/proc/self/cwd/external/abseil-cpp~/absl/strings/escaping.cc
Line | Count | Source |
1 | | // Copyright 2017 The Abseil Authors. |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | | // you may not use this file except in compliance with the License. |
5 | | // You may obtain a copy of the License at |
6 | | // |
7 | | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | | // See the License for the specific language governing permissions and |
13 | | // limitations under the License. |
14 | | |
15 | | #include "absl/strings/escaping.h" |
16 | | |
17 | | #include <algorithm> |
18 | | #include <array> |
19 | | #include <cassert> |
20 | | #include <cstddef> |
21 | | #include <cstdint> |
22 | | #include <cstring> |
23 | | #include <limits> |
24 | | #include <string> |
25 | | #include <utility> |
26 | | |
27 | | #include "absl/base/config.h" |
28 | | #include "absl/base/internal/endian.h" |
29 | | #include "absl/base/internal/raw_logging.h" |
30 | | #include "absl/base/internal/unaligned_access.h" |
31 | | #include "absl/base/macros.h" |
32 | | #include "absl/base/nullability.h" |
33 | | #include "absl/strings/ascii.h" |
34 | | #include "absl/strings/charset.h" |
35 | | #include "absl/strings/internal/append_and_overwrite.h" |
36 | | #include "absl/strings/internal/escaping.h" |
37 | | #include "absl/strings/internal/utf8.h" |
38 | | #include "absl/strings/numbers.h" |
39 | | #include "absl/strings/resize_and_overwrite.h" |
40 | | #include "absl/strings/str_cat.h" |
41 | | #include "absl/strings/string_view.h" |
42 | | |
43 | | namespace absl { |
44 | | ABSL_NAMESPACE_BEGIN |
45 | | namespace { |
46 | | |
47 | | // These are used for the leave_nulls_escaped argument to CUnescapeInternal(). |
48 | | constexpr bool kUnescapeNulls = false; |
49 | | |
50 | 0 | inline bool is_octal_digit(char c) { return ('0' <= c) && (c <= '7'); } |
51 | | |
52 | 0 | inline unsigned int hex_digit_to_int(char c) { |
53 | 0 | static_assert('0' == 0x30 && 'A' == 0x41 && 'a' == 0x61, |
54 | 0 | "Character set must be ASCII."); |
55 | 0 | assert(absl::ascii_isxdigit(static_cast<unsigned char>(c))); |
56 | 0 | unsigned int x = static_cast<unsigned char>(c); |
57 | 0 | if (x > '9') { |
58 | 0 | x += 9; |
59 | 0 | } |
60 | 0 | return x & 0xf; |
61 | 0 | } |
62 | | |
63 | | inline bool IsSurrogate(char32_t c, absl::string_view src, |
64 | 0 | std::string* absl_nullable error) { |
65 | 0 | if (c >= 0xD800 && c <= 0xDFFF) { |
66 | 0 | if (error) { |
67 | 0 | *error = absl::StrCat("invalid surrogate character (0xD800-DFFF): \\", |
68 | 0 | src); |
69 | 0 | } |
70 | 0 | return true; |
71 | 0 | } |
72 | 0 | return false; |
73 | 0 | } |
74 | | |
75 | | // ---------------------------------------------------------------------- |
76 | | // CUnescapeInternal() |
77 | | // Implements both CUnescape() and CUnescapeForNullTerminatedString(). |
78 | | // |
79 | | // Unescapes C escape sequences and is the reverse of CEscape(). |
80 | | // |
81 | | // If `src` is valid, stores the unescaped string in `dst` and the length of |
82 | | // unescaped string in `dst_size`, and returns true. Otherwise returns false |
83 | | // and optionally stores the error description in `error`. Set `error` to |
84 | | // nullptr to disable error reporting. |
85 | | // |
86 | | // `src` and `dst` may use the same underlying buffer (but keep in mind |
87 | | // that if this returns an error, it will leave both `src` and `dst` in |
88 | | // an unspecified state because they are using the same underlying buffer.) |
89 | | // `dst` must have at least as much space as `src`. |
90 | | // ---------------------------------------------------------------------- |
91 | | |
92 | | bool CUnescapeInternal(absl::string_view src, bool leave_nulls_escaped, |
93 | | char* absl_nonnull dst, size_t* absl_nonnull dst_size, |
94 | 0 | std::string* absl_nullable error) { |
95 | 0 | absl::string_view::size_type p = 0; // Current src position. |
96 | 0 | size_t d = 0; // Current dst position. |
97 | | |
98 | | // When unescaping in-place, skip any prefix that does not have escaping. |
99 | 0 | if (src.data() == dst) { |
100 | 0 | while (p < src.size() && src[p] != '\\') p++, d++; |
101 | 0 | } |
102 | |
|
103 | 0 | while (p < src.size()) { |
104 | 0 | if (src[p] != '\\') { |
105 | 0 | dst[d++] = src[p++]; |
106 | 0 | } else { |
107 | 0 | if (++p >= src.size()) { // skip past the '\\' |
108 | 0 | if (error != nullptr) { |
109 | 0 | *error = "String cannot end with \\"; |
110 | 0 | } |
111 | 0 | return false; |
112 | 0 | } |
113 | 0 | switch (src[p]) { |
114 | | // clang-format off |
115 | 0 | case 'a': dst[d++] = '\a'; break; |
116 | 0 | case 'b': dst[d++] = '\b'; break; |
117 | 0 | case 'f': dst[d++] = '\f'; break; |
118 | 0 | case 'n': dst[d++] = '\n'; break; |
119 | 0 | case 'r': dst[d++] = '\r'; break; |
120 | 0 | case 't': dst[d++] = '\t'; break; |
121 | 0 | case 'v': dst[d++] = '\v'; break; |
122 | 0 | case '\\': dst[d++] = '\\'; break; |
123 | 0 | case '?': dst[d++] = '\?'; break; |
124 | 0 | case '\'': dst[d++] = '\''; break; |
125 | 0 | case '"': dst[d++] = '\"'; break; |
126 | | // clang-format on |
127 | 0 | case '0': |
128 | 0 | case '1': |
129 | 0 | case '2': |
130 | 0 | case '3': |
131 | 0 | case '4': |
132 | 0 | case '5': |
133 | 0 | case '6': |
134 | 0 | case '7': { |
135 | | // octal digit: 1 to 3 digits |
136 | 0 | auto octal_start = p; |
