[0] = byte; |
689 | 2.79k | consumeByte(insn, &insn->vectorExtensionPrefix[1]); |
690 | | |
691 | 2.79k | if (insn->mode == MODE_64BIT) |
692 | 439 | insn->rexPrefix = |
693 | 439 | 0x40 | |
694 | 439 | (rFromVEX2of2( |
695 | 439 | insn->vectorExtensionPrefix[1]) |
696 | 439 | << 2); |
697 | | |
698 | 2.79k | switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) { |
699 | 1.46k | default: |
700 | 1.46k | break; |
701 | 1.46k | case VEX_PREFIX_66: |
702 | 1.32k | insn->hasOpSize = true; |
703 | 1.32k | break; |
704 | 2.79k | } |
705 | | |
706 | | // dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx", |
707 | | // insn->vectorExtensionPrefix[0], |
708 | | // insn->vectorExtensionPrefix[1]); |
709 | 2.79k | } |
710 | 207k | } else if (byte == 0x8f) { |
711 | 2.88k | uint8_t byte1; |
712 | | |
713 | 2.88k | if (lookAtByte(insn, &byte1)) { |
714 | | // dbgprintf(insn, "Couldn't read second byte of XOP"); |
715 | 1 | return -1; |
716 | 1 | } |
717 | | |
718 | 2.88k | if ((byte1 & 0x38) != |
719 | 2.88k | 0x0) /* 0 in these 3 bits is a POP instruction. */ |
720 | 2.40k | insn->vectorExtensionType = TYPE_XOP; |
721 | 482 | else |
722 | 482 | unconsumeByte(insn); |
723 | | |
724 | 2.88k | if (insn->vectorExtensionType == TYPE_XOP) { |
725 | 2.40k | insn->vectorExtensionPrefix[0] = byte; |
726 | 2.40k | consumeByte(insn, &insn->vectorExtensionPrefix[1]); |
727 | 2.40k | consumeByte(insn, &insn->vectorExtensionPrefix[2]); |
728 | | |
729 | | /* We simulate the REX prefix for simplicity's sake */ |
730 | 2.40k | if (insn->mode == MODE_64BIT) |
731 | 817 | insn->rexPrefix = |
732 | 817 | 0x40 | |
733 | 817 | (wFromXOP3of3( |
734 | 817 | insn->vectorExtensionPrefix[2]) |
735 | 817 | << 3) | |
736 | 817 | (rFromXOP2of3( |
737 | 817 | insn->vectorExtensionPrefix[1]) |
738 | 817 | << 2) | |
739 | 817 | (xFromXOP2of3( |
740 | 817 | insn->vectorExtensionPrefix[1]) |
741 | 817 | << 1) | |
742 | 817 | (bFromXOP2of3( |
743 | 817 | insn->vectorExtensionPrefix[1]) |
744 | 817 | << 0); |
745 | | |
746 | 2.40k | switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) { |
747 | 2.39k | default: |
748 | 2.39k | break; |
749 | 2.39k | case VEX_PREFIX_66: |
750 | 6 | insn->hasOpSize = true; |
751 | 6 | break; |
752 | 2.40k | } |
753 | | |
754 | | // dbgprintf(insn, "Found XOP prefix 0x%hhx 0x%hhx 0x%hhx", |
755 | | // insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1], |
756 | | // insn->vectorExtensionPrefix[2]); |
757 | 2.40k | } |
758 | 204k | } else if (isREX(insn, byte)) { |
759 | 13.5k | if (lookAtByte(insn, &nextByte)) |
760 | 0 | return -1; |
761 | | |
762 | 13.5k | insn->rexPrefix = byte; |
763 | | // dbgprintf(insn, "Found REX prefix 0x%hhx", byte); |
764 | 13.5k | } else |
765 | 191k | unconsumeByte(insn); |
766 | | |
767 | 233k | if (insn->mode == MODE_16BIT) { |
768 | 76.8k | insn->registerSize = (insn->hasOpSize ? 4 : 2); |
769 | 76.8k | insn->addressSize = (insn->hasAdSize ? 4 : 2); |
770 | 76.8k | insn->displacementSize = (insn->hasAdSize ? 4 : 2); |
771 | 76.8k | insn->immediateSize = (insn->hasOpSize ? 4 : 2); |
772 | 76.8k | insn->immSize = (insn->hasOpSize ? 4 : 2); |
773 | 156k | } else if (insn->mode == MODE_32BIT) { |
774 | 78.1k | insn->registerSize = (insn->hasOpSize ? 2 : 4); |
775 | 78.1k | insn->addressSize = (insn->hasAdSize ? 2 : 4); |
776 | 78.1k | insn->displacementSize = (insn->hasAdSize ? 2 : 4); |
777 | 78.1k | insn->immediateSize = (insn->hasOpSize ? 2 : 4); |
778 | 78.1k | insn->immSize = (insn->hasOpSize ? 2 : 4); |
779 | 78.1k | } else if (insn->mode == MODE_64BIT) { |
780 | 78.0k | if (insn->rexPrefix && wFromREX(insn->rexPrefix)) { |
781 | 14.3k | insn->registerSize = 8; |
782 | 14.3k | insn->addressSize = (insn->hasAdSize ? 4 : 8); |
783 | 14.3k | insn->displacementSize = 4; |
784 | 14.3k | insn->immediateSize = 4; |
785 | 14.3k | insn->immSize = 4; |
786 | 63.6k | } else { |
787 | 63.6k | insn->registerSize = (insn->hasOpSize ? 2 : 4); |
788 | 63.6k | insn->addressSize = (insn->hasAdSize ? 4 : 8); |
789 | 63.6k | insn->displacementSize = (insn->hasOpSize ? 2 : 4); |
790 | 63.6k | insn->immediateSize = (insn->hasOpSize ? 2 : 4); |
791 | 63.6k | insn->immSize = (insn->hasOpSize ? 4 : 8); |
792 | 63.6k | } |
793 | 78.0k | } |
794 | | |
795 | 233k | return 0; |
796 | 233k | } |
797 | | |
798 | | static int readModRM(struct InternalInstruction *insn); |
799 | | |
800 | | /* |
801 | | * readOpcode - Reads the opcode (excepting the ModR/M byte in the case of |
802 | | * extended or escape opcodes). |
803 | | * |
804 | | * @param insn - The instruction whose opcode is to be read. |
805 | | * @return - 0 if the opcode could be read successfully; nonzero otherwise. |
806 | | */ |
807 | | static int readOpcode(struct InternalInstruction *insn) |
808 | 233k | { |
809 | 233k | uint8_t current; |
810 | | |
811 | | // dbgprintf(insn, "readOpcode()"); |
812 | | |
813 | 233k | insn->opcodeType = ONEBYTE; |
814 | | |
815 | 233k | if (insn->vectorExtensionType == TYPE_EVEX) { |
816 | 17.1k | switch (mmFromEVEX2of4(insn->vectorExtensionPrefix[1])) { |
817 | 2 | default: |
818 | | // dbgprintf(insn, "Unhandled mm field for instruction (0x%hhx)", |
819 | | // mmFromEVEX2of4(insn->vectorExtensionPrefix[1])); |
820 | 2 | return -1; |
821 | 4.62k | case VEX_LOB_0F: |
822 | 4.62k | insn->opcodeType = TWOBYTE; |
823 | 4.62k | return consumeByte(insn, &insn->opcode); |
824 | 4.82k | case VEX_LOB_0F38: |
825 | 4.82k | insn->opcodeType = THREEBYTE_38; |
826 | 4.82k | return consumeByte(insn, &insn->opcode); |
827 | 7.67k | case VEX_LOB_0F3A: |
828 | 7.67k | insn->opcodeType = THREEBYTE_3A; |
829 | 7.67k | return consumeByte(insn, &insn->opcode); |
830 | 17.1k | } |
831 | 215k | } else if (insn->vectorExtensionType == TYPE_VEX_3B) { |
832 | 2.63k | switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) { |
833 | 5 | default: |
834 | | // dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)", |
835 | | // mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])); |
836 | 5 | return -1; |
837 | 216 | case VEX_LOB_0F: |
838 | | //insn->twoByteEscape = 0x0f; |
839 | 216 | insn->opcodeType = TWOBYTE; |
840 | 216 | return consumeByte(insn, &insn->opcode); |
841 | 1.23k | case VEX_LOB_0F38: |
842 | | //insn->twoByteEscape = 0x0f; |
843 | 1.23k | insn->opcodeType = THREEBYTE_38; |
844 | 1.23k | return consumeByte(insn, &insn->opcode); |
845 | 1.17k | case VEX_LOB_0F3A: |
846 | | //insn->twoByteEscape = 0x0f; |
847 | 1.17k | insn->opcodeType = THREEBYTE_3A; |
848 | 1.17k | return consumeByte(insn, &insn->opcode); |
849 | 2.63k | } |
850 | 213k | } else if (insn->vectorExtensionType == TYPE_VEX_2B) { |
851 | | //insn->twoByteEscape = 0x0f; |
852 | 2.79k | insn->opcodeType = TWOBYTE; |
853 | 2.79k | return consumeByte(insn, &insn->opcode); |
854 | 210k | } else if (insn->vectorExtensionType == TYPE_XOP) { |
855 | 2.40k | switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) { |
856 | 12 | default: |
857 | | // dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)", |
858 | | // mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])); |
859 | 12 | return -1; |
860 | 2.04k | case XOP_MAP_SELECT_8: |
861 | 2.04k | insn->opcodeType = XOP8_MAP; |
862 | 2.04k | return consumeByte(insn, &insn->opcode); |
863 | 317 | case XOP_MAP_SELECT_9: |
864 | 317 | insn->opcodeType = XOP9_MAP; |
865 | 317 | return consumeByte(insn, &insn->opcode); |
866 | 27 | case XOP_MAP_SELECT_A: |
867 | 27 | insn->opcodeType = XOPA_MAP; |
868 | 27 | return consumeByte(insn, &insn->opcode); |
869 | 2.40k | } |
870 | 2.40k | } |
871 | | |
872 | 208k | if (consumeByte(insn, ¤t)) |
873 | 0 | return -1; |
874 | | |
875 | | // save this first byte for MOVcr, MOVdr, MOVrc, MOVrd |
876 | 208k | insn->firstByte = current; |
877 | | |
878 | 208k | if (current == 0x0f) { |
879 | | // dbgprintf(insn, "Found a two-byte escape prefix (0x%hhx)", current); |
880 | 12.9k | insn->twoByteEscape = current; |
881 | | |
882 | 12.9k | if (consumeByte(insn, ¤t)) |
883 | 36 | return -1; |
884 | | |
885 | 12.9k | if (current == 0x38) { |
886 | | // dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current); |
887 | 342 | if (consumeByte(insn, ¤t)) |
888 | 0 | return -1; |
889 | | |
890 | 342 | insn->opcodeType = THREEBYTE_38; |
891 | 12.5k | } else if (current == 0x3a) { |
892 | | // dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current); |
893 | 165 | if (consumeByte(insn, ¤t)) |
894 | 0 | return -1; |
895 | | |
896 | 165 | insn->opcodeType = THREEBYTE_3A; |
897 | 12.4k | } else if (current == 0x0f) { |
898 | | // dbgprintf(insn, "Found a 3dnow escape prefix (0x%hhx)", current); |
