/rust/registry/src/index.crates.io-1949cf8c6b5b557f/arbitrary-1.4.2/src/lib.rs
Line  | Count  | Source  | 
1  |  | // Copyright © 2019 The Rust Fuzz Project Developers.  | 
2  |  | //  | 
3  |  | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or  | 
4  |  | // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license  | 
5  |  | // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your  | 
6  |  | // option. This file may not be copied, modified, or distributed  | 
7  |  | // except according to those terms.  | 
8  |  |  | 
9  |  | //! The `Arbitrary` trait crate.  | 
10  |  | //!  | 
11  |  | //! This trait provides an [`Arbitrary`] trait to  | 
12  |  | //! produce well-typed, structured values, from raw, byte buffers. It is  | 
13  |  | //! generally intended to be used with fuzzers like AFL or libFuzzer. See the  | 
14  |  | //! [`Arbitrary`] trait's documentation for details on  | 
15  |  | //! automatically deriving, implementing, and/or using the trait.  | 
16  |  |  | 
17  |  | #![deny(bad_style)]  | 
18  |  | #![deny(missing_docs)]  | 
19  |  | #![deny(future_incompatible)]  | 
20  |  | #![deny(nonstandard_style)]  | 
21  |  | #![deny(rust_2018_compatibility)]  | 
22  |  | #![deny(rust_2018_idioms)]  | 
23  |  | #![deny(unused)]  | 
24  |  |  | 
25  |  | mod error;  | 
26  |  | mod foreign;  | 
27  |  | pub mod size_hint;  | 
28  |  | pub mod unstructured;  | 
29  |  |  | 
30  |  | #[cfg(test)]  | 
31  |  | mod tests;  | 
32  |  |  | 
33  |  | pub use error::*;  | 
34  |  |  | 
35  |  | #[cfg(feature = "derive_arbitrary")]  | 
36  |  | pub use derive_arbitrary::*;  | 
37  |  |  | 
38  |  | #[doc(inline)]  | 
39  |  | pub use unstructured::Unstructured;  | 
40  |  |  | 
41  |  | /// Error indicating that the maximum recursion depth has been reached while calculating [`Arbitrary::size_hint`]()  | 
42  |  | #[derive(Debug, Clone)]  | 
43  |  | #[non_exhaustive]  | 
44  |  | pub struct MaxRecursionReached {} | 
45  |  |  | 
46  |  | impl core::fmt::Display for MaxRecursionReached { | 
47  | 0  |     fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { | 
48  | 0  |         f.write_str("Maximum recursion depth has been reached") | 
49  | 0  |     }  | 
50  |  | }  | 
51  |  |  | 
52  |  | impl std::error::Error for MaxRecursionReached {} | 
53  |  |  | 
54  |  | /// Generate arbitrary structured values from raw, unstructured data.  | 
55  |  | ///  | 
56  |  | /// The `Arbitrary` trait allows you to generate valid structured values, like  | 
57  |  | /// `HashMap`s, or ASTs, or `MyTomlConfig`, or any other data structure from  | 
58  |  | /// raw, unstructured bytes provided by a fuzzer.  | 
59  |  | ///  | 
60  |  | /// # Deriving `Arbitrary`  | 
61  |  | ///  | 
62  |  | /// Automatically deriving the `Arbitrary` trait is the recommended way to  | 
63  |  | /// implement `Arbitrary` for your types.  | 
64  |  | ///  | 
65  |  | /// Using the custom derive requires that you enable the `"derive"` cargo  | 
66  |  | /// feature in your `Cargo.toml`:  | 
67  |  | ///  | 
68  |  | /// ```toml  | 
69  |  | /// [dependencies]  | 
70  |  | /// arbitrary = { version = "1", features = ["derive"] } | 
71  |  | /// ```  | 
72  |  | ///  | 
73  |  | /// Then, you add the `#[derive(Arbitrary)]` annotation to your `struct` or  | 
74  |  | /// `enum` type definition:  | 
75  |  | ///  | 
76  |  | /// ```  | 
77  |  | /// # #[cfg(feature = "derive")] mod foo { | 
78  |  | /// use arbitrary::Arbitrary;  | 
79  |  | /// use std::collections::HashSet;  | 
80  |  | ///  | 
81  |  | /// #[derive(Arbitrary)]  | 
82  |  | /// pub struct AddressBook { | 
83  |  | ///     friends: HashSet<Friend>,  | 
84  |  | /// }  | 
85  |  | ///  | 
86  |  | /// #[derive(Arbitrary, Hash, Eq, PartialEq)]  | 
