/src/chrono/src/naive/datetime/mod.rs
Line | Count | Source |
1 | | // This is a part of Chrono. |
2 | | // See README.md and LICENSE.txt for details. |
3 | | |
4 | | //! ISO 8601 date and time without timezone. |
5 | | |
6 | | #[cfg(feature = "alloc")] |
7 | | use core::borrow::Borrow; |
8 | | use core::fmt::Write; |
9 | | use core::ops::{Add, AddAssign, Sub, SubAssign}; |
10 | | use core::time::Duration; |
11 | | use core::{fmt, str}; |
12 | | |
13 | | #[cfg(any(feature = "rkyv", feature = "rkyv-16", feature = "rkyv-32", feature = "rkyv-64"))] |
14 | | use rkyv::{Archive, Deserialize, Serialize}; |
15 | | |
16 | | #[cfg(feature = "alloc")] |
17 | | use crate::format::DelayedFormat; |
18 | | use crate::format::{Fixed, Item, Numeric, Pad}; |
19 | | use crate::format::{ParseError, ParseResult, Parsed, StrftimeItems, parse, parse_and_remainder}; |
20 | | use crate::naive::{Days, IsoWeek, NaiveDate, NaiveTime}; |
21 | | use crate::offset::Utc; |
22 | | use crate::time_delta::NANOS_PER_SEC; |
23 | | use crate::{ |
24 | | DateTime, Datelike, FixedOffset, MappedLocalTime, Months, TimeDelta, TimeZone, Timelike, |
25 | | Weekday, expect, try_opt, |
26 | | }; |
27 | | |
28 | | /// Tools to help serializing/deserializing `NaiveDateTime`s |
29 | | #[cfg(feature = "serde")] |
30 | | pub(crate) mod serde; |
31 | | |
32 | | #[cfg(test)] |
33 | | mod tests; |
34 | | |
35 | | /// The minimum possible `NaiveDateTime`. |
36 | | #[deprecated(since = "0.4.20", note = "Use NaiveDateTime::MIN instead")] |
37 | | pub const MIN_DATETIME: NaiveDateTime = NaiveDateTime::MIN; |
38 | | /// The maximum possible `NaiveDateTime`. |
39 | | #[deprecated(since = "0.4.20", note = "Use NaiveDateTime::MAX instead")] |
40 | | pub const MAX_DATETIME: NaiveDateTime = NaiveDateTime::MAX; |
41 | | |
42 | | /// ISO 8601 combined date and time without timezone. |
43 | | /// |
44 | | /// # Example |
45 | | /// |
46 | | /// `NaiveDateTime` is commonly created from [`NaiveDate`]. |
47 | | /// |
48 | | /// ``` |
49 | | /// use chrono::{NaiveDate, NaiveDateTime}; |
50 | | /// |
51 | | /// let dt: NaiveDateTime = |
52 | | /// NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_opt(9, 10, 11).unwrap(); |
53 | | /// # let _ = dt; |
54 | | /// ``` |
55 | | /// |
56 | | /// You can use typical [date-like](Datelike) and [time-like](Timelike) methods, |
57 | | /// provided that relevant traits are in the scope. |
58 | | /// |
59 | | /// ``` |
60 | | /// # use chrono::{NaiveDate, NaiveDateTime}; |
61 | | /// # let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_opt(9, 10, 11).unwrap(); |
62 | | /// use chrono::{Datelike, Timelike, Weekday}; |
63 | | /// |
64 | | /// assert_eq!(dt.weekday(), Weekday::Fri); |
65 | | /// assert_eq!(dt.num_seconds_from_midnight(), 33011); |
66 | | /// ``` |
67 | | #[derive(PartialEq, Eq, Hash, PartialOrd, Ord, Copy, Clone)] |
68 | | #[cfg_attr( |
69 | | any(feature = "rkyv", feature = "rkyv-16", feature = "rkyv-32", feature = "rkyv-64"), |
70 | | derive(Archive, Deserialize, Serialize), |
71 | | archive(compare(PartialEq, PartialOrd)), |
72 | | archive_attr(derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug, Hash)) |
73 | | )] |
74 | | #[cfg_attr(feature = "rkyv-validation", archive(check_bytes))] |
75 | | #[cfg_attr(all(feature = "arbitrary", feature = "std"), derive(arbitrary::Arbitrary))] |
76 | | pub struct NaiveDateTime { |
77 | | date: NaiveDate, |
78 | | time: NaiveTime, |
79 | | } |
80 | | |
81 | | impl NaiveDateTime { |
82 | | /// Makes a new `NaiveDateTime` from date and time components. |
83 | | /// Equivalent to [`date.and_time(time)`](./struct.NaiveDate.html#method.and_time) |
84 | | /// and many other helper constructors on `NaiveDate`. |
85 | | /// |
86 | | /// # Example |
87 | | /// |
88 | | /// ``` |
89 | | /// use chrono::{NaiveDate, NaiveDateTime, NaiveTime}; |
90 | | /// |
91 | | /// let d = NaiveDate::from_ymd_opt(2015, 6, 3).unwrap(); |
92 | | /// let t = NaiveTime::from_hms_milli_opt(12, 34, 56, 789).unwrap(); |
93 | | /// |
94 | | /// let dt = NaiveDateTime::new(d, t); |
95 | | /// assert_eq!(dt.date(), d); |
96 | | /// assert_eq!(dt.time(), t); |
97 | | /// ``` |
98 | | #[inline] |
99 | 1.94k | pub const fn new(date: NaiveDate, time: NaiveTime) -> NaiveDateTime { |
100 | 1.94k | NaiveDateTime { date, time } |
101 | 1.94k | } |
102 | | |
103 | | /// Makes a new `NaiveDateTime` corresponding to a UTC date and time, |
104 | | /// from the number of non-leap seconds |
105 | | /// since the midnight UTC on January 1, 1970 (aka "UNIX timestamp") |
106 | | /// and the number of nanoseconds since the last whole non-leap second. |
107 | | /// |
108 | | /// For a non-naive version of this function see [`TimeZone::timestamp`]. |
109 | | /// |
110 | | /// The nanosecond part can exceed 1,000,000,000 in order to represent a |
111 | | /// [leap second](NaiveTime#leap-second-handling), but only when `secs % 60 == 59`. |
112 | | /// (The true "UNIX timestamp" cannot represent a leap second unambiguously.) |
113 | | /// |
114 | | /// # Panics |
115 | | /// |
116 | | /// Panics if the number of seconds would be out of range for a `NaiveDateTime` (more than |
117 | | /// ca. 262,000 years away from common era), and panics on an invalid nanosecond (2 seconds or |
118 | | /// more). |
119 | | #[deprecated(since = "0.4.23", note = "use `DateTime::from_timestamp` instead")] |
120 | | #[inline] |
121 | | #[must_use] |
122 | | pub const fn from_timestamp(secs: i64, nsecs: u32) -> NaiveDateTime { |
123 | | let datetime = |
124 | | expect(DateTime::from_timestamp(secs, nsecs), "invalid or out-of-range datetime"); |
125 | | datetime.naive_utc() |
126 | | } |
127 | | |
128 | | /// Creates a new [NaiveDateTime] from milliseconds since the UNIX epoch. |
129 | | /// |
130 | | /// The UNIX epoch starts on midnight, January 1, 1970, UTC. |
131 | | /// |
132 | | /// # Errors |
133 | | /// |
134 | | /// Returns `None` if the number of milliseconds would be out of range for a `NaiveDateTime` |
135 | | /// (more than ca. 262,000 years away from common era) |
136 | | #[deprecated(since = "0.4.35", note = "use `DateTime::from_timestamp_millis` instead")] |
137 | | #[inline] |
138 | | #[must_use] |
139 | | pub const fn from_timestamp_millis(millis: i64) -> Option<NaiveDateTime> { |
140 | | Some(try_opt!(DateTime::from_timestamp_millis(millis)).naive_utc()) |
141 | | } |
142 | | |
143 | | /// Creates a new [NaiveDateTime] from microseconds since the UNIX epoch. |
144 | | /// |
145 | | /// The UNIX epoch starts on midnight, January 1, 1970, UTC. |
146 | | /// |
147 | | /// # Errors |
148 | | /// |
149 | | /// Returns `None` if the number of microseconds would be out of range for a `NaiveDateTime` |
150 | | /// (more than ca. 262,000 years away from common era) |
151 | | #[deprecated(since = "0.4.35", note = "use `DateTime::from_timestamp_micros` instead")] |
152 | | #[inline] |
153 | | #[must_use] |
154 | | pub const fn from_timestamp_micros(micros: i64) -> Option<NaiveDateTime> { |
155 | | let secs = micros.div_euclid(1_000_000); |
156 | | let nsecs = micros.rem_euclid(1_000_000) as u32 * 1000; |
157 | | Some(try_opt!(DateTime::<Utc>::from_timestamp(secs, nsecs)).naive_utc()) |
158 | | } |
159 | | |
160 | | /// Creates a new [NaiveDateTime] from nanoseconds since the UNIX epoch. |
161 | | /// |
162 | | /// The UNIX epoch starts on midnight, January 1, 1970, UTC. |
163 | | /// |
164 | | /// # Errors |
165 | | /// |
166 | | /// Returns `None` if the number of nanoseconds would be out of range for a `NaiveDateTime` |
167 | | /// (more than ca. 262,000 years away from common era) |
168 | | #[deprecated(since = "0.4.35", note = "use `DateTime::from_timestamp_nanos` instead")] |
169 | | #[inline] |
170 | | #[must_use] |
171 | | pub const fn from_timestamp_nanos(nanos: i64) -> Option<NaiveDateTime> { |
172 | | let secs = nanos.div_euclid(NANOS_PER_SEC as i64); |
173 | | let nsecs = nanos.rem_euclid(NANOS_PER_SEC as i64) as u32; |
174 | | Some(try_opt!(DateTime::from_timestamp(secs, nsecs)).naive_utc()) |
175 | | } |
176 | | |
177 | | /// Makes a new `NaiveDateTime` corresponding to a UTC date and time, |
178 | | /// from the number of non-leap seconds |
179 | | /// since the midnight UTC on January 1, 1970 (aka "UNIX timestamp") |
180 | | /// and the number of nanoseconds since the last whole non-leap second. |
181 | | /// |
182 | | /// The nanosecond part can exceed 1,000,000,000 in order to represent a |
183 | | /// [leap second](NaiveTime#leap-second-handling), but only when `secs % 60 == 59`. |
184 | | /// (The true "UNIX timestamp" cannot represent a leap second unambiguously.) |
185 | | /// |
186 | | /// # Errors |
187 | | /// |
188 | | /// Returns `None` if the number of seconds would be out of range for a `NaiveDateTime` (more |
189 | | /// than ca. 262,000 years away from common era), and panics on an invalid nanosecond |
190 | | /// (2 seconds or more). |
191 | | #[deprecated(since = "0.4.35", note = "use `DateTime::from_timestamp` instead")] |
192 | | #[inline] |
193 | | #[must_use] |
194 | | pub const fn from_timestamp_opt(secs: i64, nsecs: u32) -> Option<NaiveDateTime> { |
195 | | Some(try_opt!(DateTime::from_timestamp(secs, nsecs)).naive_utc()) |
196 | | } |
197 | | |
198 | | /// Parses a string with the specified format string and returns a new `NaiveDateTime`. |
199 | | /// See the [`format::strftime` module](crate::format::strftime) |
200 | | /// on the supported escape sequences. |
201 | | /// |
202 | | /// # Example |
203 | | /// |
204 | | /// ``` |
205 | | /// use chrono::{NaiveDate, NaiveDateTime}; |
206 | | /// |
207 | | /// let parse_from_str = NaiveDateTime::parse_from_str; |
208 | | /// |
209 | | /// assert_eq!( |
210 | | /// parse_from_str("2015-09-05 23:56:04", "%Y-%m-%d %H:%M:%S"), |
211 | | /// Ok(NaiveDate::from_ymd_opt(2015, 9, 5).unwrap().and_hms_opt(23, 56, 4).unwrap()) |
212 | | /// ); |
213 | | /// assert_eq!( |
214 | | /// parse_from_str("5sep2015pm012345.6789", "%d%b%Y%p%I%M%S%.f"), |
215 | | /// Ok(NaiveDate::from_ymd_opt(2015, 9, 5) |
216 | | /// .unwrap() |
217 | | /// .and_hms_micro_opt(13, 23, 45, 678_900) |
218 | | /// .unwrap()) |
219 | | /// ); |
220 | | /// ``` |
221 | | /// |
222 | | /// Offset is ignored for the purpose of parsing. |
223 | | /// |
224 | | /// ``` |
225 | | /// # use chrono::{NaiveDateTime, NaiveDate}; |
226 | | /// # let parse_from_str = NaiveDateTime::parse_from_str; |
227 | | /// assert_eq!( |
228 | | /// parse_from_str("2014-5-17T12:34:56+09:30", "%Y-%m-%dT%H:%M:%S%z"), |
229 | | /// Ok(NaiveDate::from_ymd_opt(2014, 5, 17).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
230 | | /// ); |
231 | | /// ``` |
232 | | /// |
233 | | /// [Leap seconds](./struct.NaiveTime.html#leap-second-handling) are correctly handled by |
234 | | /// treating any time of the form `hh:mm:60` as a leap second. |
235 | | /// (This equally applies to the formatting, so the round trip is possible.) |
236 | | /// |
237 | | /// ``` |
238 | | /// # use chrono::{NaiveDateTime, NaiveDate}; |
239 | | /// # let parse_from_str = NaiveDateTime::parse_from_str; |
240 | | /// assert_eq!( |
241 | | /// parse_from_str("2015-07-01 08:59:60.123", "%Y-%m-%d %H:%M:%S%.f"), |
242 | | /// Ok(NaiveDate::from_ymd_opt(2015, 7, 1) |
243 | | /// .unwrap() |
244 | | /// .and_hms_milli_opt(8, 59, 59, 1_123) |
245 | | /// .unwrap()) |
246 | | /// ); |
247 | | /// ``` |
248 | | /// |
249 | | /// Missing seconds are assumed to be zero, |
250 | | /// but out-of-bound times or insufficient fields are errors otherwise. |
251 | | /// |
252 | | /// ``` |
253 | | /// # use chrono::{NaiveDateTime, NaiveDate}; |
254 | | /// # let parse_from_str = NaiveDateTime::parse_from_str; |
255 | | /// assert_eq!( |
