Coverage Report

Created: 2024-08-21 06:24

/src/capstonenext/arch/X86/X86Disassembler.c
Line
Count
Source (jump to first uncovered line)
1
//===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
2
//
3
//                     The LLVM Compiler Infrastructure
4
//
5
// This file is distributed under the University of Illinois Open Source
6
// License. See LICENSE.TXT for details.
7
//
8
//===----------------------------------------------------------------------===//
9
//
10
// This file is part of the X86 Disassembler.
11
// It contains code to translate the data produced by the decoder into
12
//  MCInsts.
13
//
14
// The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
15
// 64-bit X86 instruction sets.  The main decode sequence for an assembly
16
// instruction in this disassembler is:
17
//
18
// 1. Read the prefix bytes and determine the attributes of the instruction.
19
//    These attributes, recorded in enum attributeBits
20
//    (X86DisassemblerDecoderCommon.h), form a bitmask.  The table CONTEXTS_SYM
21
//    provides a mapping from bitmasks to contexts, which are represented by
22
//    enum InstructionContext (ibid.).
23
//
24
// 2. Read the opcode, and determine what kind of opcode it is.  The
25
//    disassembler distinguishes four kinds of opcodes, which are enumerated in
26
//    OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
27
//    (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
28
//    (0x0f 0x3a 0xnn).  Mandatory prefixes are treated as part of the context.
29
//
30
// 3. Depending on the opcode type, look in one of four ClassDecision structures
31
//    (X86DisassemblerDecoderCommon.h).  Use the opcode class to determine which
32
//    OpcodeDecision (ibid.) to look the opcode in.  Look up the opcode, to get
33
//    a ModRMDecision (ibid.).
34
//
35
// 4. Some instructions, such as escape opcodes or extended opcodes, or even
36
//    instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
37
//    ModR/M byte to complete decode.  The ModRMDecision's type is an entry from
38
//    ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
39
//    ModR/M byte is required and how to interpret it.
40
//
41
// 5. After resolving the ModRMDecision, the disassembler has a unique ID
42
//    of type InstrUID (X86DisassemblerDecoderCommon.h).  Looking this ID up in
43
//    INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
44
//    meanings of its operands.
45
//
46
// 6. For each operand, its encoding is an entry from OperandEncoding
47
//    (X86DisassemblerDecoderCommon.h) and its type is an entry from
48
//    OperandType (ibid.).  The encoding indicates how to read it from the
49
//    instruction; the type indicates how to interpret the value once it has
50
//    been read.  For example, a register operand could be stored in the R/M
51
//    field of the ModR/M byte, the REG field of the ModR/M byte, or added to
52
//    the main opcode.  This is orthogonal from its meaning (an GPR or an XMM
53
//    register, for instance).  Given this information, the operands can be
54
//    extracted and interpreted.
55
//
56
// 7. As the last step, the disassembler translates the instruction information
57
//    and operands into a format understandable by the client - in this case, an
58
//    MCInst for use by the MC infrastructure.
59
//
60
// The disassembler is broken broadly into two parts: the table emitter that
61
// emits the instruction decode tables discussed above during compilation, and
62
// the disassembler itself.  The table emitter is documented in more detail in
63
// utils/TableGen/X86DisassemblerEmitter.h.
64
//
65
// X86Disassembler.cpp contains the code responsible for step 7, and for
66
//   invoking the decoder to execute steps 1-6.
67
// X86DisassemblerDecoderCommon.h contains the definitions needed by both the
68
//   table emitter and the disassembler.
69
// X86DisassemblerDecoder.h contains the public interface of the decoder,
70
//   factored out into C for possible use by other projects.
71
// X86DisassemblerDecoder.c contains the source code of the decoder, which is
72
//   responsible for steps 1-6.
73
//
74
//===----------------------------------------------------------------------===//
75
76
/* Capstone Disassembly Engine */
77
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013-2019 */
78
79
#ifdef CAPSTONE_HAS_X86
80
81
#ifdef _MSC_VER
82
#pragma warning(disable:4996)     // disable MSVC's warning on strncpy()
83
#pragma warning(disable:28719)    // disable MSVC's warning on strncpy()
84
#endif
85
86
#include <capstone/platform.h>
87
88
#if defined(CAPSTONE_HAS_OSXKERNEL)
89
#include <Availability.h>
90
#endif
91
92
#include <string.h>
93
94
#include "../../cs_priv.h"
95
96
#include "X86BaseInfo.h"
97
#include "X86Disassembler.h"
98
#include "X86DisassemblerDecoderCommon.h"
99
#include "X86DisassemblerDecoder.h"
100
#include "../../MCInst.h"
101
#include "../../utils.h"
102
#include "X86Mapping.h"
103
104
#define GET_REGINFO_ENUM
105
#define GET_REGINFO_MC_DESC
106
#include "X86GenRegisterInfo.inc"
107
108
#define GET_INSTRINFO_ENUM
109
#ifdef CAPSTONE_X86_REDUCE
110
#include "X86GenInstrInfo_reduce.inc"
111
#else
112
#include "X86GenInstrInfo.inc"
113
#endif
114
115
// Fill-ins to make the compiler happy.  These constants are never actually
116
//   assigned; they are just filler to make an automatically-generated switch
117
//   statement work.
118
enum {
119
  X86_BX_SI = 500,
120
  X86_BX_DI = 501,
121
  X86_BP_SI = 502,
122
  X86_BP_DI = 503,
123
  X86_sib   = 504,
124
  X86_sib64 = 505
125
};
126
127
//
128
// Private code that translates from struct InternalInstructions to MCInsts.
129
//
130
131
/// translateRegister - Translates an internal register to the appropriate LLVM
132
///   register, and appends it as an operand to an MCInst.
133
///
134
/// @param mcInst     - The MCInst to append to.
135
/// @param reg        - The Reg to append.
136
static void translateRegister(MCInst *mcInst, Reg reg)
137
1.44M
{
138
322M
#define ENTRY(x) X86_##x,
139
1.44M
  static const uint16_t llvmRegnums[] = {
140
1.44M
    ALL_REGS
141
1.44M
    0
142
1.44M
  };
143
1.44M
#undef ENTRY
144
145
1.44M
  uint16_t llvmRegnum = llvmRegnums[reg];
146
1.44M
  MCOperand_CreateReg0(mcInst, llvmRegnum);
147
1.44M
}
148
149
static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
150
  0,        // SEG_OVERRIDE_NONE
151
  X86_CS,
152
  X86_SS,
153
  X86_DS,
154
  X86_ES,
155
  X86_FS,
156
  X86_GS
157
};
158
159
/// translateSrcIndex   - Appends a source index operand to an MCInst.
160
///
161
/// @param mcInst       - The MCInst to append to.
162
/// @param insn         - The internal instruction.
163
static bool translateSrcIndex(MCInst *mcInst, InternalInstruction *insn)
164
102k
{
165
102k
  unsigned baseRegNo;
166
167
102k
  if (insn->mode == MODE_64BIT)
168
40.3k
    baseRegNo = insn->hasAdSize ? X86_ESI : X86_RSI;
169
62.3k
  else if (insn->mode == MODE_32BIT)
170
27.0k
    baseRegNo = insn->hasAdSize ? X86_SI : X86_ESI;
171
35.2k
  else {
172
    // assert(insn->mode == MODE_16BIT);
173
35.2k
    baseRegNo = insn->hasAdSize ? X86_ESI : X86_SI;
174
35.2k
  }
175
176
102k
  MCOperand_CreateReg0(mcInst, baseRegNo);
177
178
102k
  MCOperand_CreateReg0(mcInst, segmentRegnums[insn->segmentOverride]);
179
180
102k
  return false;
181
102k
}
182
183
/// translateDstIndex   - Appends a destination index operand to an MCInst.