87  |  | /// pub enum Friend { | 
88  |  | ///     Buddy { name: String }, | 
89  |  | ///     Pal { age: usize }, | 
90  |  | /// }  | 
91  |  | /// # }  | 
92  |  | /// ```  | 
93  |  | ///  | 
94  |  | /// Every member of the `struct` or `enum` must also implement `Arbitrary`.  | 
95  |  | ///  | 
96  |  | /// It is also possible to change the default bounds added by the derive:  | 
97  |  | ///  | 
98  |  | /// ```  | 
99  |  | /// # #[cfg(feature = "derive")] mod foo { | 
100  |  | /// use arbitrary::Arbitrary;  | 
101  |  | ///  | 
102  |  | /// trait Trait { | 
103  |  | ///     type Assoc: for<'a> Arbitrary<'a>;  | 
104  |  | /// }  | 
105  |  | ///  | 
106  |  | /// #[derive(Arbitrary)]  | 
107  |  | /// // The bounds are used verbatim, so any existing trait bounds will need to be repeated.  | 
108  |  | /// #[arbitrary(bound = "T: Trait")]  | 
109  |  | /// struct Point<T: Trait> { | 
110  |  | ///     x: T::Assoc,  | 
111  |  | /// }  | 
112  |  | /// # }  | 
113  |  | /// ```  | 
114  |  | ///  | 
115  |  | /// # Implementing `Arbitrary` By Hand  | 
116  |  | ///  | 
117  |  | /// Implementing `Arbitrary` mostly involves nested calls to other `Arbitrary`  | 
118  |  | /// arbitrary implementations for each of your `struct` or `enum`'s members. But  | 
119  |  | /// sometimes you need some amount of raw data, or you need to generate a  | 
120  |  | /// variably-sized collection type, or something of that sort. The  | 
121  |  | /// [`Unstructured`] type helps you with these tasks.  | 
122  |  | ///  | 
123  |  | /// ```  | 
124  |  | /// # #[cfg(feature = "derive")] mod foo { | 
125  |  | /// # pub struct MyCollection<T> { _t: std::marker::PhantomData<T> } | 
126  |  | /// # impl<T> MyCollection<T> { | 
127  |  | /// #     pub fn new() -> Self { MyCollection { _t: std::marker::PhantomData } } | 
128  |  | /// #     pub fn insert(&mut self, element: T) {} | 
129  |  | /// # }  | 
130  |  | /// use arbitrary::{Arbitrary, Result, Unstructured}; | 
131  |  | ///  | 
132  |  | /// impl<'a, T> Arbitrary<'a> for MyCollection<T>  | 
133  |  | /// where  | 
134  |  | ///     T: Arbitrary<'a>,  | 
135  |  | /// { | 
136  |  | ///     fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> { | 
137  |  | ///         // Get an iterator of arbitrary `T`s.  | 
138  |  | ///         let iter = u.arbitrary_iter::<T>()?;  | 
139  |  | ///  | 
140  |  | ///         // And then create a collection!  | 
141  |  | ///         let mut my_collection = MyCollection::new();  | 
142  |  | ///         for elem_result in iter { | 
143  |  | ///             let elem = elem_result?;  | 
144  |  | ///             my_collection.insert(elem);  | 
145  |  | ///         }  | 
146  |  | ///  | 
147  |  | ///         Ok(my_collection)  | 
148  |  | ///     }  | 
149  |  | /// }  | 
150  |  | /// # }  | 
151  |  | /// ```  | 
152  |  | ///  | 
153  |  | /// # A Note On Output Distributions  | 
154  |  | ///  | 
155  |  | /// There is no requirement for a particular distribution of the values. For  | 
156  |  | /// example, it is not required that every value appears with the same  | 
157  |  | /// probability. That being said, the main use for `Arbitrary` is for fuzzing,  | 
158  |  | /// so in many cases a uniform distribution will make the most sense in order to  | 
159  |  | /// provide the best coverage of the domain. In other cases this is not  | 
160  |  | /// desirable or even possible, for example when sampling from a uniform  | 
161  |  | /// distribution is computationally expensive or in the case of collections that  | 
162  |  | /// may grow indefinitely.  | 
163  |  | pub trait Arbitrary<'a>: Sized { | 
164  |  |     /// Generate an arbitrary value of `Self` from the given unstructured data.  | 
