Coverage Report

Created: 2025-11-16 06:56

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/botan/src/lib/block/aes/aes.cpp
Line
Count
Source
1
/*
2
* (C) 1999-2010,2015,2017,2018,2020 Jack Lloyd
3
*
4
* Botan is released under the Simplified BSD License (see license.txt)
5
*/
6
7
#include <botan/internal/aes.h>
8
9
#include <botan/internal/bit_ops.h>
10
#include <botan/internal/bswap.h>
11
#include <botan/internal/ct_utils.h>
12
#include <botan/internal/loadstor.h>
13
#include <botan/internal/rotate.h>
14
15
#if defined(BOTAN_HAS_CPUID)
16
   #include <botan/internal/cpuid.h>
17
#endif
18
19
#if defined(BOTAN_HAS_AES_POWER8) || defined(BOTAN_HAS_AES_ARMV8) || defined(BOTAN_HAS_AES_NI)
20
   #define BOTAN_HAS_HW_AES_SUPPORT
21
#endif
22
23
#if defined(BOTAN_HAS_HW_AES_SUPPORT)
24
   #include <bit>
25
#endif
26
27
namespace Botan {
28
29
/*
30
* One of three AES implementation strategies are used to get a constant time
31
* implementation which is immune to common cache/timing based side channels:
32
*
33
* - If AES hardware support is available (AES-NI, POWER8, Aarch64) use that
34
*
35
* - If 128-bit SIMD with byte shuffles are available (SSSE3, NEON, or Altivec),
36
*   use the vperm technique published by Mike Hamburg at CHES 2009.
37
*
38
* - If no hardware or SIMD support, fall back to a constant time bitsliced
39
*   implementation. This uses 32-bit words resulting in 2 blocks being processed
40
*   in parallel. Moving to 4 blocks (with 64-bit words) would approximately
41
*   double performance on 64-bit CPUs. Likewise moving to 128 bit SIMD would
42
*   again approximately double performance vs 64-bit. However the assumption is
43
*   that most 64-bit CPUs either have hardware AES or SIMD shuffle support and
44
*   that the majority of users falling back to this code will be 32-bit cores.
45
*   If this assumption proves to be unsound, the bitsliced code can easily be
46
*   extended to operate on either 32 or 64 bit words depending on the native
47
*   wordsize of the target processor.
48
*
49
* Useful references
50
*
51
* - "Accelerating AES with Vector Permute Instructions" Mike Hamburg
52
*   https://www.shiftleft.org/papers/vector_aes/vector_aes.pdf
53
*
54
* - "Faster and Timing-Attack Resistant AES-GCM" Käsper and Schwabe
55
*   https://eprint.iacr.org/2009/129.pdf
56
*
57
* - "A new combinational logic minimization technique with applications to cryptology."
58
*   Boyar and Peralta https://eprint.iacr.org/2009/191.pdf
59
*
60
* - "A depth-16 circuit for the AES S-box" Boyar and Peralta
61
*    https://eprint.iacr.org/2011/332.pdf
62
*
63
* - "A Very Compact S-box for AES" Canright
64
*   https://www.iacr.org/archive/ches2005/032.pdf
65
*   https://core.ac.uk/download/pdf/36694529.pdf (extended)
66
*/
67
68
namespace {
69
70
/*
71
This is an AES sbox circuit which can execute in bitsliced mode up to 32x in
72
parallel.
73
74
The circuit is from the "Circuit Minimization Team" group
75
http://www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html
76
http://www.cs.yale.edu/homes/peralta/CircuitStuff/SLP_AES_113.txt
77
78
This circuit has size 113 and depth 27. In software it is much faster than
79
circuits which are considered faster for hardware purposes (where circuit depth
80
is the critical constraint), because unlike in hardware, on common CPUs we can
81
only execute - at best - 3 or 4 logic operations per cycle. So a smaller circuit
82
is superior. On an x86-64 machine this circuit is about 15% faster than the
83
circuit of size 128 and depth 16 given in "A depth-16 circuit for the AES S-box".
84
85
Another circuit for AES Sbox of size 102 and depth 24 is describted in "New
86
Circuit Minimization Techniques for Smaller and Faster AES SBoxes"
87
[https://eprint.iacr.org/2019/802] however it relies on "non-standard" gates
88
like MUX, NOR, NAND, etc and so in practice in bitsliced software, its size is
89
actually a bit larger than this circuit, as few CPUs have such instructions and
90
otherwise they must be emulated using a sequence of available bit operations.