184
///
185
/// @param mcInst       - The MCInst to append to.
186
/// @param insn         - The internal instruction.
187
static bool translateDstIndex(MCInst *mcInst, InternalInstruction *insn)
188
116k
{
189
116k
  unsigned baseRegNo;
190
191
116k
  if (insn->mode == MODE_64BIT)
192
40.2k
    baseRegNo = insn->hasAdSize ? X86_EDI : X86_RDI;
193
76.1k
  else if (insn->mode == MODE_32BIT)
194
34.2k
    baseRegNo = insn->hasAdSize ? X86_DI : X86_EDI;
195
41.9k
  else {
196
    // assert(insn->mode == MODE_16BIT);
197
41.9k
    baseRegNo = insn->hasAdSize ? X86_EDI : X86_DI;
198
41.9k
  }
199
200
116k
  MCOperand_CreateReg0(mcInst, baseRegNo);
201
202
116k
  return false;
203
116k
}
204
205
/// translateImmediate  - Appends an immediate operand to an MCInst.
206
///
207
/// @param mcInst       - The MCInst to append to.
208
/// @param immediate    - The immediate value to append.
209
/// @param operand      - The operand, as stored in the descriptor table.
210
/// @param insn         - The internal instruction.
211
static void translateImmediate(MCInst *mcInst, uint64_t immediate,
212
    const OperandSpecifier *operand, InternalInstruction *insn)
213
522k
{
214
522k
  OperandType type;
215
216
522k
  type = (OperandType)operand->type;
217
522k
  if (type == TYPE_REL) {
218
    //isBranch = true;
219
    //pcrel = insn->startLocation + insn->immediateOffset + insn->immediateSize;
220
141k
    switch (operand->encoding) {
221
0
      default:
222
0
        break;
223
7.72k
      case ENCODING_Iv:
224
7.72k
        switch (insn->displacementSize) {
225
0
          default:
226
0
            break;
227
0
          case 1:
228
0
            if(immediate & 0x80)
229
0
              immediate |= ~(0xffull);
230
0
            break;
231
2.93k
          case 2:
232
2.93k
            if(immediate & 0x8000)
233
1.55k
              immediate |= ~(0xffffull);
234
2.93k
            break;
235
4.79k
          case 4:
236
4.79k
            if(immediate & 0x80000000)
237
2.65k
              immediate |= ~(0xffffffffull);
238
4.79k
            break;
239
0
          case 8:
240
0
            break;
241
7.72k
        }
242
7.72k
        break;
243
128k
      case ENCODING_IB:
244
128k
        if (immediate & 0x80)
245
40.9k
          immediate |= ~(0xffull);
246
128k
        break;
247
2.39k
      case ENCODING_IW:
248
2.39k
        if (immediate & 0x8000)
249
1.65k
          immediate |= ~(0xffffull);
250
2.39k
        break;
251
3.37k
      case ENCODING_ID:
252
3.37k
        if (immediate & 0x80000000)
253
2.06k
          immediate |= ~(0xffffffffull);
254
3.37k
        break;
255
141k
    }
256
141k
  } // By default sign-extend all X86 immediates based on their encoding.
257
381k
  else if (type == TYPE_IMM) {
258
244k
    switch (operand->encoding) {
259
81.7k
      default:
260
81.7k
        break;
261
134k
      case ENCODING_IB:
262
134k
        if(immediate & 0x80)
263
48.8k
          immediate |= ~(0xffull);
264
134k
        break;
265
22.7k
      case ENCODING_IW:
266
22.7k
        if(immediate & 0x8000)
267
11.8k
          immediate |= ~(0xffffull);
268
22.7k
        break;
269
5.26k
      case ENCODING_ID:
270
5.26k
        if(immediate & 0x80000000)
271
1.81k
          immediate |= ~(0xffffffffull);
272
5.26k
        break;
273
730
      case ENCODING_IO:
274
730
        break;
275
244k
    }
276
244k
  } else if (type == TYPE_IMM3) {
277
17.2k
#ifndef CAPSTONE_X86_REDUCE
278
    // Check for immediates that printSSECC can't handle.
279
17.2k
    if (immediate >= 8) {
280
10.0k
      unsigned NewOpc = 0;
281
282
10.0k
      switch (MCInst_getOpcode(mcInst)) {
283
0
        default: break; // never reach
284
139
        case X86_CMPPDrmi:  NewOpc = X86_CMPPDrmi_alt;  break;
285
382
        case X86_CMPPDrri:  NewOpc = X86_CMPPDrri_alt;  break;
286
913
        case X86_CMPPSrmi:  NewOpc = X86_CMPPSrmi_alt;  break;
287
1.22k
        case X86_CMPPSrri:  NewOpc = X86_CMPPSrri_alt;  break;
288
977
        case X86_CMPSDrm:   NewOpc = X86_CMPSDrm_alt;   break;
289
1.20k
        case X86_CMPSDrr:   NewOpc = X86_CMPSDrr_alt;   break;
290
546
        case X86_CMPSSrm:   NewOpc = X86_CMPSSrm_alt;   break;
291
825
        case X86_CMPSSrr:   NewOpc = X86_CMPSSrr_alt;   break;
292
353
        case X86_VPCOMBri:  NewOpc = X86_VPCOMBri_alt;  break;
293
150
        case X86_VPCOMBmi:  NewOpc = X86_VPCOMBmi_alt;  break;
294
220
        case X86_VPCOMWri:  NewOpc = X86_VPCOMWri_alt;  break;
295
719
        case X86_VPCOMWmi:  NewOpc = X86_VPCOMWmi_alt;  break;
296
226
        case X86_VPCOMDri:  NewOpc = X86_VPCOMDri_alt;  break;
297
183
        case X86_VPCOMDmi:  NewOpc = X86_VPCOMDmi_alt;  break;
298
172
        case X86_VPCOMQri:  NewOpc = X86_VPCOMQri_alt;  break;
299
183
        case X86_VPCOMQmi:  NewOpc = X86_VPCOMQmi_alt;  break;
300
114
        case X86_VPCOMUBri: NewOpc = X86_VPCOMUBri_alt; break;
301
155
        case X86_VPCOMUBmi: NewOpc = X86_VPCOMUBmi_alt; break;
302
318
        case X86_VPCOMUWri: NewOpc = X86_VPCOMUWri_alt; break;
303
239
        case X86_VPCOMUWmi: NewOpc = X86_VPCOMUWmi_alt; break;
304
159
        case X86_VPCOMUDri: NewOpc = X86_VPCOMUDri_alt; break;
305
211
        case X86_VPCOMUDmi: NewOpc = X86_VPCOMUDmi_alt; break;
306
190
        case X86_VPCOMUQri: NewOpc = X86_VPCOMUQri_alt; break;
307
260
        case X86_VPCOMUQmi: NewOpc = X86_VPCOMUQmi_alt; break;
308
10.0k
      }
309
310
      // Switch opcode to the one that doesn't get special printing.
311
10.0k
      if (NewOpc != 0) {
312
10.0k
        MCInst_setOpcode(mcInst, NewOpc);
313
10.0k
      }
314
10.0k
    }
315
17.2k
#endif
316
119k
  } else if (type == TYPE_IMM5) {
317
23.4k
#ifndef CAPSTONE_X86_REDUCE
318
    // Check for immediates that printAVXCC can't handle.