165  |  |     ///  | 
166  |  |     /// Calling `Arbitrary::arbitrary` requires that you have some raw data,  | 
167  |  |     /// perhaps given to you by a fuzzer like AFL or libFuzzer. You wrap this  | 
168  |  |     /// raw data in an `Unstructured`, and then you can call `<MyType as  | 
169  |  |     /// Arbitrary>::arbitrary` to construct an arbitrary instance of `MyType`  | 
170  |  |     /// from that unstructured data.  | 
171  |  |     ///  | 
172  |  |     /// Implementations may return an error if there is not enough data to  | 
173  |  |     /// construct a full instance of `Self`, or they may fill out the rest of  | 
174  |  |     /// `Self` with dummy values. Using dummy values when the underlying data is  | 
175  |  |     /// exhausted can help avoid accidentally "defeating" some of the fuzzer's  | 
176  |  |     /// mutations to the underlying byte stream that might otherwise lead to  | 
177  |  |     /// interesting runtime behavior or new code coverage if only we had just a  | 
178  |  |     /// few more bytes. However, it also requires that implementations for  | 
179  |  |     /// recursive types (e.g. `struct Foo(Option<Box<Foo>>)`) avoid infinite  | 
180  |  |     /// recursion when the underlying data is exhausted.  | 
181  |  |     ///  | 
182  |  |     /// ```  | 
183  |  |     /// # #[cfg(feature = "derive")] fn foo() { | 
184  |  |     /// use arbitrary::{Arbitrary, Unstructured}; | 
185  |  |     ///  | 
186  |  |     /// #[derive(Arbitrary)]  | 
187  |  |     /// pub struct MyType { | 
188  |  |     ///     // ...  | 
189  |  |     /// }  | 
190  |  |     ///  | 
191  |  |     /// // Get the raw data from the fuzzer or wherever else.  | 
192  |  |     /// # let get_raw_data_from_fuzzer = || &[];  | 
193  |  |     /// let raw_data: &[u8] = get_raw_data_from_fuzzer();  | 
194  |  |     ///  | 
195  |  |     /// // Wrap that raw data in an `Unstructured`.  | 
196  |  |     /// let mut unstructured = Unstructured::new(raw_data);  | 
197  |  |     ///  | 
198  |  |     /// // Generate an arbitrary instance of `MyType` and do stuff with it.  | 
199  |  |     /// if let Ok(value) = MyType::arbitrary(&mut unstructured) { | 
200  |  |     /// #   let do_stuff = |_| {}; | 
201  |  |     ///     do_stuff(value);  | 
202  |  |     /// }  | 
203  |  |     /// # }  | 
204  |  |     /// ```  | 
205  |  |     ///  | 
206  |  |     /// See also the documentation for [`Unstructured`].  | 
207  |  |     fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self>;  | 
208  |  |  | 
209  |  |     /// Generate an arbitrary value of `Self` from the entirety of the given  | 
210  |  |     /// unstructured data.  | 
211  |  |     ///  | 
212  |  |     /// This is similar to Arbitrary::arbitrary, however it assumes that it is  | 
213  |  |     /// the last consumer of the given data, and is thus able to consume it all  | 
214  |  |     /// if it needs.  See also the documentation for  | 
215  |  |     /// [`Unstructured`].  | 
216  | 0  |     fn arbitrary_take_rest(mut u: Unstructured<'a>) -> Result<Self> { | 
217  | 0  |         Self::arbitrary(&mut u)  | 
218  | 0  |     }  | 
219  |  |  | 
220  |  |     /// Get a size hint for how many bytes out of an `Unstructured` this type  | 
221  |  |     /// needs to construct itself.  | 
222  |  |     ///  | 
223  |  |     /// This is useful for determining how many elements we should insert when  | 
224  |  |     /// creating an arbitrary collection.  | 
225  |  |     ///  | 
226  |  |     /// The return value is similar to [`Iterator::size_hint`]: it returns a  | 
227  |  |     /// tuple where the first element is a lower bound on the number of bytes  | 
228  |  |     /// required, and the second element is an optional upper bound.  | 