137 | 0 | unsigned int ch = static_cast<unsigned int>(src[p] - '0'); // digit 1 |
138 | 0 | if (p + 1 < src.size() && is_octal_digit(src[p + 1])) |
139 | 0 | ch = ch * 8 + static_cast<unsigned int>(src[++p] - '0'); // digit 2 |
140 | 0 | if (p + 1 < src.size() && is_octal_digit(src[p + 1])) |
141 | 0 | ch = ch * 8 + static_cast<unsigned int>(src[++p] - '0'); // digit 3 |
142 | 0 | if (ch > 0xff) { |
143 | 0 | if (error != nullptr) { |
144 | 0 | *error = |
145 | 0 | "Value of \\" + |
146 | 0 | std::string(src.substr(octal_start, p + 1 - octal_start)) + |
147 | 0 | " exceeds 0xff"; |
148 | 0 | } |
149 | 0 | return false; |
150 | 0 | } |
151 | 0 | if ((ch == 0) && leave_nulls_escaped) { |
152 | | // Copy the escape sequence for the null character |
153 | 0 | dst[d++] = '\\'; |
154 | 0 | while (octal_start <= p) { |
155 | 0 | dst[d++] = src[octal_start++]; |
156 | 0 | } |
157 | 0 | break; |
158 | 0 | } |
159 | 0 | dst[d++] = static_cast<char>(ch); |
160 | 0 | break; |
161 | 0 | } |
162 | 0 | case 'x': |
163 | 0 | case 'X': { |
164 | 0 | if (p + 1 >= src.size()) { |
165 | 0 | if (error != nullptr) { |
166 | 0 | *error = "String cannot end with \\x"; |
167 | 0 | } |
168 | 0 | return false; |
169 | 0 | } else if (!absl::ascii_isxdigit( |
170 | 0 | static_cast<unsigned char>(src[p + 1]))) { |
171 | 0 | if (error != nullptr) { |
172 | 0 | *error = "\\x cannot be followed by a non-hex digit"; |
173 | 0 | } |
174 | 0 | return false; |
175 | 0 | } |
176 | 0 | unsigned int ch = 0; |
177 | 0 | auto hex_start = p; |
178 | 0 | while (p + 1 < src.size() && |
179 | 0 | absl::ascii_isxdigit(static_cast<unsigned char>(src[p + 1]))) { |
180 | | // Arbitrarily many hex digits |
181 | 0 | ch = (ch << 4) + hex_digit_to_int(src[++p]); |
182 | 0 | } |
183 | 0 | if (ch > 0xFF) { |
184 | 0 | if (error != nullptr) { |
185 | 0 | *error = "Value of \\" + |
186 | 0 | std::string(src.substr(hex_start, p + 1 - hex_start)) + |
187 | 0 | " exceeds 0xff"; |
188 | 0 | } |
189 | 0 | return false; |
190 | 0 | } |
191 | 0 | if ((ch == 0) && leave_nulls_escaped) { |
192 | | // Copy the escape sequence for the null character |
193 | 0 | dst[d++] = '\\'; |
194 | 0 | while (hex_start <= p) { |
195 | 0 | dst[d++] = src[hex_start++]; |
196 | 0 | } |
197 | 0 | break; |
198 | 0 | } |
199 | 0 | dst[d++] = static_cast<char>(ch); |
200 | 0 | break; |
201 | 0 | } |
202 | 0 | case 'u': { |
203 | | // \uhhhh => convert 4 hex digits to UTF-8 |
204 | 0 | char32_t rune = 0; |
205 | 0 | auto hex_start = p; |
206 | 0 | if (p + 4 >= src.size()) { |
207 | 0 | if (error != nullptr) { |
208 | 0 | *error = "\\u must be followed by 4 hex digits"; |
209 | 0 | } |
210 | 0 | return false; |
211 | 0 | } |
212 | 0 | for (int i = 0; i < 4; ++i) { |
213 | | // Look one char ahead. |
214 | 0 | if (absl::ascii_isxdigit(static_cast<unsigned char>(src[p + 1]))) { |
215 | 0 | rune = (rune << 4) + hex_digit_to_int(src[++p]); |
216 | 0 | } else { |
217 | 0 | if (error != nullptr) { |
218 | 0 | *error = "\\u must be followed by 4 hex digits: \\" + |
219 | 0 | std::string(src.substr(hex_start, p + 1 - hex_start)); |
220 | 0 | } |
221 | 0 | return false; |
222 | 0 | } |
223 | 0 | } |
224 | 0 | if ((rune == 0) && leave_nulls_escaped) { |
225 | | // Copy the escape sequence for the null character |
226 | 0 | dst[d++] = '\\'; |
227 | 0 | while (hex_start <= p) { |
228 | 0 | dst[d++] = src[hex_start++]; |
229 | 0 | } |
230 | 0 | break; |
231 | 0 | } |
232 | 0 | if (IsSurrogate(rune, src.substr(hex_start, 5), error)) { |
233 | 0 | return false; |
234 | 0 | } |
235 | 0 | d += strings_internal::EncodeUTF8Char(dst + d, rune); |
236 | 0 | break; |
237 | 0 | } |
238 | 0 | case 'U': { |
239 | | // \Uhhhhhhhh => convert 8 hex digits to UTF-8 |
240 | 0 | char32_t rune = 0; |
241 | 0 | auto hex_start = p; |
242 | 0 | if (p + 8 >= src.size()) { |
243 | 0 | if (error != nullptr) { |
244 | 0 | *error = "\\U must be followed by 8 hex digits"; |
245 | 0 | } |
246 | 0 | return false; |
247 | 0 | } |
248 | 0 | for (int i = 0; i < 8; ++i) { |
249 | | // Look one char ahead. |
250 | 0 | if (absl::ascii_isxdigit(static_cast<unsigned char>(src[p + 1]))) { |
251 | | // Don't change rune until we're sure this |
252 | | // is within the Unicode limit, but do advance p. |
253 | 0 | uint32_t newrune = (rune << 4) + hex_digit_to_int(src[++p]); |
254 | 0 | if (newrune > 0x10FFFF) { |
255 | 0 | if (error != nullptr) { |
256 | 0 | *error = |
257 | 0 | "Value of \\" + |
258 | 0 | std::string(src.substr(hex_start, p + 1 - hex_start)) + |
259 | 0 | " exceeds Unicode limit (0x10FFFF)"; |
260 | 0 | } |
261 | 0 | return false; |
262 | 0 | } else { |
263 | 0 | rune = newrune; |
264 | 0 | } |
265 | 0 | } else { |
266 | 0 | if (error != nullptr) { |
267 | 0 | *error = "\\U must be followed by 8 hex digits: \\" + |
268 | 0 | std::string(src.substr(hex_start, p + 1 - hex_start)); |
269 | 0 | } |
270 | 0 | return false; |
271 | 0 | } |
272 | 0 | } |
273 | 0 | if ((rune == 0) && leave_nulls_escaped) { |
274 | | // Copy the escape sequence for the null character |
275 | 0 | dst[d++] = '\\'; |
276 | | // U00000000 |
277 | 0 | while (hex_start <= p) { |
278 | 0 | dst[d++] = src[hex_start++]; |
279 | 0 | } |
280 | 0 | break; |
281 | 0 | } |
282 | 0 | if (IsSurrogate(rune, src.substr(hex_start, 9), error)) { |
283 | 0 | return false; |
284 | 0 | } |
285 | 0 | d += strings_internal::EncodeUTF8Char(dst + d, rune); |
286 | 0 | break; |