319
23.4k
    if (immediate >= 32) {
320
19.7k
      unsigned NewOpc = 0;
321
322
19.7k
      switch (MCInst_getOpcode(mcInst)) {
323
6.63k
        default: break; // unexpected opcode
324
6.63k
        case X86_VCMPPDrmi:   NewOpc = X86_VCMPPDrmi_alt;   break;
325
241
        case X86_VCMPPDrri:   NewOpc = X86_VCMPPDrri_alt;   break;
326
474
        case X86_VCMPPSrmi:   NewOpc = X86_VCMPPSrmi_alt;   break;
327
384
        case X86_VCMPPSrri:   NewOpc = X86_VCMPPSrri_alt;   break;
328
473
        case X86_VCMPSDrm:    NewOpc = X86_VCMPSDrm_alt;    break;
329
1.12k
        case X86_VCMPSDrr:    NewOpc = X86_VCMPSDrr_alt;    break;
330
266
        case X86_VCMPSSrm:    NewOpc = X86_VCMPSSrm_alt;    break;
331
344
        case X86_VCMPSSrr:    NewOpc = X86_VCMPSSrr_alt;    break;
332
225
        case X86_VCMPPDYrmi:  NewOpc = X86_VCMPPDYrmi_alt;  break;
333
706
        case X86_VCMPPDYrri:  NewOpc = X86_VCMPPDYrri_alt;  break;
334
422
        case X86_VCMPPSYrmi:  NewOpc = X86_VCMPPSYrmi_alt;  break;
335
889
        case X86_VCMPPSYrri:  NewOpc = X86_VCMPPSYrri_alt;  break;
336
243
        case X86_VCMPPDZrmi:  NewOpc = X86_VCMPPDZrmi_alt;  break;
337
926
        case X86_VCMPPDZrri:  NewOpc = X86_VCMPPDZrri_alt;  break;
338
837
        case X86_VCMPPDZrrib: NewOpc = X86_VCMPPDZrrib_alt; break;
339
760
        case X86_VCMPPSZrmi:  NewOpc = X86_VCMPPSZrmi_alt;  break;
340
645
        case X86_VCMPPSZrri:  NewOpc = X86_VCMPPSZrri_alt;  break;
341
172
        case X86_VCMPPSZrrib: NewOpc = X86_VCMPPSZrrib_alt; break;
342
312
        case X86_VCMPPDZ128rmi:  NewOpc = X86_VCMPPDZ128rmi_alt;  break;
343
275
        case X86_VCMPPDZ128rri:  NewOpc = X86_VCMPPDZ128rri_alt;  break;
344
331
        case X86_VCMPPSZ128rmi:  NewOpc = X86_VCMPPSZ128rmi_alt;  break;
345
118
        case X86_VCMPPSZ128rri:  NewOpc = X86_VCMPPSZ128rri_alt;  break;
346
121
        case X86_VCMPPDZ256rmi:  NewOpc = X86_VCMPPDZ256rmi_alt;  break;
347
140
        case X86_VCMPPDZ256rri:  NewOpc = X86_VCMPPDZ256rri_alt;  break;
348
133
        case X86_VCMPPSZ256rmi:  NewOpc = X86_VCMPPSZ256rmi_alt;  break;
349
241
        case X86_VCMPPSZ256rri:  NewOpc = X86_VCMPPSZ256rri_alt;  break;
350
275
        case X86_VCMPSDZrm_Int:  NewOpc = X86_VCMPSDZrmi_alt;  break;
351
179
        case X86_VCMPSDZrr_Int:  NewOpc = X86_VCMPSDZrri_alt;  break;
352
170
        case X86_VCMPSDZrrb_Int: NewOpc = X86_VCMPSDZrrb_alt;  break;
353
439
        case X86_VCMPSSZrm_Int:  NewOpc = X86_VCMPSSZrmi_alt;  break;
354
374
        case X86_VCMPSSZrr_Int:  NewOpc = X86_VCMPSSZrri_alt;  break;
355
245
        case X86_VCMPSSZrrb_Int: NewOpc = X86_VCMPSSZrrb_alt;  break;
356
19.7k
      }
357
358
      // Switch opcode to the one that doesn't get special printing.
359
19.7k
      if (NewOpc != 0) {
360
13.1k
        MCInst_setOpcode(mcInst, NewOpc);
361
13.1k
      }
362
19.7k
    }
363
23.4k
#endif
364
95.9k
  } else if (type == TYPE_AVX512ICC) {
365
14.4k
#ifndef CAPSTONE_X86_REDUCE
366
14.4k
    if (immediate >= 8 || ((immediate & 0x3) == 3)) {
367
6.83k
      unsigned NewOpc = 0;
368
6.83k
      switch (MCInst_getOpcode(mcInst)) {
369
0
        default: // llvm_unreachable("unexpected opcode");
370
131
        case X86_VPCMPBZ128rmi:    NewOpc = X86_VPCMPBZ128rmi_alt;    break;
371
142
        case X86_VPCMPBZ128rmik:   NewOpc = X86_VPCMPBZ128rmik_alt;   break;
372
28
        case X86_VPCMPBZ128rri:    NewOpc = X86_VPCMPBZ128rri_alt;    break;
373
10
        case X86_VPCMPBZ128rrik:   NewOpc = X86_VPCMPBZ128rrik_alt;   break;
374
23
        case X86_VPCMPBZ256rmi:    NewOpc = X86_VPCMPBZ256rmi_alt;    break;
375
2
        case X86_VPCMPBZ256rmik:   NewOpc = X86_VPCMPBZ256rmik_alt;   break;
376
21
        case X86_VPCMPBZ256rri:    NewOpc = X86_VPCMPBZ256rri_alt;    break;
377
15
        case X86_VPCMPBZ256rrik:   NewOpc = X86_VPCMPBZ256rrik_alt;   break;
378
24
        case X86_VPCMPBZrmi:       NewOpc = X86_VPCMPBZrmi_alt;       break;
379
83
        case X86_VPCMPBZrmik:      NewOpc = X86_VPCMPBZrmik_alt;      break;
380
18
        case X86_VPCMPBZrri:       NewOpc = X86_VPCMPBZrri_alt;       break;
381
17
        case X86_VPCMPBZrrik:      NewOpc = X86_VPCMPBZrrik_alt;      break;
382
28
        case X86_VPCMPDZ128rmi:    NewOpc = X86_VPCMPDZ128rmi_alt;    break;
383
305
        case X86_VPCMPDZ128rmib:   NewOpc = X86_VPCMPDZ128rmib_alt;   break;
384
304
        case X86_VPCMPDZ128rmibk:  NewOpc = X86_VPCMPDZ128rmibk_alt;  break;
385
12
        case X86_VPCMPDZ128rmik:   NewOpc = X86_VPCMPDZ128rmik_alt;   break;
386
20
        case X86_VPCMPDZ128rri:    NewOpc = X86_VPCMPDZ128rri_alt;    break;
387
15
        case X86_VPCMPDZ128rrik:   NewOpc = X86_VPCMPDZ128rrik_alt;   break;
388
6
        case X86_VPCMPDZ256rmi:    NewOpc = X86_VPCMPDZ256rmi_alt;    break;
389
232
        case X86_VPCMPDZ256rmib:   NewOpc = X86_VPCMPDZ256rmib_alt;   break;
390
22
        case X86_VPCMPDZ256rmibk:  NewOpc = X86_VPCMPDZ256rmibk_alt;  break;
391
15
        case X86_VPCMPDZ256rmik:   NewOpc = X86_VPCMPDZ256rmik_alt;   break;
392
17
        case X86_VPCMPDZ256rri:    NewOpc = X86_VPCMPDZ256rri_alt;    break;
393
3
        case X86_VPCMPDZ256rrik:   NewOpc = X86_VPCMPDZ256rrik_alt;   break;
394
11
        case X86_VPCMPDZrmi:       NewOpc = X86_VPCMPDZrmi_alt;       break;
395
15