229  |  |     ///  | 
230  |  |     /// The default implementation return `(0, None)` which is correct for any  | 
231  |  |     /// type, but not ultimately that useful. Using `#[derive(Arbitrary)]` will  | 
232  |  |     /// create a better implementation. If you are writing an `Arbitrary`  | 
233  |  |     /// implementation by hand, and your type can be part of a dynamically sized  | 
234  |  |     /// collection (such as `Vec`), you are strongly encouraged to override this  | 
235  |  |     /// default with a better implementation, and also override  | 
236  |  |     /// [`try_size_hint`].  | 
237  |  |     ///  | 
238  |  |     /// ## How to implement this  | 
239  |  |     ///  | 
240  |  |     /// If the size hint calculation is a trivial constant and does not recurse  | 
241  |  |     /// into any other `size_hint` call, you should implement it in `size_hint`:  | 
242  |  |     ///  | 
243  |  |     /// ```  | 
244  |  |     /// use arbitrary::{size_hint, Arbitrary, Result, Unstructured}; | 
245  |  |     ///  | 
246  |  |     /// struct SomeStruct(u8);  | 
247  |  |     ///  | 
248  |  |     /// impl<'a> Arbitrary<'a> for SomeStruct { | 
249  |  |     ///     fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> { | 
250  |  |     ///         let buf = &mut [0];  | 
251  |  |     ///         u.fill_buffer(buf)?;  | 
252  |  |     ///         Ok(SomeStruct(buf[0]))  | 
253  |  |     ///     }  | 
254  |  |     ///  | 
255  |  |     ///     #[inline]  | 
256  |  |     ///     fn size_hint(depth: usize) -> (usize, Option<usize>) { | 
257  |  |     ///         let _ = depth;  | 
258  |  |     ///         (1, Some(1))  | 
259  |  |     ///     }  | 
260  |  |     /// }  | 
261  |  |     /// ```  | 
262  |  |     ///  | 
263  |  |     /// Otherwise, it should instead be implemented in [`try_size_hint`],  | 
264  |  |     /// and the `size_hint` implementation should forward to it:  | 
265  |  |     ///  | 
266  |  |     /// ```  | 
267  |  |     /// use arbitrary::{size_hint, Arbitrary, MaxRecursionReached, Result, Unstructured}; | 
268  |  |     ///  | 
269  |  |     /// struct SomeStruct<A, B> { | 
270  |  |     ///     a: A,  | 
271  |  |     ///     b: B,  | 
272  |  |     /// }  | 
273  |  |     ///  | 
274  |  |     /// impl<'a, A: Arbitrary<'a>, B: Arbitrary<'a>> Arbitrary<'a> for SomeStruct<A, B> { | 
275  |  |     ///     fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> { | 
276  |  |     ///         // ...  | 
277  |  |     /// #       todo!()  | 
278  |  |     ///     }  | 
279  |  |     ///  | 
280  |  |     ///     fn size_hint(depth: usize) -> (usize, Option<usize>) { | 
281  |  |     ///         // Return the value of try_size_hint  | 
282  |  |     ///         //  | 
283  |  |     ///         // If the recursion fails, return the default, always valid `(0, None)`  | 
284  |  |     ///         Self::try_size_hint(depth).unwrap_or_default()  | 
285  |  |     ///     }  | 
286  |  |     ///  | 
287  |  |     ///     fn try_size_hint(depth: usize) -> Result<(usize, Option<usize>), MaxRecursionReached> { | 
288  |  |     ///         // Protect against potential infinite recursion with  | 
289  |  |     ///         // `try_recursion_guard`.  | 
290  |  |     ///         size_hint::try_recursion_guard(depth, |depth| { | 
291  |  |     ///             // If we aren't too deep, then `recursion_guard` calls  | 
292  |  |     ///             // this closure, which implements the natural size hint.  | 
293  |  |     ///             // Don't forget to use the new `depth` in all nested  | 
294  |  |     ///             // `try_size_hint` calls! We recommend shadowing the  | 
295  |  |     ///             // parameter, like what is done here, so that you can't  | 