899 | | // Consume operands before the opcode to comply with the 3DNow encoding |
900 | 175 | if (readModRM(insn)) |
901 | 2 | return -1; |
902 | | |
903 | 173 | if (consumeByte(insn, ¤t)) |
904 | 1 | return -1; |
905 | | |
906 | 172 | insn->opcodeType = THREEDNOW_MAP; |
907 | 12.2k | } else { |
908 | | // dbgprintf(insn, "Didn't find a three-byte escape prefix"); |
909 | 12.2k | insn->opcodeType = TWOBYTE; |
910 | 12.2k | } |
911 | 195k | } else if (insn->mandatoryPrefix) |
912 | | // The opcode with mandatory prefix must start with opcode escape. |
913 | | // If not it's legacy repeat prefix |
914 | 2.86k | insn->mandatoryPrefix = 0; |
915 | | |
916 | | /* |
917 | | * At this point we have consumed the full opcode. |
918 | | * Anything we consume from here on must be unconsumed. |
919 | | */ |
920 | | |
921 | 208k | insn->opcode = current; |
922 | | |
923 | 208k | return 0; |
924 | 208k | } |
925 | | |
926 | | // Hacky for FEMMS |
927 | | #define GET_INSTRINFO_ENUM |
928 | | #ifndef CAPSTONE_X86_REDUCE |
929 | | #include "X86GenInstrInfo.inc" |
930 | | #else |
931 | | #include "X86GenInstrInfo_reduce.inc" |
932 | | #endif |
933 | | |
934 | | /* |
935 | | * getIDWithAttrMask - Determines the ID of an instruction, consuming |
936 | | * the ModR/M byte as appropriate for extended and escape opcodes, |
937 | | * and using a supplied attribute mask. |
938 | | * |
939 | | * @param instructionID - A pointer whose target is filled in with the ID of the |
940 | | * instruction. |
941 | | * @param insn - The instruction whose ID is to be determined. |
942 | | * @param attrMask - The attribute mask to search. |
943 | | * @return - 0 if the ModR/M could be read when needed or was not |
944 | | * needed; nonzero otherwise. |
945 | | */ |
946 | | static int getIDWithAttrMask(uint16_t *instructionID, |
947 | | struct InternalInstruction *insn, |
948 | | uint16_t attrMask) |
949 | 319k | { |
950 | 319k | bool hasModRMExtension; |
951 | | |
952 | 319k | InstructionContext instructionClass = contextForAttrs(attrMask); |
953 | | |
954 | 319k | hasModRMExtension = |
955 | 319k | modRMRequired(insn->opcodeType, instructionClass, insn->opcode); |
956 | | |
957 | 319k | if (hasModRMExtension) { |
958 | 174k | if (readModRM(insn)) |
959 | 596 | return -1; |
960 | | |
961 | 174k | *instructionID = decode(insn->opcodeType, instructionClass, |
962 | 174k | insn->opcode, insn->modRM); |
963 | 174k | } else { |
964 | 144k | *instructionID = decode(insn->opcodeType, instructionClass, |
965 | 144k | insn->opcode, 0); |
966 | 144k | } |
967 | | |
968 | 318k | return 0; |
969 | 319k | } |
970 | | |
971 | | /* |
972 | | * is16BitEquivalent - Determines whether two instruction names refer to |
973 | | * equivalent instructions but one is 16-bit whereas the other is not. |
974 | | * |
975 | | * @param orig - The instruction ID that is not 16-bit |
976 | | * @param equiv - The instruction ID that is 16-bit |
977 | | */ |
978 | | static bool is16BitEquivalent(unsigned orig, unsigned equiv) |
979 | 70.0k | { |
980 | 70.0k | size_t i; |
981 | 70.0k | uint16_t idx; |
982 | | |
983 | 70.0k | if ((idx = x86_16_bit_eq_lookup[orig]) != 0) { |
984 | 36.8k | for (i = idx - 1; i < ARR_SIZE(x86_16_bit_eq_tbl) && |
985 | 36.8k | x86_16_bit_eq_tbl[i].first == orig; |
986 | 36.1k | i++) { |
987 | 36.1k | if (x86_16_bit_eq_tbl[i].second == equiv) |
988 | 35.4k | return true; |
989 | 36.1k | } |
990 | 36.1k | } |
991 | | |
992 | 34.6k | return false; |
993 | 70.0k | } |
994 | | |
995 | | /* |
996 | | * is64Bit - Determines whether this instruction is a 64-bit instruction. |
997 | | * |
998 | | * @param name - The instruction that is not 16-bit |
999 | | */ |
1000 | | static bool is64Bit(uint16_t id) |
1001 | 6.47k | { |
1002 | 6.47k | unsigned int i = find_insn(id); |
1003 | 6.47k | if (i != -1) { |
1004 | 6.45k | return insns[i].is64bit; |
1005 | 6.45k | } |
1006 | | |
1007 | | // not found?? |
1008 | 20 | return false; |
1009 | 6.47k | } |
1010 | | |
1011 | | /* |
1012 | | * getID - Determines the ID of an instruction, consuming the ModR/M byte as |
1013 | | * appropriate for extended and escape opcodes. Determines the attributes and |
1014 | | * context for the instruction before doing so. |
1015 | | * |
1016 | | * @param insn - The instruction whose ID is to be determined. |
1017 | | * @return - 0 if the ModR/M could be read when needed or was not needed; |
1018 | | * nonzero otherwise. |
1019 | | */ |
1020 | | static int getID(struct InternalInstruction *insn) |
1021 | 233k | { |
1022 | 233k | uint16_t attrMask; |
1023 | 233k | uint16_t instructionID; |
1024 | | |
1025 | 233k | attrMask = ATTR_NONE; |
1026 | | |
1027 | 233k | if (insn->mode == MODE_64BIT) |
1028 | 77.9k | attrMask |= ATTR_64BIT; |
1029 | | |
1030 | 233k | if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) { |
1031 | 24.9k | attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? |
1032 | 17.1k | ATTR_EVEX : |
1033 | 24.9k | ATTR_VEX; |
1034 | | |
1035 | 24.9k | if (insn->vectorExtensionType == TYPE_EVEX) { |
1036 | 17.1k | switch (ppFromEVEX3of4( |
1037 | 17.1k | insn->vectorExtensionPrefix[2])) { |
1038 | 14.3k | case VEX_PREFIX_66: |
1039 | 14.3k | attrMask |= ATTR_OPSIZE; |
1040 | 14.3k | break; |
1041 | 611 | case VEX_PREFIX_F3: |
1042 | 611 | attrMask |= ATTR_XS; |
1043 | 611 | break; |
1044 | 548 | case VEX_PREFIX_F2: |
1045 | 548 | attrMask |= ATTR_XD; |
1046 | 548 | break; |
1047 | 17.1k | } |
1048 | | |
1049 | 17.1k | if (zFromEVEX4of4(insn->vectorExtensionPrefix[3])) |
1050 | 1.92k | attrMask |= ATTR_EVEXKZ; |
1051 | 17.1k | if (bFromEVEX4of4(insn->vectorExtensionPrefix[3])) |
1052 | 6.47k | attrMask |= ATTR_EVEXB; |
1053 | 17.1k | if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3])) |
1054 | 12.2k | attrMask |= ATTR_EVEXK; |
1055 | 17.1k | if (lFromEVEX4of4(insn->vectorExtensionPrefix[3])) |
1056 | 7.14k | attrMask |= ATTR_EVEXL; |
1057 | 17.1k | if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3])) |
1058 | 7.23k | attrMask |= ATTR_EVEXL2; |
1059 | 17.1k | } else if (insn->vectorExtensionType == TYPE_VEX_3B) { |
1060 | 2.62k | switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) { |
1061 | 2.40k | case VEX_PREFIX_66: |
1062 | 2.40k | attrMask |= ATTR_OPSIZE; |
1063 | 2.40k | break; |
1064 | 168 | case VEX_PREFIX_F3: |
1065 | 168 | attrMask |= ATTR_XS; |
1066 | 168 | break; |
1067 | 40 | case VEX_PREFIX_F2: |
1068 | 40 | attrMask |= ATTR_XD; |
1069 | 40 | break; |
1070 | 2.62k | } |
1071 | | |
1072 | 2.62k | if (lFromVEX3of3(insn->vectorExtensionPrefix[2])) |
1073 | 1.14k | attrMask |= ATTR_VEXL; |
1074 | 5.17k | } else if (insn->vectorExtensionType == TYPE_VEX_2B) { |
1075 | 2.78k | switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) { |
1076 | 1.32k | case VEX_PREFIX_66: |
1077 | 1.32k | attrMask |= ATTR_OPSIZE; |
1078 | 1.32k | break; |
1079 | 219 | case VEX_PREFIX_F3: |
1080 | 219 | attrMask |= ATTR_XS; |
1081 | 219 | break; |
1082 | 364 | case VEX_PREFIX_F2: |
1083 | 364 | attrMask |= ATTR_XD; |
1084 | 364 | break; |
1085 | 2.78k | } |
1086 | | |
1087 | 2.78k | if (lFromVEX2of2(insn->vectorExtensionPrefix[1])) |
1088 | 1.89k | attrMask |= ATTR_VEXL; |
1089 | 2.78k | } else if (insn->vectorExtensionType == TYPE_XOP) { |
1090 | 2.38k | switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) { |
1091 | 5 | case VEX_PREFIX_66: |
1092 | 5 | attrMask |= ATTR_OPSIZE; |
1093 | 5 | break; |
1094 | 2 | case VEX_PREFIX_F3: |
1095 | 2 | attrMask |= ATTR_XS; |
1096 | 2 | break; |
1097 | 6 | case VEX_PREFIX_F2: |
1098 | 6 | attrMask |= ATTR_XD; |
1099 | 6 | break; |
1100 | 2.38k | } |
1101 | | |
1102 | 2.38k | if (lFromXOP3of3(insn->vectorExtensionPrefix[2])) |
1103 | 107 | attrMask |= ATTR_VEXL; |
1104 | 2.38k | } else { |
1105 | 0 | return -1; |
1106 | 0 | } |
1107 | 208k | } else if (!insn->mandatoryPrefix) { |
1108 | | // If we don't have mandatory prefix we should use legacy prefixes here |
1109 | 203k | if (insn->hasOpSize && (insn->mode != MODE_16BIT)) |
1110 | 2.91k | attrMask |= ATTR_OPSIZE; |
1111 | 203k | if (insn->hasAdSize) |
1112 | 1.87k | attrMask |= ATTR_ADSIZE; |
1113 | 203k | if (insn->opcodeType == ONEBYTE) { |
1114 | 195k | if (insn->repeatPrefix == 0xf3 && |
1115 | 6.67k | (insn->opcode == 0x90)) |
1116 | | // Special support for PAUSE |
1117 | 27 | attrMask |= ATTR_XS; |
1118 | 195k | } else { |
1119 | 8.80k | if (insn->repeatPrefix == 0xf2) |
1120 | 169 | attrMask |= ATTR_XD; |
1121 | 8.63k | else if (insn->repeatPrefix == 0xf3) |
1122 | 333 | attrMask |= ATTR_XS; |
1123 | 8.80k | } |
1124 | 203k | } else { |
1125 | 4.12k | switch (insn->mandatoryPrefix) { |
1126 | 1.15k | case 0xf2: |
1127 | 1.15k | attrMask |= ATTR_XD; |