91
*/
92
0
void AES_SBOX(uint32_t V[8]) {
93
0
   const uint32_t U0 = V[0];
94
0
   const uint32_t U1 = V[1];
95
0
   const uint32_t U2 = V[2];
96
0
   const uint32_t U3 = V[3];
97
0
   const uint32_t U4 = V[4];
98
0
   const uint32_t U5 = V[5];
99
0
   const uint32_t U6 = V[6];
100
0
   const uint32_t U7 = V[7];
101
102
0
   const uint32_t y14 = U3 ^ U5;
103
0
   const uint32_t y13 = U0 ^ U6;
104
0
   const uint32_t y9 = U0 ^ U3;
105
0
   const uint32_t y8 = U0 ^ U5;
106
0
   const uint32_t t0 = U1 ^ U2;
107
0
   const uint32_t y1 = t0 ^ U7;
108
0
   const uint32_t y4 = y1 ^ U3;
109
0
   const uint32_t y12 = y13 ^ y14;
110
0
   const uint32_t y2 = y1 ^ U0;
111
0
   const uint32_t y5 = y1 ^ U6;
112
0
   const uint32_t y3 = y5 ^ y8;
113
0
   const uint32_t t1 = U4 ^ y12;
114
0
   const uint32_t y15 = t1 ^ U5;
115
0
   const uint32_t y20 = t1 ^ U1;
116
0
   const uint32_t y6 = y15 ^ U7;
117
0
   const uint32_t y10 = y15 ^ t0;
118
0
   const uint32_t y11 = y20 ^ y9;
119
0
   const uint32_t y7 = U7 ^ y11;
120
0
   const uint32_t y17 = y10 ^ y11;
121
0
   const uint32_t y19 = y10 ^ y8;
122
0
   const uint32_t y16 = t0 ^ y11;
123
0
   const uint32_t y21 = y13 ^ y16;
124
0
   const uint32_t y18 = U0 ^ y16;
125
0
   const uint32_t t2 = y12 & y15;
126
0
   const uint32_t t3 = y3 & y6;
127
0
   const uint32_t t4 = t3 ^ t2;
128
0
   const uint32_t t5 = y4 & U7;
129
0
   const uint32_t t6 = t5 ^ t2;
130
0
   const uint32_t t7 = y13 & y16;
131
0
   const uint32_t t8 = y5 & y1;
132
0
   const uint32_t t9 = t8 ^ t7;
133
0
   const uint32_t t10 = y2 & y7;
134
0
   const uint32_t t11 = t10 ^ t7;
135
0
   const uint32_t t12 = y9 & y11;
136
0
   const uint32_t t13 = y14 & y17;
137
0
   const uint32_t t14 = t13 ^ t12;
138
0
   const uint32_t t15 = y8 & y10;
139
0
   const uint32_t t16 = t15 ^ t12;
140
0
   const uint32_t t17 = t4 ^ y20;
141
0
   const uint32_t t18 = t6 ^ t16;
142
0
   const uint32_t t19 = t9 ^ t14;
143
0
   const uint32_t t20 = t11 ^ t16;
144
0
   const uint32_t t21 = t17 ^ t14;
145
0
   const uint32_t t22 = t18 ^ y19;
146
0
   const uint32_t t23 = t19 ^ y21;
147
0
   const uint32_t t24 = t20 ^ y18;
148
0
   const uint32_t t25 = t21 ^ t22;
149
0
   const uint32_t t26 = t21 & t23;
150
0
   const uint32_t t27 = t24 ^ t26;
151
0
   const uint32_t t28 = t25 & t27;
152
0
   const uint32_t t29 = t28 ^ t22;
153
0
   const uint32_t t30 = t23 ^ t24;
154
0
   const uint32_t t31 = t22 ^ t26;
155
0
   const uint32_t t32 = t31 & t30;
156
0
   const uint32_t t33 = t32 ^ t24;
157
0
   const uint32_t t34 = t23 ^ t33;
158
0
   const uint32_t t35 = t27 ^ t33;
159
0
   const uint32_t t36 = t24 & t35;
160
0
   const uint32_t t37 = t36 ^ t34;
161
0
   const uint32_t t38 = t27 ^ t36;
162
0
   const uint32_t t39 = t29 & t38;
163
0
   const uint32_t t40 = t25 ^ t39;
164
0
   const uint32_t t41 = t40 ^ t37;
165
0
   const uint32_t t42 = t29 ^ t33;
166
0
   const uint32_t t43 = t29 ^ t40;
167
0
   const uint32_t t44 = t33 ^ t37;
168
0
   const uint32_t t45 = t42 ^ t41;
169
0
   const uint32_t z0 = t44 & y15;
170
0
   const uint32_t z1 = t37 & y6;
171
0
   const uint32_t z2 = t33 & U7;
172
0
   const uint32_t z3 = t43 & y16;
173
0
   const uint32_t z4 = t40 & y1;
174
0
   const uint32_t z5 = t29 & y7;
175
0
   const uint32_t z6 = t42 & y11;
176
0
   const uint32_t z7 = t45 & y17;
177
0
   const uint32_t z8 = t41 & y10;
178
0
   const uint32_t z9 = t44 & y12;
179
0
   const uint32_t z10 = t37 & y3;
180
0
   const uint32_t z11 = t33 & y4;
181
0
   const uint32_t z12 = t43 & y13;
182
0
   const uint32_t z13 = t40 & y5;
183
0
   const uint32_t z14 = t29 & y2;
184
0
   const uint32_t z15 = t42 & y9;
185
0
   const uint32_t z16 = t45 & y14;
186
0
   const uint32_t z17 = t41 & y8;
187
0
   const uint32_t tc1 = z15 ^ z16;
188
0
   const uint32_t tc2 = z10 ^ tc1;
189
0
   const uint32_t tc3 = z9 ^ tc2;
190
0
   const uint32_t tc4 = z0 ^ z2;
191
0
   const uint32_t tc5 = z1 ^ z0;
192
0