256 | | /// parse_from_str("94/9/4 7:15", "%y/%m/%d %H:%M"), |
257 | | /// Ok(NaiveDate::from_ymd_opt(1994, 9, 4).unwrap().and_hms_opt(7, 15, 0).unwrap()) |
258 | | /// ); |
259 | | /// |
260 | | /// assert!(parse_from_str("04m33s", "%Mm%Ss").is_err()); |
261 | | /// assert!(parse_from_str("94/9/4 12", "%y/%m/%d %H").is_err()); |
262 | | /// assert!(parse_from_str("94/9/4 17:60", "%y/%m/%d %H:%M").is_err()); |
263 | | /// assert!(parse_from_str("94/9/4 24:00:00", "%y/%m/%d %H:%M:%S").is_err()); |
264 | | /// ``` |
265 | | /// |
266 | | /// All parsed fields should be consistent to each other, otherwise it's an error. |
267 | | /// |
268 | | /// ``` |
269 | | /// # use chrono::NaiveDateTime; |
270 | | /// # let parse_from_str = NaiveDateTime::parse_from_str; |
271 | | /// let fmt = "%Y-%m-%d %H:%M:%S = UNIX timestamp %s"; |
272 | | /// assert!(parse_from_str("2001-09-09 01:46:39 = UNIX timestamp 999999999", fmt).is_ok()); |
273 | | /// assert!(parse_from_str("1970-01-01 00:00:00 = UNIX timestamp 1", fmt).is_err()); |
274 | | /// ``` |
275 | | /// |
276 | | /// Years before 1 BCE or after 9999 CE, require an initial sign |
277 | | /// |
278 | | ///``` |
279 | | /// # use chrono::NaiveDateTime; |
280 | | /// # let parse_from_str = NaiveDateTime::parse_from_str; |
281 | | /// let fmt = "%Y-%m-%d %H:%M:%S"; |
282 | | /// assert!(parse_from_str("10000-09-09 01:46:39", fmt).is_err()); |
283 | | /// assert!(parse_from_str("+10000-09-09 01:46:39", fmt).is_ok()); |
284 | | /// ``` |
285 | 0 | pub fn parse_from_str(s: &str, fmt: &str) -> ParseResult<NaiveDateTime> { |
286 | 0 | let mut parsed = Parsed::new(); |
287 | 0 | parse(&mut parsed, s, StrftimeItems::new(fmt))?; |
288 | 0 | parsed.to_naive_datetime_with_offset(0) // no offset adjustment |
289 | 0 | } |
290 | | |
291 | | /// Parses a string with the specified format string and returns a new `NaiveDateTime`, and a |
292 | | /// slice with the remaining portion of the string. |
293 | | /// See the [`format::strftime` module](crate::format::strftime) |
294 | | /// on the supported escape sequences. |
295 | | /// |
296 | | /// Similar to [`parse_from_str`](#method.parse_from_str). |
297 | | /// |
298 | | /// # Example |
299 | | /// |
300 | | /// ```rust |
301 | | /// # use chrono::{NaiveDate, NaiveDateTime}; |
302 | | /// let (datetime, remainder) = NaiveDateTime::parse_and_remainder( |
303 | | /// "2015-02-18 23:16:09 trailing text", |
304 | | /// "%Y-%m-%d %H:%M:%S", |
305 | | /// ) |
306 | | /// .unwrap(); |
307 | | /// assert_eq!( |
308 | | /// datetime, |
309 | | /// NaiveDate::from_ymd_opt(2015, 2, 18).unwrap().and_hms_opt(23, 16, 9).unwrap() |
310 | | /// ); |
311 | | /// assert_eq!(remainder, " trailing text"); |
312 | | /// ``` |
313 | 0 | pub fn parse_and_remainder<'a>(s: &'a str, fmt: &str) -> ParseResult<(NaiveDateTime, &'a str)> { |
314 | 0 | let mut parsed = Parsed::new(); |
315 | 0 | let remainder = parse_and_remainder(&mut parsed, s, StrftimeItems::new(fmt))?; |
316 | 0 | parsed.to_naive_datetime_with_offset(0).map(|d| (d, remainder)) // no offset adjustment |
317 | 0 | } |
318 | | |
319 | | /// Retrieves a date component. |
320 | | /// |
321 | | /// # Example |
322 | | /// |
323 | | /// ``` |
324 | | /// use chrono::NaiveDate; |
325 | | /// |
326 | | /// let dt = NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_opt(9, 10, 11).unwrap(); |
327 | | /// assert_eq!(dt.date(), NaiveDate::from_ymd_opt(2016, 7, 8).unwrap()); |
328 | | /// ``` |
329 | | #[inline] |
330 | 579 | pub const fn date(&self) -> NaiveDate { |
331 | 579 | self.date |
332 | 579 | } |
333 | | |
334 | | /// Retrieves a time component. |
335 | | /// |
336 | | /// # Example |
337 | | /// |
338 | | /// ``` |
339 | | /// use chrono::{NaiveDate, NaiveTime}; |
340 | | /// |
341 | | /// let dt = NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_opt(9, 10, 11).unwrap(); |
342 | | /// assert_eq!(dt.time(), NaiveTime::from_hms_opt(9, 10, 11).unwrap()); |
343 | | /// ``` |
344 | | #[inline] |
345 | 579 | pub const fn time(&self) -> NaiveTime { |
346 | 579 | self.time |
347 | 579 | } |
348 | | |
349 | | /// Returns the number of non-leap seconds since the midnight on January 1, 1970. |
350 | | /// |
351 | | /// Note that this does *not* account for the timezone! |
352 | | /// The true "UNIX timestamp" would count seconds since the midnight *UTC* on the epoch. |
353 | | #[deprecated(since = "0.4.35", note = "use `.and_utc().timestamp()` instead")] |
354 | | #[inline] |
355 | | #[must_use] |
356 | | pub const fn timestamp(&self) -> i64 { |
357 | | self.and_utc().timestamp() |
358 | | } |
359 | | |
360 | | /// Returns the number of non-leap *milliseconds* since midnight on January 1, 1970. |
361 | | /// |
362 | | /// Note that this does *not* account for the timezone! |
363 | | /// The true "UNIX timestamp" would count seconds since the midnight *UTC* on the epoch. |
364 | | #[deprecated(since = "0.4.35", note = "use `.and_utc().timestamp_millis()` instead")] |
365 | | #[inline] |
366 | | #[must_use] |
367 | | pub const fn timestamp_millis(&self) -> i64 { |
368 | | self.and_utc().timestamp_millis() |
369 | | } |
370 | | |
371 | | /// Returns the number of non-leap *microseconds* since midnight on January 1, 1970. |
372 | | /// |
373 | | /// Note that this does *not* account for the timezone! |
374 | | /// The true "UNIX timestamp" would count seconds since the midnight *UTC* on the epoch. |
375 | | #[deprecated(since = "0.4.35", note = "use `.and_utc().timestamp_micros()` instead")] |
376 | | #[inline] |
377 | | #[must_use] |
378 | | pub const fn timestamp_micros(&self) -> i64 { |
379 | | self.and_utc().timestamp_micros() |
380 | | } |
381 | | |
382 | | /// Returns the number of non-leap *nanoseconds* since midnight on January 1, 1970. |
383 | | /// |
384 | | /// Note that this does *not* account for the timezone! |
385 | | /// The true "UNIX timestamp" would count seconds since the midnight *UTC* on the epoch. |
386 | | /// |
387 | | /// # Panics |
388 | | /// |
389 | | /// An `i64` with nanosecond precision can span a range of ~584 years. This function panics on |
390 | | /// an out of range `NaiveDateTime`. |
391 | | /// |
392 | | /// The dates that can be represented as nanoseconds are between 1677-09-21T00:12:43.145224192 |
393 | | /// and 2262-04-11T23:47:16.854775807. |
394 | | #[deprecated(since = "0.4.31", note = "use `.and_utc().timestamp_nanos_opt()` instead")] |
395 | | #[inline] |
396 | | #[must_use] |
397 | | #[allow(deprecated)] |
398 | | pub const fn timestamp_nanos(&self) -> i64 { |
399 | | self.and_utc().timestamp_nanos() |
400 | | } |
401 | | |
402 | | /// Returns the number of non-leap *nanoseconds* since midnight on January 1, 1970. |
403 | | /// |
404 | | /// Note that this does *not* account for the timezone! |
405 | | /// The true "UNIX timestamp" would count seconds since the midnight *UTC* on the epoch. |
406 | | /// |
407 | | /// # Errors |
408 | | /// |
409 | | /// An `i64` with nanosecond precision can span a range of ~584 years. This function returns |
410 | | /// `None` on an out of range `NaiveDateTime`. |
411 | | /// |
412 | | /// The dates that can be represented as nanoseconds are between 1677-09-21T00:12:43.145224192 |
413 | | /// and 2262-04-11T23:47:16.854775807. |
414 | | #[deprecated(since = "0.4.35", note = "use `.and_utc().timestamp_nanos_opt()` instead")] |
415 | | #[inline] |
416 | | #[must_use] |
417 | | pub const fn timestamp_nanos_opt(&self) -> Option<i64> { |
418 | | self.and_utc().timestamp_nanos_opt() |
419 | | } |
420 | | |
421 | | /// Returns the number of milliseconds since the last whole non-leap second. |
422 | | /// |
423 | | /// The return value ranges from 0 to 999, |
424 | | /// or for [leap seconds](./struct.NaiveTime.html#leap-second-handling), to 1,999. |
425 | | #[deprecated(since = "0.4.35", note = "use `.and_utc().timestamp_subsec_millis()` instead")] |
426 | | #[inline] |
427 | | #[must_use] |
428 | | pub const fn timestamp_subsec_millis(&self) -> u32 { |
429 | | self.and_utc().timestamp_subsec_millis() |
430 | | } |
431 | | |
432 | | /// Returns the number of microseconds since the last whole non-leap second. |
433 | | /// |
434 | | /// The return value ranges from 0 to 999,999, |
435 | | /// or for [leap seconds](./struct.NaiveTime.html#leap-second-handling), to 1,999,999. |
436 | | #[deprecated(since = "0.4.35", note = "use `.and_utc().timestamp_subsec_micros()` instead")] |
437 | | #[inline] |
438 | | #[must_use] |
439 | | pub const fn timestamp_subsec_micros(&self) -> u32 { |
440 | | self.and_utc().timestamp_subsec_micros() |
441 | | } |
442 | | |
443 | | /// Returns the number of nanoseconds since the last whole non-leap second. |
444 | | /// |
445 | | /// The return value ranges from 0 to 999,999,999, |
446 | | /// or for [leap seconds](./struct.NaiveTime.html#leap-second-handling), to 1,999,999,999. |
447 | | #[deprecated(since = "0.4.36", note = "use `.and_utc().timestamp_subsec_nanos()` instead")] |
448 | 0 | pub const fn timestamp_subsec_nanos(&self) -> u32 { |
449 | 0 | self.and_utc().timestamp_subsec_nanos() |
450 | 0 | } |
451 | | |
452 | | /// Adds given `TimeDelta` to the current date and time. |
453 | | /// |
454 | | /// As a part of Chrono's [leap second handling](./struct.NaiveTime.html#leap-second-handling), |
455 | | /// the addition assumes that **there is no leap second ever**, |
456 | | /// except when the `NaiveDateTime` itself represents a leap second |
457 | | /// in which case the assumption becomes that **there is exactly a single leap second ever**. |
458 | | /// |
459 | | /// # Errors |
460 | | /// |
461 | | /// Returns `None` if the resulting date would be out of range. |
462 | | /// |
463 | | /// # Example |
464 | | /// |
465 | | /// ``` |
466 | | /// use chrono::{NaiveDate, TimeDelta}; |
467 | | /// |
468 | | /// let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap(); |
469 | | /// |
470 | | /// let d = from_ymd(2016, 7, 8); |
471 | | /// let hms = |h, m, s| d.and_hms_opt(h, m, s).unwrap(); |
472 | | /// assert_eq!(hms(3, 5, 7).checked_add_signed(TimeDelta::zero()), Some(hms(3, 5, 7))); |
473 | | /// assert_eq!( |
474 | | /// hms(3, 5, 7).checked_add_signed(TimeDelta::try_seconds(1).unwrap()), |
475 | | /// Some(hms(3, 5, 8)) |
476 | | /// ); |
477 | | /// assert_eq!( |
478 | | /// hms(3, 5, 7).checked_add_signed(TimeDelta::try_seconds(-1).unwrap()), |
479 | | /// Some(hms(3, 5, 6)) |
480 | | /// ); |
481 | | /// assert_eq!( |
482 | | /// hms(3, 5, 7).checked_add_signed(TimeDelta::try_seconds(3600 + 60).unwrap()), |
483 | | /// Some(hms(4, 6, 7)) |
484 | | /// ); |
485 | | /// assert_eq!( |
486 | | /// hms(3, 5, 7).checked_add_signed(TimeDelta::try_seconds(86_400).unwrap()), |
487 | | /// Some(from_ymd(2016, 7, 9).and_hms_opt(3, 5, 7).unwrap()) |
488 | | /// ); |
489 | | /// |
490 | | /// let hmsm = |h, m, s, milli| d.and_hms_milli_opt(h, m, s, milli).unwrap(); |
491 | | /// assert_eq!( |
492 | | /// hmsm(3, 5, 7, 980).checked_add_signed(TimeDelta::try_milliseconds(450).unwrap()), |
493 | | /// Some(hmsm(3, 5, 8, 430)) |
494 | | /// ); |
495 | | /// ``` |
496 | | /// |
497 | | /// Overflow returns `None`. |
498 | | /// |
499 | | /// ``` |
500 | | /// # use chrono::{TimeDelta, NaiveDate}; |
501 | | /// # let hms = |h, m, s| NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_opt(h, m, s).unwrap(); |
502 | | /// assert_eq!(hms(3, 5, 7).checked_add_signed(TimeDelta::try_days(1_000_000_000).unwrap()), None); |
503 | | /// ``` |
504 | | /// |
505 | | /// Leap seconds are handled, |
506 | | /// but the addition assumes that it is the only leap second happened. |
507 | | /// |
508 | | /// ``` |
509 | | /// # use chrono::{TimeDelta, NaiveDate}; |