296  |  |     ///             // accidentally use the wrong depth.  | 
297  |  |     ///             Ok(size_hint::and(  | 
298  |  |     ///                 <A as Arbitrary>::try_size_hint(depth)?,  | 
299  |  |     ///                 <B as Arbitrary>::try_size_hint(depth)?,  | 
300  |  |     ///             ))  | 
301  |  |     ///         })  | 
302  |  |     ///     }  | 
303  |  |     /// }  | 
304  |  |     /// ```  | 
305  |  |     ///  | 
306  |  |     /// ## Invariant  | 
307  |  |     ///  | 
308  |  |     /// It must be possible to construct every possible output using only inputs  | 
309  |  |     /// of lengths bounded by these parameters. This applies to both  | 
310  |  |     /// [`Arbitrary::arbitrary`] and [`Arbitrary::arbitrary_take_rest`].  | 
311  |  |     ///  | 
312  |  |     /// This is trivially true for `(0, None)`. To restrict this further, it  | 
313  |  |     /// must be proven that all inputs that are now excluded produced redundant  | 
314  |  |     /// outputs which are still possible to produce using the reduced input  | 
315  |  |     /// space.  | 
316  |  |     ///  | 
317  |  |     /// [iterator-size-hint]: https://doc.rust-lang.org/stable/std/iter/trait.Iterator.html#method.size_hint  | 
318  |  |     /// [`try_size_hint`]: Arbitrary::try_size_hint  | 
319  |  |     #[inline]  | 
320  | 0  |     fn size_hint(depth: usize) -> (usize, Option<usize>) { | 
321  | 0  |         let _ = depth;  | 
322  | 0  |         (0, None)  | 
323  | 0  |     }  | 
324  |  |  | 
325  |  |     /// Get a size hint for how many bytes out of an `Unstructured` this type  | 
326  |  |     /// needs to construct itself.  | 
327  |  |     ///  | 
328  |  |     /// Unlike [`size_hint`], this function keeps the information that the  | 
329  |  |     /// recursion limit was reached. This is required to "short circuit" the  | 
330  |  |     /// calculation and avoid exponential blowup with recursive structures.  | 
331  |  |     ///  | 
332  |  |     /// If you are implementing [`size_hint`] for a struct that could be  | 
333  |  |     /// recursive, you should implement `try_size_hint` and call the  | 
334  |  |     /// `try_size_hint` when recursing  | 
335  |  |     ///  | 
336  |  |     ///  | 
337  |  |     /// The return value is similar to [`core::iter::Iterator::size_hint`]: it  | 
338  |  |     /// returns a tuple where the first element is a lower bound on the number  | 
339  |  |     /// of bytes required, and the second element is an optional upper bound.  | 
340  |  |     ///  | 
341  |  |     /// The default implementation returns the value of [`size_hint`] which is  | 
342  |  |     /// correct for any type, but might lead to exponential blowup when dealing  | 
343  |  |     /// with recursive types.  | 
344  |  |     ///  | 
345  |  |     /// ## Invariant  | 
346  |  |     ///  | 
347  |  |     /// It must be possible to construct every possible output using only inputs  | 
348  |  |     /// of lengths bounded by these parameters. This applies to both  | 
349  |  |     /// [`Arbitrary::arbitrary`] and [`Arbitrary::arbitrary_take_rest`].  | 
350  |  |     ///  | 
351  |  |     /// This is trivially true for `(0, None)`. To restrict this further, it  | 
352  |  |     /// must be proven that all inputs that are now excluded produced redundant  | 
353  |  |     /// outputs which are still possible to produce using the reduced input  | 
354  |  |     /// space.  | 
355  |  |     ///  | 
356  |  |     /// ## When to implement `try_size_hint`  | 
357  |  |     ///  | 
358  |  |     /// If you 100% know that the type you are implementing `Arbitrary` for is  | 
359  |  |     /// not a recursive type, or your implementation is not transitively calling  | 