287 | 0 | } |
288 | 0 | default: { |
289 | 0 | if (error != nullptr) { |
290 | 0 | *error = std::string("Unknown escape sequence: \\") + src[p]; |
291 | 0 | } |
292 | 0 | return false; |
293 | 0 | } |
294 | 0 | } |
295 | 0 | p++; // Read past letter we escaped. |
296 | 0 | } |
297 | 0 | } |
298 | | |
299 | 0 | *dst_size = d; |
300 | 0 | return true; |
301 | 0 | } |
302 | | |
303 | | // ---------------------------------------------------------------------- |
304 | | // CEscape() |
305 | | // CHexEscape() |
306 | | // Utf8SafeCEscape() |
307 | | // Utf8SafeCHexEscape() |
308 | | // Escapes 'src' using C-style escape sequences. This is useful for |
309 | | // preparing query flags. The 'Hex' version uses hexadecimal rather than |
310 | | // octal sequences. The 'Utf8Safe' version does not touch UTF-8 bytes. |
311 | | // |
312 | | // Escaped chars: \n, \r, \t, ", ', \, and !absl::ascii_isprint(). |
313 | | // ---------------------------------------------------------------------- |
314 | | std::string CEscapeInternal(absl::string_view src, bool use_hex, |
315 | 0 | bool utf8_safe) { |
316 | 0 | std::string dest; |
317 | 0 | bool last_hex_escape = false; // true if last output char was \xNN. |
318 | |
|
319 | 0 | for (char c : src) { |
320 | 0 | bool is_hex_escape = false; |
321 | 0 | switch (c) { |
322 | 0 | case '\n': dest.append("\\" "n"); break; |
323 | 0 | case '\r': dest.append("\\" "r"); break; |
324 | 0 | case '\t': dest.append("\\" "t"); break; |
325 | 0 | case '\"': dest.append("\\" "\""); break; |
326 | 0 | case '\'': dest.append("\\" "'"); break; |
327 | 0 | case '\\': dest.append("\\" "\\"); break; |
328 | 0 | default: { |
329 | | // Note that if we emit \xNN and the src character after that is a hex |
330 | | // digit then that digit must be escaped too to prevent it being |
331 | | // interpreted as part of the character code by C. |
332 | 0 | const unsigned char uc = static_cast<unsigned char>(c); |
333 | 0 | if ((!utf8_safe || uc < 0x80) && |
334 | 0 | (!absl::ascii_isprint(uc) || |
335 | 0 | (last_hex_escape && absl::ascii_isxdigit(uc)))) { |
336 | 0 | if (use_hex) { |
337 | 0 | dest.append("\\" "x"); |
338 | 0 | dest.push_back(numbers_internal::kHexChar[uc / 16]); |
339 | 0 | dest.push_back(numbers_internal::kHexChar[uc % 16]); |
340 | 0 | is_hex_escape = true; |
341 | 0 | } else { |
342 | 0 | dest.append("\\"); |
343 | 0 | dest.push_back(numbers_internal::kHexChar[uc / 64]); |
344 | 0 | dest.push_back(numbers_internal::kHexChar[(uc % 64) / 8]); |
345 | 0 | dest.push_back(numbers_internal::kHexChar[uc % 8]); |
346 | 0 | } |
347 | 0 | } else { |
348 | 0 | dest.push_back(c); |
349 | 0 | break; |
350 | 0 | } |
351 | 0 | } |
352 | 0 | } |
353 | 0 | last_hex_escape = is_hex_escape; |
354 | 0 | } |
355 | | |
356 | 0 | return dest; |
357 | 0 | } |
358 | | |
359 | | /* clang-format off */ |
360 | | constexpr std::array<unsigned char, 256> kCEscapedLen = { |
361 | | 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 4, 4, 2, 4, 4, // \t, \n, \r |
362 | | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
363 | | 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, // ", ' |
364 | | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // '0'..'9' |
365 | | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 'A'..'O' |
366 | | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, // 'P'..'Z', '\' |
367 | | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 'a'..'o' |
368 | | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, // 'p'..'z', DEL |
369 | | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
370 | | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
371 | | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
372 | | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
373 | | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
374 | | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
375 | | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
376 | | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
377 | | }; |
378 | | /* clang-format on */ |
379 | | |
380 | 0 | constexpr uint32_t MakeCEscapedLittleEndianUint32(size_t c) { |
381 | 0 | size_t char_len = kCEscapedLen[c]; |
382 | 0 | if (char_len == 1) { |
383 | 0 | return static_cast<uint32_t>(c); |
384 | 0 | } |
385 | 0 | if (char_len == 2) { |
386 | 0 | switch (c) { |
387 | 0 | case '\n': |
388 | 0 | return '\\' | (static_cast<uint32_t>('n') << 8); |
389 | 0 | case '\r': |
390 | 0 | return '\\' | (static_cast<uint32_t>('r') << 8); |
391 | 0 | case '\t': |
392 | 0 | return '\\' | (static_cast<uint32_t>('t') << 8); |
393 | 0 | case '\"': |
394 | 0 | return '\\' | (static_cast<uint32_t>('\"') << 8); |
395 | 0 | case '\'': |
396 | 0 | return '\\' | (static_cast<uint32_t>('\'') << 8); |
397 | 0 | case '\\': |
398 | 0 | return '\\' | (static_cast<uint32_t>('\\') << 8); |
399 | 0 | } |
400 | 0 | } |
401 | 0 | return static_cast<uint32_t>('\\' | (('0' + (c / 64)) << 8) | |
402 | 0 | (('0' + ((c % 64) / 8)) << 16) | |
403 | 0 | (('0' + (c % 8)) << 24)); |
404 | 0 | } |
405 | | |
406 | | template <size_t... indexes> |
407 | | inline constexpr std::array<uint32_t, sizeof...(indexes)> |
408 | 0 | MakeCEscapedLittleEndianUint32Array(std::index_sequence<indexes...>) { |
409 | 0 | return {MakeCEscapedLittleEndianUint32(indexes)...}; |
410 | 0 | } |
411 | | constexpr std::array<uint32_t, 256> kCEscapedLittleEndianUint32Array = |