510 | | /// # let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap(); |
511 | | /// # let hmsm = |h, m, s, milli| from_ymd(2016, 7, 8).and_hms_milli_opt(h, m, s, milli).unwrap(); |
512 | | /// let leap = hmsm(3, 5, 59, 1_300); |
513 | | /// assert_eq!(leap.checked_add_signed(TimeDelta::zero()), |
514 | | /// Some(hmsm(3, 5, 59, 1_300))); |
515 | | /// assert_eq!(leap.checked_add_signed(TimeDelta::try_milliseconds(-500).unwrap()), |
516 | | /// Some(hmsm(3, 5, 59, 800))); |
517 | | /// assert_eq!(leap.checked_add_signed(TimeDelta::try_milliseconds(500).unwrap()), |
518 | | /// Some(hmsm(3, 5, 59, 1_800))); |
519 | | /// assert_eq!(leap.checked_add_signed(TimeDelta::try_milliseconds(800).unwrap()), |
520 | | /// Some(hmsm(3, 6, 0, 100))); |
521 | | /// assert_eq!(leap.checked_add_signed(TimeDelta::try_seconds(10).unwrap()), |
522 | | /// Some(hmsm(3, 6, 9, 300))); |
523 | | /// assert_eq!(leap.checked_add_signed(TimeDelta::try_seconds(-10).unwrap()), |
524 | | /// Some(hmsm(3, 5, 50, 300))); |
525 | | /// assert_eq!(leap.checked_add_signed(TimeDelta::try_days(1).unwrap()), |
526 | | /// Some(from_ymd(2016, 7, 9).and_hms_milli_opt(3, 5, 59, 300).unwrap())); |
527 | | /// ``` |
528 | | #[must_use] |
529 | 0 | pub const fn checked_add_signed(self, rhs: TimeDelta) -> Option<NaiveDateTime> { |
530 | 0 | let (time, remainder) = self.time.overflowing_add_signed(rhs); |
531 | 0 | let remainder = try_opt!(TimeDelta::try_seconds(remainder)); |
532 | 0 | let date = try_opt!(self.date.checked_add_signed(remainder)); |
533 | 0 | Some(NaiveDateTime { date, time }) |
534 | 0 | } |
535 | | |
536 | | /// Adds given `Months` to the current date and time. |
537 | | /// |
538 | | /// Uses the last day of the month if the day does not exist in the resulting month. |
539 | | /// |
540 | | /// # Errors |
541 | | /// |
542 | | /// Returns `None` if the resulting date would be out of range. |
543 | | /// |
544 | | /// # Example |
545 | | /// |
546 | | /// ``` |
547 | | /// use chrono::{Months, NaiveDate}; |
548 | | /// |
549 | | /// assert_eq!( |
550 | | /// NaiveDate::from_ymd_opt(2014, 1, 1) |
551 | | /// .unwrap() |
552 | | /// .and_hms_opt(1, 0, 0) |
553 | | /// .unwrap() |
554 | | /// .checked_add_months(Months::new(1)), |
555 | | /// Some(NaiveDate::from_ymd_opt(2014, 2, 1).unwrap().and_hms_opt(1, 0, 0).unwrap()) |
556 | | /// ); |
557 | | /// |
558 | | /// assert_eq!( |
559 | | /// NaiveDate::from_ymd_opt(2014, 1, 1) |
560 | | /// .unwrap() |
561 | | /// .and_hms_opt(1, 0, 0) |
562 | | /// .unwrap() |
563 | | /// .checked_add_months(Months::new(core::i32::MAX as u32 + 1)), |
564 | | /// None |
565 | | /// ); |
566 | | /// ``` |
567 | | #[must_use] |
568 | 0 | pub const fn checked_add_months(self, rhs: Months) -> Option<NaiveDateTime> { |
569 | 0 | Some(Self { date: try_opt!(self.date.checked_add_months(rhs)), time: self.time }) |
570 | 0 | } |
571 | | |
572 | | /// Adds given `FixedOffset` to the current datetime. |
573 | | /// Returns `None` if the result would be outside the valid range for [`NaiveDateTime`]. |
574 | | /// |
575 | | /// This method is similar to [`checked_add_signed`](#method.checked_add_offset), but preserves |
576 | | /// leap seconds. |
577 | | #[must_use] |
578 | 0 | pub const fn checked_add_offset(self, rhs: FixedOffset) -> Option<NaiveDateTime> { |
579 | 0 | let (time, days) = self.time.overflowing_add_offset(rhs); |
580 | 0 | let date = match days { |
581 | 0 | -1 => try_opt!(self.date.pred_opt()), |
582 | 0 | 1 => try_opt!(self.date.succ_opt()), |
583 | 0 | _ => self.date, |
584 | | }; |
585 | 0 | Some(NaiveDateTime { date, time }) |
586 | 0 | } |
587 | | |
588 | | /// Subtracts given `FixedOffset` from the current datetime. |
589 | | /// Returns `None` if the result would be outside the valid range for [`NaiveDateTime`]. |
590 | | /// |
591 | | /// This method is similar to [`checked_sub_signed`](#method.checked_sub_signed), but preserves |
592 | | /// leap seconds. |
593 | 749 | pub const fn checked_sub_offset(self, rhs: FixedOffset) -> Option<NaiveDateTime> { |
594 | 749 | let (time, days) = self.time.overflowing_sub_offset(rhs); |
595 | 749 | let date = match days { |
596 | 87 | -1 => try_opt!(self.date.pred_opt()), |
597 | 117 | 1 => try_opt!(self.date.succ_opt()), |
598 | 545 | _ => self.date, |
599 | | }; |
600 | 746 | Some(NaiveDateTime { date, time }) |
601 | 749 | } |
602 | | |
603 | | /// Adds given `FixedOffset` to the current datetime. |
604 | | /// The resulting value may be outside the valid range of [`NaiveDateTime`]. |
605 | | /// |
606 | | /// This can be useful for intermediate values, but the resulting out-of-range `NaiveDate` |
607 | | /// should not be exposed to library users. |
608 | | #[must_use] |
609 | 0 | pub(crate) fn overflowing_add_offset(self, rhs: FixedOffset) -> NaiveDateTime { |
610 | 0 | let (time, days) = self.time.overflowing_add_offset(rhs); |
611 | 0 | let date = match days { |
612 | 0 | -1 => self.date.pred_opt().unwrap_or(NaiveDate::BEFORE_MIN), |
613 | 0 | 1 => self.date.succ_opt().unwrap_or(NaiveDate::AFTER_MAX), |
614 | 0 | _ => self.date, |
615 | | }; |
616 | 0 | NaiveDateTime { date, time } |
617 | 0 | } |
618 | | |
619 | | /// Subtracts given `FixedOffset` from the current datetime. |
620 | | /// The resulting value may be outside the valid range of [`NaiveDateTime`]. |
621 | | /// |
622 | | /// This can be useful for intermediate values, but the resulting out-of-range `NaiveDate` |
623 | | /// should not be exposed to library users. |
624 | | #[must_use] |
625 | | #[allow(unused)] // currently only used in `Local` but not on all platforms |
626 | | pub(crate) fn overflowing_sub_offset(self, rhs: FixedOffset) -> NaiveDateTime { |
627 | | let (time, days) = self.time.overflowing_sub_offset(rhs); |
628 | | let date = match days { |
629 | | -1 => self.date.pred_opt().unwrap_or(NaiveDate::BEFORE_MIN), |
630 | | 1 => self.date.succ_opt().unwrap_or(NaiveDate::AFTER_MAX), |
631 | | _ => self.date, |
632 | | }; |
633 | | NaiveDateTime { date, time } |
634 | | } |
635 | | |
636 | | /// Subtracts given `TimeDelta` from the current date and time. |
637 | | /// |
638 | | /// As a part of Chrono's [leap second handling](./struct.NaiveTime.html#leap-second-handling), |
639 | | /// the subtraction assumes that **there is no leap second ever**, |
640 | | /// except when the `NaiveDateTime` itself represents a leap second |
641 | | /// in which case the assumption becomes that **there is exactly a single leap second ever**. |
642 | | /// |
643 | | /// # Errors |
644 | | /// |
645 | | /// Returns `None` if the resulting date would be out of range. |
646 | | /// |
647 | | /// # Example |
648 | | /// |
649 | | /// ``` |
650 | | /// use chrono::{NaiveDate, TimeDelta}; |
651 | | /// |
652 | | /// let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap(); |
653 | | /// |
654 | | /// let d = from_ymd(2016, 7, 8); |
655 | | /// let hms = |h, m, s| d.and_hms_opt(h, m, s).unwrap(); |
656 | | /// assert_eq!(hms(3, 5, 7).checked_sub_signed(TimeDelta::zero()), Some(hms(3, 5, 7))); |
657 | | /// assert_eq!( |
658 | | /// hms(3, 5, 7).checked_sub_signed(TimeDelta::try_seconds(1).unwrap()), |
659 | | /// Some(hms(3, 5, 6)) |
660 | | /// ); |
661 | | /// assert_eq!( |
662 | | /// hms(3, 5, 7).checked_sub_signed(TimeDelta::try_seconds(-1).unwrap()), |
663 | | /// Some(hms(3, 5, 8)) |
664 | | /// ); |
665 | | /// assert_eq!( |
666 | | /// hms(3, 5, 7).checked_sub_signed(TimeDelta::try_seconds(3600 + 60).unwrap()), |
667 | | /// Some(hms(2, 4, 7)) |
668 | | /// ); |
669 | | /// assert_eq!( |
670 | | /// hms(3, 5, 7).checked_sub_signed(TimeDelta::try_seconds(86_400).unwrap()), |
671 | | /// Some(from_ymd(2016, 7, 7).and_hms_opt(3, 5, 7).unwrap()) |
672 | | /// ); |
673 | | /// |
674 | | /// let hmsm = |h, m, s, milli| d.and_hms_milli_opt(h, m, s, milli).unwrap(); |
675 | | /// assert_eq!( |
676 | | /// hmsm(3, 5, 7, 450).checked_sub_signed(TimeDelta::try_milliseconds(670).unwrap()), |
677 | | /// Some(hmsm(3, 5, 6, 780)) |
678 | | /// ); |
679 | | /// ``` |
680 | | /// |
681 | | /// Overflow returns `None`. |
682 | | /// |
683 | | /// ``` |
684 | | /// # use chrono::{TimeDelta, NaiveDate}; |
685 | | /// # let hms = |h, m, s| NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_opt(h, m, s).unwrap(); |
686 | | /// assert_eq!(hms(3, 5, 7).checked_sub_signed(TimeDelta::try_days(1_000_000_000).unwrap()), None); |
687 | | /// ``` |
688 | | /// |
689 | | /// Leap seconds are handled, |
690 | | /// but the subtraction assumes that it is the only leap second happened. |
691 | | /// |
692 | | /// ``` |
693 | | /// # use chrono::{TimeDelta, NaiveDate}; |
694 | | /// # let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap(); |
695 | | /// # let hmsm = |h, m, s, milli| from_ymd(2016, 7, 8).and_hms_milli_opt(h, m, s, milli).unwrap(); |
696 | | /// let leap = hmsm(3, 5, 59, 1_300); |
697 | | /// assert_eq!(leap.checked_sub_signed(TimeDelta::zero()), |
698 | | /// Some(hmsm(3, 5, 59, 1_300))); |
699 | | /// assert_eq!(leap.checked_sub_signed(TimeDelta::try_milliseconds(200).unwrap()), |
700 | | /// Some(hmsm(3, 5, 59, 1_100))); |
701 | | /// assert_eq!(leap.checked_sub_signed(TimeDelta::try_milliseconds(500).unwrap()), |
702 | | /// Some(hmsm(3, 5, 59, 800))); |
703 | | /// assert_eq!(leap.checked_sub_signed(TimeDelta::try_seconds(60).unwrap()), |
704 | | /// Some(hmsm(3, 5, 0, 300))); |
705 | | /// assert_eq!(leap.checked_sub_signed(TimeDelta::try_days(1).unwrap()), |
706 | | /// Some(from_ymd(2016, 7, 7).and_hms_milli_opt(3, 6, 0, 300).unwrap())); |
707 | | /// ``` |
708 | | #[must_use] |
709 | 54 | pub const fn checked_sub_signed(self, rhs: TimeDelta) -> Option<NaiveDateTime> { |
710 | 54 | let (time, remainder) = self.time.overflowing_sub_signed(rhs); |
711 | 54 | let remainder = try_opt!(TimeDelta::try_seconds(remainder)); |
712 | 54 | let date = try_opt!(self.date.checked_sub_signed(remainder)); |
713 | 54 | Some(NaiveDateTime { date, time }) |
714 | 54 | } |
715 | | |
716 | | /// Subtracts given `Months` from the current date and time. |
717 | | /// |
718 | | /// Uses the last day of the month if the day does not exist in the resulting month. |
719 | | /// |
720 | | /// # Errors |
721 | | /// |
722 | | /// Returns `None` if the resulting date would be out of range. |
723 | | /// |
724 | | /// # Example |
725 | | /// |
726 | | /// ``` |
727 | | /// use chrono::{Months, NaiveDate}; |
728 | | /// |
729 | | /// assert_eq!( |
730 | | /// NaiveDate::from_ymd_opt(2014, 1, 1) |
731 | | /// .unwrap() |
732 | | /// .and_hms_opt(1, 0, 0) |
733 | | /// .unwrap() |
734 | | /// .checked_sub_months(Months::new(1)), |
735 | | /// Some(NaiveDate::from_ymd_opt(2013, 12, 1).unwrap().and_hms_opt(1, 0, 0).unwrap()) |
736 | | /// ); |
737 | | /// |
738 | | /// assert_eq!( |
739 | | /// NaiveDate::from_ymd_opt(2014, 1, 1) |
740 | | /// .unwrap() |
741 | | /// .and_hms_opt(1, 0, 0) |
742 | | /// .unwrap() |
743 | | /// .checked_sub_months(Months::new(core::i32::MAX as u32 + 1)), |
744 | | /// None |
745 | | /// ); |
746 | | /// ``` |
747 | | #[must_use] |
748 | 0 | pub const fn checked_sub_months(self, rhs: Months) -> Option<NaiveDateTime> { |
749 | 0 | Some(Self { date: try_opt!(self.date.checked_sub_months(rhs)), time: self.time }) |
750 | 0 | } |
751 | | |
752 | | /// Add a duration in [`Days`] to the date part of the `NaiveDateTime` |
753 | | /// |
754 | | /// Returns `None` if the resulting date would be out of range. |
755 | | #[must_use] |
756 | 0 | pub const fn checked_add_days(self, days: Days) -> Option<Self> { |
757 | 0 | Some(Self { date: try_opt!(self.date.checked_add_days(days)), ..self }) |
758 | 0 | } |
759 | | |
760 | | /// Subtract a duration in [`Days`] from the date part of the `NaiveDateTime` |
761 | | /// |