        case X86_VPCMPDZrmib:      NewOpc = X86_VPCMPDZrmib_alt;      break;
396
23
        case X86_VPCMPDZrmibk:     NewOpc = X86_VPCMPDZrmibk_alt;     break;
397
21
        case X86_VPCMPDZrmik:      NewOpc = X86_VPCMPDZrmik_alt;      break;
398
27
        case X86_VPCMPDZrri:       NewOpc = X86_VPCMPDZrri_alt;       break;
399
13
        case X86_VPCMPDZrrik:      NewOpc = X86_VPCMPDZrrik_alt;      break;
400
7
        case X86_VPCMPQZ128rmi:    NewOpc = X86_VPCMPQZ128rmi_alt;    break;
401
714
        case X86_VPCMPQZ128rmib:   NewOpc = X86_VPCMPQZ128rmib_alt;   break;
402
1.20k
        case X86_VPCMPQZ128rmibk:  NewOpc = X86_VPCMPQZ128rmibk_alt;  break;
403
53
        case X86_VPCMPQZ128rmik:   NewOpc = X86_VPCMPQZ128rmik_alt;   break;
404
8
        case X86_VPCMPQZ128rri:    NewOpc = X86_VPCMPQZ128rri_alt;    break;
405
9
        case X86_VPCMPQZ128rrik:   NewOpc = X86_VPCMPQZ128rrik_alt;   break;
406
164
        case X86_VPCMPQZ256rmi:    NewOpc = X86_VPCMPQZ256rmi_alt;    break;
407
27
        case X86_VPCMPQZ256rmib:   NewOpc = X86_VPCMPQZ256rmib_alt;   break;
408
52
        case X86_VPCMPQZ256rmibk:  NewOpc = X86_VPCMPQZ256rmibk_alt;  break;
409
56
        case X86_VPCMPQZ256rmik:   NewOpc = X86_VPCMPQZ256rmik_alt;   break;
410
16
        case X86_VPCMPQZ256rri:    NewOpc = X86_VPCMPQZ256rri_alt;    break;
411
34
        case X86_VPCMPQZ256rrik:   NewOpc = X86_VPCMPQZ256rrik_alt;   break;
412
6
        case X86_VPCMPQZrmi:       NewOpc = X86_VPCMPQZrmi_alt;       break;
413
1
        case X86_VPCMPQZrmib:      NewOpc = X86_VPCMPQZrmib_alt;      break;
414
10
        case X86_VPCMPQZrmibk:     NewOpc = X86_VPCMPQZrmibk_alt;     break;
415
12
        case X86_VPCMPQZrmik:      NewOpc = X86_VPCMPQZrmik_alt;      break;
416
11
        case X86_VPCMPQZrri:       NewOpc = X86_VPCMPQZrri_alt;       break;
417
19
        case X86_VPCMPQZrrik:      NewOpc = X86_VPCMPQZrrik_alt;      break;
418
20
        case X86_VPCMPUBZ128rmi:   NewOpc = X86_VPCMPUBZ128rmi_alt;   break;
419
1
        case X86_VPCMPUBZ128rmik:  NewOpc = X86_VPCMPUBZ128rmik_alt;  break;
420
19
        case X86_VPCMPUBZ128rri:   NewOpc = X86_VPCMPUBZ128rri_alt;   break;
421
28
        case X86_VPCMPUBZ128rrik:  NewOpc = X86_VPCMPUBZ128rrik_alt;  break;
422
8
        case X86_VPCMPUBZ256rmi:   NewOpc = X86_VPCMPUBZ256rmi_alt;   break;
423
260
        case X86_VPCMPUBZ256rmik:  NewOpc = X86_VPCMPUBZ256rmik_alt;  break;
424
7
        case X86_VPCMPUBZ256rri:   NewOpc = X86_VPCMPUBZ256rri_alt;   break;
425
14
        case X86_VPCMPUBZ256rrik:  NewOpc = X86_VPCMPUBZ256rrik_alt;  break;
426
8
        case X86_VPCMPUBZrmi:      NewOpc = X86_VPCMPUBZrmi_alt;      break;
427
22
        case X86_VPCMPUBZrmik:     NewOpc = X86_VPCMPUBZrmik_alt;     break;
428
22
        case X86_VPCMPUBZrri:      NewOpc = X86_VPCMPUBZrri_alt;      break;
429
65
        case X86_VPCMPUBZrrik:     NewOpc = X86_VPCMPUBZrrik_alt;     break;
430
2
        case X86_VPCMPUDZ128rmi:   NewOpc = X86_VPCMPUDZ128rmi_alt;   break;
431
22
        case X86_VPCMPUDZ128rmib:  NewOpc = X86_VPCMPUDZ128rmib_alt;  break;
432
57
        case X86_VPCMPUDZ128rmibk: NewOpc = X86_VPCMPUDZ128rmibk_alt; break;
433
207
        case X86_VPCMPUDZ128rmik:  NewOpc = X86_VPCMPUDZ128rmik_alt;  break;
434
6
        case X86_VPCMPUDZ128rri:   NewOpc = X86_VPCMPUDZ128rri_alt;   break;
435
23
        case X86_VPCMPUDZ128rrik:  NewOpc = X86_VPCMPUDZ128rrik_alt;  break;
436
19
        case X86_VPCMPUDZ256rmi:   NewOpc = X86_VPCMPUDZ256rmi_alt;   break;
437
99
        case X86_VPCMPUDZ256rmib:  NewOpc = X86_VPCMPUDZ256rmib_alt;  break;
438
68
        case X86_VPCMPUDZ256rmibk: NewOpc = X86_VPCMPUDZ256rmibk_alt; break;
439
10
        case X86_VPCMPUDZ256rmik:  NewOpc = X86_VPCMPUDZ256rmik_alt;  break;
440
26
        case X86_VPCMPUDZ256rri:   NewOpc = X86_VPCMPUDZ256rri_alt;   break;
441
12
        case X86_VPCMPUDZ256rrik:  NewOpc = X86_VPCMPUDZ256rrik_alt;  break;
442
11
        case X86_VPCMPUDZrmi:      NewOpc = X86_VPCMPUDZrmi_alt;      break;
443
7
        case X86_VPCMPUDZrmib:     NewOpc = X86_VPCMPUDZrmib_alt;     break;
444
143
        case X86_VPCMPUDZrmibk:    NewOpc = X86_VPCMPUDZrmibk_alt;    break;
445
22
        case X86_VPCMPUDZrmik:     NewOpc = X86_VPCMPUDZrmik_alt;     break;
446
3
        case X86_VPCMPUDZrri:      NewOpc = X86_VPCMPUDZrri_alt;      break;
447
10
        case X86_VPCMPUDZrrik:     NewOpc = X86_VPCMPUDZrrik_alt;     break;
448
11
        case X86_VPCMPUQZ128rmi:   NewOpc = X86_VPCMPUQZ128rmi_alt;   break;
449
47
        case X86_VPCMPUQZ128rmib:  NewOpc = X86_VPCMPUQZ128rmib_alt;  break;
450
20
        case X86_VPCMPUQZ128rmibk: NewOpc = X86_VPCMPUQZ128rmibk_alt; break;
451
6
        case X86_VPCMPUQZ128rmik:  NewOpc = X86_VPCMPUQZ128rmik_alt;  break;
452
41
        case X86_VPCMPUQZ128rri:   NewOpc = X86_VPCMPUQZ128rri_alt;   break;
453
7
        case X86_VPCMPUQZ128rrik:  NewOpc = X86_VPCMPUQZ128rrik_alt;  break;
454
36
        case X86_VPCMPUQZ256rmi:   NewOpc = X86_VPCMPUQZ256rmi_alt;   break;
455
86
        case X86_VPCMPUQZ256rmib:  NewOpc = X86_VPCMPUQZ256rmib_alt;  break;
456
59
        case X86_VPCMPUQZ256rmibk: NewOpc = X86_VPCMPUQZ256rmibk_alt; break;
457
9
        case X86_VPCMPUQZ256rmik:  NewOpc = X86_VPCMPUQZ256rmik_alt;  break;
458
7
        case X86_VPCMPUQZ256rri:   NewOpc = X86_VPCMPUQZ256rri_alt;   break;