360  |  |     /// any other `size_hint` methods, you may implement [`size_hint`], and the  | 
361  |  |     /// default `try_size_hint` implementation will use it.  | 
362  |  |     ///  | 
363  |  |     /// Note that if you are implementing `Arbitrary` for a generic type, you  | 
364  |  |     /// cannot guarantee the lack of type recursion!  | 
365  |  |     ///  | 
366  |  |     /// Otherwise, when there is possible type recursion, you should implement  | 
367  |  |     /// `try_size_hint` instead.  | 
368  |  |     ///  | 
369  |  |     /// ## The `depth` parameter  | 
370  |  |     ///  | 
371  |  |     /// When implementing `try_size_hint`, you need to use  | 
372  |  |     /// [`arbitrary::size_hint::try_recursion_guard(depth)`][crate::size_hint::try_recursion_guard]  | 
373  |  |     /// to prevent potential infinite recursion when calculating size hints for  | 
374  |  |     /// potentially recursive types:  | 
375  |  |     ///  | 
376  |  |     /// ```  | 
377  |  |     /// use arbitrary::{size_hint, Arbitrary, MaxRecursionReached, Unstructured}; | 
378  |  |     ///  | 
379  |  |     /// // This can potentially be a recursive type if `L` or `R` contain  | 
380  |  |     /// // something like `Box<Option<MyEither<L, R>>>`!  | 
381  |  |     /// enum MyEither<L, R> { | 
382  |  |     ///     Left(L),  | 
383  |  |     ///     Right(R),  | 
384  |  |     /// }  | 
385  |  |     ///  | 
386  |  |     /// impl<'a, L, R> Arbitrary<'a> for MyEither<L, R>  | 
387  |  |     /// where  | 
388  |  |     ///     L: Arbitrary<'a>,  | 
389  |  |     ///     R: Arbitrary<'a>,  | 
390  |  |     /// { | 
391  |  |     ///     fn arbitrary(u: &mut Unstructured) -> arbitrary::Result<Self> { | 
392  |  |     ///         // ...  | 
393  |  |     /// #       unimplemented!()  | 
394  |  |     ///     }  | 
395  |  |     ///  | 
396  |  |     ///     fn size_hint(depth: usize) -> (usize, Option<usize>) { | 
397  |  |     ///         // Return the value of `try_size_hint`  | 
398  |  |     ///         //  | 
399  |  |     ///         // If the recursion fails, return the default `(0, None)` range,  | 
400  |  |     ///         // which is always valid.  | 
401  |  |     ///         Self::try_size_hint(depth).unwrap_or_default()  | 
402  |  |     ///     }  | 
403  |  |     ///  | 
404  |  |     ///     fn try_size_hint(depth: usize) -> Result<(usize, Option<usize>), MaxRecursionReached> { | 
405  |  |     ///         // Protect against potential infinite recursion with  | 
406  |  |     ///         // `try_recursion_guard`.  | 
407  |  |     ///         size_hint::try_recursion_guard(depth, |depth| { | 
408  |  |     ///             // If we aren't too deep, then `recursion_guard` calls  | 
409  |  |     ///             // this closure, which implements the natural size hint.  | 
410  |  |     ///             // Don't forget to use the new `depth` in all nested  | 
411  |  |     ///             // `try_size_hint` calls! We recommend shadowing the  | 
412  |  |     ///             // parameter, like what is done here, so that you can't  | 
413  |  |     ///             // accidentally use the wrong depth.  | 
414  |  |     ///             Ok(size_hint::or(  | 
415  |  |     ///                 <L as Arbitrary>::try_size_hint(depth)?,  | 
416  |  |     ///                 <R as Arbitrary>::try_size_hint(depth)?,  | 
417  |  |     ///             ))  | 
418  |  |     ///         })  | 
419  |  |     ///     }  | 
420  |  |     /// }  | 
421  |  |     /// ```  | 
422  |  |     #[inline]  | 
423  | 18.4k  |     fn try_size_hint(depth: usize) -> Result<(usize, Option<usize>), MaxRecursionReached> { | 
424  | 18.4k  |         Ok(Self::size_hint(depth))  | 