762 | | /// Returns `None` if the resulting date would be out of range. |
763 | | #[must_use] |
764 | 0 | pub const fn checked_sub_days(self, days: Days) -> Option<Self> { |
765 | 0 | Some(Self { date: try_opt!(self.date.checked_sub_days(days)), ..self }) |
766 | 0 | } |
767 | | |
768 | | /// Subtracts another `NaiveDateTime` from the current date and time. |
769 | | /// This does not overflow or underflow at all. |
770 | | /// |
771 | | /// As a part of Chrono's [leap second handling](./struct.NaiveTime.html#leap-second-handling), |
772 | | /// the subtraction assumes that **there is no leap second ever**, |
773 | | /// except when any of the `NaiveDateTime`s themselves represents a leap second |
774 | | /// in which case the assumption becomes that |
775 | | /// **there are exactly one (or two) leap second(s) ever**. |
776 | | /// |
777 | | /// # Example |
778 | | /// |
779 | | /// ``` |
780 | | /// use chrono::{NaiveDate, TimeDelta}; |
781 | | /// |
782 | | /// let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap(); |
783 | | /// |
784 | | /// let d = from_ymd(2016, 7, 8); |
785 | | /// assert_eq!( |
786 | | /// d.and_hms_opt(3, 5, 7).unwrap().signed_duration_since(d.and_hms_opt(2, 4, 6).unwrap()), |
787 | | /// TimeDelta::try_seconds(3600 + 60 + 1).unwrap() |
788 | | /// ); |
789 | | /// |
790 | | /// // July 8 is 190th day in the year 2016 |
791 | | /// let d0 = from_ymd(2016, 1, 1); |
792 | | /// assert_eq!( |
793 | | /// d.and_hms_milli_opt(0, 7, 6, 500) |
794 | | /// .unwrap() |
795 | | /// .signed_duration_since(d0.and_hms_opt(0, 0, 0).unwrap()), |
796 | | /// TimeDelta::try_seconds(189 * 86_400 + 7 * 60 + 6).unwrap() |
797 | | /// + TimeDelta::try_milliseconds(500).unwrap() |
798 | | /// ); |
799 | | /// ``` |
800 | | /// |
801 | | /// Leap seconds are handled, but the subtraction assumes that |
802 | | /// there were no other leap seconds happened. |
803 | | /// |
804 | | /// ``` |
805 | | /// # use chrono::{TimeDelta, NaiveDate}; |
806 | | /// # let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap(); |
807 | | /// let leap = from_ymd(2015, 6, 30).and_hms_milli_opt(23, 59, 59, 1_500).unwrap(); |
808 | | /// assert_eq!( |
809 | | /// leap.signed_duration_since(from_ymd(2015, 6, 30).and_hms_opt(23, 0, 0).unwrap()), |
810 | | /// TimeDelta::try_seconds(3600).unwrap() + TimeDelta::try_milliseconds(500).unwrap() |
811 | | /// ); |
812 | | /// assert_eq!( |
813 | | /// from_ymd(2015, 7, 1).and_hms_opt(1, 0, 0).unwrap().signed_duration_since(leap), |
814 | | /// TimeDelta::try_seconds(3600).unwrap() - TimeDelta::try_milliseconds(500).unwrap() |
815 | | /// ); |
816 | | /// ``` |
817 | | #[must_use] |
818 | 0 | pub const fn signed_duration_since(self, rhs: NaiveDateTime) -> TimeDelta { |
819 | 0 | expect( |
820 | 0 | self.date |
821 | 0 | .signed_duration_since(rhs.date) |
822 | 0 | .checked_add(&self.time.signed_duration_since(rhs.time)), |
823 | 0 | "always in range", |
824 | | ) |
825 | 0 | } |
826 | | |
827 | | /// Formats the combined date and time with the specified formatting items. |
828 | | /// Otherwise it is the same as the ordinary [`format`](#method.format) method. |
829 | | /// |
830 | | /// The `Iterator` of items should be `Clone`able, |
831 | | /// since the resulting `DelayedFormat` value may be formatted multiple times. |
832 | | /// |
833 | | /// # Example |
834 | | /// |
835 | | /// ``` |
836 | | /// use chrono::format::strftime::StrftimeItems; |
837 | | /// use chrono::NaiveDate; |
838 | | /// |
839 | | /// let fmt = StrftimeItems::new("%Y-%m-%d %H:%M:%S"); |
840 | | /// let dt = NaiveDate::from_ymd_opt(2015, 9, 5).unwrap().and_hms_opt(23, 56, 4).unwrap(); |
841 | | /// assert_eq!(dt.format_with_items(fmt.clone()).to_string(), "2015-09-05 23:56:04"); |
842 | | /// assert_eq!(dt.format("%Y-%m-%d %H:%M:%S").to_string(), "2015-09-05 23:56:04"); |
843 | | /// ``` |
844 | | /// |
845 | | /// The resulting `DelayedFormat` can be formatted directly via the `Display` trait. |
846 | | /// |
847 | | /// ``` |
848 | | /// # use chrono::NaiveDate; |
849 | | /// # use chrono::format::strftime::StrftimeItems; |
850 | | /// # let fmt = StrftimeItems::new("%Y-%m-%d %H:%M:%S").clone(); |
851 | | /// # let dt = NaiveDate::from_ymd_opt(2015, 9, 5).unwrap().and_hms_opt(23, 56, 4).unwrap(); |
852 | | /// assert_eq!(format!("{}", dt.format_with_items(fmt)), "2015-09-05 23:56:04"); |
853 | | /// ``` |
854 | | #[cfg(feature = "alloc")] |
855 | | #[inline] |
856 | | #[must_use] |
857 | | pub fn format_with_items<'a, I, B>(&self, items: I) -> DelayedFormat<I> |
858 | | where |
859 | | I: Iterator<Item = B> + Clone, |
860 | | B: Borrow<Item<'a>>, |
861 | | { |
862 | | DelayedFormat::new(Some(self.date), Some(self.time), items) |
863 | | } |
864 | | |
865 | | /// Formats the combined date and time with the specified format string. |
866 | | /// See the [`format::strftime` module](crate::format::strftime) |
867 | | /// on the supported escape sequences. |
868 | | /// |
869 | | /// This returns a `DelayedFormat`, |
870 | | /// which gets converted to a string only when actual formatting happens. |
871 | | /// You may use the `to_string` method to get a `String`, |
872 | | /// or just feed it into `print!` and other formatting macros. |
873 | | /// (In this way it avoids the redundant memory allocation.) |
874 | | /// |
875 | | /// A wrong format string does *not* issue an error immediately. |
876 | | /// Rather, converting or formatting the `DelayedFormat` fails. |
877 | | /// You are recommended to immediately use `DelayedFormat` for this reason. |
878 | | /// |
879 | | /// # Example |
880 | | /// |
881 | | /// ``` |
882 | | /// use chrono::NaiveDate; |
883 | | /// |
884 | | /// let dt = NaiveDate::from_ymd_opt(2015, 9, 5).unwrap().and_hms_opt(23, 56, 4).unwrap(); |
885 | | /// assert_eq!(dt.format("%Y-%m-%d %H:%M:%S").to_string(), "2015-09-05 23:56:04"); |
886 | | /// assert_eq!(dt.format("around %l %p on %b %-d").to_string(), "around 11 PM on Sep 5"); |
887 | | /// ``` |
888 | | /// |
889 | | /// The resulting `DelayedFormat` can be formatted directly via the `Display` trait. |
890 | | /// |
891 | | /// ``` |
892 | | /// # use chrono::NaiveDate; |
893 | | /// # let dt = NaiveDate::from_ymd_opt(2015, 9, 5).unwrap().and_hms_opt(23, 56, 4).unwrap(); |
894 | | /// assert_eq!(format!("{}", dt.format("%Y-%m-%d %H:%M:%S")), "2015-09-05 23:56:04"); |
895 | | /// assert_eq!(format!("{}", dt.format("around %l %p on %b %-d")), "around 11 PM on Sep 5"); |
896 | | /// ``` |
897 | | #[cfg(feature = "alloc")] |
898 | | #[inline] |
899 | | #[must_use] |
900 | | pub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>> { |
901 | | self.format_with_items(StrftimeItems::new(fmt)) |
902 | | } |
903 | | |
904 | | /// Converts the `NaiveDateTime` into a timezone-aware `DateTime<Tz>` with the provided |
905 | | /// time zone. |
906 | | /// |
907 | | /// # Example |
908 | | /// |
909 | | /// ``` |
910 | | /// use chrono::{FixedOffset, NaiveDate}; |
911 | | /// let hour = 3600; |
912 | | /// let tz = FixedOffset::east_opt(5 * hour).unwrap(); |
913 | | /// let dt = NaiveDate::from_ymd_opt(2015, 9, 5) |
914 | | /// .unwrap() |
915 | | /// .and_hms_opt(23, 56, 4) |
916 | | /// .unwrap() |
917 | | /// .and_local_timezone(tz) |
918 | | /// .unwrap(); |
919 | | /// assert_eq!(dt.timezone(), tz); |
920 | | /// ``` |
921 | | #[must_use] |
922 | 30 | pub fn and_local_timezone<Tz: TimeZone>(&self, tz: Tz) -> MappedLocalTime<DateTime<Tz>> { |
923 | 30 | tz.from_local_datetime(self) |
924 | 30 | } |
925 | | |
926 | | /// Converts the `NaiveDateTime` into the timezone-aware `DateTime<Utc>`. |
927 | | /// |
928 | | /// # Example |
929 | | /// |
930 | | /// ``` |
931 | | /// use chrono::{NaiveDate, Utc}; |
932 | | /// let dt = |
933 | | /// NaiveDate::from_ymd_opt(2023, 1, 30).unwrap().and_hms_opt(19, 32, 33).unwrap().and_utc(); |
934 | | /// assert_eq!(dt.timezone(), Utc); |
935 | | /// ``` |
936 | | #[must_use] |
937 | 1.50k | pub const fn and_utc(&self) -> DateTime<Utc> { |
938 | 1.50k | DateTime::from_naive_utc_and_offset(*self, Utc) |
939 | 1.50k | } |
940 | | |
941 | | /// The minimum possible `NaiveDateTime`. |
942 | | pub const MIN: Self = Self { date: NaiveDate::MIN, time: NaiveTime::MIN }; |
943 | | |
944 | | /// The maximum possible `NaiveDateTime`. |
945 | | pub const MAX: Self = Self { date: NaiveDate::MAX, time: NaiveTime::MAX }; |
946 | | |
947 | | /// The datetime of the Unix Epoch, 1970-01-01 00:00:00. |
948 | | /// |
949 | | /// Note that while this may look like the UNIX epoch, it is missing the |
950 | | /// time zone. The actual UNIX epoch cannot be expressed by this type, |
951 | | /// however it is available as [`DateTime::UNIX_EPOCH`]. |
952 | | #[deprecated(since = "0.4.41", note = "use `DateTime::UNIX_EPOCH` instead")] |
953 | | pub const UNIX_EPOCH: Self = DateTime::UNIX_EPOCH.naive_utc(); |
954 | | } |
955 | | |
956 | | impl From<NaiveDate> for NaiveDateTime { |
957 | | /// Converts a `NaiveDate` to a `NaiveDateTime` of the same date but at midnight. |
958 | | /// |
959 | | /// # Example |
960 | | /// |
961 | | /// ``` |
962 | | /// use chrono::{NaiveDate, NaiveDateTime}; |
963 | | /// |
964 | | /// let nd = NaiveDate::from_ymd_opt(2016, 5, 28).unwrap(); |
965 | | /// let ndt = NaiveDate::from_ymd_opt(2016, 5, 28).unwrap().and_hms_opt(0, 0, 0).unwrap(); |
966 | | /// assert_eq!(ndt, NaiveDateTime::from(nd)); |
967 | 0 | fn from(date: NaiveDate) -> Self { |
968 | 0 | date.and_hms_opt(0, 0, 0).unwrap() |
969 | 0 | } |
970 | | } |
971 | | |
972 | | impl Datelike for NaiveDateTime { |
973 | | /// Returns the year number in the [calendar date](./struct.NaiveDate.html#calendar-date). |
974 | | /// |
975 | | /// See also the [`NaiveDate::year`](./struct.NaiveDate.html#method.year) method. |
976 | | /// |
977 | | /// # Example |
978 | | /// |
979 | | /// ``` |
980 | | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
981 | | /// |
982 | | /// let dt: NaiveDateTime = |
983 | | /// NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
984 | | /// assert_eq!(dt.year(), 2015); |
985 | | /// ``` |
986 | | #[inline] |
987 | 911 | fn year(&self) -> i32 { |
988 | 911 | self.date.year() |
989 | 911 | } |
990 | | |
991 | | /// Returns the month number starting from 1. |
992 | | /// |
993 | | /// The return value ranges from 1 to 12. |
994 | | /// |
995 | | /// See also the [`NaiveDate::month`](./struct.NaiveDate.html#method.month) method. |
996 | | /// |
997 | | /// # Example |
998 | | /// |
999 | | /// ``` |
1000 | | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
1001 | | /// |
1002 | | /// let dt: NaiveDateTime = |
1003 | | /// NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
1004 | | /// assert_eq!(dt.month(), 9); |
1005 | | /// ``` |
1006 | | #[inline] |
1007 | | fn month(&self) -> u32 { |
1008 | | self.date.month() |
1009 | | } |
1010 | | |
1011 | | /// Returns the month number starting from 0. |
1012 | | /// |
1013 | | /// The return value ranges from 0 to 11. |
1014 | | /// |
1015 | | /// See also the [`NaiveDate::month0`] method. |
1016 | | /// |
1017 | | /// # Example |
1018 | | /// |
1019 | | /// ``` |
1020 | | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
1021 | | /// |
1022 | | /// let dt: NaiveDateTime = |
1023 | | /// NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
1024 | | /// assert_eq!(dt.month0(), 8); |
1025 | | /// ``` |
1026 | | #[inline] |
1027 | 0 | fn month0(&self) -> u32 { |
1028 | 0 | self.date.month0() |
1029 | 0 | } |
1030 | | |
1031 | | /// Returns the day of month starting from 1. |
1032 | | /// |
1033 | | /// The return value ranges from 1 to 31. (The last day of month differs by months.) |
1034 | | /// |