1128 | 1.15k | break; |
1129 | 1.42k | case 0xf3: |
1130 | 1.42k | attrMask |= ATTR_XS; |
1131 | 1.42k | break; |
1132 | 1.54k | case 0x66: |
1133 | 1.54k | if (insn->mode != MODE_16BIT) |
1134 | 1.01k | attrMask |= ATTR_OPSIZE; |
1135 | 1.54k | break; |
1136 | 0 | case 0x67: |
1137 | 0 | attrMask |= ATTR_ADSIZE; |
1138 | 0 | break; |
1139 | 4.12k | } |
1140 | 4.12k | } |
1141 | | |
1142 | 233k | if (insn->rexPrefix & 0x08) { |
1143 | 14.3k | attrMask |= ATTR_REXW; |
1144 | 14.3k | attrMask &= ~ATTR_ADSIZE; |
1145 | 14.3k | } |
1146 | | |
1147 | | /* |
1148 | | * JCXZ/JECXZ need special handling for 16-bit mode because the meaning |
1149 | | * of the AdSize prefix is inverted w.r.t. 32-bit mode. |
1150 | | */ |
1151 | 233k | if (insn->mode == MODE_16BIT && insn->opcodeType == ONEBYTE && |
1152 | 64.8k | insn->opcode == 0xE3) |
1153 | 872 | attrMask ^= ATTR_ADSIZE; |
1154 | | |
1155 | | /* |
1156 | | * In 64-bit mode all f64 superscripted opcodes ignore opcode size prefix |
1157 | | * CALL/JMP/JCC instructions need to ignore 0x66 and consume 4 bytes |
1158 | | */ |
1159 | 233k | if ((insn->mode == MODE_64BIT) && insn->hasOpSize) { |
1160 | 2.99k | switch (insn->opcode) { |
1161 | 38 | case 0xE8: |
1162 | 78 | case 0xE9: |
1163 | | // Take care of psubsb and other mmx instructions. |
1164 | 78 | if (insn->opcodeType == ONEBYTE) { |
1165 | 38 | attrMask ^= ATTR_OPSIZE; |
1166 | 38 | insn->immediateSize = 4; |
1167 | 38 | insn->displacementSize = 4; |
1168 | 38 | } |
1169 | 78 | break; |
1170 | 26 | case 0x82: |
1171 | 71 | case 0x83: |
1172 | 105 | case 0x84: |
1173 | 337 | case 0x85: |
1174 | 337 | case 0x86: |
1175 | 748 | case 0x87: |
1176 | 776 | case 0x88: |
1177 | 793 | case 0x89: |
1178 | 1.04k | case 0x8A: |
1179 | 1.09k | case 0x8B: |
1180 | 1.11k | case 0x8C: |
1181 | 1.21k | case 0x8D: |
1182 | 1.26k | case 0x8E: |
1183 | 1.39k | case 0x8F: |
1184 | | // Take care of lea and three byte ops. |
1185 | 1.39k | if (insn->opcodeType == TWOBYTE) { |
1186 | 78 | attrMask ^= ATTR_OPSIZE; |
1187 | 78 | insn->immediateSize = 4; |
1188 | 78 | insn->displacementSize = 4; |
1189 | 78 | } |
1190 | 1.39k | break; |
1191 | 2.99k | } |
1192 | 2.99k | } |
1193 | | |
1194 | | /* The following clauses compensate for limitations of the tables. */ |
1195 | 233k | if (insn->mode != MODE_64BIT && |
1196 | 155k | insn->vectorExtensionType != TYPE_NO_VEX_XOP) { |
1197 | 15.9k | if (getIDWithAttrMask(&instructionID, insn, attrMask)) { |
1198 | 10 | return -1; |
1199 | 10 | } |
1200 | | |
1201 | | /* |
1202 | | * The tables can't distinguish between cases where the W-bit is used to |
1203 | | * select register size and cases where it's a required part of the opcode. |
1204 | | */ |
1205 | 15.9k | if ((insn->vectorExtensionType == TYPE_EVEX && |
1206 | 10.2k | wFromEVEX3of4(insn->vectorExtensionPrefix[2])) || |
1207 | 10.0k | (insn->vectorExtensionType == TYPE_VEX_3B && |
1208 | 1.82k | wFromVEX3of3(insn->vectorExtensionPrefix[2])) || |
1209 | 9.59k | (insn->vectorExtensionType == TYPE_XOP && |
1210 | 6.48k | wFromXOP3of3(insn->vectorExtensionPrefix[2]))) { |
1211 | 6.48k | uint16_t instructionIDWithREXW; |
1212 | | |
1213 | 6.48k | if (getIDWithAttrMask(&instructionIDWithREXW, insn, |
1214 | 6.48k | attrMask | ATTR_REXW)) { |
1215 | 2 | insn->instructionID = instructionID; |
1216 | 2 | insn->spec = specifierForUID(instructionID); |
1217 | 2 | return 0; |
1218 | 2 | } |
1219 | | |
1220 | | // If not a 64-bit instruction. Switch the opcode. |
1221 | 6.47k | if (!is64Bit(instructionIDWithREXW)) { |
1222 | 6.10k | insn->instructionID = instructionIDWithREXW; |
1223 | 6.10k | insn->spec = |
1224 | 6.10k | specifierForUID(instructionIDWithREXW); |
1225 | | |
1226 | 6.10k | return 0; |
1227 | 6.10k | } |
1228 | 6.47k | } |
1229 | 15.9k | } |
1230 | | |
1231 | | /* |
1232 | | * Absolute moves, umonitor, and movdir64b need special handling. |
1233 | | * -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are |
1234 | | * inverted w.r.t. |
1235 | | * -For 32-bit mode we need to ensure the ADSIZE prefix is observed in |
1236 | | * any position. |
1237 | | */ |
1238 | 226k | if ((insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) || |
1239 | 224k | (insn->opcodeType == TWOBYTE && (insn->opcode == 0xAE)) || |
1240 | 224k | (insn->opcodeType == THREEBYTE_38 && insn->opcode == 0xF8)) { |
1241 | | /* Make sure we observed the prefixes in any position. */ |
1242 | 2.63k | if (insn->hasAdSize) |
1243 | 12 | attrMask |= ATTR_ADSIZE; |
1244 | | |
1245 | 2.63k | if (insn->hasOpSize) |
1246 | 61 | attrMask |= ATTR_OPSIZE; |
1247 | | |
1248 | | /* In 16-bit, invert the attributes. */ |
1249 | 2.63k | if (insn->mode == MODE_16BIT) { |
1250 | 1.03k | attrMask ^= ATTR_ADSIZE; |
1251 | | |
1252 | | /* The OpSize attribute is only valid with the absolute moves. */ |
1253 | 1.03k | if (insn->opcodeType == ONEBYTE && |
1254 | 909 | ((insn->opcode & 0xFC) == 0xA0)) |
1255 | 909 | attrMask ^= ATTR_OPSIZE; |
1256 | 1.03k | } |
1257 | | |
1258 | 2.63k | if (getIDWithAttrMask(&instructionID, insn, attrMask)) { |
1259 | 2 | return -1; |
1260 | 2 | } |
1261 | | |
1262 | 2.63k | insn->instructionID = instructionID; |
1263 | 2.63k | insn->spec = specifierForUID(instructionID); |
1264 | | |
1265 | 2.63k | return 0; |
1266 | 2.63k | } |
1267 | 224k | if (getIDWithAttrMask(&instructionID, insn, attrMask)) { |
1268 | 580 | return -1; |
1269 | 580 | } |
1270 | | |
1271 | 223k | if ((insn->mode == MODE_16BIT || insn->hasOpSize) && |
1272 | 77.8k | !(attrMask & ATTR_OPSIZE)) { |
1273 | | /* |
1274 | | * The instruction tables make no distinction between instructions that |
1275 | | * allow OpSize anywhere (i.e., 16-bit operations) and that need it in a |
1276 | | * particular spot (i.e., many MMX operations). In general we're |
1277 | | * conservative, but in the specific case where OpSize is present but not |
1278 | | * in the right place we check if there's a 16-bit operation. |
1279 | | */ |
1280 | 70.0k | const struct InstructionSpecifier *spec; |
1281 | 70.0k | uint16_t instructionIDWithOpsize; |
1282 | | |
1283 | 70.0k | spec = specifierForUID(instructionID); |
1284 | | |
1285 | 70.0k | if (getIDWithAttrMask(&instructionIDWithOpsize, insn, |
1286 | 70.0k | attrMask | ATTR_OPSIZE)) { |
1287 | | /* |
1288 | | * ModRM required with OpSize but not present; give up and return version |
1289 | | * without OpSize set |
1290 | | */ |
1291 | 2 | insn->instructionID = instructionID; |
1292 | 2 | insn->spec = spec; |
1293 | | |
1294 | 2 | return 0; |
1295 | 2 | } |
1296 | | |
1297 | 70.0k | if (is16BitEquivalent(instructionID, instructionIDWithOpsize) && |
1298 | 35.4k | (insn->mode == MODE_16BIT) ^ insn->hasOpSize) { |
1299 | 35.1k | insn->instructionID = instructionIDWithOpsize; |
1300 | 35.1k | insn->spec = specifierForUID(instructionIDWithOpsize); |
1301 | 35.1k | } else { |
1302 | 34.8k | insn->instructionID = instructionID; |
1303 | 34.8k | insn->spec = spec; |
1304 | 34.8k | } |
1305 | | |
1306 | 70.0k | return 0; |
1307 | 70.0k | } |
1308 | | |
1309 | 153k | if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 && |
1310 | 953 | insn->rexPrefix & 0x01) { |
1311 | | /* |
1312 | | * NOOP shouldn't decode as NOOP if REX.b is set. Instead |
1313 | | * it should decode as XCHG %r8, %eax. |
1314 | | */ |
1315 | 63 | const struct InstructionSpecifier *spec; |
1316 | 63 | uint16_t instructionIDWithNewOpcode; |
1317 | 63 | const struct InstructionSpecifier *specWithNewOpcode; |
1318 | | |
1319 | 63 | spec = specifierForUID(instructionID); |
1320 | | |
1321 | | /* Borrow opcode from one of the other XCHGar opcodes */ |
1322 | 63 | insn->opcode = 0x91; |
1323 | | |
1324 | 63 | if (getIDWithAttrMask(&instructionIDWithNewOpcode, insn, |
1325 | 63 | attrMask)) { |
1326 | 0 | insn->opcode = 0x90; |
1327 | |
|
1328 | 0 | insn->instructionID = instructionID; |
1329 | 0 | insn->spec = spec; |
1330 | |
|
1331 | 0 | return 0; |
1332 | 0 | } |
1333 | | |
1334 | 63 | specWithNewOpcode = specifierForUID(instructionIDWithNewOpcode); |
1335 | | |
1336 | | /* Change back */ |
1337 | 63 | insn->opcode = 0x90; |
1338 | | |
1339 | 63 | insn->instructionID = instructionIDWithNewOpcode; |
1340 | 63 | insn->spec = specWithNewOpcode; |
1341 | | |
1342 | 63 | return 0; |
1343 | 63 | } |
1344 | | |
1345 | 153k | insn->instructionID = instructionID; |
1346 | 153k | insn->spec = specifierForUID(insn->instructionID); |
1347 | | |
1348 | 153k | return 0; |
1349 | 153k | } |
1350 | | |
1351 | | /* |
1352 | | * readSIB - Consumes the SIB byte to determine addressing information for an |
1353 | | * instruction. |
1354 | | * |
1355 | | * @param insn - The instruction whose SIB byte is to be read. |