412 | | MakeCEscapedLittleEndianUint32Array(std::make_index_sequence<256>()); |
413 | | |
414 | | // Calculates the length of the C-style escaped version of 'src'. |
415 | | // Assumes that non-printable characters are escaped using octal sequences, and |
416 | | // that UTF-8 bytes are not handled specially. |
417 | 0 | inline size_t CEscapedLength(absl::string_view src) { |
418 | 0 | size_t escaped_len = 0; |
419 | | // The maximum value of kCEscapedLen[x] is 4, so we can escape any string of |
420 | | // length size_t_max/4 without checking for overflow. |
421 | 0 | size_t unchecked_limit = |
422 | 0 | std::min<size_t>(src.size(), std::numeric_limits<size_t>::max() / 4); |
423 | 0 | size_t i = 0; |
424 | 0 | while (i < unchecked_limit) { |
425 | | // Common case: No need to check for overflow. |
426 | 0 | escaped_len += kCEscapedLen[static_cast<unsigned char>(src[i++])]; |
427 | 0 | } |
428 | 0 | while (i < src.size()) { |
429 | | // Beyond unchecked_limit we need to check for overflow before adding. |
430 | 0 | size_t char_len = kCEscapedLen[static_cast<unsigned char>(src[i++])]; |
431 | 0 | ABSL_INTERNAL_CHECK( |
432 | 0 | escaped_len <= std::numeric_limits<size_t>::max() - char_len, |
433 | 0 | "escaped_len overflow"); |
434 | 0 | escaped_len += char_len; |
435 | 0 | } |
436 | 0 | return escaped_len; |
437 | 0 | } |
438 | | |
439 | | void CEscapeAndAppendInternal(absl::string_view src, |
440 | 0 | std::string* absl_nonnull dest) { |
441 | 0 | size_t escaped_len = CEscapedLength(src); |
442 | 0 | if (escaped_len == src.size()) { |
443 | 0 | dest->append(src.data(), src.size()); |
444 | 0 | return; |
445 | 0 | } |
446 | | |
447 | | // We keep 3 slop bytes so that we can call `little_endian::Store32` |
448 | | // invariably regardless of the length of the escaped character. |
449 | 0 | constexpr size_t kSlopBytes = 3; |
450 | 0 | size_t cur_dest_len = dest->size(); |
451 | 0 | size_t append_buf_len = cur_dest_len + escaped_len + kSlopBytes; |
452 | 0 | ABSL_INTERNAL_CHECK(append_buf_len > cur_dest_len, |
453 | 0 | "std::string size overflow"); |
454 | 0 | strings_internal::StringAppendAndOverwrite( |
455 | 0 | *dest, append_buf_len, [src, escaped_len](char* append_ptr, size_t) { |
456 | 0 | for (char c : src) { |
457 | 0 | unsigned char uc = static_cast<unsigned char>(c); |
458 | 0 | size_t char_len = kCEscapedLen[uc]; |
459 | 0 | uint32_t little_endian_uint32 = kCEscapedLittleEndianUint32Array[uc]; |
460 | 0 | little_endian::Store32(append_ptr, little_endian_uint32); |
461 | 0 | append_ptr += char_len; |
462 | 0 | } |
463 | 0 | return escaped_len; |
464 | 0 | }); |
465 | 0 | } |
466 | | |
467 | | // Reverses the mapping in Base64EscapeInternal; see that method's |
468 | | // documentation for details of the mapping. |
469 | | bool Base64UnescapeInternal(const char* absl_nullable src_param, size_t szsrc, |
470 | | char* absl_nullable dest, size_t szdest, |
471 | | const std::array<signed char, 256>& unbase64, |
472 | 0 | size_t* absl_nonnull len) { |
473 | 0 | static const char kPad64Equals = '='; |
474 | 0 | static const char kPad64Dot = '.'; |
475 | |
|
476 | 0 | size_t destidx = 0; |
477 | 0 | int decode = 0; |
478 | 0 | int state = 0; |
479 | 0 | unsigned char ch = 0; |
480 | 0 | unsigned int temp = 0; |
481 | | |
482 | | // If "char" is signed by default, using *src as an array index results in |
483 | | // accessing negative array elements. Treat the input as a pointer to |
484 | | // unsigned char to avoid this. |
485 | 0 | const unsigned char* src = reinterpret_cast<const unsigned char*>(src_param); |
486 | | |
487 | | // The GET_INPUT macro gets the next input character, skipping |
488 | | // over any whitespace, and stopping when we reach the end of the |
489 | | // string or when we read any non-data character. The arguments are |
490 | | // an arbitrary identifier (used as a label for goto) and the number |
491 | | // of data bytes that must remain in the input to avoid aborting the |
492 | | // loop. |
493 | 0 | #define GET_INPUT(label, remain) \ |
494 | 0 | label: \ |
495 | 0 | --szsrc; \ |
496 | 0 | ch = *src++; \ |
497 | 0 | decode = unbase64[ch]; \ |
498 | 0 | if (decode < 0) { \ |
499 | 0 | if (absl::ascii_isspace(ch) && szsrc >= remain) goto label; \ |
500 | 0 | state = 4 - remain; \ |
501 | 0 | break; \ |
502 | 0 | } |
503 | | |
504 | | // if dest is null, we're just checking to see if it's legal input |
505 | | // rather than producing output. (I suspect this could just be done |
506 | | // with a regexp...). We duplicate the loop so this test can be |
507 | | // outside it instead of in every iteration. |
508 | |
|
509 | 0 | if (dest) { |
510 | | // This loop consumes 4 input bytes and produces 3 output bytes |
511 | | // per iteration. We can't know at the start that there is enough |
512 | | // data left in the string for a full iteration, so the loop may |
513 | | // break out in the middle; if so 'state' will be set to the |
514 | | // number of input bytes read. |
515 | |
|
516 | 0 | while (szsrc >= 4) { |
517 | | // We'll start by optimistically assuming that the next four |
518 | | // bytes of the string (src[0..3]) are four good data bytes |
519 | | // (that is, no nulls, whitespace, padding chars, or illegal |
520 | | // chars). We need to test src[0..2] for nulls individually |
521 | | // before constructing temp to preserve the property that we |