1035 | | /// See also the [`NaiveDate::day`](./struct.NaiveDate.html#method.day) method. |
1036 | | /// |
1037 | | /// # Example |
1038 | | /// |
1039 | | /// ``` |
1040 | | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
1041 | | /// |
1042 | | /// let dt: NaiveDateTime = |
1043 | | /// NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
1044 | | /// assert_eq!(dt.day(), 25); |
1045 | | /// ``` |
1046 | | #[inline] |
1047 | 0 | fn day(&self) -> u32 { |
1048 | 0 | self.date.day() |
1049 | 0 | } |
1050 | | |
1051 | | /// Returns the day of month starting from 0. |
1052 | | /// |
1053 | | /// The return value ranges from 0 to 30. (The last day of month differs by months.) |
1054 | | /// |
1055 | | /// See also the [`NaiveDate::day0`] method. |
1056 | | /// |
1057 | | /// # Example |
1058 | | /// |
1059 | | /// ``` |
1060 | | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
1061 | | /// |
1062 | | /// let dt: NaiveDateTime = |
1063 | | /// NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
1064 | | /// assert_eq!(dt.day0(), 24); |
1065 | | /// ``` |
1066 | | #[inline] |
1067 | | fn day0(&self) -> u32 { |
1068 | | self.date.day0() |
1069 | | } |
1070 | | |
1071 | | /// Returns the day of year starting from 1. |
1072 | | /// |
1073 | | /// The return value ranges from 1 to 366. (The last day of year differs by years.) |
1074 | | /// |
1075 | | /// See also the [`NaiveDate::ordinal`](./struct.NaiveDate.html#method.ordinal) method. |
1076 | | /// |
1077 | | /// # Example |
1078 | | /// |
1079 | | /// ``` |
1080 | | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
1081 | | /// |
1082 | | /// let dt: NaiveDateTime = |
1083 | | /// NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
1084 | | /// assert_eq!(dt.ordinal(), 268); |
1085 | | /// ``` |
1086 | | #[inline] |
1087 | 714 | fn ordinal(&self) -> u32 { |
1088 | 714 | self.date.ordinal() |
1089 | 714 | } |
1090 | | |
1091 | | /// Returns the day of year starting from 0. |
1092 | | /// |
1093 | | /// The return value ranges from 0 to 365. (The last day of year differs by years.) |
1094 | | /// |
1095 | | /// See also the [`NaiveDate::ordinal0`] method. |
1096 | | /// |
1097 | | /// # Example |
1098 | | /// |
1099 | | /// ``` |
1100 | | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
1101 | | /// |
1102 | | /// let dt: NaiveDateTime = |
1103 | | /// NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
1104 | | /// assert_eq!(dt.ordinal0(), 267); |
1105 | | /// ``` |
1106 | | #[inline] |
1107 | | fn ordinal0(&self) -> u32 { |
1108 | | self.date.ordinal0() |
1109 | | } |
1110 | | |
1111 | | /// Returns the day of week. |
1112 | | /// |
1113 | | /// See also the [`NaiveDate::weekday`](./struct.NaiveDate.html#method.weekday) method. |
1114 | | /// |
1115 | | /// # Example |
1116 | | /// |
1117 | | /// ``` |
1118 | | /// use chrono::{Datelike, NaiveDate, NaiveDateTime, Weekday}; |
1119 | | /// |
1120 | | /// let dt: NaiveDateTime = |
1121 | | /// NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
1122 | | /// assert_eq!(dt.weekday(), Weekday::Fri); |
1123 | | /// ``` |
1124 | | #[inline] |
1125 | 0 | fn weekday(&self) -> Weekday { |
1126 | 0 | self.date.weekday() |
1127 | 0 | } |
1128 | | |
1129 | | #[inline] |
1130 | | fn iso_week(&self) -> IsoWeek { |
1131 | | self.date.iso_week() |
1132 | | } |
1133 | | |
1134 | | /// Makes a new `NaiveDateTime` with the year number changed, while keeping the same month and |
1135 | | /// day. |
1136 | | /// |
1137 | | /// See also the [`NaiveDate::with_year`] method. |
1138 | | /// |
1139 | | /// # Errors |
1140 | | /// |
1141 | | /// Returns `None` if: |
1142 | | /// - The resulting date does not exist (February 29 in a non-leap year). |
1143 | | /// - The year is out of range for a `NaiveDate`. |
1144 | | /// |
1145 | | /// # Example |
1146 | | /// |
1147 | | /// ``` |
1148 | | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
1149 | | /// |
1150 | | /// let dt: NaiveDateTime = |
1151 | | /// NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
1152 | | /// assert_eq!( |
1153 | | /// dt.with_year(2016), |
1154 | | /// Some(NaiveDate::from_ymd_opt(2016, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
1155 | | /// ); |
1156 | | /// assert_eq!( |
1157 | | /// dt.with_year(-308), |
1158 | | /// Some(NaiveDate::from_ymd_opt(-308, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
1159 | | /// ); |
1160 | | /// ``` |
1161 | | #[inline] |
1162 | | fn with_year(&self, year: i32) -> Option<NaiveDateTime> { |
1163 | | self.date.with_year(year).map(|d| NaiveDateTime { date: d, ..*self }) |
1164 | | } |
1165 | | |
1166 | | /// Makes a new `NaiveDateTime` with the month number (starting from 1) changed. |
1167 | | /// |
1168 | | /// Don't combine multiple `Datelike::with_*` methods. The intermediate value may not exist. |
1169 | | /// |
1170 | | /// See also the [`NaiveDate::with_month`] method. |
1171 | | /// |
1172 | | /// # Errors |
1173 | | /// |
1174 | | /// Returns `None` if: |
1175 | | /// - The resulting date does not exist (for example `month(4)` when day of the month is 31). |
1176 | | /// - The value for `month` is invalid. |
1177 | | /// |
1178 | | /// # Example |
1179 | | /// |
1180 | | /// ``` |
1181 | | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
1182 | | /// |
1183 | | /// let dt: NaiveDateTime = |
1184 | | /// NaiveDate::from_ymd_opt(2015, 9, 30).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
1185 | | /// assert_eq!( |
1186 | | /// dt.with_month(10), |
1187 | | /// Some(NaiveDate::from_ymd_opt(2015, 10, 30).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
1188 | | /// ); |
1189 | | /// assert_eq!(dt.with_month(13), None); // No month 13 |
1190 | | /// assert_eq!(dt.with_month(2), None); // No February 30 |
1191 | | /// ``` |
1192 | | #[inline] |
1193 | | fn with_month(&self, month: u32) -> Option<NaiveDateTime> { |
1194 | | self.date.with_month(month).map(|d| NaiveDateTime { date: d, ..*self }) |
1195 | | } |
1196 | | |
1197 | | /// Makes a new `NaiveDateTime` with the month number (starting from 0) changed. |
1198 | | /// |
1199 | | /// See also the [`NaiveDate::with_month0`] method. |
1200 | | /// |
1201 | | /// # Errors |
1202 | | /// |
1203 | | /// Returns `None` if: |
1204 | | /// - The resulting date does not exist (for example `month0(3)` when day of the month is 31). |
1205 | | /// - The value for `month0` is invalid. |
1206 | | /// |
1207 | | /// # Example |
1208 | | /// |
1209 | | /// ``` |
1210 | | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
1211 | | /// |
1212 | | /// let dt: NaiveDateTime = |
1213 | | /// NaiveDate::from_ymd_opt(2015, 9, 30).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
1214 | | /// assert_eq!( |
1215 | | /// dt.with_month0(9), |
1216 | | /// Some(NaiveDate::from_ymd_opt(2015, 10, 30).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
1217 | | /// ); |
1218 | | /// assert_eq!(dt.with_month0(12), None); // No month 13 |
1219 | | /// assert_eq!(dt.with_month0(1), None); // No February 30 |
1220 | | /// ``` |
1221 | | #[inline] |
1222 | | fn with_month0(&self, month0: u32) -> Option<NaiveDateTime> { |
1223 | | self.date.with_month0(month0).map(|d| NaiveDateTime { date: d, ..*self }) |
1224 | | } |
1225 | | |
1226 | | /// Makes a new `NaiveDateTime` with the day of month (starting from 1) changed. |
1227 | | /// |
1228 | | /// See also the [`NaiveDate::with_day`] method. |
1229 | | /// |
1230 | | /// # Errors |
1231 | | /// |
1232 | | /// Returns `None` if: |
1233 | | /// - The resulting date does not exist (for example `day(31)` in April). |
1234 | | /// - The value for `day` is invalid. |
1235 | | /// |
1236 | | /// # Example |
1237 | | /// |
1238 | | /// ``` |
1239 | | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
1240 | | /// |
1241 | | /// let dt: NaiveDateTime = |
1242 | | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
1243 | | /// assert_eq!( |
1244 | | /// dt.with_day(30), |
1245 | | /// Some(NaiveDate::from_ymd_opt(2015, 9, 30).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
1246 | | /// ); |
1247 | | /// assert_eq!(dt.with_day(31), None); // no September 31 |
1248 | | /// ``` |
1249 | | #[inline] |
1250 | | fn with_day(&self, day: u32) -> Option<NaiveDateTime> { |
1251 | | self.date.with_day(day).map(|d| NaiveDateTime { date: d, ..*self }) |
1252 | | } |
1253 | | |
1254 | | /// Makes a new `NaiveDateTime` with the day of month (starting from 0) changed. |
1255 | | /// |
1256 | | /// See also the [`NaiveDate::with_day0`] method. |
1257 | | /// |
1258 | | /// # Errors |
1259 | | /// |
1260 | | /// Returns `None` if: |
1261 | | /// - The resulting date does not exist (for example `day(30)` in April). |
1262 | | /// - The value for `day0` is invalid. |
1263 | | /// |
1264 | | /// # Example |
1265 | | /// |
1266 | | /// ``` |
1267 | | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
1268 | | /// |
1269 | | /// let dt: NaiveDateTime = |
1270 | | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
1271 | | /// assert_eq!( |
1272 | | /// dt.with_day0(29), |
1273 | | /// Some(NaiveDate::from_ymd_opt(2015, 9, 30).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
1274 | | /// ); |
1275 | | /// assert_eq!(dt.with_day0(30), None); // no September 31 |
1276 | | /// ``` |
1277 | | #[inline] |
1278 | | fn with_day0(&self, day0: u32) -> Option<NaiveDateTime> { |
1279 | | self.date.with_day0(day0).map(|d| NaiveDateTime { date: d, ..*self }) |
1280 | | } |
1281 | | |
1282 | | /// Makes a new `NaiveDateTime` with the day of year (starting from 1) changed. |
1283 | | /// |
1284 | | /// See also the [`NaiveDate::with_ordinal`] method. |
1285 | | /// |
1286 | | /// # Errors |
1287 | | /// |
1288 | | /// Returns `None` if: |
1289 | | /// - The resulting date does not exist (`with_ordinal(366)` in a non-leap year). |
1290 | | /// - The value for `ordinal` is invalid. |
1291 | | /// |
1292 | | /// # Example |
1293 | | /// |
1294 | | /// ``` |
1295 | | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
1296 | | /// |
1297 | | /// let dt: NaiveDateTime = |
1298 | | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
1299 | | /// assert_eq!( |
1300 | | /// dt.with_ordinal(60), |
1301 | | /// Some(NaiveDate::from_ymd_opt(2015, 3, 1).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
1302 | | /// ); |
1303 | | /// assert_eq!(dt.with_ordinal(366), None); // 2015 had only 365 days |
1304 | | /// |
1305 | | /// let dt: NaiveDateTime = |
1306 | | /// NaiveDate::from_ymd_opt(2016, 9, 8).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
1307 | | /// assert_eq!( |
1308 | | /// dt.with_ordinal(60), |
1309 | | /// Some(NaiveDate::from_ymd_opt(2016, 2, 29).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
1310 | | /// ); |
1311 | | /// assert_eq!( |
1312 | | /// dt.with_ordinal(366), |
1313 | | /// Some(NaiveDate::from_ymd_opt(2016, 12, 31).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
1314 | | /// ); |
1315 | | /// ``` |
1316 | | #[inline] |
1317 | | fn with_ordinal(&self, ordinal: u32) -> Option<NaiveDateTime> { |
1318 | | self.date.with_ordinal(ordinal).map(|d| NaiveDateTime { date: d, ..*self }) |
1319 | | } |
1320 | | |
1321 | | /// Makes a new `NaiveDateTime` with the day of year (starting from 0) changed. |
1322 | | /// |
1323 | | /// See also the [`NaiveDate::with_ordinal0`] method. |
1324 | | /// |
1325 | | /// # Errors |
1326 | | /// |
1327 | | /// Returns `None` if: |
1328 | | /// - The resulting date does not exist (`with_ordinal0(365)` in a non-leap year). |
1329 | | /// - The value for `ordinal0` is invalid. |
1330 | | /// |
1331 | | /// # Example |
1332 | | /// |
1333 | | /// ``` |
1334 | | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
1335 | | /// |
1336 | | /// let dt: NaiveDateTime = |