1356 | | * @return - 0 if the SIB byte was successfully read; nonzero otherwise. |
1357 | | */ |
1358 | | static int readSIB(struct InternalInstruction *insn) |
1359 | 6.44k | { |
1360 | 6.44k | SIBBase sibBaseBase = SIB_BASE_NONE; |
1361 | 6.44k | uint8_t index, base; |
1362 | | |
1363 | | // dbgprintf(insn, "readSIB()"); |
1364 | | |
1365 | 6.44k | if (insn->consumedSIB) |
1366 | 0 | return 0; |
1367 | | |
1368 | 6.44k | insn->consumedSIB = true; |
1369 | | |
1370 | 6.44k | switch (insn->addressSize) { |
1371 | 0 | case 2: |
1372 | | // dbgprintf(insn, "SIB-based addressing doesn't work in 16-bit mode"); |
1373 | 0 | return -1; |
1374 | 3.38k | case 4: |
1375 | 3.38k | insn->sibIndexBase = SIB_INDEX_EAX; |
1376 | 3.38k | sibBaseBase = SIB_BASE_EAX; |
1377 | 3.38k | break; |
1378 | 3.06k | case 8: |
1379 | 3.06k | insn->sibIndexBase = SIB_INDEX_RAX; |
1380 | 3.06k | sibBaseBase = SIB_BASE_RAX; |
1381 | 3.06k | break; |
1382 | 6.44k | } |
1383 | | |
1384 | 6.44k | if (consumeByte(insn, &insn->sib)) |
1385 | 16 | return -1; |
1386 | | |
1387 | 6.42k | index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3); |
1388 | | |
1389 | 6.42k | if (index == 0x4) { |
1390 | 1.23k | insn->sibIndex = SIB_INDEX_NONE; |
1391 | 5.19k | } else { |
1392 | 5.19k | insn->sibIndex = (SIBIndex)(insn->sibIndexBase + index); |
1393 | 5.19k | } |
1394 | | |
1395 | 6.42k | insn->sibScale = 1 << scaleFromSIB(insn->sib); |
1396 | | |
1397 | 6.42k | base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3); |
1398 | | |
1399 | 6.42k | switch (base) { |
1400 | 700 | case 0x5: |
1401 | 750 | case 0xd: |
1402 | 750 | switch (modFromModRM(insn->modRM)) { |
1403 | 278 | case 0x0: |
1404 | 278 | insn->eaDisplacement = EA_DISP_32; |
1405 | 278 | insn->sibBase = SIB_BASE_NONE; |
1406 | 278 | break; |
1407 | 428 | case 0x1: |
1408 | 428 | insn->eaDisplacement = EA_DISP_8; |
1409 | 428 | insn->sibBase = (SIBBase)(sibBaseBase + base); |
1410 | 428 | break; |
1411 | 44 | case 0x2: |
1412 | 44 | insn->eaDisplacement = EA_DISP_32; |
1413 | 44 | insn->sibBase = (SIBBase)(sibBaseBase + base); |
1414 | 44 | break; |
1415 | 0 | case 0x3: |
1416 | | // debug("Cannot have Mod = 0b11 and a SIB byte"); |
1417 | 0 | return -1; |
1418 | 750 | } |
1419 | 750 | break; |
1420 | 5.67k | default: |
1421 | 5.67k | insn->sibBase = (SIBBase)(sibBaseBase + base); |
1422 | 5.67k | break; |
1423 | 6.42k | } |
1424 | | |
1425 | 6.42k | return 0; |
1426 | 6.42k | } |
1427 | | |
1428 | | /* |
1429 | | * readDisplacement - Consumes the displacement of an instruction. |
1430 | | * |
1431 | | * @param insn - The instruction whose displacement is to be read. |
1432 | | * @return - 0 if the displacement byte was successfully read; nonzero |
1433 | | * otherwise. |
1434 | | */ |
1435 | | static int readDisplacement(struct InternalInstruction *insn) |
1436 | 43.1k | { |
1437 | 43.1k | int8_t d8; |
1438 | 43.1k | int16_t d16; |
1439 | 43.1k | int32_t d32; |
1440 | | |
1441 | | // dbgprintf(insn, "readDisplacement()"); |
1442 | | |
1443 | 43.1k | if (insn->consumedDisplacement) |
1444 | 0 | return 0; |
1445 | | |
1446 | 43.1k | insn->consumedDisplacement = true; |
1447 | 43.1k | insn->displacementOffset = insn->readerCursor - insn->startLocation; |
1448 | | |
1449 | 43.1k | switch (insn->eaDisplacement) { |
1450 | 11.5k | case EA_DISP_NONE: |
1451 | 11.5k | insn->consumedDisplacement = false; |
1452 | 11.5k | break; |
1453 | 22.0k | case EA_DISP_8: |
1454 | 22.0k | if (consumeInt8(insn, &d8)) |
1455 | 58 | return -1; |
1456 | 21.9k | insn->displacement = d8; |
1457 | 21.9k | break; |
1458 | 4.49k | case EA_DISP_16: |
1459 | 4.49k | if (consumeInt16(insn, &d16)) |
1460 | 20 | return -1; |
1461 | 4.47k | insn->displacement = d16; |
1462 | 4.47k | break; |
1463 | 5.04k | case EA_DISP_32: |
1464 | 5.04k | if (consumeInt32(insn, &d32)) |
1465 | 96 | return -1; |
1466 | 4.95k | insn->displacement = d32; |
1467 | 4.95k | break; |
1468 | 43.1k | } |
1469 | | |
1470 | 42.9k | return 0; |
1471 | 43.1k | } |
1472 | | |
1473 | | /* |
1474 | | * readModRM - Consumes all addressing information (ModR/M byte, SIB byte, and |
1475 | | * displacement) for an instruction and interprets it. |
1476 | | * |
1477 | | * @param insn - The instruction whose addressing information is to be read. |
1478 | | * @return - 0 if the information was successfully read; nonzero otherwise. |
1479 | | */ |
1480 | | static int readModRM(struct InternalInstruction *insn) |
1481 | 397k | { |
1482 | 397k | uint8_t mod, rm, reg, evexrm; |
1483 | | |
1484 | | // dbgprintf(insn, "readModRM()"); |
1485 | | |
1486 | 397k | if (insn->consumedModRM) |
1487 | 268k | return 0; |
1488 | | |
1489 | 128k | insn->modRMOffset = (uint8_t)(insn->readerCursor - insn->startLocation); |
1490 | | |
1491 | 128k | if (consumeByte(insn, &insn->modRM)) |
1492 | 408 | return -1; |
1493 | | |
1494 | 127k | insn->consumedModRM = true; |
1495 | | |
1496 | | // save original ModRM for later reference |
1497 | 127k | insn->orgModRM = insn->modRM; |
1498 | | |
1499 | | // handle MOVcr, MOVdr, MOVrc, MOVrd by pretending they have MRM.mod = 3 |
1500 | 127k | if ((insn->firstByte == 0x0f && insn->opcodeType == TWOBYTE) && |
1501 | 11.7k | (insn->opcode >= 0x20 && insn->opcode <= 0x23)) |
1502 | 63 | insn->modRM |= 0xC0; |
1503 | | |
1504 | 127k | mod = modFromModRM(insn->modRM); |
1505 | 127k | rm = rmFromModRM(insn->modRM); |
1506 | 127k | reg = regFromModRM(insn->modRM); |
1507 | | |
1508 | | /* |
1509 | | * This goes by insn->registerSize to pick the correct register, which messes |
1510 | | * up if we're using (say) XMM or 8-bit register operands. That gets fixed in |
1511 | | * fixupReg(). |
1512 | | */ |
1513 | 127k | switch (insn->registerSize) { |
1514 | 43.4k | case 2: |
1515 | 43.4k | insn->regBase = MODRM_REG_AX; |
1516 | 43.4k | insn->eaRegBase = EA_REG_AX; |
1517 | 43.4k | break; |
1518 | 73.5k | case 4: |
1519 | 73.5k | insn->regBase = MODRM_REG_EAX; |
1520 | 73.5k | insn->eaRegBase = EA_REG_EAX; |
1521 | 73.5k | break; |
1522 | 10.7k | case 8: |
1523 | 10.7k | insn->regBase = MODRM_REG_RAX; |
1524 | 10.7k | insn->eaRegBase = EA_REG_RAX; |
1525 | 10.7k | break; |
1526 | 127k | } |
1527 | | |
1528 | 127k | reg |= rFromREX(insn->rexPrefix) << 3; |
1529 | 127k | rm |= bFromREX(insn->rexPrefix) << 3; |
1530 | | |
1531 | 127k | evexrm = 0; |
1532 | 127k | if (insn->vectorExtensionType == TYPE_EVEX && |
1533 | 17.0k | insn->mode == MODE_64BIT) { |
1534 | 6.88k | reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4; |
1535 | 6.88k | evexrm = xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4; |
1536 | 6.88k | } |
1537 | | |
1538 | 127k | insn->reg = (Reg)(insn->regBase + reg); |
1539 | | |
1540 | 127k | switch (insn->addressSize) { |
1541 | 39.8k | case 2: { |
1542 | 39.8k | EABase eaBaseBase = EA_BASE_BX_SI; |
1543 | | |
1544 | 39.8k | switch (mod) { |
1545 | 21.9k | case 0x0: |
1546 | 21.9k | if (rm == 0x6) { |
1547 | 995 | insn->eaBase = EA_BASE_NONE; |
1548 | 995 | insn->eaDisplacement = EA_DISP_16; |
1549 | 995 | if (readDisplacement(insn)) |
1550 | 6 | return -1; |
1551 | 20.9k | } else { |
1552 | 20.9k | insn->eaBase = (EABase)(eaBaseBase + rm); |
1553 | 20.9k | insn->eaDisplacement = EA_DISP_NONE; |
1554 | 20.9k | } |
1555 | 21.9k | break; |
1556 | 21.9k | case 0x1: |
1557 | 5.43k | insn->eaBase = (EABase)(eaBaseBase + rm); |
1558 | 5.43k | insn->eaDisplacement = EA_DISP_8; |
1559 | 5.43k | insn->displacementSize = 1; |
1560 | 5.43k | if (readDisplacement(insn)) |
1561 | 17 | return -1; |
1562 | 5.41k | break; |
1563 | 5.41k | case 0x2: |
1564 | 3.50k | insn->eaBase = (EABase)(eaBaseBase + rm); |
1565 | 3.50k | insn->eaDisplacement = EA_DISP_16; |
1566 | 3.50k | if (readDisplacement(insn)) |
1567 | 14 | return -1; |
1568 | 3.48k | break; |
1569 | 8.98k | case 0x3: |
1570 | 8.98k | insn->eaBase = (EABase)(insn->eaRegBase + rm); |
1571 | 8.98k | if (readDisplacement(insn)) |
1572 | 0 | return -1; |
1573 | 8.98k | break; |
1574 | 39.8k | } |
1575 | 39.8k | break; |
1576 | 39.8k | } |
1577 | | |
1578 | 43.0k | case 4: |
1579 | 87.9k | case 8: { |
1580 | 87.9k | EABase eaBaseBase = |
1581 | 87.9k | (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX); |
1582 | | |
1583 | 87.9k | switch (mod) { |
1584 | 0 | default: |
1585 | 0 | break; |
1586 | 44.0k | case 0x0: |
1587 | 44.0k | insn->eaDisplacement = |
1588 | 44.0k | EA_DISP_NONE; /* readSIB may override this */ |
1589 | | // In determining whether RIP-relative mode is used (rm=5), |
1590 | | // or whether a SIB byte is present (rm=4), |
1591 | | // the extension bits (REX.b and EVEX.x) are ignored. |
1592 | 44.0k | switch (rm & 7) { |