522 | | // never read past a null in the string (no matter how long |
523 | | // szsrc claims the string is). |
524 | |
|
525 | 0 | if (!src[0] || !src[1] || !src[2] || |
526 | 0 | ((temp = ((unsigned(unbase64[src[0]]) << 18) | |
527 | 0 | (unsigned(unbase64[src[1]]) << 12) | |
528 | 0 | (unsigned(unbase64[src[2]]) << 6) | |
529 | 0 | (unsigned(unbase64[src[3]])))) & |
530 | 0 | 0x80000000)) { |
531 | | // Iff any of those four characters was bad (null, illegal, |
532 | | // whitespace, padding), then temp's high bit will be set |
533 | | // (because unbase64[] is -1 for all bad characters). |
534 | | // |
535 | | // We'll back up and resort to the slower decoder, which knows |
536 | | // how to handle those cases. |
537 | |
|
538 | 0 | GET_INPUT(first, 4); |
539 | 0 | temp = static_cast<unsigned char>(decode); |
540 | 0 | GET_INPUT(second, 3); |
541 | 0 | temp = (temp << 6) | static_cast<unsigned char>(decode); |
542 | 0 | GET_INPUT(third, 2); |
543 | 0 | temp = (temp << 6) | static_cast<unsigned char>(decode); |
544 | 0 | GET_INPUT(fourth, 1); |
545 | 0 | temp = (temp << 6) | static_cast<unsigned char>(decode); |
546 | 0 | } else { |
547 | | // We really did have four good data bytes, so advance four |
548 | | // characters in the string. |
549 | |
|
550 | 0 | szsrc -= 4; |
551 | 0 | src += 4; |
552 | 0 | } |
553 | | |
554 | | // temp has 24 bits of input, so write that out as three bytes. |
555 | | |
556 | 0 | if (destidx + 3 > szdest) return false; |
557 | 0 | dest[destidx + 2] = static_cast<char>(temp); |
558 | 0 | temp >>= 8; |
559 | 0 | dest[destidx + 1] = static_cast<char>(temp); |
560 | 0 | temp >>= 8; |
561 | 0 | dest[destidx] = static_cast<char>(temp); |
562 | 0 | destidx += 3; |
563 | 0 | } |
564 | 0 | } else { |
565 | 0 | while (szsrc >= 4) { |
566 | 0 | if (!src[0] || !src[1] || !src[2] || |
567 | 0 | ((temp = ((unsigned(unbase64[src[0]]) << 18) | |
568 | 0 | (unsigned(unbase64[src[1]]) << 12) | |
569 | 0 | (unsigned(unbase64[src[2]]) << 6) | |
570 | 0 | (unsigned(unbase64[src[3]])))) & |
571 | 0 | 0x80000000)) { |
572 | 0 | GET_INPUT(first_no_dest, 4); |
573 | 0 | GET_INPUT(second_no_dest, 3); |
574 | 0 | GET_INPUT(third_no_dest, 2); |
575 | 0 | GET_INPUT(fourth_no_dest, 1); |
576 | 0 | } else { |
577 | 0 | szsrc -= 4; |
578 | 0 | src += 4; |
579 | 0 | } |
580 | 0 | destidx += 3; |
581 | 0 | } |
582 | 0 | } |
583 | | |
584 | 0 | #undef GET_INPUT |
585 | | |
586 | | // if the loop terminated because we read a bad character, return |
587 | | // now. |
588 | 0 | if (decode < 0 && ch != kPad64Equals && ch != kPad64Dot && |
589 | 0 | !absl::ascii_isspace(ch)) |
590 | 0 | return false; |
591 | | |
592 | 0 | if (ch == kPad64Equals || ch == kPad64Dot) { |
593 | | // if we stopped by hitting an '=' or '.', un-read that character -- we'll |
594 | | // look at it again when we count to check for the proper number of |
595 | | // equals signs at the end. |
596 | 0 | ++szsrc; |
597 | 0 | --src; |
598 | 0 | } else { |
599 | | // This loop consumes 1 input byte per iteration. It's used to |
600 | | // clean up the 0-3 input bytes remaining when the first, faster |
601 | | // loop finishes. 'temp' contains the data from 'state' input |
602 | | // characters read by the first loop. |
603 | 0 | while (szsrc > 0) { |
604 | 0 | --szsrc; |
605 | 0 | ch = *src++; |
606 | 0 | decode = unbase64[ch]; |
607 | 0 | if (decode < 0) { |
608 | 0 | if (absl::ascii_isspace(ch)) { |
609 | 0 | continue; |
610 | 0 | } else if (ch == kPad64Equals || ch == kPad64Dot) { |
611 | | // back up one character; we'll read it again when we check |
612 | | // for the correct number of pad characters at the end. |
613 | 0 | ++szsrc; |
614 | 0 | --src; |
615 | 0 | break; |
616 | 0 | } else { |
617 | 0 | return false; |
618 | 0 | } |
619 | 0 | } |
620 | | |
621 | | // Each input character gives us six bits of output. |
622 | 0 | temp = (temp << 6) | static_cast<unsigned char>(decode); |
623 | 0 | ++state; |
624 | 0 | if (state == 4) { |
625 | | // If we've accumulated 24 bits of output, write that out as |
626 | | // three bytes. |
627 | 0 | if (dest) { |
628 | 0 | if (destidx + 3 > szdest) return false; |
629 | 0 | dest[destidx + 2] = static_cast<char>(temp); |
630 | 0 | temp >>= 8; |
631 | 0 | dest[destidx + 1] = static_cast<char>(temp); |
632 | 0 | temp >>= 8; |
633 | 0 | dest[destidx] = static_cast<char>(temp); |
634 | 0 | } |
635 | 0 | destidx += 3; |
636 | 0 | state = 0; |
637 | 0 | temp = 0; |
638 | 0 | } |
639 | 0 | } |
640 | 0 | } |
641 | | |
642 | | // Process the leftover data contained in 'temp' at the end of the input. |
643 | 0 | int expected_equals = 0; |
644 | 0 | switch (state) { |
645 | 0 | case 0: |
646 | | // Nothing left over; output is a multiple of 3 bytes. |
647 | 0 | break; |
648 | | |
649 | 0 | case 1: |
650 | | // Bad input; we have 6 bits left over. |
651 | 0 | return false; |
652 | | |
653 | 0 | case 2: |
654 | | // Produce one more output byte from the 12 input bits we have left. |
655 | 0 | if (dest) { |
656 | 0 | if (destidx + 1 > szdest) return false; |
657 | 0 | temp >>= 4; |
658 | 0 | dest[destidx] = static_cast<char>(temp); |
659 | 0 | } |
660 | 0 | ++destidx; |
661 | 0 | expected_equals = 2; |
662 | 0 | break; |
663 | | |
664 | 0 | case 3: |
665 | | // Produce two more output bytes from the 18 input bits we have left. |
666 | 0 | if (dest) { |
667 | 0 | if (destidx + 2 > szdest) return false; |