1337 | | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
1338 | | /// assert_eq!( |
1339 | | /// dt.with_ordinal0(59), |
1340 | | /// Some(NaiveDate::from_ymd_opt(2015, 3, 1).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
1341 | | /// ); |
1342 | | /// assert_eq!(dt.with_ordinal0(365), None); // 2015 had only 365 days |
1343 | | /// |
1344 | | /// let dt: NaiveDateTime = |
1345 | | /// NaiveDate::from_ymd_opt(2016, 9, 8).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
1346 | | /// assert_eq!( |
1347 | | /// dt.with_ordinal0(59), |
1348 | | /// Some(NaiveDate::from_ymd_opt(2016, 2, 29).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
1349 | | /// ); |
1350 | | /// assert_eq!( |
1351 | | /// dt.with_ordinal0(365), |
1352 | | /// Some(NaiveDate::from_ymd_opt(2016, 12, 31).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
1353 | | /// ); |
1354 | | /// ``` |
1355 | | #[inline] |
1356 | | fn with_ordinal0(&self, ordinal0: u32) -> Option<NaiveDateTime> { |
1357 | | self.date.with_ordinal0(ordinal0).map(|d| NaiveDateTime { date: d, ..*self }) |
1358 | | } |
1359 | | } |
1360 | | |
1361 | | impl Timelike for NaiveDateTime { |
1362 | | /// Returns the hour number from 0 to 23. |
1363 | | /// |
1364 | | /// See also the [`NaiveTime::hour`] method. |
1365 | | /// |
1366 | | /// # Example |
1367 | | /// |
1368 | | /// ``` |
1369 | | /// use chrono::{NaiveDate, NaiveDateTime, Timelike}; |
1370 | | /// |
1371 | | /// let dt: NaiveDateTime = |
1372 | | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap(); |
1373 | | /// assert_eq!(dt.hour(), 12); |
1374 | | /// ``` |
1375 | | #[inline] |
1376 | 701 | fn hour(&self) -> u32 { |
1377 | 701 | self.time.hour() |
1378 | 701 | } |
1379 | | |
1380 | | /// Returns the minute number from 0 to 59. |
1381 | | /// |
1382 | | /// See also the [`NaiveTime::minute`] method. |
1383 | | /// |
1384 | | /// # Example |
1385 | | /// |
1386 | | /// ``` |
1387 | | /// use chrono::{NaiveDate, NaiveDateTime, Timelike}; |
1388 | | /// |
1389 | | /// let dt: NaiveDateTime = |
1390 | | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap(); |
1391 | | /// assert_eq!(dt.minute(), 34); |
1392 | | /// ``` |
1393 | | #[inline] |
1394 | 683 | fn minute(&self) -> u32 { |
1395 | 683 | self.time.minute() |
1396 | 683 | } |
1397 | | |
1398 | | /// Returns the second number from 0 to 59. |
1399 | | /// |
1400 | | /// See also the [`NaiveTime::second`] method. |
1401 | | /// |
1402 | | /// # Example |
1403 | | /// |
1404 | | /// ``` |
1405 | | /// use chrono::{NaiveDate, NaiveDateTime, Timelike}; |
1406 | | /// |
1407 | | /// let dt: NaiveDateTime = |
1408 | | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap(); |
1409 | | /// assert_eq!(dt.second(), 56); |
1410 | | /// ``` |
1411 | | #[inline] |
1412 | 921 | fn second(&self) -> u32 { |
1413 | 921 | self.time.second() |
1414 | 921 | } |
1415 | | |
1416 | | /// Returns the number of nanoseconds since the whole non-leap second. |
1417 | | /// The range from 1,000,000,000 to 1,999,999,999 represents |
1418 | | /// the [leap second](./struct.NaiveTime.html#leap-second-handling). |
1419 | | /// |
1420 | | /// See also the [`NaiveTime#method.nanosecond`] method. |
1421 | | /// |
1422 | | /// # Example |
1423 | | /// |
1424 | | /// ``` |
1425 | | /// use chrono::{NaiveDate, NaiveDateTime, Timelike}; |
1426 | | /// |
1427 | | /// let dt: NaiveDateTime = |
1428 | | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap(); |
1429 | | /// assert_eq!(dt.nanosecond(), 789_000_000); |
1430 | | /// ``` |
1431 | | #[inline] |
1432 | 214 | fn nanosecond(&self) -> u32 { |
1433 | 214 | self.time.nanosecond() |
1434 | 214 | } |
1435 | | |
1436 | | /// Makes a new `NaiveDateTime` with the hour number changed. |
1437 | | /// |
1438 | | /// See also the [`NaiveTime::with_hour`] method. |
1439 | | /// |
1440 | | /// # Errors |
1441 | | /// |
1442 | | /// Returns `None` if the value for `hour` is invalid. |
1443 | | /// |
1444 | | /// # Example |
1445 | | /// |
1446 | | /// ``` |
1447 | | /// use chrono::{NaiveDate, NaiveDateTime, Timelike}; |
1448 | | /// |
1449 | | /// let dt: NaiveDateTime = |
1450 | | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap(); |
1451 | | /// assert_eq!( |
1452 | | /// dt.with_hour(7), |
1453 | | /// Some( |
1454 | | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(7, 34, 56, 789).unwrap() |
1455 | | /// ) |
1456 | | /// ); |
1457 | | /// assert_eq!(dt.with_hour(24), None); |
1458 | | /// ``` |
1459 | | #[inline] |
1460 | | fn with_hour(&self, hour: u32) -> Option<NaiveDateTime> { |
1461 | | self.time.with_hour(hour).map(|t| NaiveDateTime { time: t, ..*self }) |
1462 | | } |
1463 | | |
1464 | | /// Makes a new `NaiveDateTime` with the minute number changed. |
1465 | | /// |
1466 | | /// See also the [`NaiveTime::with_minute`] method. |
1467 | | /// |
1468 | | /// # Errors |
1469 | | /// |
1470 | | /// Returns `None` if the value for `minute` is invalid. |
1471 | | /// |
1472 | | /// # Example |
1473 | | /// |
1474 | | /// ``` |
1475 | | /// use chrono::{NaiveDate, NaiveDateTime, Timelike}; |
1476 | | /// |
1477 | | /// let dt: NaiveDateTime = |
1478 | | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap(); |
1479 | | /// assert_eq!( |
1480 | | /// dt.with_minute(45), |
1481 | | /// Some( |
1482 | | /// NaiveDate::from_ymd_opt(2015, 9, 8) |
1483 | | /// .unwrap() |
1484 | | /// .and_hms_milli_opt(12, 45, 56, 789) |
1485 | | /// .unwrap() |
1486 | | /// ) |
1487 | | /// ); |
1488 | | /// assert_eq!(dt.with_minute(60), None); |
1489 | | /// ``` |
1490 | | #[inline] |
1491 | | fn with_minute(&self, min: u32) -> Option<NaiveDateTime> { |
1492 | | self.time.with_minute(min).map(|t| NaiveDateTime { time: t, ..*self }) |
1493 | | } |
1494 | | |
1495 | | /// Makes a new `NaiveDateTime` with the second number changed. |
1496 | | /// |
1497 | | /// As with the [`second`](#method.second) method, |
1498 | | /// the input range is restricted to 0 through 59. |
1499 | | /// |
1500 | | /// See also the [`NaiveTime::with_second`] method. |
1501 | | /// |
1502 | | /// # Errors |
1503 | | /// |
1504 | | /// Returns `None` if the value for `second` is invalid. |
1505 | | /// |
1506 | | /// # Example |
1507 | | /// |
1508 | | /// ``` |
1509 | | /// use chrono::{NaiveDate, NaiveDateTime, Timelike}; |
1510 | | /// |
1511 | | /// let dt: NaiveDateTime = |
1512 | | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap(); |
1513 | | /// assert_eq!( |
1514 | | /// dt.with_second(17), |
1515 | | /// Some( |
1516 | | /// NaiveDate::from_ymd_opt(2015, 9, 8) |
1517 | | /// .unwrap() |
1518 | | /// .and_hms_milli_opt(12, 34, 17, 789) |
1519 | | /// .unwrap() |
1520 | | /// ) |
1521 | | /// ); |
1522 | | /// assert_eq!(dt.with_second(60), None); |
1523 | | /// ``` |
1524 | | #[inline] |
1525 | | fn with_second(&self, sec: u32) -> Option<NaiveDateTime> { |
1526 | | self.time.with_second(sec).map(|t| NaiveDateTime { time: t, ..*self }) |
1527 | | } |
1528 | | |
1529 | | /// Makes a new `NaiveDateTime` with nanoseconds since the whole non-leap second changed. |
1530 | | /// |
1531 | | /// Returns `None` when the resulting `NaiveDateTime` would be invalid. |
1532 | | /// As with the [`NaiveDateTime::nanosecond`] method, |
1533 | | /// the input range can exceed 1,000,000,000 for leap seconds. |
1534 | | /// |
1535 | | /// See also the [`NaiveTime::with_nanosecond`] method. |
1536 | | /// |
1537 | | /// # Errors |
1538 | | /// |
1539 | | /// Returns `None` if `nanosecond >= 2,000,000,000`. |
1540 | | /// |
1541 | | /// # Example |
1542 | | /// |
1543 | | /// ``` |
1544 | | /// use chrono::{NaiveDate, NaiveDateTime, Timelike}; |
1545 | | /// |
1546 | | /// let dt: NaiveDateTime = |
1547 | | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 59, 789).unwrap(); |
1548 | | /// assert_eq!( |
1549 | | /// dt.with_nanosecond(333_333_333), |
1550 | | /// Some( |
1551 | | /// NaiveDate::from_ymd_opt(2015, 9, 8) |
1552 | | /// .unwrap() |
1553 | | /// .and_hms_nano_opt(12, 34, 59, 333_333_333) |
1554 | | /// .unwrap() |
1555 | | /// ) |
1556 | | /// ); |
1557 | | /// assert_eq!( |
1558 | | /// dt.with_nanosecond(1_333_333_333), // leap second |
1559 | | /// Some( |
1560 | | /// NaiveDate::from_ymd_opt(2015, 9, 8) |
1561 | | /// .unwrap() |
1562 | | /// .and_hms_nano_opt(12, 34, 59, 1_333_333_333) |
1563 | | /// .unwrap() |
1564 | | /// ) |
1565 | | /// ); |
1566 | | /// assert_eq!(dt.with_nanosecond(2_000_000_000), None); |
1567 | | /// ``` |
1568 | | #[inline] |
1569 | | fn with_nanosecond(&self, nano: u32) -> Option<NaiveDateTime> { |
1570 | | self.time.with_nanosecond(nano).map(|t| NaiveDateTime { time: t, ..*self }) |
1571 | | } |
1572 | | } |
1573 | | |
1574 | | /// Add `TimeDelta` to `NaiveDateTime`. |
1575 | | /// |
1576 | | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
1577 | | /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case |
1578 | | /// the assumption becomes that **there is exactly a single leap second ever**. |
1579 | | /// |
1580 | | /// # Panics |
1581 | | /// |
1582 | | /// Panics if the resulting date would be out of range. |
1583 | | /// Consider using [`NaiveDateTime::checked_add_signed`] to get an `Option` instead. |
1584 | | /// |
1585 | | /// # Example |
1586 | | /// |
1587 | | /// ``` |
1588 | | /// use chrono::{NaiveDate, TimeDelta}; |
1589 | | /// |
1590 | | /// let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap(); |
1591 | | /// |
1592 | | /// let d = from_ymd(2016, 7, 8); |
1593 | | /// let hms = |h, m, s| d.and_hms_opt(h, m, s).unwrap(); |
1594 | | /// assert_eq!(hms(3, 5, 7) + TimeDelta::zero(), hms(3, 5, 7)); |
1595 | | /// assert_eq!(hms(3, 5, 7) + TimeDelta::try_seconds(1).unwrap(), hms(3, 5, 8)); |
1596 | | /// assert_eq!(hms(3, 5, 7) + TimeDelta::try_seconds(-1).unwrap(), hms(3, 5, 6)); |
1597 | | /// assert_eq!(hms(3, 5, 7) + TimeDelta::try_seconds(3600 + 60).unwrap(), hms(4, 6, 7)); |
1598 | | /// assert_eq!( |
1599 | | /// hms(3, 5, 7) + TimeDelta::try_seconds(86_400).unwrap(), |
1600 | | /// from_ymd(2016, 7, 9).and_hms_opt(3, 5, 7).unwrap() |
1601 | | /// ); |
1602 | | /// assert_eq!( |
1603 | | /// hms(3, 5, 7) + TimeDelta::try_days(365).unwrap(), |
1604 | | /// from_ymd(2017, 7, 8).and_hms_opt(3, 5, 7).unwrap() |
1605 | | /// ); |
1606 | | /// |
1607 | | /// let hmsm = |h, m, s, milli| d.and_hms_milli_opt(h, m, s, milli).unwrap(); |
1608 | | /// assert_eq!(hmsm(3, 5, 7, 980) + TimeDelta::try_milliseconds(450).unwrap(), hmsm(3, 5, 8, 430)); |
1609 | | /// ``` |
1610 | | /// |
1611 | | /// Leap seconds are handled, |
1612 | | /// but the addition assumes that it is the only leap second happened. |
1613 | | /// |
1614 | | /// ``` |
1615 | | /// # use chrono::{TimeDelta, NaiveDate}; |
1616 | | /// # let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap(); |
1617 | | /// # let hmsm = |h, m, s, milli| from_ymd(2016, 7, 8).and_hms_milli_opt(h, m, s, milli).unwrap(); |
1618 | | /// let leap = hmsm(3, 5, 59, 1_300); |
1619 | | /// assert_eq!(leap + TimeDelta::zero(), hmsm(3, 5, 59, 1_300)); |
1620 | | /// assert_eq!(leap + TimeDelta::try_milliseconds(-500).unwrap(), hmsm(3, 5, 59, 800)); |
1621 | | /// assert_eq!(leap + TimeDelta::try_milliseconds(500).unwrap(), hmsm(3, 5, 59, 1_800)); |
1622 | | /// assert_eq!(leap + TimeDelta::try_milliseconds(800).unwrap(), hmsm(3, 6, 0, 100)); |
1623 | | /// assert_eq!(leap + TimeDelta::try_seconds(10).unwrap(), hmsm(3, 6, 9, 300)); |
1624 | | /// assert_eq!(leap + TimeDelta::try_seconds(-10).unwrap(), hmsm(3, 5, 50, 300)); |
1625 | | /// assert_eq!(leap + TimeDelta::try_days(1).unwrap(), |
1626 | | /// from_ymd(2016, 7, 9).and_hms_milli_opt(3, 5, 59, 300).unwrap()); |
1627 | | /// ``` |
1628 | | /// |