1593 | 2.85k | case 0x4: // SIB byte is present |
1594 | 2.85k | insn->eaBase = (insn->addressSize == 4 ? |
1595 | 1.32k | EA_BASE_sib : |
1596 | 2.85k | EA_BASE_sib64); |
1597 | 2.85k | if (readSIB(insn) || readDisplacement(insn)) |
1598 | 11 | return -1; |
1599 | 2.84k | break; |
1600 | 2.84k | case 0x5: // RIP-relative |
1601 | 773 | insn->eaBase = EA_BASE_NONE; |
1602 | 773 | insn->eaDisplacement = EA_DISP_32; |
1603 | 773 | if (readDisplacement(insn)) |
1604 | 17 | return -1; |
1605 | 756 | break; |
1606 | 40.4k | default: |
1607 | 40.4k | insn->eaBase = (EABase)(eaBaseBase + rm); |
1608 | 40.4k | break; |
1609 | 44.0k | } |
1610 | 44.0k | break; |
1611 | 44.0k | case 0x1: |
1612 | 16.5k | insn->displacementSize = 1; |
1613 | | /* FALLTHROUGH */ |
1614 | 20.5k | case 0x2: |
1615 | 20.5k | insn->eaDisplacement = |
1616 | 20.5k | (mod == 0x1 ? EA_DISP_8 : EA_DISP_32); |
1617 | 20.5k | switch (rm & 7) { |
1618 | 3.58k | case 0x4: // SIB byte is present |
1619 | 3.58k | insn->eaBase = EA_BASE_sib; |
1620 | 3.58k | if (readSIB(insn) || readDisplacement(insn)) |
1621 | 20 | return -1; |
1622 | 3.56k | break; |
1623 | 17.0k | default: |
1624 | 17.0k | insn->eaBase = (EABase)(eaBaseBase + rm); |
1625 | 17.0k | if (readDisplacement(insn)) |
1626 | 105 | return -1; |
1627 | 16.8k | break; |
1628 | 20.5k | } |
1629 | 20.4k | break; |
1630 | 23.2k | case 0x3: |
1631 | 23.2k | insn->eaDisplacement = EA_DISP_NONE; |
1632 | 23.2k | insn->eaBase = (EABase)(insn->eaRegBase + rm + evexrm); |
1633 | 23.2k | break; |
1634 | 87.9k | } |
1635 | | |
1636 | 87.7k | break; |
1637 | 87.9k | } |
1638 | 127k | } /* switch (insn->addressSize) */ |
1639 | | |
1640 | 127k | return 0; |
1641 | 127k | } |
1642 | | |
1643 | | #define GENERIC_FIXUP_FUNC(name, base, prefix, mask) \ |
1644 | | static uint16_t name(struct InternalInstruction *insn, \ |
1645 | | OperandType type, uint8_t index, uint8_t *valid) \ |
1646 | 145k | { \ |
1647 | 145k | *valid = 1; \ |
1648 | 145k | switch (type) { \ |
1649 | 0 | default: \ |
1650 | 0 | *valid = 0; \ |
1651 | 0 | return 0; \ |
1652 | 34.4k | case TYPE_Rv: \ |
1653 | 34.4k | return base + index; \ |
1654 | 43.7k | case TYPE_R8: \ |
1655 | 43.7k | index &= mask; \ |
1656 | 43.7k | if (index > 0xf) \ |
1657 | 43.7k | *valid = 0; \ |
1658 | 43.7k | if (insn->rexPrefix && index >= 4 && index <= 7) { \ |
1659 | 558 | return prefix##_SPL + (index - 4); \ |
1660 | 43.2k | } else { \ |
1661 | 43.2k | return prefix##_AL + index; \ |
1662 | 43.2k | } \ |
1663 | 43.7k | case TYPE_R16: \ |
1664 | 949 | index &= mask; \ |
1665 | 949 | if (index > 0xf) \ |
1666 | 949 | *valid = 0; \ |
1667 | 949 | return prefix##_AX + index; \ |
1668 | 43.7k | case TYPE_R32: \ |
1669 | 778 | index &= mask; \ |
1670 | 778 | if (index > 0xf) \ |
1671 | 778 | *valid = 0; \ |
1672 | 778 | return prefix##_EAX + index; \ |
1673 | 43.7k | case TYPE_R64: \ |
1674 | 3.75k | index &= mask; \ |
1675 | 3.75k | if (index > 0xf) \ |
1676 | 3.75k | *valid = 0; \ |
1677 | 3.75k | return prefix##_RAX + index; \ |
1678 | 43.7k | case TYPE_ZMM: \ |
1679 | 12.5k | return prefix##_ZMM0 + index; \ |
1680 | 43.7k | case TYPE_YMM: \ |
1681 | 11.3k | return prefix##_YMM0 + index; \ |
1682 | 43.7k | case TYPE_XMM: \ |
1683 | 24.6k | return prefix##_XMM0 + index; \ |
1684 | 43.7k | case TYPE_VK: \ |
1685 | 9.27k | index &= 0xf; \ |
1686 | 9.27k | if (index > 7) \ |
1687 | 9.27k | *valid = 0; \ |
1688 | 9.27k | return prefix##_K0 + index; \ |
1689 | 43.7k | case TYPE_MM64: \ |
1690 | 1.35k | return prefix##_MM0 + (index & 0x7); \ |
1691 | 43.7k | case TYPE_SEGMENTREG: \ |
1692 | 403 | if ((index & 7) > 5) \ |
1693 | 403 | *valid = 0; \ |
1694 | 403 | return prefix##_ES + (index & 7); \ |
1695 | 43.7k | case TYPE_DEBUGREG: \ |
1696 | 18 | return prefix##_DR0 + index; \ |
1697 | 43.7k | case TYPE_CONTROLREG: \ |
1698 | 45 | return prefix##_CR0 + index; \ |
1699 | 43.7k | case TYPE_BNDR: \ |
1700 | 2.00k | if (index > 3) \ |
1701 | 2.00k | *valid = 0; \ |
1702 | 2.00k | return prefix##_BND0 + index; \ |
1703 | 43.7k | case TYPE_MVSIBX: \ |
1704 | 0 | return prefix##_XMM0 + index; \ |
1705 | 43.7k | case TYPE_MVSIBY: \ |
1706 | 0 | return prefix##_YMM0 + index; \ |
1707 | 43.7k | case TYPE_MVSIBZ: \ |
1708 | 0 | return prefix##_ZMM0 + index; \ |
1709 | 145k | } \ |
1710 | 145k | } X86DisassemblerDecoder.c:fixupRegValue Line | Count | Source | 1646 | 114k | { \ | 1647 | 114k | *valid = 1; \ | 1648 | 114k | switch (type) { \ | 1649 | 0 | default: \ | 1650 | 0 | *valid = 0; \ | 1651 | 0 | return 0; \ | 1652 | 25.6k | case TYPE_Rv: \ | 1653 | 25.6k | return base + index; \ | 1654 | 35.3k | case TYPE_R8: \ | 1655 | 35.3k | index &= mask; \ | 1656 | 35.3k | if (index > 0xf) \ | 1657 | 35.3k | *valid = 0; \ | 1658 | 35.3k | if (insn->rexPrefix && index >= 4 && index <= 7) { \ | 1659 | 367 | return prefix##_SPL + (index - 4); \ | 1660 | 35.0k | } else { \ | 1661 | 35.0k | return prefix##_AL + index; \ | 1662 | 35.0k | } \ | 1663 | 35.3k | case TYPE_R16: \ | 1664 | 721 | index &= mask; \ | 1665 | 721 | if (index > 0xf) \ | 1666 | 721 | *valid = 0; \ | 1667 | 721 | return prefix##_AX + index; \ | 1668 | 35.3k | case TYPE_R32: \ | 1669 | 651 | index &= mask; \ | 1670 | 651 | if (index > 0xf) \ | 1671 | 651 | *valid = 0; \ | 1672 | 651 | return prefix##_EAX + index; \ | 1673 | 35.3k | case TYPE_R64: \ | 1674 | 2.52k | index &= mask; \ | 1675 | 2.52k | if (index > 0xf) \ | 1676 | 2.52k | *valid = 0; \ | 1677 | 2.52k | return prefix##_RAX + index; \ | 1678 | 35.3k | case TYPE_ZMM: \ | 1679 | 10.0k | return prefix##_ZMM0 + index; \ | 1680 | 35.3k | case TYPE_YMM: \ | 1681 | 8.97k | return prefix##_YMM0 + index; \ | 1682 | 35.3k | case TYPE_XMM: \ | 1683 | 19.5k | return prefix##_XMM0 + index; \ | 1684 | 35.3k | case TYPE_VK: \ | 1685 | 8.20k | index &= 0xf; \ | 1686 | 8.20k | if (index > 7) \ | 1687 | 8.20k | *valid = 0; \ | 1688 | 8.20k | return prefix##_K0 + index; \ | 1689 | 35.3k | case TYPE_MM64: \ | 1690 | 1.10k | return prefix##_MM0 + (index & 0x7); \ | 1691 | 35.3k | case TYPE_SEGMENTREG: \ | 1692 | 403 | if ((index & 7) > 5) \ | 1693 | 403 | *valid = 0; \ | 1694 | 403 | return prefix##_ES + (index & 7); \ | 1695 | 35.3k | case TYPE_DEBUGREG: \ | 1696 | 18 | return prefix##_DR0 + index; \ | 1697 | 35.3k | case TYPE_CONTROLREG: \ | 1698 | 45 | return prefix##_CR0 + index; \ | 1699 | 35.3k | case TYPE_BNDR: \ | 1700 | 1.64k | if (index > 3) \ | 1701 | 1.64k | *valid = 0; \ | 1702 | 1.64k | return prefix##_BND0 + index; \ | 1703 | 35.3k | case TYPE_MVSIBX: \ | 1704 | 0 | return prefix##_XMM0 + index; \ | 1705 | 35.3k | case TYPE_MVSIBY: \ | 1706 | 0 | return prefix##_YMM0 + index; \ | 1707 | 35.3k | case TYPE_MVSIBZ: \ | 1708 | 0 | return prefix##_ZMM0 + index; \ | 1709 | 114k | } \ | 1710 | 114k | } |
X86DisassemblerDecoder.c:fixupRMValue Line | Count | Source | 1646 | 30.4k | { \ | 1647 | 30.4k | *valid = 1; \ | 1648 | 30.4k | switch (type) { \ | 1649 | 0 | default: \ | 1650 | 0 | *valid = 0; \ | 1651 | 0 | return 0; \ | 1652 | 8.77k | case TYPE_Rv: \ | 1653 | 8.77k | return base + index; \ | 1654 | 8.38k | case TYPE_R8: \ | 1655 | 8.38k | index &= mask; \ | 1656 | 8.38k | if (index > 0xf) \ | 1657 | 8.38k | *valid = 0; \ | 1658 | 8.38k | if (insn->rexPrefix && index >= 4 && index <= 7) { \ | 1659 | 191 | return prefix##_SPL + (index - 4); \ | 1660 | 8.19k | } else { \ | 1661 | 8.19k | return prefix##_AL + index; \ | 1662 | 8.19k | } \ | 1663 | 8.38k | case TYPE_R16: \ | 1664 | 228 | index &= mask; \ | 1665 | 228 | if (index > 0xf) \ | 1666 | 228 | *valid = 0; \ | 1667 | 228 | return prefix##_AX + index; \ | 1668 | 8.38k | case TYPE_R32: \ | 1669 | 127 | index &= mask; \ | 1670 | 127 | if (index > 0xf) \ | 1671 | 127 | *valid = 0; \ | 1672 | 127 | return prefix##_EAX + index; \ | 1673 | 8.38k | case TYPE_R64: \ | 1674 | 1.22k | index &= mask; \ | 1675 | 1.22k | if (index > 0xf) \ | 1676 | 1.22k | *valid = 0; \ | 1677 | 1.22k | return prefix##_RAX + index; \ | 1678 | 8.38k | case TYPE_ZMM: \ | 1679 | 2.44k | return prefix##_ZMM0 + index; \ | 1680 | 8.38k | case TYPE_YMM: \ | 1681 | 2.41k | return prefix##_YMM0 + index; \ | 1682 | 8.38k | case TYPE_XMM: \ | 1683 | 5.12k | return prefix##_XMM0 + index; \ | 1684 | 8.38k | case TYPE_VK: \ | 1685 | 1.06k | index &= 0xf; \ | 1686 | 1.06k | if (index > 7) \ | 1687 | 1.06k | *valid = 0; \ | 1688 | 1.06k | return prefix##_K0 + index; \ | 1689 | 8.38k | case TYPE_MM64: \ | 1690 | 255 | return prefix##_MM0 + (index & 0x7); \ | 1691 | 8.38k | case TYPE_SEGMENTREG: \ | 1692 | 0 | if ((index & 7) > 5) \ | 1693 | 0 | *valid = 0; \ | 1694 | 0 | return prefix##_ES + (index & 7); \ | 1695 | 8.38k | case TYPE_DEBUGREG: \ | 1696 | 0 | return prefix##_DR0 + index; \ | 1697 | 8.38k | case TYPE_CONTROLREG: \ | 1698 | 0 | return prefix##_CR0 + index; \ | 1699 | 8.38k | case TYPE_BNDR: \ | 1700 | 361 | if (index > 3) \ | 1701 | 361 | *valid = 0; \ | 1702 | 361 | return prefix##_BND0 + index; \ | 1703 | 8.38k | case TYPE_MVSIBX: \ | 1704 | 0 | return prefix##_XMM0 + index; \ | 1705 | 8.38k | case TYPE_MVSIBY: \ | 1706 | 0 | return prefix##_YMM0 + index; \ | 1707 | 8.38k | case TYPE_MVSIBZ: \ | 1708 | 0 | return prefix##_ZMM0 + index; \ | 1709 | 30.4k | } \ | 1710 | 30.4k | } |