459
70
        case X86_VPCMPUQZ256rrik:  NewOpc = X86_VPCMPUQZ256rrik_alt;  break;
460
22
        case X86_VPCMPUQZrmi:      NewOpc = X86_VPCMPUQZrmi_alt;      break;
461
9
        case X86_VPCMPUQZrmib:     NewOpc = X86_VPCMPUQZrmib_alt;     break;
462
133
        case X86_VPCMPUQZrmibk:    NewOpc = X86_VPCMPUQZrmibk_alt;    break;
463
23
        case X86_VPCMPUQZrmik:     NewOpc = X86_VPCMPUQZrmik_alt;     break;
464
39
        case X86_VPCMPUQZrri:      NewOpc = X86_VPCMPUQZrri_alt;      break;
465
18
        case X86_VPCMPUQZrrik:     NewOpc = X86_VPCMPUQZrrik_alt;     break;
466
5
        case X86_VPCMPUWZ128rmi:   NewOpc = X86_VPCMPUWZ128rmi_alt;   break;
467
13
        case X86_VPCMPUWZ128rmik:  NewOpc = X86_VPCMPUWZ128rmik_alt;  break;
468
5
        case X86_VPCMPUWZ128rri:   NewOpc = X86_VPCMPUWZ128rri_alt;   break;
469
12
        case X86_VPCMPUWZ128rrik:  NewOpc = X86_VPCMPUWZ128rrik_alt;  break;
470
17
        case X86_VPCMPUWZ256rmi:   NewOpc = X86_VPCMPUWZ256rmi_alt;   break;
471
18
        case X86_VPCMPUWZ256rmik:  NewOpc = X86_VPCMPUWZ256rmik_alt;  break;
472
12
        case X86_VPCMPUWZ256rri:   NewOpc = X86_VPCMPUWZ256rri_alt;   break;
473
28
        case X86_VPCMPUWZ256rrik:  NewOpc = X86_VPCMPUWZ256rrik_alt;  break;
474
47
        case X86_VPCMPUWZrmi:      NewOpc = X86_VPCMPUWZrmi_alt;      break;
475
47
        case X86_VPCMPUWZrmik:     NewOpc = X86_VPCMPUWZrmik_alt;     break;
476
35
        case X86_VPCMPUWZrri:      NewOpc = X86_VPCMPUWZrri_alt;      break;
477
13
        case X86_VPCMPUWZrrik:     NewOpc = X86_VPCMPUWZrrik_alt;     break;
478
13
        case X86_VPCMPWZ128rmi:    NewOpc = X86_VPCMPWZ128rmi_alt;    break;
479
36
        case X86_VPCMPWZ128rmik:   NewOpc = X86_VPCMPWZ128rmik_alt;   break;
480
5
        case X86_VPCMPWZ128rri:    NewOpc = X86_VPCMPWZ128rri_alt;    break;
481
15
        case X86_VPCMPWZ128rrik:   NewOpc = X86_VPCMPWZ128rrik_alt;   break;
482
13
        case X86_VPCMPWZ256rmi:    NewOpc = X86_VPCMPWZ256rmi_alt;    break;
483
18
        case X86_VPCMPWZ256rmik:   NewOpc = X86_VPCMPWZ256rmik_alt;   break;
484
35
        case X86_VPCMPWZ256rri:    NewOpc = X86_VPCMPWZ256rri_alt;    break;
485
12
        case X86_VPCMPWZ256rrik:   NewOpc = X86_VPCMPWZ256rrik_alt;   break;
486
160
        case X86_VPCMPWZrmi:       NewOpc = X86_VPCMPWZrmi_alt;       break;
487
175
        case X86_VPCMPWZrmik:      NewOpc = X86_VPCMPWZrmik_alt;      break;
488
49
        case X86_VPCMPWZrri:       NewOpc = X86_VPCMPWZrri_alt;       break;
489
180
        case X86_VPCMPWZrrik:      NewOpc = X86_VPCMPWZrrik_alt;      break;
490
6.83k
      }
491
492
      // Switch opcode to the one that doesn't get special printing.
493
6.83k
      if (NewOpc != 0) {
494
6.83k
        MCInst_setOpcode(mcInst, NewOpc);
495
6.83k
      }
496
6.83k
    }
497
14.4k
#endif
498
14.4k
  }
499
500
522k
  switch (type) {
501
773
    case TYPE_XMM:
502
773
      MCOperand_CreateReg0(mcInst, X86_XMM0 + ((uint32_t)immediate >> 4));
503
773
      return;
504
3.13k
    case TYPE_YMM:
505
3.13k
      MCOperand_CreateReg0(mcInst, X86_YMM0 + ((uint32_t)immediate >> 4));
506
3.13k
      return;
507
0
    case TYPE_ZMM:
508
0
      MCOperand_CreateReg0(mcInst, X86_ZMM0 + ((uint32_t)immediate >> 4));
509
0
      return;
510
518k
    default:
511
      // operand is 64 bits wide.  Do nothing.
512
518k
      break;
513
522k
  }
514
515
518k
  MCOperand_CreateImm0(mcInst, immediate);
516
517
518k
  if (type == TYPE_MOFFS) {
518
21.0k
    MCOperand_CreateReg0(mcInst, segmentRegnums[insn->segmentOverride]);
519
21.0k
  }
520
518k
}
521
522
/// translateRMRegister - Translates a register stored in the R/M field of the
523
///   ModR/M byte to its LLVM equivalent and appends it to an MCInst.
524
/// @param mcInst       - The MCInst to append to.
525
/// @param insn         - The internal instruction to extract the R/M field
526
///                       from.
527
/// @return             - 0 on success; -1 otherwise
528
static bool translateRMRegister(MCInst *mcInst, InternalInstruction *insn)
529
337k
{
530
337k
  if (insn->eaBase == EA_BASE_sib || insn->eaBase == EA_BASE_sib64) {
531
    //debug("A R/M register operand may not have a SIB byte");
532
0
    return true;
533
0
  }
534
535
337k
  switch (insn->eaBase) {
536
0
    case EA_BASE_NONE:
537
      //debug("EA_BASE_NONE for ModR/M base");
538
0
      return true;
539
0
#define ENTRY(x) case EA_BASE_##x:
540
0
      ALL_EA_BASES
541
0
#undef ENTRY
542
        //debug("A R/M register operand may not have a base; "
543
        //      "the operand must be a register.");
544
0
        return true;
545
0
#define ENTRY(x)                                                      \
546
337k
    case EA_REG_##x:                                                    \
547
337k
      MCOperand_CreateReg0(mcInst, X86_##x); break;
548
0
      ALL_REGS
549
0
#undef ENTRY
550
0
    default:
551
        //debug("Unexpected EA base register");
552
0
        return true;
553
337k
  }
554
555
337k
  return false;
556
337k
}
557
558
/// translateRMMemory - Translates a memory operand stored in the Mod and R/M
559
///   fields of an internal instruction (and possibly its SIB byte) to a memory
560
///   operand in LLVM's format, and appends it to an MCInst.