   const uint32_t tc6 = z3 ^ z4;
193
0
   const uint32_t tc7 = z12 ^ tc4;
194
0
   const uint32_t tc8 = z7 ^ tc6;
195
0
   const uint32_t tc9 = z8 ^ tc7;
196
0
   const uint32_t tc10 = tc8 ^ tc9;
197
0
   const uint32_t tc11 = tc6 ^ tc5;
198
0
   const uint32_t tc12 = z3 ^ z5;
199
0
   const uint32_t tc13 = z13 ^ tc1;
200
0
   const uint32_t tc14 = tc4 ^ tc12;
201
0
   const uint32_t S3 = tc3 ^ tc11;
202
0
   const uint32_t tc16 = z6 ^ tc8;
203
0
   const uint32_t tc17 = z14 ^ tc10;
204
0
   const uint32_t tc18 = ~tc13 ^ tc14;
205
0
   const uint32_t S7 = z12 ^ tc18;
206
0
   const uint32_t tc20 = z15 ^ tc16;
207
0
   const uint32_t tc21 = tc2 ^ z11;
208
0
   const uint32_t S0 = tc3 ^ tc16;
209
0
   const uint32_t S6 = tc10 ^ tc18;
210
0
   const uint32_t S4 = tc14 ^ S3;
211
0
   const uint32_t S1 = ~(S3 ^ tc16);
212
0
   const uint32_t tc26 = tc17 ^ tc20;
213
0
   const uint32_t S2 = ~(tc26 ^ z17);
214
0
   const uint32_t S5 = tc21 ^ tc17;
215
216
0
   V[0] = S0;
217
0
   V[1] = S1;
218
0
   V[2] = S2;
219
0
   V[3] = S3;
220
0
   V[4] = S4;
221
0
   V[5] = S5;
222
0
   V[6] = S6;
223
0
   V[7] = S7;
224
0
}
225
226
/*
227
A circuit for inverse AES Sbox of size 121 and depth 21 from
228
http://www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html
229
http://www.cs.yale.edu/homes/peralta/CircuitStuff/Sinv.txt
230
*/
231
0
void AES_INV_SBOX(uint32_t V[8]) {
232
0
   const uint32_t U0 = V[0];
233
0
   const uint32_t U1 = V[1];
234
0
   const uint32_t U2 = V[2];
235
0
   const uint32_t U3 = V[3];
236
0
   const uint32_t U4 = V[4];
237
0
   const uint32_t U5 = V[5];
238
0
   const uint32_t U6 = V[6];
239
0
   const uint32_t U7 = V[7];
240
241
0
   const uint32_t Y0 = U0 ^ U3;
242
0
   const uint32_t Y2 = ~(U1 ^ U3);
243
0
   const uint32_t Y4 = U0 ^ Y2;
244
0
   const uint32_t RTL0 = U6 ^ U7;
245
0
   const uint32_t Y1 = Y2 ^ RTL0;
246
0
   const uint32_t Y7 = ~(U2 ^ Y1);
247
0
   const uint32_t RTL1 = U3 ^ U4;
248
0
   const uint32_t Y6 = ~(U7 ^ RTL1);
249
0
   const uint32_t Y3 = Y1 ^ RTL1;
250
0
   const uint32_t RTL2 = ~(U0 ^ U2);
251
0
   const uint32_t Y5 = U5 ^ RTL2;
252
0
   const uint32_t sa1 = Y0 ^ Y2;
253
0
   const uint32_t sa0 = Y1 ^ Y3;
254
0
   const uint32_t sb1 = Y4 ^ Y6;
255
0
   const uint32_t sb0 = Y5 ^ Y7;
256
0
   const uint32_t ah = Y0 ^ Y1;
257
0
   const uint32_t al = Y2 ^ Y3;
258
0
   const uint32_t aa = sa0 ^ sa1;
259
0
   const uint32_t bh = Y4 ^ Y5;
260
0
   const uint32_t bl = Y6 ^ Y7;
261
0
   const uint32_t bb = sb0 ^ sb1;
262
0
   const uint32_t ab20 = sa0 ^ sb0;
263
0
   const uint32_t ab22 = al ^ bl;
264
0
   const uint32_t ab23 = Y3 ^ Y7;
265
0
   const uint32_t ab21 = sa1 ^ sb1;
266
0
   const uint32_t abcd1 = ah & bh;
267
0
   const uint32_t rr1 = Y0 & Y4;
268
0
   const uint32_t ph11 = ab20 ^ abcd1;
269
0
   const uint32_t t01 = Y1 & Y5;
270
0
   const uint32_t ph01 = t01 ^ abcd1;
271
0
   const uint32_t abcd2 = al & bl;
272
0
   const uint32_t r1 = Y2 & Y6;
273
0
   const uint32_t pl11 = ab22 ^ abcd2;
274
0
   const uint32_t r2 = Y3 & Y7;
275
0
   const uint32_t pl01 = r2 ^ abcd2;
276
0
   const uint32_t r3 = sa0 & sb0;
277
0
   const uint32_t vr1 = aa & bb;
278
0
   const uint32_t pr1 = vr1 ^ r3;
279
0
   const uint32_t wr1 = sa1 & sb1;
280
0
   const uint32_t qr1 = wr1 ^ r3;
281
0
   const uint32_t ab0 = ph11 ^ rr1;
282
0
   const uint32_t ab1 = ph01 ^ ab21;
283
0
   const uint32_t ab2 = pl11 ^ r1;
284
0
   const uint32_t ab3 = pl01 ^ qr1;
285
0
   const uint32_t cp1 = ab0 ^ pr1;
286
0
   const uint32_t cp2 = ab1 ^ qr1;
287
0
   const uint32_t cp3 = ab2 ^ pr1;
288
0
   const uint32_t cp4 = ab3 ^ ab23;
289
0
   const uint32_t tinv1 = cp3 ^ cp4;
290
0
   const uint32_t tinv2 = cp3 & cp1;
291
0
   const uint32_t tinv3 = cp2 ^ tinv2;
292
0
   const uint32_t tinv4 = cp1 ^ cp2;
293
0
   const uint32_t tinv5 = cp4 ^ tinv2;
294
0
   const uint32_t tinv6 = tinv5 & tinv4;
295
0
   const uint32_t tinv7 = tinv3 & tinv1;