1629 | | /// [leap second handling]: crate::NaiveTime#leap-second-handling |
1630 | | impl Add<TimeDelta> for NaiveDateTime { |
1631 | | type Output = NaiveDateTime; |
1632 | | |
1633 | | #[inline] |
1634 | 0 | fn add(self, rhs: TimeDelta) -> NaiveDateTime { |
1635 | 0 | self.checked_add_signed(rhs).expect("`NaiveDateTime + TimeDelta` overflowed") |
1636 | 0 | } |
1637 | | } |
1638 | | |
1639 | | /// Add `std::time::Duration` to `NaiveDateTime`. |
1640 | | /// |
1641 | | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
1642 | | /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case |
1643 | | /// the assumption becomes that **there is exactly a single leap second ever**. |
1644 | | /// |
1645 | | /// # Panics |
1646 | | /// |
1647 | | /// Panics if the resulting date would be out of range. |
1648 | | /// Consider using [`NaiveDateTime::checked_add_signed`] to get an `Option` instead. |
1649 | | impl Add<Duration> for NaiveDateTime { |
1650 | | type Output = NaiveDateTime; |
1651 | | |
1652 | | #[inline] |
1653 | | fn add(self, rhs: Duration) -> NaiveDateTime { |
1654 | | let rhs = TimeDelta::from_std(rhs) |
1655 | | .expect("overflow converting from core::time::Duration to TimeDelta"); |
1656 | | self.checked_add_signed(rhs).expect("`NaiveDateTime + TimeDelta` overflowed") |
1657 | | } |
1658 | | } |
1659 | | |
1660 | | /// Add-assign `TimeDelta` to `NaiveDateTime`. |
1661 | | /// |
1662 | | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
1663 | | /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case |
1664 | | /// the assumption becomes that **there is exactly a single leap second ever**. |
1665 | | /// |
1666 | | /// # Panics |
1667 | | /// |
1668 | | /// Panics if the resulting date would be out of range. |
1669 | | /// Consider using [`NaiveDateTime::checked_add_signed`] to get an `Option` instead. |
1670 | | impl AddAssign<TimeDelta> for NaiveDateTime { |
1671 | | #[inline] |
1672 | | fn add_assign(&mut self, rhs: TimeDelta) { |
1673 | | *self = self.add(rhs); |
1674 | | } |
1675 | | } |
1676 | | |
1677 | | /// Add-assign `std::time::Duration` to `NaiveDateTime`. |
1678 | | /// |
1679 | | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
1680 | | /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case |
1681 | | /// the assumption becomes that **there is exactly a single leap second ever**. |
1682 | | /// |
1683 | | /// # Panics |
1684 | | /// |
1685 | | /// Panics if the resulting date would be out of range. |
1686 | | /// Consider using [`NaiveDateTime::checked_add_signed`] to get an `Option` instead. |
1687 | | impl AddAssign<Duration> for NaiveDateTime { |
1688 | | #[inline] |
1689 | | fn add_assign(&mut self, rhs: Duration) { |
1690 | | *self = self.add(rhs); |
1691 | | } |
1692 | | } |
1693 | | |
1694 | | /// Add `FixedOffset` to `NaiveDateTime`. |
1695 | | /// |
1696 | | /// # Panics |
1697 | | /// |
1698 | | /// Panics if the resulting date would be out of range. |
1699 | | /// Consider using `checked_add_offset` to get an `Option` instead. |
1700 | | impl Add<FixedOffset> for NaiveDateTime { |
1701 | | type Output = NaiveDateTime; |
1702 | | |
1703 | | #[inline] |
1704 | | fn add(self, rhs: FixedOffset) -> NaiveDateTime { |
1705 | | self.checked_add_offset(rhs).expect("`NaiveDateTime + FixedOffset` out of range") |
1706 | | } |
1707 | | } |
1708 | | |
1709 | | /// Add `Months` to `NaiveDateTime`. |
1710 | | /// |
1711 | | /// The result will be clamped to valid days in the resulting month, see `checked_add_months` for |
1712 | | /// details. |
1713 | | /// |
1714 | | /// # Panics |
1715 | | /// |
1716 | | /// Panics if the resulting date would be out of range. |
1717 | | /// Consider using `checked_add_months` to get an `Option` instead. |
1718 | | /// |
1719 | | /// # Example |
1720 | | /// |
1721 | | /// ``` |
1722 | | /// use chrono::{Months, NaiveDate}; |
1723 | | /// |
1724 | | /// assert_eq!( |
1725 | | /// NaiveDate::from_ymd_opt(2014, 1, 1).unwrap().and_hms_opt(1, 0, 0).unwrap() + Months::new(1), |
1726 | | /// NaiveDate::from_ymd_opt(2014, 2, 1).unwrap().and_hms_opt(1, 0, 0).unwrap() |
1727 | | /// ); |
1728 | | /// assert_eq!( |
1729 | | /// NaiveDate::from_ymd_opt(2014, 1, 1).unwrap().and_hms_opt(0, 2, 0).unwrap() |
1730 | | /// + Months::new(11), |
1731 | | /// NaiveDate::from_ymd_opt(2014, 12, 1).unwrap().and_hms_opt(0, 2, 0).unwrap() |
1732 | | /// ); |
1733 | | /// assert_eq!( |
1734 | | /// NaiveDate::from_ymd_opt(2014, 1, 1).unwrap().and_hms_opt(0, 0, 3).unwrap() |
1735 | | /// + Months::new(12), |
1736 | | /// NaiveDate::from_ymd_opt(2015, 1, 1).unwrap().and_hms_opt(0, 0, 3).unwrap() |
1737 | | /// ); |
1738 | | /// assert_eq!( |
1739 | | /// NaiveDate::from_ymd_opt(2014, 1, 1).unwrap().and_hms_opt(0, 0, 4).unwrap() |
1740 | | /// + Months::new(13), |
1741 | | /// NaiveDate::from_ymd_opt(2015, 2, 1).unwrap().and_hms_opt(0, 0, 4).unwrap() |
1742 | | /// ); |
1743 | | /// assert_eq!( |
1744 | | /// NaiveDate::from_ymd_opt(2014, 1, 31).unwrap().and_hms_opt(0, 5, 0).unwrap() |
1745 | | /// + Months::new(1), |
1746 | | /// NaiveDate::from_ymd_opt(2014, 2, 28).unwrap().and_hms_opt(0, 5, 0).unwrap() |
1747 | | /// ); |
1748 | | /// assert_eq!( |
1749 | | /// NaiveDate::from_ymd_opt(2020, 1, 31).unwrap().and_hms_opt(6, 0, 0).unwrap() |
1750 | | /// + Months::new(1), |
1751 | | /// NaiveDate::from_ymd_opt(2020, 2, 29).unwrap().and_hms_opt(6, 0, 0).unwrap() |
1752 | | /// ); |
1753 | | /// ``` |
1754 | | impl Add<Months> for NaiveDateTime { |
1755 | | type Output = NaiveDateTime; |
1756 | | |
1757 | 0 | fn add(self, rhs: Months) -> Self::Output { |
1758 | 0 | self.checked_add_months(rhs).expect("`NaiveDateTime + Months` out of range") |
1759 | 0 | } |
1760 | | } |
1761 | | |
1762 | | /// Subtract `TimeDelta` from `NaiveDateTime`. |
1763 | | /// |
1764 | | /// This is the same as the addition with a negated `TimeDelta`. |
1765 | | /// |
1766 | | /// As a part of Chrono's [leap second handling] the subtraction assumes that **there is no leap |
1767 | | /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case |
1768 | | /// the assumption becomes that **there is exactly a single leap second ever**. |
1769 | | /// |
1770 | | /// # Panics |
1771 | | /// |
1772 | | /// Panics if the resulting date would be out of range. |
1773 | | /// Consider using [`NaiveDateTime::checked_sub_signed`] to get an `Option` instead. |
1774 | | /// |
1775 | | /// # Example |
1776 | | /// |
1777 | | /// ``` |
1778 | | /// use chrono::{NaiveDate, TimeDelta}; |
1779 | | /// |
1780 | | /// let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap(); |
1781 | | /// |
1782 | | /// let d = from_ymd(2016, 7, 8); |
1783 | | /// let hms = |h, m, s| d.and_hms_opt(h, m, s).unwrap(); |
1784 | | /// assert_eq!(hms(3, 5, 7) - TimeDelta::zero(), hms(3, 5, 7)); |
1785 | | /// assert_eq!(hms(3, 5, 7) - TimeDelta::try_seconds(1).unwrap(), hms(3, 5, 6)); |
1786 | | /// assert_eq!(hms(3, 5, 7) - TimeDelta::try_seconds(-1).unwrap(), hms(3, 5, 8)); |
1787 | | /// assert_eq!(hms(3, 5, 7) - TimeDelta::try_seconds(3600 + 60).unwrap(), hms(2, 4, 7)); |
1788 | | /// assert_eq!( |
1789 | | /// hms(3, 5, 7) - TimeDelta::try_seconds(86_400).unwrap(), |
1790 | | /// from_ymd(2016, 7, 7).and_hms_opt(3, 5, 7).unwrap() |
1791 | | /// ); |
1792 | | /// assert_eq!( |
1793 | | /// hms(3, 5, 7) - TimeDelta::try_days(365).unwrap(), |
1794 | | /// from_ymd(2015, 7, 9).and_hms_opt(3, 5, 7).unwrap() |
1795 | | /// ); |
1796 | | /// |
1797 | | /// let hmsm = |h, m, s, milli| d.and_hms_milli_opt(h, m, s, milli).unwrap(); |
1798 | | /// assert_eq!(hmsm(3, 5, 7, 450) - TimeDelta::try_milliseconds(670).unwrap(), hmsm(3, 5, 6, 780)); |
1799 | | /// ``` |
1800 | | /// |
1801 | | /// Leap seconds are handled, |
1802 | | /// but the subtraction assumes that it is the only leap second happened. |
1803 | | /// |
1804 | | /// ``` |
1805 | | /// # use chrono::{TimeDelta, NaiveDate}; |
1806 | | /// # let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap(); |
1807 | | /// # let hmsm = |h, m, s, milli| from_ymd(2016, 7, 8).and_hms_milli_opt(h, m, s, milli).unwrap(); |
1808 | | /// let leap = hmsm(3, 5, 59, 1_300); |
1809 | | /// assert_eq!(leap - TimeDelta::zero(), hmsm(3, 5, 59, 1_300)); |
1810 | | /// assert_eq!(leap - TimeDelta::try_milliseconds(200).unwrap(), hmsm(3, 5, 59, 1_100)); |
1811 | | /// assert_eq!(leap - TimeDelta::try_milliseconds(500).unwrap(), hmsm(3, 5, 59, 800)); |
1812 | | /// assert_eq!(leap - TimeDelta::try_seconds(60).unwrap(), hmsm(3, 5, 0, 300)); |
1813 | | /// assert_eq!(leap - TimeDelta::try_days(1).unwrap(), |
1814 | | /// from_ymd(2016, 7, 7).and_hms_milli_opt(3, 6, 0, 300).unwrap()); |
1815 | | /// ``` |
1816 | | /// |
1817 | | /// [leap second handling]: crate::NaiveTime#leap-second-handling |
1818 | | impl Sub<TimeDelta> for NaiveDateTime { |
1819 | | type Output = NaiveDateTime; |
1820 | | |
1821 | | #[inline] |
1822 | 54 | fn sub(self, rhs: TimeDelta) -> NaiveDateTime { |
1823 | 54 | self.checked_sub_signed(rhs).expect("`NaiveDateTime - TimeDelta` overflowed") |
1824 | 54 | } |
1825 | | } |
1826 | | |
1827 | | /// Subtract `std::time::Duration` from `NaiveDateTime`. |
1828 | | /// |
1829 | | /// As a part of Chrono's [leap second handling] the subtraction assumes that **there is no leap |
1830 | | /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case |
1831 | | /// the assumption becomes that **there is exactly a single leap second ever**. |
1832 | | /// |
1833 | | /// # Panics |
1834 | | /// |
1835 | | /// Panics if the resulting date would be out of range. |
1836 | | /// Consider using [`NaiveDateTime::checked_sub_signed`] to get an `Option` instead. |
1837 | | impl Sub<Duration> for NaiveDateTime { |
1838 | | type Output = NaiveDateTime; |
1839 | | |
1840 | | #[inline] |
1841 | | fn sub(self, rhs: Duration) -> NaiveDateTime { |
1842 | | let rhs = TimeDelta::from_std(rhs) |
1843 | | .expect("overflow converting from core::time::Duration to TimeDelta"); |
1844 | | self.checked_sub_signed(rhs).expect("`NaiveDateTime - TimeDelta` overflowed") |
1845 | | } |
1846 | | } |
1847 | | |
1848 | | /// Subtract-assign `TimeDelta` from `NaiveDateTime`. |
1849 | | /// |
1850 | | /// This is the same as the addition with a negated `TimeDelta`. |
1851 | | /// |
1852 | | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
1853 | | /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case |
1854 | | /// the assumption becomes that **there is exactly a single leap second ever**. |
1855 | | /// |
1856 | | /// # Panics |
1857 | | /// |
1858 | | /// Panics if the resulting date would be out of range. |
1859 | | /// Consider using [`NaiveDateTime::checked_sub_signed`] to get an `Option` instead. |
1860 | | impl SubAssign<TimeDelta> for NaiveDateTime { |
1861 | | #[inline] |
1862 | 54 | fn sub_assign(&mut self, rhs: TimeDelta) { |
1863 | 54 | *self = self.sub(rhs); |
1864 | 54 | } |
1865 | | } |
1866 | | |
1867 | | /// Subtract-assign `std::time::Duration` from `NaiveDateTime`. |
1868 | | /// |
1869 | | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
1870 | | /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case |
1871 | | /// the assumption becomes that **there is exactly a single leap second ever**. |
1872 | | /// |
1873 | | /// # Panics |
1874 | | /// |
1875 | | /// Panics if the resulting date would be out of range. |
1876 | | /// Consider using [`NaiveDateTime::checked_sub_signed`] to get an `Option` instead. |
1877 | | impl SubAssign<Duration> for NaiveDateTime { |
1878 | | #[inline] |
1879 | | fn sub_assign(&mut self, rhs: Duration) { |
1880 | | *self = self.sub(rhs); |
1881 | | } |
1882 | | } |
1883 | | |
1884 | | /// Subtract `FixedOffset` from `NaiveDateTime`. |
1885 | | /// |
1886 | | /// # Panics |
1887 | | /// |