|
1711 | | |
1712 | | /* |
1713 | | * fixup*Value - Consults an operand type to determine the meaning of the |
1714 | | * reg or R/M field. If the operand is an XMM operand, for example, an |
1715 | | * operand would be XMM0 instead of AX, which readModRM() would otherwise |
1716 | | * misinterpret it as. |
1717 | | * |
1718 | | * @param insn - The instruction containing the operand. |
1719 | | * @param type - The operand type. |
1720 | | * @param index - The existing value of the field as reported by readModRM(). |
1721 | | * @param valid - The address of a uint8_t. The target is set to 1 if the |
1722 | | * field is valid for the register class; 0 if not. |
1723 | | * @return - The proper value. |
1724 | | */ |
1725 | | GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG, 0x1f) |
1726 | | GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG, 0xf) |
1727 | | |
1728 | | /* |
1729 | | * fixupReg - Consults an operand specifier to determine which of the |
1730 | | * fixup*Value functions to use in correcting readModRM()'ss interpretation. |
1731 | | * |
1732 | | * @param insn - See fixup*Value(). |
1733 | | * @param op - The operand specifier. |
1734 | | * @return - 0 if fixup was successful; -1 if the register returned was |
1735 | | * invalid for its class. |
1736 | | */ |
1737 | | static int fixupReg(struct InternalInstruction *insn, |
1738 | | const struct OperandSpecifier *op) |
1739 | 239k | { |
1740 | 239k | uint8_t valid; |
1741 | | |
1742 | 239k | switch ((OperandEncoding)op->encoding) { |
1743 | 0 | default: |
1744 | | // debug("Expected a REG or R/M encoding in fixupReg"); |
1745 | 0 | return -1; |
1746 | 18.2k | case ENCODING_VVVV: |
1747 | 18.2k | insn->vvvv = (Reg)fixupRegValue(insn, (OperandType)op->type, |
1748 | 18.2k | insn->vvvv, &valid); |
1749 | 18.2k | if (!valid) |
1750 | 1 | return -1; |
1751 | 18.2k | break; |
1752 | 96.6k | case ENCODING_REG: |
1753 | 96.6k | insn->reg = (Reg)fixupRegValue(insn, (OperandType)op->type, |
1754 | 96.6k | insn->reg - insn->regBase, |
1755 | 96.6k | &valid); |
1756 | 96.6k | if (!valid) |
1757 | 4 | return -1; |
1758 | 96.6k | break; |
1759 | 811k | CASE_ENCODING_RM: |
1760 | 811k | if (insn->eaBase >= insn->eaRegBase) { |
1761 | 30.4k | insn->eaBase = (EABase)fixupRMValue( |
1762 | 30.4k | insn, (OperandType)op->type, |
1763 | 30.4k | insn->eaBase - insn->eaRegBase, &valid); |
1764 | 30.4k | if (!valid) |
1765 | 2 | return -1; |
1766 | 30.4k | } |
1767 | 124k | break; |
1768 | 239k | } |
1769 | | |
1770 | 239k | return 0; |
1771 | 239k | } |
1772 | | |
1773 | | /* |
1774 | | * readOpcodeRegister - Reads an operand from the opcode field of an |
1775 | | * instruction and interprets it appropriately given the operand width. |
1776 | | * Handles AddRegFrm instructions. |
1777 | | * |
1778 | | * @param insn - the instruction whose opcode field is to be read. |
1779 | | * @param size - The width (in bytes) of the register being specified. |
1780 | | * 1 means AL and friends, 2 means AX, 4 means EAX, and 8 means |
1781 | | * RAX. |
1782 | | * @return - 0 on success; nonzero otherwise. |
1783 | | */ |
1784 | | static int readOpcodeRegister(struct InternalInstruction *insn, uint8_t size) |
1785 | 24.2k | { |
1786 | 24.2k | if (size == 0) |
1787 | 18.9k | size = insn->registerSize; |
1788 | | |
1789 | 24.2k | switch (size) { |
1790 | 2.86k | case 1: |
1791 | 2.86k | insn->opcodeRegister = |
1792 | 2.86k | (Reg)(MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3) | |
1793 | 2.86k | (insn->opcode & 7))); |
1794 | 2.86k | if (insn->rexPrefix && |
1795 | 388 | insn->opcodeRegister >= MODRM_REG_AL + 0x4 && |
1796 | 314 | insn->opcodeRegister < MODRM_REG_AL + 0x8) { |
1797 | 148 | insn->opcodeRegister = |
1798 | 148 | (Reg)(MODRM_REG_SPL + (insn->opcodeRegister - |
1799 | 148 | MODRM_REG_AL - 4)); |
1800 | 148 | } |
1801 | | |
1802 | 2.86k | break; |
1803 | 8.72k | case 2: |
1804 | 8.72k | insn->opcodeRegister = |
1805 | 8.72k | (Reg)(MODRM_REG_AX + ((bFromREX(insn->rexPrefix) << 3) | |
1806 | 8.72k | (insn->opcode & 7))); |
1807 | 8.72k | break; |
1808 | 10.2k | case 4: |
1809 | 10.2k | insn->opcodeRegister = (Reg)(MODRM_REG_EAX + |
1810 | 10.2k | ((bFromREX(insn->rexPrefix) << 3) | |
1811 | 10.2k | (insn->opcode & 7))); |
1812 | 10.2k | break; |
1813 | 2.40k | case 8: |
1814 | 2.40k | insn->opcodeRegister = (Reg)(MODRM_REG_RAX + |
1815 | 2.40k | ((bFromREX(insn->rexPrefix) << 3) | |
1816 | 2.40k | (insn->opcode & 7))); |
1817 | 2.40k | break; |
1818 | 24.2k | } |
1819 | | |
1820 | 24.2k | return 0; |
1821 | 24.2k | } |
1822 | | |
1823 | | /* |
1824 | | * readImmediate - Consumes an immediate operand from an instruction, given the |
1825 | | * desired operand size. |
1826 | | * |
1827 | | * @param insn - The instruction whose operand is to be read. |
1828 | | * @param size - The width (in bytes) of the operand. |
1829 | | * @return - 0 if the immediate was successfully consumed; nonzero |
1830 | | * otherwise. |
1831 | | */ |
1832 | | static int readImmediate(struct InternalInstruction *insn, uint8_t size) |
1833 | 64.8k | { |
1834 | 64.8k | uint8_t imm8; |
1835 | 64.8k | uint16_t imm16; |
1836 | 64.8k | uint32_t imm32; |
1837 | 64.8k | uint64_t imm64; |
1838 | | |
1839 | 64.8k | if (insn->numImmediatesConsumed == 2) { |
1840 | | // debug("Already consumed two immediates"); |
1841 | 0 | return -1; |
1842 | 0 | } |
1843 | | |
1844 | 64.8k | if (size == 0) |
1845 | 0 | size = insn->immediateSize; |
1846 | 64.8k | else |
1847 | 64.8k | insn->immediateSize = size; |
1848 | | |
1849 | 64.8k | insn->immediateOffset = insn->readerCursor - insn->startLocation; |
1850 | | |
1851 | 64.8k | switch (size) { |
1852 | 49.9k | case 1: |
1853 | 49.9k | if (consumeByte(insn, &imm8)) |
1854 | 205 | return -1; |
1855 | | |
1856 | 49.7k | insn->immediates[insn->numImmediatesConsumed] = imm8; |
1857 | 49.7k | break; |
1858 | 7.93k | case 2: |
1859 | 7.93k | if (consumeUInt16(insn, &imm16)) |
1860 | 72 | return -1; |
1861 | | |
1862 | 7.86k | insn->immediates[insn->numImmediatesConsumed] = imm16; |
1863 | 7.86k | break; |
1864 | 5.96k | case 4: |
1865 | 5.96k | if (consumeUInt32(insn, &imm32)) |
1866 | 109 | return -1; |
1867 | | |
1868 | 5.85k | insn->immediates[insn->numImmediatesConsumed] = imm32; |
1869 | 5.85k | break; |
1870 | 986 | case 8: |
1871 | 986 | if (consumeUInt64(insn, &imm64)) |
1872 | 23 | return -1; |
1873 | 963 | insn->immediates[insn->numImmediatesConsumed] = imm64; |
1874 | 963 | break; |
1875 | 64.8k | } |
1876 | | |
1877 | 64.4k | insn->numImmediatesConsumed++; |
1878 | | |
1879 | 64.4k | return 0; |
1880 | 64.8k | } |
1881 | | |
1882 | | /* |
1883 | | * readVVVV - Consumes vvvv from an instruction if it has a VEX prefix. |
1884 | | * |
1885 | | * @param insn - The instruction whose operand is to be read. |
1886 | | * @return - 0 if the vvvv was successfully consumed; nonzero |
1887 | | * otherwise. |
1888 | | */ |
1889 | | static int readVVVV(struct InternalInstruction *insn) |
1890 | 232k | { |
1891 | 232k | int vvvv; |
1892 | | |
1893 | 232k | if (insn->vectorExtensionType == TYPE_EVEX) |
1894 | 17.0k | vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 | |
1895 | 17.0k | vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2])); |
1896 | 214k | else if (insn->vectorExtensionType == TYPE_VEX_3B) |
1897 | 2.60k | vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]); |
1898 | 212k | else if (insn->vectorExtensionType == TYPE_VEX_2B) |
1899 | 2.76k | vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]); |
1900 | 209k | else if (insn->vectorExtensionType == TYPE_XOP) |
1901 | 2.36k | vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]); |
1902 | 207k | else |
1903 | 207k | return -1; |
1904 | | |
1905 | 24.8k | if (insn->mode != MODE_64BIT) |
1906 | 15.8k | vvvv &= 0xf; // Can only clear bit 4. Bit 3 must be cleared later. |
1907 | | |
1908 | 24.8k | insn->vvvv = (Reg)vvvv; |
1909 | | |
1910 | 24.8k | return 0; |
1911 | 232k | } |
1912 | | |
1913 | | /* |
1914 | | * readMaskRegister - Reads an mask register from the opcode field of an |