296
0
   const uint32_t d2 = cp4 ^ tinv7;
297
0
   const uint32_t d0 = cp2 ^ tinv6;
298
0
   const uint32_t tinv8 = cp1 & cp4;
299
0
   const uint32_t tinv9 = tinv4 & tinv8;
300
0
   const uint32_t tinv10 = tinv4 ^ tinv2;
301
0
   const uint32_t d1 = tinv9 ^ tinv10;
302
0
   const uint32_t tinv11 = cp2 & cp3;
303
0
   const uint32_t tinv12 = tinv1 & tinv11;
304
0
   const uint32_t tinv13 = tinv1 ^ tinv2;
305
0
   const uint32_t d3 = tinv12 ^ tinv13;
306
0
   const uint32_t sd1 = d1 ^ d3;
307
0
   const uint32_t sd0 = d0 ^ d2;
308
0
   const uint32_t dl = d0 ^ d1;  // NOLINT(misc-confusable-identifiers)
309
0
   const uint32_t dh = d2 ^ d3;
310
0
   const uint32_t dd = sd0 ^ sd1;
311
0
   const uint32_t abcd3 = dh & bh;
312
0
   const uint32_t rr2 = d3 & Y4;
313
0
   const uint32_t t02 = d2 & Y5;
314
0
   const uint32_t abcd4 = dl & bl;
315
0
   const uint32_t r4 = d1 & Y6;
316
0
   const uint32_t r5 = d0 & Y7;
317
0
   const uint32_t r6 = sd0 & sb0;
318
0
   const uint32_t vr2 = dd & bb;
319
0
   const uint32_t wr2 = sd1 & sb1;
320
0
   const uint32_t abcd5 = dh & ah;
321
0
   const uint32_t r7 = d3 & Y0;
322
0
   const uint32_t r8 = d2 & Y1;
323
0
   const uint32_t abcd6 = dl & al;
324
0
   const uint32_t r9 = d1 & Y2;
325
0
   const uint32_t r10 = d0 & Y3;
326
0
   const uint32_t r11 = sd0 & sa0;
327
0
   const uint32_t vr3 = dd & aa;
328
0
   const uint32_t wr3 = sd1 & sa1;
329
0
   const uint32_t ph12 = rr2 ^ abcd3;
330
0
   const uint32_t ph02 = t02 ^ abcd3;
331
0
   const uint32_t pl12 = r4 ^ abcd4;
332
0
   const uint32_t pl02 = r5 ^ abcd4;
333
0
   const uint32_t pr2 = vr2 ^ r6;
334
0
   const uint32_t qr2 = wr2 ^ r6;
335
0
   const uint32_t p0 = ph12 ^ pr2;
336
0
   const uint32_t p1 = ph02 ^ qr2;
337
0
   const uint32_t p2 = pl12 ^ pr2;
338
0
   const uint32_t p3 = pl02 ^ qr2;
339
0
   const uint32_t ph13 = r7 ^ abcd5;
340
0
   const uint32_t ph03 = r8 ^ abcd5;
341
0
   const uint32_t pl13 = r9 ^ abcd6;
342
0
   const uint32_t pl03 = r10 ^ abcd6;
343
0
   const uint32_t pr3 = vr3 ^ r11;
344
0
   const uint32_t qr3 = wr3 ^ r11;
345
0
   const uint32_t p4 = ph13 ^ pr3;
346
0
   const uint32_t S7 = ph03 ^ qr3;
347
0
   const uint32_t p6 = pl13 ^ pr3;
348
0
   const uint32_t p7 = pl03 ^ qr3;
349
0
   const uint32_t S3 = p1 ^ p6;
350
0
   const uint32_t S6 = p2 ^ p6;
351
0
   const uint32_t S0 = p3 ^ p6;
352
0
   const uint32_t X11 = p0 ^ p2;
353
0
   const uint32_t S5 = S0 ^ X11;
354
0
   const uint32_t X13 = p4 ^ p7;
355
0
   const uint32_t X14 = X11 ^ X13;
356
0
   const uint32_t S1 = S3 ^ X14;
357
0
   const uint32_t X16 = p1 ^ S7;
358
0
   const uint32_t S2 = X14 ^ X16;
359
0
   const uint32_t X18 = p0 ^ p4;
360
0
   const uint32_t X19 = S5 ^ X16;
361
0
   const uint32_t S4 = X18 ^ X19;
362
363
0
   V[0] = S0;
364
0
   V[1] = S1;
365
0
   V[2] = S2;
366
0
   V[3] = S3;
367
0
   V[4] = S4;
368
0
   V[5] = S5;
369
0
   V[6] = S6;
370
0
   V[7] = S7;
371
0
}
372
373
0
inline void bit_transpose(uint32_t B[8]) {
374
0
   swap_bits<uint32_t>(B[1], B[0], 0x55555555, 1);
375
0
   swap_bits<uint32_t>(B[3], B[2], 0x55555555, 1);
376
0
   swap_bits<uint32_t>(B[5], B[4], 0x55555555, 1);
377
0
   swap_bits<uint32_t>(B[7], B[6], 0x55555555, 1);
378
379
0
   swap_bits<uint32_t>(B[2], B[0], 0x33333333, 2);
380
0
   swap_bits<uint32_t>(B[3], B[1], 0x33333333, 2);
381
0
   swap_bits<uint32_t>(B[6], B[4], 0x33333333, 2);
382
0
   swap_bits<uint32_t>(B[7], B[5], 0x33333333, 2);
383
384
0
   swap_bits<uint32_t>(B[4], B[0], 0x0F0F0F0F, 4);
385
0
   swap_bits<uint32_t>(B[5], B[1], 0x0F0F0F0F, 4);
386
0
   swap_bits<uint32_t>(B[6], B[2], 0x0F0F0F0F, 4);
387
0
   swap_bits<uint32_t>(B[7], B[3], 0x0F0F0F0F, 4);
388
0
}
389
390
0
inline void ks_expand(uint32_t B[8], const uint32_t K[], size_t r) {
391
   /*
392
   This is bit_transpose of K[r..r+4] || K[r..r+4], we can save some computation
393
   due to knowing the first and second halves are the same data.
