Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.11/site-packages/chardet/sbcharsetprober.py: 99%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

88 statements  

1######################## BEGIN LICENSE BLOCK ######################## 

2# The Original Code is Mozilla Universal charset detector code. 

3# 

4# The Initial Developer of the Original Code is 

5# Netscape Communications Corporation. 

6# Portions created by the Initial Developer are Copyright (C) 2001 

7# the Initial Developer. All Rights Reserved. 

8# 

9# Contributor(s): 

10# Mark Pilgrim - port to Python 

11# Shy Shalom - original C code 

12# 

13# This library is free software; you can redistribute it and/or 

14# modify it under the terms of the GNU Lesser General Public 

15# License as published by the Free Software Foundation; either 

16# version 2.1 of the License, or (at your option) any later version. 

17# 

18# This library is distributed in the hope that it will be useful, 

19# but WITHOUT ANY WARRANTY; without even the implied warranty of 

20# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 

21# Lesser General Public License for more details. 

22# 

23# You should have received a copy of the GNU Lesser General Public 

24# License along with this library; if not, see 

25# <https://www.gnu.org/licenses/>. 

26######################### END LICENSE BLOCK ######################### 

27 

28from typing import Dict, List, NamedTuple, Optional, Union 

29 

30from .charsetprober import CharSetProber 

31from .enums import CharacterCategory, ProbingState, SequenceLikelihood 

32 

33 

34class SingleByteCharSetModel(NamedTuple): 

35 charset_name: str 

36 language: str 

37 char_to_order_map: Dict[int, int] 

38 language_model: Dict[int, Dict[int, int]] 

39 typical_positive_ratio: float 

40 keep_ascii_letters: bool 

41 alphabet: str 

42 

43 

44class SingleByteCharSetProber(CharSetProber): 

45 SAMPLE_SIZE = 64 

46 SB_ENOUGH_REL_THRESHOLD = 1024 # 0.25 * SAMPLE_SIZE^2 

47 POSITIVE_SHORTCUT_THRESHOLD = 0.95 

48 NEGATIVE_SHORTCUT_THRESHOLD = 0.05 

49 

50 def __init__( 

51 self, 

52 model: SingleByteCharSetModel, 

53 is_reversed: bool = False, 

54 name_prober: Optional[CharSetProber] = None, 

55 ) -> None: 

56 super().__init__() 

57 self._model = model 

58 # TRUE if we need to reverse every pair in the model lookup 

59 self._reversed = is_reversed 

60 # Optional auxiliary prober for name decision 

61 self._name_prober = name_prober 

62 self._last_order = 255 

63 self._seq_counters: List[int] = [] 

64 self._total_seqs = 0 

65 self._total_char = 0 

66 self._control_char = 0 

67 self._freq_char = 0 

68 self.reset() 

69 

70 def reset(self) -> None: 

71 super().reset() 

72 # char order of last character 

73 self._last_order = 255 

74 self._seq_counters = [0] * SequenceLikelihood.get_num_categories() 

75 self._total_seqs = 0 

76 self._total_char = 0 

77 self._control_char = 0 

78 # characters that fall in our sampling range 

79 self._freq_char = 0 

80 

81 @property 

82 def charset_name(self) -> Optional[str]: 

83 if self._name_prober: 

84 return self._name_prober.charset_name 

85 return self._model.charset_name 

86 

87 @property 

88 def language(self) -> Optional[str]: 

89 if self._name_prober: 

90 return self._name_prober.language 

91 return self._model.language 

92 

93 def feed(self, byte_str: Union[bytes, bytearray]) -> ProbingState: 

94 # TODO: Make filter_international_words keep things in self.alphabet 

95 if not self._model.keep_ascii_letters: 

96 byte_str = self.filter_international_words(byte_str) 

97 else: 

98 byte_str = self.remove_xml_tags(byte_str) 

99 if not byte_str: 

100 return self.state 

101 char_to_order_map = self._model.char_to_order_map 

102 language_model = self._model.language_model 

103 for char in byte_str: 

104 order = char_to_order_map.get(char, CharacterCategory.UNDEFINED) 

105 # XXX: This was SYMBOL_CAT_ORDER before, with a value of 250, but 

106 # CharacterCategory.SYMBOL is actually 253, so we use CONTROL 

107 # to make it closer to the original intent. The only difference 

108 # is whether or not we count digits and control characters for 

109 # _total_char purposes. 

110 if order < CharacterCategory.CONTROL: 

111 self._total_char += 1 

112 if order < self.SAMPLE_SIZE: 

113 self._freq_char += 1 

114 if self._last_order < self.SAMPLE_SIZE: 

115 self._total_seqs += 1 

116 if not self._reversed: 

117 lm_cat = language_model[self._last_order][order] 

118 else: 

119 lm_cat = language_model[order][self._last_order] 

120 self._seq_counters[lm_cat] += 1 

121 self._last_order = order 

122 

123 charset_name = self._model.charset_name 

124 if self.state == ProbingState.DETECTING: 

125 if self._total_seqs > self.SB_ENOUGH_REL_THRESHOLD: 

126 confidence = self.get_confidence() 

127 if confidence > self.POSITIVE_SHORTCUT_THRESHOLD: 

128 self.logger.debug( 

129 "%s confidence = %s, we have a winner", charset_name, confidence 

130 ) 

131 self._state = ProbingState.FOUND_IT 

132 elif confidence < self.NEGATIVE_SHORTCUT_THRESHOLD: 

133 self.logger.debug( 

134 "%s confidence = %s, below negative shortcut threshold %s", 

135 charset_name, 

136 confidence, 

137 self.NEGATIVE_SHORTCUT_THRESHOLD, 

138 ) 

139 self._state = ProbingState.NOT_ME 

140 

141 return self.state 

142 

143 def get_confidence(self) -> float: 

144 r = 0.01 

145 if self._total_seqs > 0: 

146 r = ( 

147 ( 

148 self._seq_counters[SequenceLikelihood.POSITIVE] 

149 + 0.25 * self._seq_counters[SequenceLikelihood.LIKELY] 

150 ) 

151 / self._total_seqs 

152 / self._model.typical_positive_ratio 

153 ) 

154 # The more control characters (proportionnaly to the size 

155 # of the text), the less confident we become in the current 

156 # charset. 

157 r = r * (self._total_char - self._control_char) / self._total_char 

158 r = r * self._freq_char / self._total_char 

159 if r >= 1.0: 

160 r = 0.99 

161 return r