425  | 18.4k  |     } <alloc::string::String as arbitrary::Arbitrary>::try_size_hint Line  | Count  | Source  |  423  | 18.4k  |     fn try_size_hint(depth: usize) -> Result<(usize, Option<usize>), MaxRecursionReached> { |  424  | 18.4k  |         Ok(Self::size_hint(depth))  |  425  | 18.4k  |     }  |  
 Unexecuted instantiation: <_ as arbitrary::Arbitrary>::try_size_hint  | 
426  |  | }  | 
427  |  |  | 
428  |  | #[cfg(test)]  | 
429  |  | mod test { | 
430  |  |     use super::*;  | 
431  |  |  | 
432  |  |     #[test]  | 
433  |  |     fn exhausted_entropy() { | 
434  |  |         let mut u = Unstructured::new(&[]);  | 
435  |  |         assert_eq!(u.arbitrary::<bool>().unwrap(), false);  | 
436  |  |         assert_eq!(u.arbitrary::<u8>().unwrap(), 0);  | 
437  |  |         assert_eq!(u.arbitrary::<usize>().unwrap(), 0);  | 
438  |  |         assert_eq!(u.arbitrary::<f32>().unwrap(), 0.0);  | 
439  |  |         assert_eq!(u.arbitrary::<f64>().unwrap(), 0.0);  | 
440  |  |         assert_eq!(u.arbitrary::<Option<u32>>().unwrap(), None);  | 
441  |  |         assert_eq!(u.int_in_range(4..=100).unwrap(), 4);  | 
442  |  |         assert_eq!(u.choose_index(10).unwrap(), 0);  | 
443  |  |         assert_eq!(u.ratio(5, 7).unwrap(), true);  | 
444  |  |     }  | 
445  |  | }  | 
446  |  |  | 
447  |  | /// Multiple conflicting arbitrary attributes are used on the same field:  | 
448  |  | /// ```compile_fail  | 
449  |  | /// #[derive(::arbitrary::Arbitrary)]  | 
450  |  | /// struct Point { | 
451  |  | ///     #[arbitrary(value = 2)]  | 
452  |  | ///     #[arbitrary(value = 2)]  | 
453  |  | ///     x: i32,  | 
454  |  | /// }  | 
455  |  | /// ```  | 
456  |  | ///  | 
457  |  | /// An unknown attribute:  | 
458  |  | /// ```compile_fail  | 
459  |  | /// #[derive(::arbitrary::Arbitrary)]  | 
460  |  | /// struct Point { | 
461  |  | ///     #[arbitrary(unknown_attr)]  | 
462  |  | ///     x: i32,  | 
463  |  | /// }  | 
464  |  | /// ```  | 
465  |  | ///  | 
466  |  | /// An unknown attribute with a value:  | 
467  |  | /// ```compile_fail  | 
468  |  | /// #[derive(::arbitrary::Arbitrary)]  | 
469  |  | /// struct Point { | 
470  |  | ///     #[arbitrary(unknown_attr = 13)]  | 
471  |  | ///     x: i32,  | 
472  |  | /// }  | 
473  |  | /// ```  | 
474  |  | ///  | 
475  |  | /// `value` without RHS:  | 
476  |  | /// ```compile_fail  | 
477  |  | /// #[derive(::arbitrary::Arbitrary)]  | 
478  |  | /// struct Point { | 
479  |  | ///     #[arbitrary(value)]  | 
480  |  | ///     x: i32,  | 
481  |  | /// }  | 
482  |  | /// ```  | 
483  |  | ///  | 
484  |  | /// `with` without RHS:  | 
485  |  | /// ```compile_fail  | 
486  |  | /// #[derive(::arbitrary::Arbitrary)]  | 
487  |  | /// struct Point { | 
488  |  | ///     #[arbitrary(with)]  | 
489  |  | ///     x: i32,  | 
490  |  | /// }  | 
491  |  | /// ```  | 
492  |  | ///  | 
493  |  | /// Multiple conflicting bounds at the container-level:  | 
494  |  | /// ```compile_fail  | 
495  |  | /// #[derive(::arbitrary::Arbitrary)]  | 
496  |  | /// #[arbitrary(bound = "T: Default")]  | 
497  |  | /// #[arbitrary(bound = "T: Default")]  | 
498  |  | /// struct Point<T: Default> { | 
499  |  | ///     #[arbitrary(default)]  | 
500  |  | ///     x: T,  | 
501  |  | /// }  | 
502  |  | /// ```  | 
503  |  | ///  | 
504  |  | /// Multiple conflicting bounds in a single bound attribute:  | 
505  |  | /// ```compile_fail  | 
506  |  | /// #[derive(::arbitrary::Arbitrary)]  | 
507  |  | /// #[arbitrary(bound = "T: Default, T: Default")]  | 
508  |  | /// struct Point<T: Default> { | 
509  |  | ///     #[arbitrary(default)]  | 
510  |  | ///     x: T,  | 
511  |  | /// }  | 
512  |  | /// ```  | 
513  |  | ///  | 
514  |  | /// Multiple conflicting bounds in multiple bound attributes:  | 