394
   */
395
0
   for(size_t i = 0; i != 4; ++i) {
396
0
      B[i] = K[r + i];
397
0
   }
398
399
0
   swap_bits<uint32_t>(B[1], B[0], 0x55555555, 1);
400
0
   swap_bits<uint32_t>(B[3], B[2], 0x55555555, 1);
401
402
0
   swap_bits<uint32_t>(B[2], B[0], 0x33333333, 2);
403
0
   swap_bits<uint32_t>(B[3], B[1], 0x33333333, 2);
404
405
0
   B[4] = B[0];
406
0
   B[5] = B[1];
407
0
   B[6] = B[2];
408
0
   B[7] = B[3];
409
410
0
   swap_bits<uint32_t>(B[4], B[0], 0x0F0F0F0F, 4);
411
0
   swap_bits<uint32_t>(B[5], B[1], 0x0F0F0F0F, 4);
412
0
   swap_bits<uint32_t>(B[6], B[2], 0x0F0F0F0F, 4);
413
0
   swap_bits<uint32_t>(B[7], B[3], 0x0F0F0F0F, 4);
414
0
}
415
416
0
inline void shift_rows(uint32_t B[8]) {
417
   // 3 0 1 2 7 4 5 6 10 11 8 9 14 15 12 13 17 18 19 16 21 22 23 20 24 25 26 27 28 29 30 31
418
0
   if constexpr(HasNative64BitRegisters) {
419
0
      for(size_t i = 0; i != 8; i += 2) {
420
0
         uint64_t x = (static_cast<uint64_t>(B[i]) << 32) | B[i + 1];
421
0
         x = bit_permute_step<uint64_t>(x, 0x0022331100223311, 2);
422
0
         x = bit_permute_step<uint64_t>(x, 0x0055005500550055, 1);
423
0
         B[i] = static_cast<uint32_t>(x >> 32);
424
0
         B[i + 1] = static_cast<uint32_t>(x);
425
0
      }
426
   } else {
427
      for(size_t i = 0; i != 8; ++i) {
428
         uint32_t x = B[i];
429
         x = bit_permute_step<uint32_t>(x, 0x00223311, 2);
430
         x = bit_permute_step<uint32_t>(x, 0x00550055, 1);
431
         B[i] = x;
432
      }
433
   }
434
0
}
435
436
0
inline void inv_shift_rows(uint32_t B[8]) {
437
   // Inverse of shift_rows, just inverting the steps
438
439
0
   if constexpr(HasNative64BitRegisters) {
440
0
      for(size_t i = 0; i != 8; i += 2) {
441
0
         uint64_t x = (static_cast<uint64_t>(B[i]) << 32) | B[i + 1];
442
0
         x = bit_permute_step<uint64_t>(x, 0x0055005500550055, 1);
443
0
         x = bit_permute_step<uint64_t>(x, 0x0022331100223311, 2);
444
0
         B[i] = static_cast<uint32_t>(x >> 32);
445
0
         B[i + 1] = static_cast<uint32_t>(x);
446
0
      }
447
   } else {
448
      for(size_t i = 0; i != 8; ++i) {
449
         uint32_t x = B[i];
450
         x = bit_permute_step<uint32_t>(x, 0x00550055, 1);
451
         x = bit_permute_step<uint32_t>(x, 0x00223311, 2);
452
         B[i] = x;
453
      }
454
   }
455
0
}
456
457
0
inline void mix_columns(uint32_t B[8]) {
458
   // carry high bits in B[0] to positions in 0x1b == 0b11011
459
0
   const uint32_t X2[8] = {
460
0
      B[1],
461
0
      B[2],
462
0
      B[3],
463
0
      B[4] ^ B[0],
464
0
      B[5] ^ B[0],
465
0
      B[6],
466
0
      B[7] ^ B[0],
467
0
      B[0],
468
0
   };
469
470
0
   for(size_t i = 0; i != 8; i++) {
471
0
      const uint32_t X3 = B[i] ^ X2[i];
472
0
      B[i] = X2[i] ^ rotr<8>(B[i]) ^ rotr<16>(B[i]) ^ rotr<24>(X3);
473
0
   }
474
0
}
475
476
0
void inv_mix_columns(uint32_t B[8]) {
477
   /*
478
   OpenSSL's bsaes implementation credits Jussi Kivilinna with the lovely
479
   matrix decomposition
480
481
   | 0e 0b 0d 09 |   | 02 03 01 01 |   | 05 00 04 00 |
482
   | 09 0e 0b 0d | = | 01 02 03 01 | x | 00 05 00 04 |
483
   | 0d 09 0e 0b |   | 01 01 02 03 |   | 04 00 05 00 |
484
   | 0b 0d 09 0e |   | 03 01 01 02 |   | 00 04 00 05 |
485
486
   Notice the first component is simply the MixColumns matrix. So we can
487
   multiply first by (05,00,04,00) then perform MixColumns to get the equivalent
488
   of InvMixColumn.
489
   */
490
0
   const uint32_t X4[8] = {
491
0
      B[2],
492
0
      B[3],
493
0
      B[4] ^ B[0],
494
0
      B[5] ^ B[0] ^ B[1],
495
0
      B[6] ^ B[1],
496
0
      B[7] ^ B[0],
497
0
      B[0] ^ B[1],
498
0
      B[1],
499
0
   };
500
501
0
   for(size_t i = 0; i != 8; i++) {
502
0
      const uint32_t X5 = X4[i] ^ B[i];
503
0
      B[i] = X5 ^ rotr<16>(X4[i]);
504
0
   }
505
506
0
   mix_columns(B);
507
0
}
508
509
/*
510
* AES Encryption
511
*/
512
0
void aes_encrypt_n(const uint8_t in[], uint8_t out[], size_t blocks, const secure_vector<uint32_t>& EK) {
513
0
   BOTAN_ASSERT(EK.size() == 44 || EK.size() == 52 || EK.size() == 60, "Key was set");
514
515
0
   const size_t rounds = (EK.size() - 4) / 4;
516
517
0
   uint32_t KS[13 * 8] = {0};  // actual maximum is (rounds - 1) * 8
518
0
   for(size_t i = 0; i < rounds - 1; i += 1) {
519
0
      ks_expand(&KS[8 * i], EK.data(), 4 * i + 4);
520
0
   }
521
522
0
   const size_t BLOCK_SIZE = 16;
523
0
   const size_t BITSLICED_BLOCKS = 8 * sizeof(uint32_t) / BLOCK_SIZE;
524
525
0
   while(blocks > 0) {
526
0
      const size_t this_loop = std::min(blocks, BITSLICED_BLOCKS);
527
528
0
      uint32_t B[8] = {0};
529
530