668 | 0 | temp >>= 2; |
669 | 0 | dest[destidx + 1] = static_cast<char>(temp); |
670 | 0 | temp >>= 8; |
671 | 0 | dest[destidx] = static_cast<char>(temp); |
672 | 0 | } |
673 | 0 | destidx += 2; |
674 | 0 | expected_equals = 1; |
675 | 0 | break; |
676 | | |
677 | 0 | default: |
678 | | // state should have no other values at this point. |
679 | 0 | ABSL_RAW_LOG(FATAL, "This can't happen; base64 decoder state = %d", |
680 | 0 | state); |
681 | 0 | } |
682 | | |
683 | | // The remainder of the string should be all whitespace, mixed with |
684 | | // exactly 0 equals signs, or exactly 'expected_equals' equals |
685 | | // signs. (Always accepting 0 equals signs is an Abseil extension |
686 | | // not covered in the RFC, as is accepting dot as the pad character.) |
687 | | |
688 | 0 | int equals = 0; |
689 | 0 | while (szsrc > 0) { |
690 | 0 | if (*src == kPad64Equals || *src == kPad64Dot) |
691 | 0 | ++equals; |
692 | 0 | else if (!absl::ascii_isspace(*src)) |
693 | 0 | return false; |
694 | 0 | --szsrc; |
695 | 0 | ++src; |
696 | 0 | } |
697 | | |
698 | 0 | const bool ok = (equals == 0 || equals == expected_equals); |
699 | 0 | if (ok) *len = destidx; |
700 | 0 | return ok; |
701 | 0 | } |
702 | | |
703 | | // The arrays below map base64-escaped characters back to their original values. |
704 | | // For the inverse case, see k(WebSafe)Base64Chars in the internal |
705 | | // escaping.cc. |
706 | | // These arrays were generated by the following inversion code: |
707 | | // #include <sys/time.h> |
708 | | // #include <stdlib.h> |
709 | | // #include <string.h> |
710 | | // main() |
711 | | // { |
712 | | // static const char Base64[] = |
713 | | // "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; |
714 | | // char* pos; |
715 | | // int idx, i, j; |
716 | | // printf(" "); |
717 | | // for (i = 0; i < 255; i += 8) { |
718 | | // for (j = i; j < i + 8; j++) { |
719 | | // pos = strchr(Base64, j); |
720 | | // if ((pos == nullptr) || (j == 0)) |
721 | | // idx = -1; |
722 | | // else |
723 | | // idx = pos - Base64; |
724 | | // if (idx == -1) |
725 | | // printf(" %2d, ", idx); |
726 | | // else |
727 | | // printf(" %2d/*%c*/,", idx, j); |
728 | | // } |
729 | | // printf("\n "); |
730 | | // } |
731 | | // } |
732 | | // |
733 | | // where the value of "Base64[]" was replaced by one of k(WebSafe)Base64Chars |
734 | | // in the internal escaping.cc. |
735 | | /* clang-format off */ |
736 | | constexpr std::array<signed char, 256> kUnBase64 = { |
737 | | -1, -1, -1, -1, -1, -1, -1, -1, |
738 | | -1, -1, -1, -1, -1, -1, -1, -1, |
739 | | -1, -1, -1, -1, -1, -1, -1, -1, |
740 | | -1, -1, -1, -1, -1, -1, -1, -1, |
741 | | -1, -1, -1, -1, -1, -1, -1, -1, |
742 | | -1, -1, -1, 62/*+*/, -1, -1, -1, 63/*/ */, |
743 | | 52/*0*/, 53/*1*/, 54/*2*/, 55/*3*/, 56/*4*/, 57/*5*/, 58/*6*/, 59/*7*/, |
744 | | 60/*8*/, 61/*9*/, -1, -1, -1, -1, -1, -1, |
745 | | -1, 0/*A*/, 1/*B*/, 2/*C*/, 3/*D*/, 4/*E*/, 5/*F*/, 6/*G*/, |
746 | | 07/*H*/, 8/*I*/, 9/*J*/, 10/*K*/, 11/*L*/, 12/*M*/, 13/*N*/, 14/*O*/, |
747 | | 15/*P*/, 16/*Q*/, 17/*R*/, 18/*S*/, 19/*T*/, 20/*U*/, 21/*V*/, 22/*W*/, |
748 | | 23/*X*/, 24/*Y*/, 25/*Z*/, -1, -1, -1, -1, -1, |
749 | | -1, 26/*a*/, 27/*b*/, 28/*c*/, 29/*d*/, 30/*e*/, 31/*f*/, 32/*g*/, |
750 | | 33/*h*/, 34/*i*/, 35/*j*/, 36/*k*/, 37/*l*/, 38/*m*/, 39/*n*/, 40/*o*/, |
751 | | 41/*p*/, 42/*q*/, 43/*r*/, 44/*s*/, 45/*t*/, 46/*u*/, 47/*v*/, 48/*w*/, |
752 | | 49/*x*/, 50/*y*/, 51/*z*/, -1, -1, -1, -1, -1, |
753 | | -1, -1, -1, -1, -1, -1, -1, -1, |
754 | | -1, -1, -1, -1, -1, -1, -1, -1, |
755 | | -1, -1, -1, -1, -1, -1, -1, -1, |
756 | | -1, -1, -1, -1, -1, -1, -1, -1, |
757 | | -1, -1, -1, -1, -1, -1, -1, -1, |
758 | | -1, -1, -1, -1, -1, -1, -1, -1, |
759 | | -1, -1, -1, -1, -1, -1, -1, -1, |
760 | | -1, -1, -1, -1, -1, -1, -1, -1, |
761 | | -1, -1, -1, -1, -1, -1, -1, -1, |
762 | | -1, -1, -1, -1, -1, -1, -1, -1, |
763 | | -1, -1, -1, -1, -1, -1, -1, -1, |
764 | | -1, -1, -1, -1, -1, -1, -1, -1, |
765 | | -1, -1, -1, -1, -1, -1, -1, -1, |
766 | | -1, -1, -1, -1, -1, -1, -1, -1, |
767 | | -1, -1, -1, -1, -1, -1, -1, -1, |
768 | | -1, -1, -1, -1, -1, -1, -1, -1 |
769 | | }; |
770 | | |
771 | | constexpr std::array<signed char, 256> kUnWebSafeBase64 = { |
772 | | -1, -1, -1, -1, -1, -1, -1, -1, |
773 | | -1, -1, -1, -1, -1, -1, -1, -1, |
774 | | -1, -1, -1, -1, -1, -1, -1, -1, |
775 | | -1, -1, -1, -1, -1, -1, -1, -1, |
776 | | -1, -1, -1, -1, -1, -1, -1, -1, |
777 | | -1, -1, -1, -1, -1, 62/*-*/, -1, -1, |
778 | | 52/*0*/, 53/*1*/, 54/*2*/, 55/*3*/, 56/*4*/, 57/*5*/, 58/*6*/, 59/*7*/, |
779 | | 60/*8*/, 61/*9*/, -1, -1, -1, -1, -1, -1, |
780 | | -1, 0/*A*/, 1/*B*/, 2/*C*/, 3/*D*/, 4/*E*/, 5/*F*/, 6/*G*/, |
781 | | 07/*H*/, 8/*I*/, 9/*J*/, 10/*K*/, 11/*L*/, 12/*M*/, 13/*N*/, 14/*O*/, |
782 | | 15/*P*/, 16/*Q*/, 17/*R*/, 18/*S*/, 19/*T*/, 20/*U*/, 21/*V*/, 22/*W*/, |
783 | | 23/*X*/, 24/*Y*/, 25/*Z*/, -1, -1, -1, -1, 63/*_*/, |
784 | | -1, 26/*a*/, 27/*b*/, 28/*c*/, 29/*d*/, 30/*e*/, 31/*f*/, 32/*g*/, |
785 | | 33/*h*/, 34/*i*/, 35/*j*/, 36/*k*/, 37/*l*/, 38/*m*/, 39/*n*/, 40/*o*/, |
786 | | 41/*p*/, 42/*q*/, 43/*r*/, 44/*s*/, 45/*t*/, 46/*u*/, 47/*v*/, 48/*w*/, |
787 | | 49/*x*/, 50/*y*/, 51/*z*/, -1, -1, -1, -1, -1, |
788 | | -1, -1, -1, -1, -1, -1, -1, -1, |
789 | | -1, -1, -1, -1, -1, -1, -1, -1, |
790 | | -1, -1, -1, -1, -1, -1, -1, -1, |