1915 | | * instruction. |
1916 | | * |
1917 | | * @param insn - The instruction whose opcode field is to be read. |
1918 | | * @return - 0 on success; nonzero otherwise. |
1919 | | */ |
1920 | | static int readMaskRegister(struct InternalInstruction *insn) |
1921 | 12.3k | { |
1922 | 12.3k | if (insn->vectorExtensionType != TYPE_EVEX) |
1923 | 0 | return -1; |
1924 | | |
1925 | 12.3k | insn->writemask = |
1926 | 12.3k | (Reg)(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3])); |
1927 | | |
1928 | 12.3k | return 0; |
1929 | 12.3k | } |
1930 | | |
1931 | | /* |
1932 | | * readOperands - Consults the specifier for an instruction and consumes all |
1933 | | * operands for that instruction, interpreting them as it goes. |
1934 | | * |
1935 | | * @param insn - The instruction whose operands are to be read and interpreted. |
1936 | | * @return - 0 if all operands could be read; nonzero otherwise. |
1937 | | */ |
1938 | | static int readOperands(struct InternalInstruction *insn) |
1939 | 232k | { |
1940 | 232k | int hasVVVV, needVVVV; |
1941 | 232k | int sawRegImm = 0; |
1942 | 232k | int i; |
1943 | | |
1944 | | /* If non-zero vvvv specified, need to make sure one of the operands |
1945 | | uses it. */ |
1946 | 232k | hasVVVV = !readVVVV(insn); |
1947 | 232k | needVVVV = hasVVVV && (insn->vvvv != 0); |
1948 | | |
1949 | 1.62M | for (i = 0; i < X86_MAX_OPERANDS; ++i) { |
1950 | 1.39M | const OperandSpecifier *op = |
1951 | 1.39M | &x86OperandSets[insn->spec->operands][i]; |
1952 | 1.39M | switch (op->encoding) { |
1953 | 968k | case ENCODING_NONE: |
1954 | 979k | case ENCODING_SI: |
1955 | 992k | case ENCODING_DI: |
1956 | 992k | break; |
1957 | | |
1958 | 6.21k | CASE_ENCODING_VSIB: |
1959 | | // VSIB can use the V2 bit so check only the other bits. |
1960 | 6.21k | if (needVVVV) |
1961 | 773 | needVVVV = hasVVVV & ((insn->vvvv & 0xf) != 0); |
1962 | | |
1963 | 6.21k | if (readModRM(insn)) |
1964 | 0 | return -1; |
1965 | | |
1966 | | // Reject if SIB wasn't used. |
1967 | 1.16k | if (insn->eaBase != EA_BASE_sib && |
1968 | 776 | insn->eaBase != EA_BASE_sib64) |
1969 | 3 | return -1; |
1970 | | |
1971 | | // If sibIndex was set to SIB_INDEX_NONE, index offset is 4. |
1972 | 1.16k | if (insn->sibIndex == SIB_INDEX_NONE) |
1973 | 55 | insn->sibIndex = |
1974 | 55 | (SIBIndex)(insn->sibIndexBase + 4); |
1975 | | |
1976 | | // If EVEX.v2 is set this is one of the 16-31 registers. |
1977 | 1.16k | if (insn->vectorExtensionType == TYPE_EVEX && |
1978 | 731 | insn->mode == MODE_64BIT && |
1979 | 475 | v2FromEVEX4of4(insn->vectorExtensionPrefix[3])) |
1980 | 344 | insn->sibIndex = |
1981 | 344 | (SIBIndex)(insn->sibIndex + 16); |
1982 | | |
1983 | | // Adjust the index register to the correct size. |
1984 | 1.16k | switch (op->type) { |
1985 | 0 | default: |
1986 | | // debug("Unhandled VSIB index type"); |
1987 | 0 | return -1; |
1988 | 677 | case TYPE_MVSIBX: |
1989 | 677 | insn->sibIndex = |
1990 | 677 | (SIBIndex)(SIB_INDEX_XMM0 + |
1991 | 677 | (insn->sibIndex - |
1992 | 677 | insn->sibIndexBase)); |
1993 | 677 | break; |
1994 | 205 | case TYPE_MVSIBY: |
1995 | 205 | insn->sibIndex = |
1996 | 205 | (SIBIndex)(SIB_INDEX_YMM0 + |
1997 | 205 | (insn->sibIndex - |
1998 | 205 | insn->sibIndexBase)); |
1999 | 205 | break; |
2000 | 278 | case TYPE_MVSIBZ: |
2001 | 278 | insn->sibIndex = |
2002 | 278 | (SIBIndex)(SIB_INDEX_ZMM0 + |
2003 | 278 | (insn->sibIndex - |
2004 | 278 | insn->sibIndexBase)); |
2005 | 278 | break; |
2006 | 1.16k | } |
2007 | | |
2008 | | // Apply the AVX512 compressed displacement scaling factor. |
2009 | 1.16k | if (op->encoding != ENCODING_REG && |
2010 | 1.16k | insn->eaDisplacement == EA_DISP_8) |
2011 | 132 | insn->displacement *= |
2012 | 132 | 1 << (op->encoding - ENCODING_VSIB); |
2013 | 1.16k | break; |
2014 | | |
2015 | 96.6k | case ENCODING_REG: |
2016 | 1.48M | CASE_ENCODING_RM: |
2017 | 1.48M | if (readModRM(insn)) |
2018 | 0 | return -1; |
2019 | | |
2020 | 221k | if (fixupReg(insn, op)) |
2021 | 6 | return -1; |
2022 | | |
2023 | | // Apply the AVX512 compressed displacement scaling factor. |
2024 | 221k | if (op->encoding != ENCODING_REG && |
2025 | 124k | insn->eaDisplacement == EA_DISP_8) |
2026 | 21.8k | insn->displacement *= |
2027 | 21.8k | 1 << (op->encoding - ENCODING_RM); |
2028 | 221k | break; |
2029 | | |
2030 | 50.8k | case ENCODING_IB: |
2031 | 50.8k | if (sawRegImm) { |
2032 | | /* Saw a register immediate so don't read again and instead split the |
2033 | | previous immediate. FIXME: This is a hack. */ |
2034 | 896 | insn->immediates[insn->numImmediatesConsumed] = |
2035 | 896 | insn->immediates |
2036 | 896 | [insn->numImmediatesConsumed - |
2037 | 896 | 1] & |
2038 | 896 | 0xf; |
2039 | 896 | ++insn->numImmediatesConsumed; |
2040 | 896 | break; |
2041 | 896 | } |
2042 | 49.9k | if (readImmediate(insn, 1)) |
2043 | 205 | return -1; |
2044 | 49.7k | if (op->type == TYPE_XMM || op->type == TYPE_YMM) |
2045 | 981 | sawRegImm = 1; |
2046 | 49.7k | break; |
2047 | | |
2048 | 2.00k | case ENCODING_IW: |
2049 | 2.00k | if (readImmediate(insn, 2)) |
2050 | 15 | return -1; |
2051 | 1.99k | break; |
2052 | | |
2053 | 1.99k | case ENCODING_ID: |
2054 | 1.23k | if (readImmediate(insn, 4)) |
2055 | 18 | return -1; |
2056 | 1.21k | break; |
2057 | | |
2058 | 1.21k | case ENCODING_IO: |
2059 | 199 | if (readImmediate(insn, 8)) |
2060 | 1 | return -1; |
2061 | 198 | break; |
2062 | | |
2063 | 8.99k | case ENCODING_Iv: |
2064 | 8.99k | if (readImmediate(insn, insn->immediateSize)) |
2065 | 127 | return -1; |
2066 | 8.87k | break; |
2067 | | |
2068 | 8.87k | case ENCODING_Ia: |
2069 | 2.44k | if (readImmediate(insn, insn->addressSize)) |
2070 | 43 | return -1; |
2071 | | /* Direct memory-offset (moffset) immediate will get mapped |
2072 | | to memory operand later. We want the encoding info to |
2073 | | reflect that as well. */ |
2074 | 2.40k | insn->displacementOffset = insn->immediateOffset; |
2075 | 2.40k | insn->consumedDisplacement = true; |
2076 | 2.40k | insn->displacementSize = insn->immediateSize; |
2077 | 2.40k | insn->displacement = |
2078 | 2.40k | insn->immediates[insn->numImmediatesConsumed - |
2079 | 2.40k | 1]; |
2080 | 2.40k | insn->immediateOffset = 0; |
2081 | 2.40k | insn->immediateSize = 0; |
2082 | 2.40k | break; |
2083 | | |
2084 | 755 | case ENCODING_IRC: |
2085 | 755 | insn->RC = |
2086 | 755 | (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]) |
2087 | 755 | << 1) | |
2088 | 755 | lFromEVEX4of4(insn->vectorExtensionPrefix[3]); |
2089 | 755 | break; |
2090 | | |
2091 | 2.86k | case ENCODING_RB: |
2092 | 2.86k | if (readOpcodeRegister(insn, 1)) |
2093 | 0 | return -1; |
2094 | 2.86k | break; |
2095 | | |
2096 | 2.86k | case ENCODING_RW: |
2097 | 0 | if (readOpcodeRegister(insn, 2)) |
2098 | 0 | return -1; |
2099 | 0 | break; |
2100 | | |
2101 | 0 | case ENCODING_RD: |
2102 | 0 | if (readOpcodeRegister(insn, 4)) |
2103 | 0 | return -1; |
2104 | 0 | break; |
2105 | | |
2106 | 2.40k | case ENCODING_RO: |
2107 | 2.40k | if (readOpcodeRegister(insn, 8)) |
2108 | 0 | return -1; |
2109 | 2.40k | break; |
2110 | | |
2111 | 18.9k | case ENCODING_Rv: |
2112 | 18.9k | if (readOpcodeRegister(insn, 0)) |
2113 | 0 | return -1; |
2114 | 18.9k | break; |
2115 | | |
2116 | 18.9k | case ENCODING_FP: |
2117 | 1.44k | break; |
2118 | | |
2119 | 18.2k | case ENCODING_VVVV: |
2120 | 18.2k | if (!hasVVVV) |
2121 | 0 | return -1; |
2122 | | |
2123 | 18.2k | needVVVV = |
2124 | 18.2k | 0; /* Mark that we have found a VVVV operand. */ |
2125 | | |
2126 | 18.2k | if (insn->mode != MODE_64BIT) |
2127 | 12.2k | insn->vvvv = (Reg)(insn->vvvv & 0x7); |
2128 | | |
2129 | 18.2k | if (fixupReg(insn, op)) |
2130 | 1 | return -1; |
2131 | 18.2k | break; |
2132 | | |
2133 | 18.2k | case ENCODING_WRITEMASK: |
2134 | 12.3k | if (readMaskRegister(insn)) |
2135 | 0 | return -1; |
2136 | 12.3k | break; |
2137 | | |
2138 | 52.3k | case ENCODING_DUP: |
2139 | 52.3k | break; |
2140 | | |
2141 | 0 | default: |
2142 | | // dbgprintf(insn, "Encountered an operand with an unknown encoding."); |
2143 | 0 | return -1; |
2144 | 1.39M | } |
2145 | 1.39M | } |
2146 | | |
2147 | | /* If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail */ |
2148 | 231k | if (needVVVV) |
2149 | 4 | return -1; |
2150 | | |
2151 | 231k | return 0; |
2152 | 231k | } |
2153 | | |
2154 | | // return True if instruction is illegal to use with prefixes |
2155 | | // This also check & fix the isPrefixNN when a prefix is irrelevant. |
2156 | | static bool checkPrefix(struct InternalInstruction *insn) |
2157 | 232k | { |
2158 | | // LOCK prefix |
2159 | 232k | if (insn->hasLockPrefix) { |