515  |  | /// ```compile_fail  | 
516  |  | /// #[derive(::arbitrary::Arbitrary)]  | 
517  |  | /// #[arbitrary(bound = "T: Default", bound = "T: Default")]  | 
518  |  | /// struct Point<T: Default> { | 
519  |  | ///     #[arbitrary(default)]  | 
520  |  | ///     x: T,  | 
521  |  | /// }  | 
522  |  | /// ```  | 
523  |  | ///  | 
524  |  | /// Too many bounds supplied:  | 
525  |  | /// ```compile_fail  | 
526  |  | /// #[derive(::arbitrary::Arbitrary)]  | 
527  |  | /// #[arbitrary(bound = "T: Default")]  | 
528  |  | /// struct Point { | 
529  |  | ///     x: i32,  | 
530  |  | /// }  | 
531  |  | /// ```  | 
532  |  | ///  | 
533  |  | /// Too many bounds supplied across multiple attributes:  | 
534  |  | /// ```compile_fail  | 
535  |  | /// #[derive(::arbitrary::Arbitrary)]  | 
536  |  | /// #[arbitrary(bound = "T: Default")]  | 
537  |  | /// #[arbitrary(bound = "U: Default")]  | 
538  |  | /// struct Point<T: Default> { | 
539  |  | ///     #[arbitrary(default)]  | 
540  |  | ///     x: T,  | 
541  |  | /// }  | 
542  |  | /// ```  | 
543  |  | ///  | 
544  |  | /// Attempt to use the derive attribute on an enum variant:  | 
545  |  | /// ```compile_fail  | 
546  |  | /// #[derive(::arbitrary::Arbitrary)]  | 
547  |  | /// enum Enum<T: Default> { | 
548  |  | ///     #[arbitrary(default)]  | 
549  |  | ///     Variant(T),  | 
550  |  | /// }  | 
551  |  | /// ```  | 
552  |  | #[cfg(all(doctest, feature = "derive"))]  | 
553  |  | pub struct CompileFailTests;  | 
554  |  |  | 
555  |  | // Support for `#[derive(Arbitrary)]`.  | 
556  |  | #[doc(hidden)]  | 
557  |  | #[cfg(feature = "derive")]  | 
558  |  | pub mod details { | 
559  |  |     use super::*;  | 
560  |  |  | 
561  |  |     // Hidden trait that papers over the difference between `&mut Unstructured` and  | 
562  |  |     // `Unstructured` arguments so that `with_recursive_count` can be used for both  | 
563  |  |     // `arbitrary` and `arbitrary_take_rest`.  | 
564  |  |     pub trait IsEmpty { | 
565  |  |         fn is_empty(&self) -> bool;  | 
566  |  |     }  | 
567  |  |  | 
568  |  |     impl IsEmpty for Unstructured<'_> { | 
569  |  |         fn is_empty(&self) -> bool { | 
570  |  |             Unstructured::is_empty(self)  | 
571  |  |         }  | 
572  |  |     }  | 
573  |  |  | 
574  |  |     impl IsEmpty for &mut Unstructured<'_> { | 
575  |  |         fn is_empty(&self) -> bool { | 
576  |  |             Unstructured::is_empty(self)  | 
577  |  |         }  | 
578  |  |     }  | 
579  |  |  | 
580  |  |     // Calls `f` with a recursive count guard.  | 
581  |  |     #[inline]  | 
582  |  |     pub fn with_recursive_count<U: IsEmpty, R>(  | 
583  |  |         u: U,  | 
584  |  |         recursive_count: &'static std::thread::LocalKey<std::cell::Cell<u32>>,  | 
585  |  |         f: impl FnOnce(U) -> Result<R>,  | 
586  |  |     ) -> Result<R> { | 
587  |  |         let guard_against_recursion = u.is_empty();  | 
588  |  |         if guard_against_recursion { | 
589  |  |             recursive_count.with(|count| { | 
590  |  |                 if count.get() > 0 { | 
591  |  |                     return Err(Error::NotEnoughData);  | 
592  |  |                 }  | 
593  |  |                 count.set(count.get() + 1);  | 
594  |  |                 Ok(())  | 
595  |  |             })?;  | 
596  |  |         }  | 
597  |  |  | 
598  |  |         let result = f(u);  | 
599  |  |  | 
600  |  |         if guard_against_recursion { | 
601  |  |             recursive_count.with(|count| { | 
602  |  |                 count.set(count.get() - 1);  | 
603  |  |             });  | 
604  |  |         }  | 
605  |  |  | 
606  |  |         result  | 
607  |  |     }  | 
608  |  | }  |