791 | | -1, -1, -1, -1, -1, -1, -1, -1, |
792 | | -1, -1, -1, -1, -1, -1, -1, -1, |
793 | | -1, -1, -1, -1, -1, -1, -1, -1, |
794 | | -1, -1, -1, -1, -1, -1, -1, -1, |
795 | | -1, -1, -1, -1, -1, -1, -1, -1, |
796 | | -1, -1, -1, -1, -1, -1, -1, -1, |
797 | | -1, -1, -1, -1, -1, -1, -1, -1, |
798 | | -1, -1, -1, -1, -1, -1, -1, -1, |
799 | | -1, -1, -1, -1, -1, -1, -1, -1, |
800 | | -1, -1, -1, -1, -1, -1, -1, -1, |
801 | | -1, -1, -1, -1, -1, -1, -1, -1, |
802 | | -1, -1, -1, -1, -1, -1, -1, -1, |
803 | | -1, -1, -1, -1, -1, -1, -1, -1 |
804 | | }; |
805 | | /* clang-format on */ |
806 | | |
807 | | template <typename String> |
808 | | bool Base64UnescapeInternal(const char* absl_nullable src, size_t slen, |
809 | | String* absl_nonnull dest, |
810 | 0 | const std::array<signed char, 256>& unbase64) { |
811 | | // Determine the size of the output string. Base64 encodes every 3 bytes into |
812 | | // 4 characters. Any leftover chars are added directly for good measure. |
813 | 0 | const size_t dest_len = 3 * (slen / 4) + (slen % 4); |
814 | |
|
815 | 0 | bool ok; |
816 | 0 | StringResizeAndOverwrite( |
817 | 0 | *dest, dest_len, [src, slen, unbase64, &ok](char* buf, size_t buf_size) { |
818 | 0 | size_t len; |
819 | 0 | ok = Base64UnescapeInternal(src, slen, buf, buf_size, unbase64, &len); |
820 | 0 | if (!ok) { |
821 | 0 | len = 0; |
822 | 0 | } |
823 | 0 | assert(len <= buf_size); // Could be shorter if there was padding. |
824 | 0 | return len; |
825 | 0 | }); |
826 | 0 | return ok; |
827 | 0 | } |
828 | | |
829 | | /* clang-format off */ |
830 | | constexpr std::array<char, 256> kHexValueLenient = { |
831 | | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
832 | | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
833 | | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
834 | | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0, 0, 0, 0, // '0'..'9' |
835 | | 0, 10, 11, 12, 13, 14, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 'A'..'F' |
836 | | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
837 | | 0, 10, 11, 12, 13, 14, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 'a'..'f' |
838 | | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
839 | | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
840 | | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
841 | | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
842 | | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
843 | | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
844 | | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
845 | | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
846 | | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
847 | | }; |
848 | | |
849 | | constexpr std::array<signed char, 256> kHexValueStrict = { |
850 | | -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
851 | | -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
852 | | -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
853 | | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1, // '0'..'9' |
854 | | -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 'A'..'F' |
855 | | -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
856 | | -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 'a'..'f' |
857 | | -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
858 | | -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
859 | | -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
860 | | -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
861 | | -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
862 | | -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
863 | | -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
864 | | -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
865 | | -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
866 | | }; |
867 | | /* clang-format on */ |
868 | | |
869 | | // This is a templated function so that T can be either a char* |
870 | | // or a string. This works because we use the [] operator to access |
871 | | // individual characters at a time. |
872 | | template <typename T> |
873 | | void HexStringToBytesInternal(const char* absl_nullable from, T to, |
874 | 0 | size_t num) { |
875 | 0 | for (size_t i = 0; i < num; i++) { |
876 | 0 | to[i] = static_cast<char>(kHexValueLenient[from[i * 2] & 0xFF] << 4) + |
877 | 0 | (kHexValueLenient[from[i * 2 + 1] & 0xFF]); |
878 | 0 | } |
879 | 0 | } |
880 | | |
881 | | void BytesToHexStringInternal(const unsigned char* absl_nullable src, |
882 | 0 | char* dest, size_t num) { |
883 | 0 | for (auto src_ptr = src; src_ptr != (src + num); ++src_ptr, dest += 2) { |
884 | 0 | const char* hex_p = &numbers_internal::kHexTable[*src_ptr * 2]; |
885 | 0 | std::copy(hex_p, hex_p + 2, dest); |
886 | 0 | } |
887 | 0 | } |
888 | | |
889 | | } // namespace |
890 | | |
891 | | // ---------------------------------------------------------------------- |
892 | | // CUnescape() |
893 | | // |
894 | | // See CUnescapeInternal() for implementation details. |
895 | | // ---------------------------------------------------------------------- |
896 | | |
897 | | bool CUnescape(absl::string_view source, std::string* absl_nonnull dest, |
898 | 0 | std::string* absl_nullable error) { |
899 | 0 | bool success; |
900 | | |
901 | | // `CUnescape()` allows for in-place unescaping, which means `source` may |