561
///
562
/// @param mcInst       - The MCInst to append to.
563
/// @param insn         - The instruction to extract Mod, R/M, and SIB fields
564
///                       from.
565
/// @return             - 0 on success; nonzero otherwise
566
static bool translateRMMemory(MCInst *mcInst, InternalInstruction *insn)
567
814k
{
568
  // Addresses in an MCInst are represented as five operands:
569
  //   1. basereg       (register)  The R/M base, or (if there is a SIB) the
570
  //                                SIB base
571
  //   2. scaleamount   (immediate) 1, or (if there is a SIB) the specified
572
  //                                scale amount
573
  //   3. indexreg      (register)  x86_registerNONE, or (if there is a SIB)
574
  //                                the index (which is multiplied by the
575
  //                                scale amount)
576
  //   4. displacement  (immediate) 0, or the displacement if there is one
577
  //   5. segmentreg    (register)  x86_registerNONE for now, but could be set
578
  //                                if we have segment overrides
579
814k
  int scaleAmount, indexReg;
580
581
814k
  if (insn->eaBase == EA_BASE_sib || insn->eaBase == EA_BASE_sib64) {
582
44.8k
    if (insn->sibBase != SIB_BASE_NONE) {
583
41.9k
      switch (insn->sibBase) {
584
0
#define ENTRY(x)                                          \
585
41.9k
        case SIB_BASE_##x:                                  \
586
41.9k
        MCOperand_CreateReg0(mcInst, X86_##x); break;
587
0
        ALL_SIB_BASES
588
0
#undef ENTRY
589
0
        default:
590
          //debug("Unexpected sibBase");
591
0
          return true;
592
41.9k
      }
593
41.9k
    } else {
594
2.86k
      MCOperand_CreateReg0(mcInst, 0);
595
2.86k
    }
596
597
44.8k
    if (insn->sibIndex != SIB_INDEX_NONE) {
598
34.9k
      switch (insn->sibIndex) {
599
0
        default:
600
          //debug("Unexpected sibIndex");
601
0
          return true;
602
0
#define ENTRY(x)                                          \
603
34.9k
        case SIB_INDEX_##x:                                 \
604
34.9k
          indexReg = X86_##x; break;
605
0
          EA_BASES_32BIT
606
13
            EA_BASES_64BIT
607
272
            REGS_XMM
608
44
            REGS_YMM
609
34.9k
            REGS_ZMM
610
34.9k
#undef ENTRY
611
34.9k
      }
612
34.9k
    } else {
613
      // Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present,
614
      // but no index is used and modrm alone should have been enough.
615
      // -No base register in 32-bit mode. In 64-bit mode this is used to
616
      //  avoid rip-relative addressing.
617
      // -Any base register used other than ESP/RSP/R12D/R12. Using these as a
618
      //  base always requires a SIB byte.
619
      // -A scale other than 1 is used.
620
9.82k
      if (insn->sibScale != 1 ||
621
9.82k
          (insn->sibBase == SIB_BASE_NONE && insn->mode != MODE_64BIT) ||
622
9.82k
          (insn->sibBase != SIB_BASE_NONE &&
623
5.35k
           insn->sibBase != SIB_BASE_ESP && insn->sibBase != SIB_BASE_RSP &&
624
5.98k
           insn->sibBase != SIB_BASE_R12D && insn->sibBase != SIB_BASE_R12)) {
625
5.98k
        indexReg = insn->addressSize == 4? X86_EIZ : X86_RIZ;
626
5.98k
      } else
627
3.84k
        indexReg = 0;
628
9.82k
    }
629
630
44.8k
    scaleAmount = insn->sibScale;
631
769k
  } else {
632
769k
    switch (insn->eaBase) {
633
20.6k
      case EA_BASE_NONE:
634
20.6k
        if (insn->eaDisplacement == EA_DISP_NONE) {
635
          //debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
636
0
          return true;
637
0
        }
638
20.6k
        if (insn->mode == MODE_64BIT) {
639
5.08k
          if (insn->prefix3 == 0x67)  // address-size prefix overrides RIP relative addressing
640
794
            MCOperand_CreateReg0(mcInst, X86_EIP);
641
4.29k
          else
642
            // Section 2.2.1.6
643
4.29k
            MCOperand_CreateReg0(mcInst, insn->addressSize == 4 ? X86_EIP : X86_RIP);
644
15.5k
        } else {
645
15.5k
          MCOperand_CreateReg0(mcInst, 0);
646
15.5k
        }
647
648
20.6k
        indexReg = 0;
649
20.6k
        break;
650
115k
      case EA_BASE_BX_SI:
651
115k
        MCOperand_CreateReg0(mcInst, X86_BX);
652
115k
        indexReg = X86_SI;
653
115k
        break;
654
34.6k
      case EA_BASE_BX_DI:
655
34.6k
        MCOperand_CreateReg0(mcInst, X86_BX);
656
34.6k
        indexReg = X86_DI;
657
34.6k
        break;
658
26.1k
      case EA_BASE_BP_SI:
659
26.1k
        MCOperand_CreateReg0(mcInst, X86_BP);
660
26.1k
        indexReg = X86_SI;
661
26.1k
        break;
662
24.7k
      case EA_BASE_BP_DI:
663
24.7k
        MCOperand_CreateReg0(mcInst, X86_BP);
664
24.7k
        indexReg = X86_DI;
665
24.7k
        break;
666
547k
      default:
667
547k
        indexReg = 0;
668
547k
        switch (insn->eaBase) {
669
0
          default:
670
            //debug("Unexpected eaBase");
671
0
            return true;
672
            // Here, we will use the fill-ins defined above.  However,
673
            //   BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
674
            //   sib and sib64 were handled in the top-level if, so they're only
675
            //   placeholders to keep the compiler happy.
676
0
#define ENTRY(x)                                        \
677
547k
          case EA_BASE_##x:                                 \
678
547k
              MCOperand_CreateReg0(mcInst, X86_##x); break;
679
0
            ALL_EA_BASES
680
0
#undef ENTRY
681
0
#define ENTRY(x) case EA_REG_##x:
682
2.24k
              ALL_REGS
683
0
#undef ENTRY
684
              //debug("A R/M memory operand may not be a register; "
685
              //      "the base field must be a base.");
686
0
              return true;
687
547k
        }
688
769k
    }
689
690
769k
    scaleAmount = 1;
691
769k
  }
692
693
814k
  MCOperand_CreateImm0(mcInst, scaleAmount);
694
814k
  MCOperand_CreateReg0(mcInst, indexReg);
695
814k
  MCOperand_CreateImm0(mcInst, insn->displacement);
696
697
814k
  MCOperand_CreateReg0(mcInst, segmentRegnums[insn->segmentOverride]);
698
699
814k
  return false;
700
814k
}
701
702
/// translateRM - Translates an operand stored in the R/M (and possibly SIB)
703
///   byte of an instruction to LLVM form, and appends it to an MCInst.
704
///
705
/// @param mcInst       - The MCInst to append to.
706
/// @param operand      - The operand, as stored in the descriptor table.
707
/// @param insn         - The instruction to extract Mod, R/M, and SIB fields
708
///                       from.