0
      load_be(B, in, this_loop * 4);
531
532
0
      CT::poison(B, 8);
533
534
0
      for(size_t i = 0; i != 8; ++i) {
535
0
         B[i] ^= EK[i % 4];
536
0
      }
537
538
0
      bit_transpose(B);
539
540
0
      for(size_t r = 0; r != rounds - 1; ++r) {
541
0
         AES_SBOX(B);
542
0
         shift_rows(B);
543
0
         mix_columns(B);
544
545
0
         for(size_t i = 0; i != 8; ++i) {
546
0
            B[i] ^= KS[8 * r + i];
547
0
         }
548
0
      }
549
550
      // Final round:
551
0
      AES_SBOX(B);
552
0
      shift_rows(B);
553
0
      bit_transpose(B);
554
555
0
      for(size_t i = 0; i != 8; ++i) {
556
0
         B[i] ^= EK[4 * rounds + i % 4];
557
0
      }
558
559
0
      CT::unpoison(B, 8);
560
561
0
      copy_out_be(std::span(out, this_loop * 4 * sizeof(uint32_t)), B);
562
563
0
      in += this_loop * BLOCK_SIZE;
564
0
      out += this_loop * BLOCK_SIZE;
565
0
      blocks -= this_loop;
566
0
   }
567
0
}
568
569
/*
570
* AES Decryption
571
*/
572
0
void aes_decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks, const secure_vector<uint32_t>& DK) {
573
0
   BOTAN_ASSERT(DK.size() == 44 || DK.size() == 52 || DK.size() == 60, "Key was set");
574
575
0
   const size_t rounds = (DK.size() - 4) / 4;
576
577
0
   uint32_t KS[13 * 8] = {0};  // actual maximum is (rounds - 1) * 8
578
0
   for(size_t i = 0; i < rounds - 1; i += 1) {
579
0
      ks_expand(&KS[8 * i], DK.data(), 4 * i + 4);
580
0
   }
581
582
0
   const size_t BLOCK_SIZE = 16;
583
0
   const size_t BITSLICED_BLOCKS = 8 * sizeof(uint32_t) / BLOCK_SIZE;
584
585
0
   while(blocks > 0) {
586
0
      const size_t this_loop = std::min(blocks, BITSLICED_BLOCKS);
587
588
0
      uint32_t B[8] = {0};
589
590
0
      CT::poison(B, 8);
591
592
0
      load_be(B, in, this_loop * 4);
593
594
0
      for(size_t i = 0; i != 8; ++i) {
595
0
         B[i] ^= DK[i % 4];
596
0
      }
597
598
0
      bit_transpose(B);
599
600
0
      for(size_t r = 0; r != rounds - 1; ++r) {
601
0
         AES_INV_SBOX(B);
602
0
         inv_shift_rows(B);
603
0
         inv_mix_columns(B);
604
605
0
         for(size_t i = 0; i != 8; ++i) {
606
0
            B[i] ^= KS[8 * r + i];
607
0
         }
608
0
      }
609
610
      // Final round:
611
0
      AES_INV_SBOX(B);
612
0
      inv_shift_rows(B);
613
0
      bit_transpose(B);
614
615
0
      for(size_t i = 0; i != 8; ++i) {
616
0
         B[i] ^= DK[4 * rounds + i % 4];
617
0
      }
618
619
0
      CT::unpoison(B, 8);
620
621
0
      copy_out_be(std::span(out, this_loop * 4 * sizeof(uint32_t)), B);
622
623
0
      in += this_loop * BLOCK_SIZE;
624
0
      out += this_loop * BLOCK_SIZE;
625
0
      blocks -= this_loop;
626
0
   }
627
0
}
628
629
0
inline uint32_t xtime32(uint32_t s) {
630
0
   const uint32_t lo_bit = 0x01010101;
631
0
   const uint32_t mask = 0x7F7F7F7F;
632
0
   const uint32_t poly = 0x1B;
633
634
0
   return ((s & mask) << 1) ^ (((s >> 7) & lo_bit) * poly);
635
0
}
636
637
0
inline uint32_t InvMixColumn(uint32_t s1) {
638
0
   const uint32_t s2 = xtime32(s1);
639
0
   const uint32_t s4 = xtime32(s2);
640
0
   const uint32_t s8 = xtime32(s4);
641
0
   const uint32_t s9 = s8 ^ s1;
642
0
   const uint32_t s11 = s9 ^ s2;
643
0
   const uint32_t s13 = s9 ^ s4;
644
0
   const uint32_t s14 = s8 ^ s4 ^ s2;
645
646
0
   return s14 ^ rotr<8>(s9) ^ rotr<16>(s13) ^ rotr<24>(s11);
647
0
}
648
649
0
void InvMixColumn_x4(uint32_t x[4]) {
650
0
   x[0] = InvMixColumn(x[0]);
651
0
   x[1] = InvMixColumn(x[1]);
652
0
   x[2] = InvMixColumn(x[2]);
653
0
   x[3] = InvMixColumn(x[3]);
654
0
}
655
656
0
uint32_t SE_word(uint32_t x) {
657
0
   uint32_t I[8] = {0};
658
659
0
   for(size_t i = 0; i != 8; ++i) {
660
0
      I[i] = (x >> (7 - i)) & 0x01010101;
661
0
   }
662
663
0
   AES_SBOX(I);
664
665
0
   x = 0;
666
667
0
   for(size_t i = 0; i != 8; ++i) {
668
0
      x |= ((I[i] & 0x01010101) << (7 - i));
669
0
   }
670
671
0
   return x;
672
0
}
673
674
void aes_key_schedule(const uint8_t key[],
675
                      size_t length,
676
                      secure_vector<uint32_t>& EK,
677
                      secure_vector<uint32_t>& DK,
678
0
                      bool bswap_keys = false) {
679
0
   static const uint32_t RC[10] = {0x01000000,
680
0
                                   0x02000000,
681
0
                                   0x04000000,
682
0
                                   0x08000000,
683
0
                                   0x10000000,
684
0
                                   0x20000000,
685
0
                                   0x40000000,
686
0
                                   0x80000000,
687
0