902 | | // alias `*dest`. However, absl::StringResizeAndOverwrite() invalidates all |
903 | | // iterators, pointers, and references into the string, regardless whether |
904 | | // reallocation occurs. Therefore we need to avoid calling |
905 | | // absl::StringResizeAndOverwrite() when `source.data() == |
906 | | // dest->data()`. Comparing the sizes is sufficient to cover this case. |
907 | 0 | if (dest->size() >= source.size()) { |
908 | 0 | size_t dest_size = 0; |
909 | 0 | success = CUnescapeInternal(source, kUnescapeNulls, dest->data(), |
910 | 0 | &dest_size, error); |
911 | 0 | ABSL_ASSERT(dest_size <= dest->size()); |
912 | 0 | dest->erase(dest_size); |
913 | 0 | } else { |
914 | 0 | StringResizeAndOverwrite( |
915 | 0 | *dest, source.size(), |
916 | 0 | [source, error, &success](char* buf, size_t buf_size) { |
917 | 0 | size_t dest_size = 0; |
918 | 0 | success = |
919 | 0 | CUnescapeInternal(source, kUnescapeNulls, buf, &dest_size, error); |
920 | 0 | ABSL_ASSERT(dest_size <= buf_size); |
921 | 0 | return dest_size; |
922 | 0 | }); |
923 | 0 | } |
924 | 0 | return success; |
925 | 0 | } |
926 | | |
927 | 0 | std::string CEscape(absl::string_view src) { |
928 | 0 | std::string dest; |
929 | 0 | CEscapeAndAppendInternal(src, &dest); |
930 | 0 | return dest; |
931 | 0 | } |
932 | | |
933 | 0 | std::string CHexEscape(absl::string_view src) { |
934 | 0 | return CEscapeInternal(src, true, false); |
935 | 0 | } |
936 | | |
937 | 0 | std::string Utf8SafeCEscape(absl::string_view src) { |
938 | 0 | return CEscapeInternal(src, false, true); |
939 | 0 | } |
940 | | |
941 | 0 | std::string Utf8SafeCHexEscape(absl::string_view src) { |
942 | 0 | return CEscapeInternal(src, true, true); |
943 | 0 | } |
944 | | |
945 | 0 | bool Base64Unescape(absl::string_view src, std::string* absl_nonnull dest) { |
946 | 0 | return Base64UnescapeInternal(src.data(), src.size(), dest, kUnBase64); |
947 | 0 | } |
948 | | |
949 | | bool WebSafeBase64Unescape(absl::string_view src, |
950 | 0 | std::string* absl_nonnull dest) { |
951 | 0 | return Base64UnescapeInternal(src.data(), src.size(), dest, kUnWebSafeBase64); |
952 | 0 | } |
953 | | |
954 | 0 | void Base64Escape(absl::string_view src, std::string* absl_nonnull dest) { |
955 | 0 | strings_internal::Base64EscapeInternal( |
956 | 0 | reinterpret_cast<const unsigned char*>(src.data()), src.size(), dest, |
957 | 0 | true, strings_internal::kBase64Chars); |
958 | 0 | } |
959 | | |
960 | | void WebSafeBase64Escape(absl::string_view src, |
961 | 0 | std::string* absl_nonnull dest) { |
962 | 0 | strings_internal::Base64EscapeInternal( |
963 | 0 | reinterpret_cast<const unsigned char*>(src.data()), src.size(), dest, |
964 | 0 | false, strings_internal::kWebSafeBase64Chars); |
965 | 0 | } |
966 | | |
967 | 0 | std::string Base64Escape(absl::string_view src) { |
968 | 0 | std::string dest; |
969 | 0 | strings_internal::Base64EscapeInternal( |
970 | 0 | reinterpret_cast<const unsigned char*>(src.data()), src.size(), &dest, |
971 | 0 | true, strings_internal::kBase64Chars); |
972 | 0 | return dest; |
973 | 0 | } |
974 | | |
975 | 0 | std::string WebSafeBase64Escape(absl::string_view src) { |
976 | 0 | std::string dest; |
977 | 0 | strings_internal::Base64EscapeInternal( |
978 | 0 | reinterpret_cast<const unsigned char*>(src.data()), src.size(), &dest, |
979 | 0 | false, strings_internal::kWebSafeBase64Chars); |
980 | 0 | return dest; |
981 | 0 | } |
982 | | |
983 | 0 | bool HexStringToBytes(absl::string_view hex, std::string* absl_nonnull bytes) { |
984 | 0 | std::string output; |
985 | |
|
986 | 0 | size_t num_bytes = hex.size() / 2; |
987 | 0 | if (hex.size() != num_bytes * 2) { |
988 | 0 | return false; |
989 | 0 | } |
990 | | |
991 | 0 | StringResizeAndOverwrite( |
992 | 0 | output, num_bytes, [hex](char* buf, size_t buf_size) { |
993 | 0 | auto hex_p = hex.cbegin(); |
994 | 0 | for (size_t i = 0; i < buf_size; ++i) { |
995 | 0 | int h1 = absl::kHexValueStrict[static_cast<size_t>(*hex_p++)]; |
996 | 0 | int h2 = absl::kHexValueStrict[static_cast<size_t>(*hex_p++)]; |
997 | 0 | if (h1 == -1 || h2 == -1) { |
998 | 0 | return size_t{0}; |
999 | 0 | } |
1000 | 0 | buf[i] = static_cast<char>((h1 << 4) + h2); |
1001 | 0 | } |
1002 | 0 | return buf_size; |
1003 | 0 | }); |
1004 | |
|
1005 | 0 | if (output.size() != num_bytes) { |
1006 | 0 | return false; |
1007 | 0 | } |
1008 | 0 | *bytes = std::move(output); |
1009 | 0 | return true; |
1010 | 0 | } |
1011 | | |
1012 | 0 | std::string HexStringToBytes(absl::string_view from) { |
1013 | 0 | std::string result; |
1014 | 0 | const auto num = from.size() / 2; |
1015 | 0 | StringResizeAndOverwrite(result, num, [from](char* buf, size_t buf_size) { |
1016 | 0 | absl::HexStringToBytesInternal<char*>(from.data(), buf, buf_size); |
1017 | 0 | return buf_size; |
1018 | 0 | }); |
1019 | 0 | return result; |
1020 | 0 | } |
1021 | | |
1022 | 0 | std::string BytesToHexString(absl::string_view from) { |
1023 | 0 | std::string result; |
1024 | 0 | StringResizeAndOverwrite( |
1025 | 0 | result, 2 * from.size(), [from](char* buf, size_t buf_size) { |
1026 | 0 | absl::BytesToHexStringInternal( |
1027 | 0 | reinterpret_cast<const unsigned char*>(from.data()), buf, |
1028 | 0 | from.size()); |
1029 | 0 | return buf_size; |
1030 | 0 | }); |
1031 | 0 | return result; |
1032 | 0 | } |
1033 | | |
1034 | | ABSL_NAMESPACE_END |
1035 | | } // namespace absl |