709
/// @return             - 0 on success; nonzero otherwise
710
static bool translateRM(MCInst *mcInst, const OperandSpecifier *operand,
711
    InternalInstruction *insn)
712
1.15M
{
713
1.15M
  switch (operand->type) {
714
0
    default:
715
      //debug("Unexpected type for a R/M operand");
716
0
      return true;
717
130k
    case TYPE_R8:
718
132k
    case TYPE_R16:
719
134k
    case TYPE_R32:
720
152k
    case TYPE_R64:
721
272k
    case TYPE_Rv:
722
278k
    case TYPE_MM64:
723
304k
    case TYPE_XMM:
724
318k
    case TYPE_YMM:
725
333k
    case TYPE_ZMM:
726
335k
    case TYPE_VK:
727
335k
    case TYPE_DEBUGREG:
728
335k
    case TYPE_CONTROLREG:
729
337k
    case TYPE_BNDR:
730
337k
      return translateRMRegister(mcInst, insn);
731
806k
    case TYPE_M:
732
809k
    case TYPE_MVSIBX:
733
812k
    case TYPE_MVSIBY:
734
814k
    case TYPE_MVSIBZ:
735
814k
      return translateRMMemory(mcInst, insn);
736
1.15M
  }
737
1.15M
}
738
739
/// translateFPRegister - Translates a stack position on the FPU stack to its
740
///   LLVM form, and appends it to an MCInst.
741
///
742
/// @param mcInst       - The MCInst to append to.
743
/// @param stackPos     - The stack position to translate.
744
static void translateFPRegister(MCInst *mcInst, uint8_t stackPos)
745
9.79k
{
746
9.79k
  MCOperand_CreateReg0(mcInst, X86_ST0 + stackPos);
747
9.79k
}
748
749
/// translateMaskRegister - Translates a 3-bit mask register number to
750
///   LLVM form, and appends it to an MCInst.
751
///
752
/// @param mcInst       - The MCInst to append to.
753
/// @param maskRegNum   - Number of mask register from 0 to 7.
754
/// @return             - false on success; true otherwise.
755
static bool translateMaskRegister(MCInst *mcInst, uint8_t maskRegNum)
756
67.4k
{
757
67.4k
  if (maskRegNum >= 8) {
758
    // debug("Invalid mask register number");
759
0
    return true;
760
0
  }
761
762
67.4k
  MCOperand_CreateReg0(mcInst, X86_K0 + maskRegNum);
763
764
67.4k
  return false;
765
67.4k
}
766
767
/// translateOperand - Translates an operand stored in an internal instruction
768
///   to LLVM's format and appends it to an MCInst.
769
///
770
/// @param mcInst       - The MCInst to append to.
771
/// @param operand      - The operand, as stored in the descriptor table.
772
/// @param insn         - The internal instruction.
773
/// @return             - false on success; true otherwise.
774
static bool translateOperand(MCInst *mcInst, const OperandSpecifier *operand, InternalInstruction *insn)
775
3.84M
{
776
3.84M
  switch (operand->encoding) {
777
995k
    case ENCODING_REG:
778
995k
      translateRegister(mcInst, insn->reg);
779
995k
      return false;
780
67.4k
    case ENCODING_WRITEMASK:
781
67.4k
      return translateMaskRegister(mcInst, insn->writemask);
782
7.66M
    CASE_ENCODING_RM:
783
7.66M
    CASE_ENCODING_VSIB:
784
1.15M
      return translateRM(mcInst, operand, insn);
785
377k
    case ENCODING_IB:
786
402k
    case ENCODING_IW:
787
411k
    case ENCODING_ID:
788
412k
    case ENCODING_IO:
789
501k
    case ENCODING_Iv:
790
522k
    case ENCODING_Ia:
791
522k
      translateImmediate(mcInst, insn->immediates[insn->numImmediatesTranslated++], operand, insn);
792
522k
      return false;
793
4.41k
    case ENCODING_IRC:
794
4.41k
      MCOperand_CreateImm0(mcInst, insn->RC);
795
4.41k
      return false;
796
102k
    case ENCODING_SI:
797
102k
      return translateSrcIndex(mcInst, insn);
798
116k
    case ENCODING_DI:
799
116k
      return translateDstIndex(mcInst, insn);
800
24.4k
    case ENCODING_RB:
801
24.4k
    case ENCODING_RW:
802
24.4k
    case ENCODING_RD:
803
58.5k
    case ENCODING_RO:
804
364k
    case ENCODING_Rv:
805
364k
      translateRegister(mcInst, insn->opcodeRegister);
806
364k
      return false;
807
9.79k
    case ENCODING_FP:
808
9.79k
      translateFPRegister(mcInst, insn->modRM & 7);
809
9.79k
      return false;
810
84.3k
    case ENCODING_VVVV:
811
84.3k
      translateRegister(mcInst, insn->vvvv);
812
84.3k
      return false;
813
424k
    case ENCODING_DUP:
814
424k
      return translateOperand(mcInst, &insn->operands[operand->type - TYPE_DUP0], insn);
815
0
    default:
816
      //debug("Unhandled operand encoding during translation");
817
0
      return true;
818
3.84M
  }
819
3.84M
}
820
821
static bool translateInstruction(MCInst *mcInst, InternalInstruction *insn)
822
2.02M
{
823
2.02M
  int index;
824
825
2.02M
  if (!insn->spec) {
826
    //debug("Instruction has no specification");
827
0
    return true;
828
0
  }
829
830
2.02M
  MCInst_clear(mcInst);
831
2.02M
  MCInst_setOpcode(mcInst, insn->instructionID);
832
833
  // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
834
  // prefix bytes should be disassembled as xrelease and xacquire then set the
835
  // opcode to those instead of the rep and repne opcodes.