1888 | | /// Panics if the resulting date would be out of range. |
1889 | | /// Consider using `checked_sub_offset` to get an `Option` instead. |
1890 | | impl Sub<FixedOffset> for NaiveDateTime { |
1891 | | type Output = NaiveDateTime; |
1892 | | |
1893 | | #[inline] |
1894 | | fn sub(self, rhs: FixedOffset) -> NaiveDateTime { |
1895 | | self.checked_sub_offset(rhs).expect("`NaiveDateTime - FixedOffset` out of range") |
1896 | | } |
1897 | | } |
1898 | | |
1899 | | /// Subtract `Months` from `NaiveDateTime`. |
1900 | | /// |
1901 | | /// The result will be clamped to valid days in the resulting month, see |
1902 | | /// [`NaiveDateTime::checked_sub_months`] for details. |
1903 | | /// |
1904 | | /// # Panics |
1905 | | /// |
1906 | | /// Panics if the resulting date would be out of range. |
1907 | | /// Consider using [`NaiveDateTime::checked_sub_months`] to get an `Option` instead. |
1908 | | /// |
1909 | | /// # Example |
1910 | | /// |
1911 | | /// ``` |
1912 | | /// use chrono::{Months, NaiveDate}; |
1913 | | /// |
1914 | | /// assert_eq!( |
1915 | | /// NaiveDate::from_ymd_opt(2014, 01, 01).unwrap().and_hms_opt(01, 00, 00).unwrap() |
1916 | | /// - Months::new(11), |
1917 | | /// NaiveDate::from_ymd_opt(2013, 02, 01).unwrap().and_hms_opt(01, 00, 00).unwrap() |
1918 | | /// ); |
1919 | | /// assert_eq!( |
1920 | | /// NaiveDate::from_ymd_opt(2014, 01, 01).unwrap().and_hms_opt(00, 02, 00).unwrap() |
1921 | | /// - Months::new(12), |
1922 | | /// NaiveDate::from_ymd_opt(2013, 01, 01).unwrap().and_hms_opt(00, 02, 00).unwrap() |
1923 | | /// ); |
1924 | | /// assert_eq!( |
1925 | | /// NaiveDate::from_ymd_opt(2014, 01, 01).unwrap().and_hms_opt(00, 00, 03).unwrap() |
1926 | | /// - Months::new(13), |
1927 | | /// NaiveDate::from_ymd_opt(2012, 12, 01).unwrap().and_hms_opt(00, 00, 03).unwrap() |
1928 | | /// ); |
1929 | | /// ``` |
1930 | | impl Sub<Months> for NaiveDateTime { |
1931 | | type Output = NaiveDateTime; |
1932 | | |
1933 | 0 | fn sub(self, rhs: Months) -> Self::Output { |
1934 | 0 | self.checked_sub_months(rhs).expect("`NaiveDateTime - Months` out of range") |
1935 | 0 | } |
1936 | | } |
1937 | | |
1938 | | /// Subtracts another `NaiveDateTime` from the current date and time. |
1939 | | /// This does not overflow or underflow at all. |
1940 | | /// |
1941 | | /// As a part of Chrono's [leap second handling](./struct.NaiveTime.html#leap-second-handling), |
1942 | | /// the subtraction assumes that **there is no leap second ever**, |
1943 | | /// except when any of the `NaiveDateTime`s themselves represents a leap second |
1944 | | /// in which case the assumption becomes that |
1945 | | /// **there are exactly one (or two) leap second(s) ever**. |
1946 | | /// |
1947 | | /// The implementation is a wrapper around [`NaiveDateTime::signed_duration_since`]. |
1948 | | /// |
1949 | | /// # Example |
1950 | | /// |
1951 | | /// ``` |
1952 | | /// use chrono::{NaiveDate, TimeDelta}; |
1953 | | /// |
1954 | | /// let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap(); |
1955 | | /// |
1956 | | /// let d = from_ymd(2016, 7, 8); |
1957 | | /// assert_eq!( |
1958 | | /// d.and_hms_opt(3, 5, 7).unwrap() - d.and_hms_opt(2, 4, 6).unwrap(), |
1959 | | /// TimeDelta::try_seconds(3600 + 60 + 1).unwrap() |
1960 | | /// ); |
1961 | | /// |
1962 | | /// // July 8 is 190th day in the year 2016 |
1963 | | /// let d0 = from_ymd(2016, 1, 1); |
1964 | | /// assert_eq!( |
1965 | | /// d.and_hms_milli_opt(0, 7, 6, 500).unwrap() - d0.and_hms_opt(0, 0, 0).unwrap(), |
1966 | | /// TimeDelta::try_seconds(189 * 86_400 + 7 * 60 + 6).unwrap() |
1967 | | /// + TimeDelta::try_milliseconds(500).unwrap() |
1968 | | /// ); |
1969 | | /// ``` |
1970 | | /// |
1971 | | /// Leap seconds are handled, but the subtraction assumes that no other leap |
1972 | | /// seconds happened. |
1973 | | /// |
1974 | | /// ``` |
1975 | | /// # use chrono::{TimeDelta, NaiveDate}; |
1976 | | /// # let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap(); |
1977 | | /// let leap = from_ymd(2015, 6, 30).and_hms_milli_opt(23, 59, 59, 1_500).unwrap(); |
1978 | | /// assert_eq!( |
1979 | | /// leap - from_ymd(2015, 6, 30).and_hms_opt(23, 0, 0).unwrap(), |
1980 | | /// TimeDelta::try_seconds(3600).unwrap() + TimeDelta::try_milliseconds(500).unwrap() |
1981 | | /// ); |
1982 | | /// assert_eq!( |
1983 | | /// from_ymd(2015, 7, 1).and_hms_opt(1, 0, 0).unwrap() - leap, |
1984 | | /// TimeDelta::try_seconds(3600).unwrap() - TimeDelta::try_milliseconds(500).unwrap() |
1985 | | /// ); |
1986 | | /// ``` |
1987 | | impl Sub<NaiveDateTime> for NaiveDateTime { |
1988 | | type Output = TimeDelta; |
1989 | | |
1990 | | #[inline] |
1991 | | fn sub(self, rhs: NaiveDateTime) -> TimeDelta { |
1992 | | self.signed_duration_since(rhs) |
1993 | | } |
1994 | | } |
1995 | | |
1996 | | /// Add `Days` to `NaiveDateTime`. |
1997 | | /// |
1998 | | /// # Panics |
1999 | | /// |
2000 | | /// Panics if the resulting date would be out of range. |
2001 | | /// Consider using `checked_add_days` to get an `Option` instead. |
2002 | | impl Add<Days> for NaiveDateTime { |
2003 | | type Output = NaiveDateTime; |
2004 | | |
2005 | 0 | fn add(self, days: Days) -> Self::Output { |
2006 | 0 | self.checked_add_days(days).expect("`NaiveDateTime + Days` out of range") |
2007 | 0 | } |
2008 | | } |
2009 | | |
2010 | | /// Subtract `Days` from `NaiveDateTime`. |
2011 | | /// |
2012 | | /// # Panics |
2013 | | /// |
2014 | | /// Panics if the resulting date would be out of range. |
2015 | | /// Consider using `checked_sub_days` to get an `Option` instead. |
2016 | | impl Sub<Days> for NaiveDateTime { |
2017 | | type Output = NaiveDateTime; |
2018 | | |
2019 | 0 | fn sub(self, days: Days) -> Self::Output { |
2020 | 0 | self.checked_sub_days(days).expect("`NaiveDateTime - Days` out of range") |
2021 | 0 | } |
2022 | | } |
2023 | | |
2024 | | /// The `Debug` output of the naive date and time `dt` is the same as |
2025 | | /// [`dt.format("%Y-%m-%dT%H:%M:%S%.f")`](crate::format::strftime). |
2026 | | /// |
2027 | | /// The string printed can be readily parsed via the `parse` method on `str`. |
2028 | | /// |
2029 | | /// It should be noted that, for leap seconds not on the minute boundary, |
2030 | | /// it may print a representation not distinguishable from non-leap seconds. |
2031 | | /// This doesn't matter in practice, since such leap seconds never happened. |
2032 | | /// (By the time of the first leap second on 1972-06-30, |
2033 | | /// every time zone offset around the world has standardized to the 5-minute alignment.) |
2034 | | /// |
2035 | | /// # Example |
2036 | | /// |
2037 | | /// ``` |
2038 | | /// use chrono::NaiveDate; |
2039 | | /// |
2040 | | /// let dt = NaiveDate::from_ymd_opt(2016, 11, 15).unwrap().and_hms_opt(7, 39, 24).unwrap(); |
2041 | | /// assert_eq!(format!("{:?}", dt), "2016-11-15T07:39:24"); |
2042 | | /// ``` |
2043 | | /// |
2044 | | /// Leap seconds may also be used. |
2045 | | /// |
2046 | | /// ``` |
2047 | | /// # use chrono::NaiveDate; |
2048 | | /// let dt = |
2049 | | /// NaiveDate::from_ymd_opt(2015, 6, 30).unwrap().and_hms_milli_opt(23, 59, 59, 1_500).unwrap(); |
2050 | | /// assert_eq!(format!("{:?}", dt), "2015-06-30T23:59:60.500"); |
2051 | | /// ``` |
2052 | | impl fmt::Debug for NaiveDateTime { |
2053 | 0 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
2054 | 0 | self.date.fmt(f)?; |
2055 | 0 | f.write_char('T')?; |
2056 | 0 | self.time.fmt(f) |
2057 | 0 | } |
2058 | | } |
2059 | | |
2060 | | #[cfg(feature = "defmt")] |
2061 | | impl defmt::Format for NaiveDateTime { |
2062 | | fn format(&self, fmt: defmt::Formatter) { |
2063 | | defmt::write!(fmt, "{}T{}", self.date, self.time); |
2064 | | } |
2065 | | } |
2066 | | |
2067 | | /// The `Display` output of the naive date and time `dt` is the same as |
2068 | | /// [`dt.format("%Y-%m-%d %H:%M:%S%.f")`](crate::format::strftime). |
2069 | | /// |
2070 | | /// It should be noted that, for leap seconds not on the minute boundary, |
2071 | | /// it may print a representation not distinguishable from non-leap seconds. |
2072 | | /// This doesn't matter in practice, since such leap seconds never happened. |
2073 | | /// (By the time of the first leap second on 1972-06-30, |
2074 | | /// every time zone offset around the world has standardized to the 5-minute alignment.) |
2075 | | /// |
2076 | | /// # Example |
2077 | | /// |
2078 | | /// ``` |
2079 | | /// use chrono::NaiveDate; |
2080 | | /// |
2081 | | /// let dt = NaiveDate::from_ymd_opt(2016, 11, 15).unwrap().and_hms_opt(7, 39, 24).unwrap(); |
2082 | | /// assert_eq!(format!("{}", dt), "2016-11-15 07:39:24"); |
2083 | | /// ``` |
2084 | | /// |
2085 | | /// Leap seconds may also be used. |
2086 | | /// |
2087 | | /// ``` |
2088 | | /// # use chrono::NaiveDate; |
2089 | | /// let dt = |
2090 | | /// NaiveDate::from_ymd_opt(2015, 6, 30).unwrap().and_hms_milli_opt(23, 59, 59, 1_500).unwrap(); |
2091 | | /// assert_eq!(format!("{}", dt), "2015-06-30 23:59:60.500"); |
2092 | | /// ``` |
2093 | | impl fmt::Display for NaiveDateTime { |
2094 | 0 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
2095 | 0 | self.date.fmt(f)?; |
2096 | 0 | f.write_char(' ')?; |
2097 | 0 | self.time.fmt(f) |
2098 | 0 | } |
2099 | | } |
2100 | | |
2101 | | /// Parsing a `str` into a `NaiveDateTime` uses the same format, |
2102 | | /// [`%Y-%m-%dT%H:%M:%S%.f`](crate::format::strftime), as in `Debug`. |
2103 | | /// |
2104 | | /// # Example |
2105 | | /// |
2106 | | /// ``` |
2107 | | /// use chrono::{NaiveDateTime, NaiveDate}; |
2108 | | /// |
2109 | | /// let dt = NaiveDate::from_ymd_opt(2015, 9, 18).unwrap().and_hms_opt(23, 56, 4).unwrap(); |
2110 | | /// assert_eq!("2015-09-18T23:56:04".parse::<NaiveDateTime>(), Ok(dt)); |
2111 | | /// |
2112 | | /// let dt = NaiveDate::from_ymd_opt(12345, 6, 7).unwrap().and_hms_milli_opt(7, 59, 59, 1_500).unwrap(); // leap second |
2113 | | /// assert_eq!("+12345-6-7T7:59:60.5".parse::<NaiveDateTime>(), Ok(dt)); |
2114 | | /// |
2115 | | /// assert!("foo".parse::<NaiveDateTime>().is_err()); |
2116 | | /// ``` |
2117 | | impl str::FromStr for NaiveDateTime { |
2118 | | type Err = ParseError; |
2119 | | |
2120 | 0 | fn from_str(s: &str) -> ParseResult<NaiveDateTime> { |
2121 | | const ITEMS: &[Item<'static>] = &[ |
2122 | | Item::Numeric(Numeric::Year, Pad::Zero), |
2123 | | Item::Space(""), |
2124 | | Item::Literal("-"), |
2125 | | Item::Numeric(Numeric::Month, Pad::Zero), |
2126 | | Item::Space(""), |
2127 | | Item::Literal("-"), |
2128 | | Item::Numeric(Numeric::Day, Pad::Zero), |
2129 | | Item::Space(""), |
2130 | | Item::Literal("T"), // XXX shouldn't this be case-insensitive? |
2131 | | Item::Numeric(Numeric::Hour, Pad::Zero), |
2132 | | Item::Space(""), |
2133 | | Item::Literal(":"), |
2134 | | Item::Numeric(Numeric::Minute, Pad::Zero), |
2135 | | Item::Space(""), |
2136 | | Item::Literal(":"), |
2137 | | Item::Numeric(Numeric::Second, Pad::Zero), |
2138 | | Item::Fixed(Fixed::Nanosecond), |
2139 | | Item::Space(""), |
2140 | | ]; |
2141 | | |
2142 | 0 | let mut parsed = Parsed::new(); |
2143 | 0 | parse(&mut parsed, s, ITEMS.iter())?; |
2144 | 0 | parsed.to_naive_datetime_with_offset(0) |
2145 | 0 | } |
2146 | | } |
2147 | | |
2148 | | /// The default value for a NaiveDateTime is 1st of January 1970 at 00:00:00. |
2149 | | /// |
2150 | | /// Note that while this may look like the UNIX epoch, it is missing the |
2151 | | /// time zone. The actual UNIX epoch cannot be expressed by this type, |
2152 | | /// however it is available as [`DateTime::UNIX_EPOCH`]. |
2153 | | impl Default for NaiveDateTime { |
2154 | 0 | fn default() -> Self { |
2155 | 0 | DateTime::UNIX_EPOCH.naive_local() |
2156 | 0 | } |
2157 | | } |