2160 | 10.4k | switch (insn->instructionID) { |
2161 | 50 | default: |
2162 | | // invalid LOCK |
2163 | 50 | return true; |
2164 | | |
2165 | | // nop dword [rax] |
2166 | 5 | case X86_NOOPL: |
2167 | | |
2168 | | // DEC |
2169 | 20 | case X86_DEC16m: |
2170 | 30 | case X86_DEC32m: |
2171 | 64 | case X86_DEC64m: |
2172 | 123 | case X86_DEC8m: |
2173 | | |
2174 | | // ADC |
2175 | 191 | case X86_ADC16mi: |
2176 | 223 | case X86_ADC16mi8: |
2177 | 404 | case X86_ADC16mr: |
2178 | 543 | case X86_ADC32mi: |
2179 | 572 | case X86_ADC32mi8: |
2180 | 610 | case X86_ADC32mr: |
2181 | 654 | case X86_ADC64mi32: |
2182 | 736 | case X86_ADC64mi8: |
2183 | 773 | case X86_ADC64mr: |
2184 | 784 | case X86_ADC8mi: |
2185 | 788 | case X86_ADC8mi8: |
2186 | 964 | case X86_ADC8mr: |
2187 | 994 | case X86_ADC8rm: |
2188 | 1.04k | case X86_ADC16rm: |
2189 | 1.11k | case X86_ADC32rm: |
2190 | 1.26k | case X86_ADC64rm: |
2191 | | |
2192 | | // ADD |
2193 | 1.27k | case X86_ADD16mi: |
2194 | 1.31k | case X86_ADD16mi8: |
2195 | 1.33k | case X86_ADD16mr: |
2196 | 1.47k | case X86_ADD32mi: |
2197 | 1.64k | case X86_ADD32mi8: |
2198 | 1.86k | case X86_ADD32mr: |
2199 | 1.94k | case X86_ADD64mi32: |
2200 | 1.96k | case X86_ADD64mi8: |
2201 | 1.99k | case X86_ADD64mr: |
2202 | 2.04k | case X86_ADD8mi: |
2203 | 2.17k | case X86_ADD8mi8: |
2204 | 2.40k | case X86_ADD8mr: |
2205 | 2.40k | case X86_ADD8rm: |
2206 | 2.46k | case X86_ADD16rm: |
2207 | 2.53k | case X86_ADD32rm: |
2208 | 2.71k | case X86_ADD64rm: |
2209 | | |
2210 | | // AND |
2211 | 2.90k | case X86_AND16mi: |
2212 | 3.10k | case X86_AND16mi8: |
2213 | 3.17k | case X86_AND16mr: |
2214 | 3.18k | case X86_AND32mi: |
2215 | 3.32k | case X86_AND32mi8: |
2216 | 3.46k | case X86_AND32mr: |
2217 | 3.46k | case X86_AND64mi32: |
2218 | 3.47k | case X86_AND64mi8: |
2219 | 3.52k | case X86_AND64mr: |
2220 | 3.54k | case X86_AND8mi: |
2221 | 3.58k | case X86_AND8mi8: |
2222 | 3.67k | case X86_AND8mr: |
2223 | 3.73k | case X86_AND8rm: |
2224 | 3.78k | case X86_AND16rm: |
2225 | 3.82k | case X86_AND32rm: |
2226 | 3.84k | case X86_AND64rm: |
2227 | | |
2228 | | // BTC |
2229 | 4.02k | case X86_BTC16mi8: |
2230 | 4.03k | case X86_BTC16mr: |
2231 | 4.19k | case X86_BTC32mi8: |
2232 | 4.20k | case X86_BTC32mr: |
2233 | 4.20k | case X86_BTC64mi8: |
2234 | 4.21k | case X86_BTC64mr: |
2235 | | |
2236 | | // BTR |
2237 | 4.29k | case X86_BTR16mi8: |
2238 | 4.29k | case X86_BTR16mr: |
2239 | 4.34k | case X86_BTR32mi8: |
2240 | 4.38k | case X86_BTR32mr: |
2241 | 4.42k | case X86_BTR64mi8: |
2242 | 4.44k | case X86_BTR64mr: |
2243 | | |
2244 | | // BTS |
2245 | 4.45k | case X86_BTS16mi8: |
2246 | 4.45k | case X86_BTS16mr: |
2247 | 4.58k | case X86_BTS32mi8: |
2248 | 4.59k | case X86_BTS32mr: |
2249 | 4.60k | case X86_BTS64mi8: |
2250 | 4.65k | case X86_BTS64mr: |
2251 | | |
2252 | | // CMPXCHG |
2253 | 4.70k | case X86_CMPXCHG16B: |
2254 | 4.70k | case X86_CMPXCHG16rm: |
2255 | 4.71k | case X86_CMPXCHG32rm: |
2256 | 4.73k | case X86_CMPXCHG64rm: |
2257 | 4.76k | case X86_CMPXCHG8rm: |
2258 | 4.82k | case X86_CMPXCHG8B: |
2259 | | |
2260 | | // INC |
2261 | 4.84k | case X86_INC16m: |
2262 | 5.03k | case X86_INC32m: |
2263 | 5.05k | case X86_INC64m: |
2264 | 5.19k | case X86_INC8m: |
2265 | | |
2266 | | // NEG |
2267 | 5.33k | case X86_NEG16m: |
2268 | 5.52k | case X86_NEG32m: |
2269 | 5.52k | case X86_NEG64m: |
2270 | 5.63k | case X86_NEG8m: |
2271 | | |
2272 | | // NOT |
2273 | 5.68k | case X86_NOT16m: |
2274 | 5.72k | case X86_NOT32m: |
2275 | 5.74k | case X86_NOT64m: |
2276 | 5.88k | case X86_NOT8m: |
2277 | | |
2278 | | // OR |
2279 | 6.02k | case X86_OR16mi: |
2280 | 6.10k | case X86_OR16mi8: |
2281 | 6.10k | case X86_OR16mr: |
2282 | 6.11k | case X86_OR32mi: |
2283 | 6.15k | case X86_OR32mi8: |
2284 | 6.19k | case X86_OR32mr: |
2285 | 6.20k | case X86_OR64mi32: |
2286 | 6.23k | case X86_OR64mi8: |
2287 | 6.24k | case X86_OR64mr: |
2288 | 6.28k | case X86_OR8mi8: |
2289 | 6.34k | case X86_OR8mi: |
2290 | 6.36k | case X86_OR8mr: |
2291 | 6.41k | case X86_OR8rm: |
2292 | 6.57k | case X86_OR16rm: |
2293 | 6.63k | case X86_OR32rm: |
2294 | 6.67k | case X86_OR64rm: |
2295 | | |
2296 | | // SBB |
2297 | 6.96k | case X86_SBB16mi: |
2298 | 7.13k | case X86_SBB16mi8: |
2299 | 7.14k | case X86_SBB16mr: |
2300 | 7.33k | case X86_SBB32mi: |
2301 | 7.39k | case X86_SBB32mi8: |
2302 | 7.40k | case X86_SBB32mr: |
2303 | 7.57k | case X86_SBB64mi32: |
2304 | 7.57k | case X86_SBB64mi8: |
2305 | 7.73k | case X86_SBB64mr: |
2306 | 7.74k | case X86_SBB8mi: |
2307 | 7.75k | case X86_SBB8mi8: |
2308 | 7.84k | case X86_SBB8mr: |
2309 | | |
2310 | | // SUB |
2311 | 7.86k | case X86_SUB16mi: |
2312 | 7.87k | case X86_SUB16mi8: |
2313 | 7.91k | case X86_SUB16mr: |
2314 | 7.92k | case X86_SUB32mi: |
2315 | 7.95k | case X86_SUB32mi8: |
2316 | 7.97k | case X86_SUB32mr: |
2317 | 7.99k | case X86_SUB64mi32: |
2318 | 8.00k | case X86_SUB64mi8: |
2319 | 8.01k | case X86_SUB64mr: |
2320 | 8.05k | case X86_SUB8mi8: |
2321 | 8.18k | case X86_SUB8mi: |
2322 | 8.24k | case X86_SUB8mr: |
2323 | 8.30k | case X86_SUB8rm: |
2324 | 8.32k | case X86_SUB16rm: |
2325 | 8.36k | case X86_SUB32rm: |
2326 | 8.36k | case X86_SUB64rm: |
2327 | | |
2328 | | // XADD |
2329 | 8.52k | case X86_XADD16rm: |
2330 | 8.53k | case X86_XADD32rm: |
2331 | 8.54k | case X86_XADD64rm: |
2332 | 8.71k | case X86_XADD8rm: |
2333 | | |
2334 | | // XCHG |
2335 | 8.73k | case X86_XCHG16rm: |
2336 | 9.09k | case X86_XCHG32rm: |
2337 | 9.10k | case X86_XCHG64rm: |
2338 | 9.14k | case X86_XCHG8rm: |
2339 | | |
2340 | | // XOR |
2341 | 9.15k | case X86_XOR16mi: |
2342 | 9.17k | case X86_XOR16mi8: |
2343 | 9.18k | case X86_XOR16mr: |
2344 | 9.19k | case X86_XOR32mi: |
2345 | 9.39k | case X86_XOR32mi8: |
2346 | 9.61k | case X86_XOR32mr: |
2347 | 9.61k | case X86_XOR64mi32: |
2348 | 9.79k | case X86_XOR64mi8: |
2349 | 9.96k | case X86_XOR64mr: |
2350 | 10.1k | case X86_XOR8mi8: |
2351 | 10.1k | case X86_XOR8mi: |
2352 | 10.1k | case X86_XOR8mr: |
2353 | 10.2k | case X86_XOR8rm: |
2354 | 10.2k | case X86_XOR16rm: |
2355 | 10.3k | case X86_XOR32rm: |
2356 | 10.3k | case X86_XOR64rm: |
2357 | | |
2358 | | // this instruction can be used with LOCK prefix |
2359 | 10.3k | return false; |
2360 | 10.4k | } |
2361 | 10.4k | } |
2362 | | |
2363 | | #if 0 |
2364 | | // REPNE prefix |
2365 | | if (insn->repeatPrefix) { |
2366 | | // 0xf2 can be a part of instruction encoding, but not really a prefix. |
2367 | | // In such a case, clear it. |
2368 | | if (insn->twoByteEscape == 0x0f) { |
2369 | | insn->prefix0 = 0; |
2370 | | } |
2371 | | } |
2372 | | #endif |
2373 | | |
2374 | | // no invalid prefixes |
2375 | 221k | return false; |
2376 | 232k | } |
2377 | | |
2378 | | /* |
2379 | | * decodeInstruction - Reads and interprets a full instruction provided by the |
2380 | | * user. |
2381 | | * |
2382 | | * @param insn - A pointer to the instruction to be populated. Must be |
2383 | | * pre-allocated. |
2384 | | * @param reader - The function to be used to read the instruction's bytes. |
2385 | | * @param readerArg - A generic argument to be passed to the reader to store |
2386 | | * any internal state. |
2387 | | * @param startLoc - The address (in the reader's address space) of the first |
2388 | | * byte in the instruction. |
2389 | | * @param mode - The mode (real mode, IA-32e, or IA-32e in 64-bit mode) to |
2390 | | * decode the instruction in. |
2391 | | * @return - 0 if instruction is valid; nonzero if not. |
2392 | | */ |
2393 | | int decodeInstruction(struct InternalInstruction *insn, byteReader_t reader, |
2394 | | const void *readerArg, uint64_t startLoc, |
2395 | | DisassemblerMode mode) |
2396 | 233k | { |
2397 | 233k | insn->reader = reader; |
2398 | 233k | insn->readerArg = readerArg; |
2399 | 233k | insn->startLocation = startLoc; |
2400 | 233k | insn->readerCursor = startLoc; |
2401 | 233k | insn->mode = mode; |
2402 | 233k | insn->numImmediatesConsumed = 0; |
2403 | | |
2404 | 233k | if (readPrefixes(insn) || readOpcode(insn) || getID(insn) || |
2405 | 232k | insn->instructionID == 0 || checkPrefix(insn) || readOperands(insn)) |
2406 | 1.70k | return -1; |
2407 | | |
2408 | 231k | insn->length = (size_t)(insn->readerCursor - insn->startLocation); |
2409 | | |
2410 | | // instruction length must be <= 15 to be valid |
2411 | 231k | if (insn->length > 15) |
2412 | 8 | return -1; |
2413 | | |
2414 | 231k | if (insn->operandSize == 0) |
2415 | 231k | insn->operandSize = insn->registerSize; |
2416 | | |
2417 | 231k | insn->operands = &x86OperandSets[insn->spec->operands][0]; |
2418 | | |
2419 | 231k | return 0; |
2420 | 231k | } |
2421 | | |
2422 | | #endif |