836
2.02M
#ifndef CAPSTONE_X86_REDUCE
837
2.02M
  if (insn->xAcquireRelease) {
838
5.86k
    if (MCInst_getOpcode(mcInst) == X86_REP_PREFIX)
839
0
      MCInst_setOpcode(mcInst, X86_XRELEASE_PREFIX);
840
5.86k
    else if (MCInst_getOpcode(mcInst) == X86_REPNE_PREFIX)
841
0
      MCInst_setOpcode(mcInst, X86_XACQUIRE_PREFIX);
842
5.86k
  }
843
2.02M
#endif
844
845
2.02M
  insn->numImmediatesTranslated = 0;
846
847
14.1M
  for (index = 0; index < X86_MAX_OPERANDS; ++index) {
848
12.1M
    if (insn->operands[index].encoding != ENCODING_NONE) {
849
3.41M
      if (translateOperand(mcInst, &insn->operands[index], insn)) {
850
0
        return true;
851
0
      }
852
3.41M
    }
853
12.1M
  }
854
855
2.02M
  return false;
856
2.02M
}
857
858
static int reader(const struct reader_info *info, uint8_t *byte, uint64_t address)
859
8.55M
{
860
8.55M
  if (address - info->offset >= info->size)
861
    // out of buffer range
862
6.17k
    return -1;
863
864
8.55M
  *byte = info->code[address - info->offset];
865
866
8.55M
  return 0;
867
8.55M
}
868
869
// copy x86 detail information from internal structure to public structure
870
static void update_pub_insn(cs_insn *pub, InternalInstruction *inter)
871
2.02M
{
872
2.02M
  if (inter->vectorExtensionType != 0) {
873
115k
    memcpy(pub->detail->x86.opcode, inter->vectorExtensionPrefix, sizeof(pub->detail->x86.opcode));
874
1.91M
  } else {
875
1.91M
    if (inter->twoByteEscape) {
876
79.8k
      if (inter->threeByteEscape) {
877
0
        pub->detail->x86.opcode[0] = inter->twoByteEscape;
878
0
        pub->detail->x86.opcode[1] = inter->threeByteEscape;
879
0
        pub->detail->x86.opcode[2] = inter->opcode;
880
79.8k
      } else {
881
79.8k
        pub->detail->x86.opcode[0] = inter->twoByteEscape;
882
79.8k
        pub->detail->x86.opcode[1] = inter->opcode;
883
79.8k
      }
884
1.83M
    } else {
885
1.83M
        pub->detail->x86.opcode[0] = inter->opcode;
886
1.83M
    }
887
1.91M
  }
888
889
2.02M
  pub->detail->x86.rex = inter->rexPrefix;
890
891
2.02M
  pub->detail->x86.addr_size = inter->addressSize;
892
893
2.02M
  pub->detail->x86.modrm = inter->orgModRM;
894
2.02M
  pub->detail->x86.encoding.modrm_offset = inter->modRMOffset;
895
896
2.02M
  pub->detail->x86.sib = inter->sib;
897
2.02M
  pub->detail->x86.sib_index = x86_map_sib_index(inter->sibIndex);
898
2.02M
  pub->detail->x86.sib_scale = inter->sibScale;
899
2.02M
  pub->detail->x86.sib_base = x86_map_sib_base(inter->sibBase);
900
901
2.02M
  pub->detail->x86.disp = inter->displacement;
902
2.02M
  if (inter->consumedDisplacement) {
903
276k
    pub->detail->x86.encoding.disp_offset = inter->displacementOffset;
904
276k
    pub->detail->x86.encoding.disp_size = inter->displacementSize;
905
276k
  }
906
907
2.02M
  pub->detail->x86.encoding.imm_offset = inter->immediateOffset;
908
2.02M
  if (pub->detail->x86.encoding.imm_size == 0 && inter->immediateOffset != 0)
909
490k
    pub->detail->x86.encoding.imm_size = inter->immediateSize;
910
2.02M
}
911
912
void X86_init(MCRegisterInfo *MRI)
913
15.7k
{
914
  // InitMCRegisterInfo(), X86GenRegisterInfo.inc
915
  // RI->InitMCRegisterInfo(X86RegDesc, 277,
916
  //                        RA, PC,
917
  //                        X86MCRegisterClasses, 86,
918
  //                        X86RegUnitRoots, 162, X86RegDiffLists, X86LaneMaskLists, X86RegStrings,
919
  //                        X86RegClassStrings,
920
  //                        X86SubRegIdxLists, 9,
921
  //                        X86SubRegIdxRanges, X86RegEncodingTable);
922
  /*
923
     InitMCRegisterInfo(X86RegDesc, 234,
924
     RA, PC,
925
     X86MCRegisterClasses, 79,
926
     X86RegUnitRoots, 119, X86RegDiffLists, X86RegStrings,
927
     X86SubRegIdxLists, 7,
928
     X86SubRegIdxRanges, X86RegEncodingTable);
929
  */
930
931
15.7k
  MCRegisterInfo_InitMCRegisterInfo(MRI, X86RegDesc, 277,
932
15.7k
      0, 0,
933
15.7k
      X86MCRegisterClasses, 86,
934
15.7k
      0, 0, X86RegDiffLists, 0,
935
15.7k
      X86SubRegIdxLists, 9,
936
15.7k
      0);
937
15.7k
}
938
939
// Public interface for the disassembler
940
bool X86_getInstruction(csh ud, const uint8_t *code, size_t code_len,
941
    MCInst *instr, uint16_t *size, uint64_t address, void *_info)
942
2.03M
{
943
2.03M
  cs_struct *handle = (cs_struct *)(uintptr_t)ud;
944
2.03M
  InternalInstruction insn = { 0 };
945
2.03M
  struct reader_info info;
946
2.03M
  int ret;
947
2.03M
  bool result;
948
949
2.03M
  info.code = code;
950
2.03M
  info.size = code_len;
951
2.03M
  info.offset = address;
952
953
2.03M
  if (instr->flat_insn->detail) {
954
    // instr->flat_insn->detail initialization: 3 alternatives
955
956
    // 1. The whole structure, this is how it's done in other arch disassemblers
957
    // Probably overkill since cs_detail is huge because of the 36 operands of ARM
958
    
959
    //memset(instr->flat_insn->detail, 0, sizeof(cs_detail));
960
961
    // 2. Only the part relevant to x86
962
2.03M
    memset(instr->flat_insn->detail, 0, offsetof(cs_detail, x86) + sizeof(cs_x86));
963
964
    // 3. The relevant part except for x86.operands
965
    // sizeof(cs_x86) is 0x1c0, sizeof(x86.operands) is 0x180
966
    // marginally faster, should be okay since x86.op_count is set to 0
967
968
    //memset(instr->flat_insn->detail, 0, offsetof(cs_detail, x86)+offsetof(cs_x86, operands));
969
2.03M
  }
970
971
2.03M
  if (handle->mode & CS_MODE_16)
972
695k
    ret = decodeInstruction(&insn,
973
695k
        reader, &info,
974
695k
        address,
975
695k
        MODE_16BIT);
976
1.34M
  else if (handle->mode & CS_MODE_32)
977
710k
    ret = decodeInstruction(&insn,
978
710k
        reader, &info,
979
710k
        address,
980
710k
        MODE_32BIT);
981
630k
  else
982
630k
    ret = decodeInstruction(&insn,
983
630k
        reader, &info,
984
630k
        address,
985
630k
        MODE_64BIT);
986
987
2.03M
  if (ret) {
988
    // *size = (uint16_t)(insn.readerCursor - address);
989
9.52k
    return false;
990
2.02M
  } else {
991
2.02M
    *size = (uint16_t)insn.length;
992
993
2.02M
    result = (!translateInstruction(instr, &insn)) ?  true : false;
994
2.02M
    if (result) {
995
2.02M
      unsigned Flags = X86_IP_NO_PREFIX;
996
2.02M
      instr->imm_size = insn.immSize;
997
998
      // copy all prefixes
999
2.02M
      instr->x86_prefix[0] = insn.prefix0;
1000
2.02M
      instr->x86_prefix[1] = insn.prefix1;
1001
2.02M
      instr->x86_prefix[2] = insn.prefix2;
1002
2.02M
      instr->x86_prefix[3] = insn.prefix3;
1003
2.02M
      instr->xAcquireRelease = insn.xAcquireRelease;
1004
1005
2.02M
      if (handle->detail_opt) {
1006
2.02M
        update_pub_insn(instr->flat_insn, &insn);
1007
2.02M
      }
1008
1009
2.02M
      if (insn.hasAdSize)
1010
14.3k
        Flags |= X86_IP_HAS_AD_SIZE;
1011
1012
2.02M
      if (!insn.mandatoryPrefix) {
1013
2.00M
        if (insn.hasOpSize)
1014
31.9k
          Flags |= X86_IP_HAS_OP_SIZE;
1015
1016
2.00M
        if (insn.repeatPrefix == 0xf2)
1017
45.8k
          Flags |= X86_IP_HAS_REPEAT_NE;
1018
1.95M
        else if (insn.repeatPrefix == 0xf3 &&
1019
            // It should not be 'pause' f3 90
1020
1.95M
            insn.opcode != 0x90)
1021
39.6k
          Flags |= X86_IP_HAS_REPEAT;
1022
2.00M
        if (insn.hasLockPrefix)
1023
50.9k
          Flags |= X86_IP_HAS_LOCK;
1024
2.00M
      }
1025
1026
2.02M
      instr->flags = Flags;
1027
2.02M
    }
1028
1029
2.02M
    return result;
1030
2.02M
  }
1031
2.03M
}
1032
1033
#endif