                                   0x1B000000,
688
0
                                   0x36000000};
689
690
0
   const size_t X = length / 4;
691
692
   // Can't happen, but make static analyzers happy
693
0
   BOTAN_ASSERT_NOMSG(X == 4 || X == 6 || X == 8);
694
695
0
   const size_t rounds = (length / 4) + 6;
696
697
   // Help the optimizer
698
0
   BOTAN_ASSERT_NOMSG(rounds == 10 || rounds == 12 || rounds == 14);
699
700
0
   CT::poison(key, length);
701
702
0
   const size_t KS_len = length + 28;
703
0
   EK.resize(KS_len);
704
0
   DK.resize(KS_len);
705
706
0
   for(size_t i = 0; i != X; ++i) {
707
0
      EK[i] = load_be<uint32_t>(key, i);
708
0
   }
709
710
0
   for(size_t i = X; i < 4 * (rounds + 1); i += X) {
711
0
      EK[i] = EK[i - X] ^ RC[(i - X) / X] ^ rotl<8>(SE_word(EK[i - 1]));
712
713
0
      for(size_t j = 1; j != X && (i + j) < EK.size(); ++j) {
714
0
         EK[i + j] = EK[i + j - X];
715
716
0
         if(X == 8 && j == 4) {
717
0
            EK[i + j] ^= SE_word(EK[i + j - 1]);
718
0
         } else {
719
0
            EK[i + j] ^= EK[i + j - 1];
720
0
         }
721
0
      }
722
0
   }
723
724
0
   for(size_t i = 0; i != 4 * (rounds + 1); i += 4) {
725
0
      DK[i] = EK[4 * rounds - i];
726
0
      DK[i + 1] = EK[4 * rounds - i + 1];
727
0
      DK[i + 2] = EK[4 * rounds - i + 2];
728
0
      DK[i + 3] = EK[4 * rounds - i + 3];
729
0
   }
730
731
0
   for(size_t i = 4; i != 4 * rounds; i += 4) {
732
0
      InvMixColumn_x4(&DK[i]);
733
0
   }
734
735
0
   if(bswap_keys) {
736
      // HW AES on little endian needs the subkeys to be byte reversed
737
0
      for(size_t i = 0; i != KS_len; ++i) {
738
0
         EK[i] = reverse_bytes(EK[i]);
739
0
         DK[i] = reverse_bytes(DK[i]);
740
0
      }
741
0
   }
742
743
0
   CT::unpoison(EK.data(), EK.size());
744
0
   CT::unpoison(DK.data(), DK.size());
745
0
   CT::unpoison(key, length);
746
0
}
747
748
0
size_t aes_parallelism() {
749
0
#if defined(BOTAN_HAS_AES_VAES)
750
0
   if(CPUID::has(CPUID::Feature::AVX2_AES)) {
751
0
      return 8;  // pipelined
752
0
   }
753
0
#endif
754
755
0
#if defined(BOTAN_HAS_HW_AES_SUPPORT)
756
0
   if(CPUID::has(CPUID::Feature::HW_AES)) {
757
0
      return 4;  // pipelined
758
0
   }
759
0
#endif
760
761
0
#if defined(BOTAN_HAS_AES_VPERM)
762
0
   if(CPUID::has(CPUID::Feature::SIMD_4X32)) {
763
0
      return 2;  // pipelined
764
0
   }
765
0
#endif
766
767
   // bitsliced:
768
0
   return 2;
769
0
}
770
771
0
std::string aes_provider() {
772
0
#if defined(BOTAN_HAS_AES_VAES)
773
0
   if(auto feat = CPUID::check(CPUID::Feature::AVX2_AES)) {
774
0
      return *feat;
775
0
   }
776
0
#endif
777
778
0
#if defined(BOTAN_HAS_HW_AES_SUPPORT)
779
0
   if(auto feat = CPUID::check(CPUID::Feature::HW_AES)) {
780
0
      return *feat;
781
0
   }
782
0
#endif
783
784
0
#if defined(BOTAN_HAS_AES_VPERM)
785
0
   if(auto feat = CPUID::check(CPUID::Feature::SIMD_4X32)) {
786
0
      return *feat;
787
0
   }
788
0
#endif
789
790
0
   return "base";
791
0
}
792
793
}  // namespace
794
795
0
std::string AES_128::provider() const {
796
0
   return aes_provider();
797
0
}
798
799
0
std::string AES_192::provider() const {
800
0
   return aes_provider();
801
0
}
802
803
0
std::string AES_256::provider() const {
804
0
   return aes_provider();
805
0
}
806
807
0
size_t AES_128::parallelism() const {
808
0
   return aes_parallelism();
809
0
}
810
811
0
size_t AES_192::parallelism() const {
812
0
   return aes_parallelism();
813
0
}
814
815
0
size_t AES_256::parallelism() const {
816
0
   return aes_parallelism();
817
0
}
818
819
0
bool AES_128::has_keying_material() const {
820
0
   return !m_EK.empty();
821
0
}
822
823
0
bool AES_192::has_keying_material() const {
824
0
   return !m_EK.empty();
825
0
}
826
827
0
bool AES_256::has_keying_material() const {
828
0
   return !m_EK.empty();
829
0
}
830
831
0
void AES_128::encrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const {
832
0
   assert_key_material_set();
833
834
0
#if defined(BOTAN_HAS_AES_VAES)
835
0
   if(CPUID::has(CPUID::Feature::AVX2_AES)) {
836
0
      return x86_vaes_encrypt_n(in, out, blocks);
837
0
   }
838
0
#endif
839
840
0
#if defined(BOTAN_HAS_HW_AES_SUPPORT)
841
0
   if(CPUID::has(CPUID::Feature::HW_AES)) {
842
0
      return hw_aes_encrypt_n(in, out, blocks);
843
0
   }
844
0
#endif
845
846
0
#if defined(BOTAN_HAS_AES_VPERM)
847
0
   if(CPUID::has(CPUID::Feature::SIMD_4X32)) {
848
0
      return vperm_encrypt_n(in, out, blocks);
849
0
   }
850
0
#endif
851
852
0
   aes_encrypt_n(in, out, blocks, m_EK);
853
0
}
854
855
0
void AES_128::decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const {
856
0
   assert_key_material_set();
857
858
0
#if defined(BOTAN_HAS_AES_VAES)
859
0
   if(CPUID::has(CPUID::Feature::AVX2_AES)) {
860
0
      return x86_vaes_decrypt_n(in, out, blocks);
861
0
   }
862
0
#endif
863
864
0
#if defined(BOTAN_HAS_HW_AES_SUPPORT)
865
0
   if(CPUID::has(CPUID::Feature::HW_AES)) {
866
0
      return hw_aes_decrypt_n(in, out, blocks);
867
0
   }
868
0
#endif
869
870
0
#if defined(BOTAN_HAS_AES_VPERM)
871
0
   if(CPUID::has(CPUID::Feature::SIMD_4X32)) {
872
0
      return vperm_decrypt_n(in, out, blocks);
873
0
   }
874
0
#endif
875
876
0
   aes_decrypt_n(in, out, blocks, m_DK);
877
0
}
878
879
0
void AES_128::key_schedule(std::span<const uint8_t> key) {
880
0
#if defined(BOTAN_HAS_AES_NI)
881
0
   if(CPUID::has(CPUID::Feature::AESNI)) {
882
0
      return aesni_key_schedule(key.data(), key.size());
883
0
   }
884
0
#endif
885
886
0
#if defined(BOTAN_HAS_AES_VAES)
887
0
   if(CPUID::has(CPUID::Feature::AVX2_AES)) {
888
0
      return aes_key_schedule(key.data(), key.size(), m_EK, m_DK, true);
889
0
   }
890
0
#endif
891
892
0
#if defined(BOTAN_HAS_HW_AES_SUPPORT)
893
0
   if(CPUID::has(CPUID::Feature::HW_AES)) {
894
0
      constexpr bool is_little_endian = std::endian::native == std::endian::little;
895
0
      return aes_key_schedule(key.data(), key.size(), m_EK, m_DK, is_little_endian);
896
0
   }
897
0
#endif
898
899
0
#if defined(BOTAN_HAS_AES_VPERM)
900
0
   if(CPUID::has(CPUID::Feature::SIMD_4X32)) {
901
0
      return vperm_key_schedule(key.data(), key.size());
902
0
   }
903
0
#endif
904
905
0
   aes_key_schedule(key.data(), key.size(), m_EK, m_DK);
906
0
}
907
908
0
void AES_128::clear() {
909
0
   zap(m_EK);
910
0
   zap(m_DK);
911
0
}
912
913
0
void AES_192::encrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const {
914
0
   assert_key_material_set();
915
916
0
#if defined(BOTAN_HAS_AES_VAES)
917
0
   if(CPUID::has(CPUID::Feature::AVX2_AES)) {
918
0
      return x86_vaes_encrypt_n(in, out, blocks);
919
0
   }
920
0
#endif
921
922
0
#if defined(BOTAN_HAS_HW_AES_SUPPORT)
923
0
   if(CPUID::has(CPUID::Feature::HW_AES)) {
924
0
      return hw_aes_encrypt_n(in, out, blocks);
925
0
   }
926
0
#endif
927
928
0
#if defined(BOTAN_HAS_AES_VPERM)
929
0
   if(CPUID::has(CPUID::Feature::SIMD_4X32)) {
930
0
      return vperm_encrypt_n(in, out, blocks);
931
0
   }
932
0
#endif
933
934
0
   aes_encrypt_n(in, out, blocks, m_EK);
935
0
}
936
937
0
void AES_192::decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const {
938
0
   assert_key_material_set();
939
940
0
#if defined(BOTAN_HAS_AES_VAES)
941
0
   if(CPUID::has(CPUID::Feature::AVX2_AES)) {
942
0
      return x86_vaes_decrypt_n(in, out, blocks);
943
0
   }
944
0
#endif
945
946
0
#if defined(BOTAN_HAS_HW_AES_SUPPORT)
947
0
   if(CPUID::has(CPUID::Feature::HW_AES)) {
948
0
      return hw_aes_decrypt_n(in, out, blocks);
949
0
   }
950
0
#endif
951
952
0
#if defined(BOTAN_HAS_AES_VPERM)
953
0
   if(CPUID::has(CPUID::Feature::SIMD_4X32)) {
954
0
      return vperm_decrypt_n(in, out, blocks);
955
0
   }
956
0
#endif
957
958
0
   aes_decrypt_n(in, out, blocks, m_DK);
959
0
}
960
961
0
void AES_192::key_schedule(std::span<const uint8_t> key) {
962
0
#if defined(BOTAN_HAS_AES_NI)
963
0
   if(CPUID::has(CPUID::Feature::AESNI)) {
964
0
      return aesni_key_schedule(key.data(), key.size());
965
0
   }
966
0
#endif
967
968
0
#if defined(BOTAN_HAS_AES_VAES)
969
0
   if(CPUID::has(CPUID::Feature::AVX2_AES)) {
970
0
      return aes_key_schedule(key.data(), key.size(), m_EK, m_DK, true);
971
0
   }
972
0
#endif
973
974
0
#if defined(BOTAN_HAS_HW_AES_SUPPORT)
975
0
   if(CPUID::has(CPUID::Feature::HW_AES)) {
976
0
      constexpr bool is_little_endian = std::endian::native == std::endian::little;
977
0
      return aes_key_schedule(key.data(), key.size(), m_EK, m_DK, is_little_endian);
978
0
   }
979
0
#endif
980
981
0
#if defined(BOTAN_HAS_AES_VPERM)
982
0
   if(CPUID::has(CPUID::Feature::SIMD_4X32)) {
983
0
      return vperm_key_schedule(key.data(), key.size());
984
0
   }
985
0
#endif
986
987
0
   aes_key_schedule(key.data(), key.size(), m_EK, m_DK);
988
0
}
989
990
0
void AES_192::clear() {
991
0
   zap(m_EK);
992
0
   zap(m_DK);
993
0
}
994
995
0
void AES_256::encrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const {
996
0
   assert_key_material_set();
997
998
0
#if defined(BOTAN_HAS_AES_VAES)
999
0
   if(CPUID::has(CPUID::Feature::AVX2_AES)) {
1000
0
      return x86_vaes_encrypt_n(in, out, blocks);
1001
0
   }
1002
0
#endif
1003
1004
0
#if defined(BOTAN_HAS_HW_AES_SUPPORT)
1005
0
   if(CPUID::has(CPUID::Feature::HW_AES)) {
1006
0
      return hw_aes_encrypt_n(in, out, blocks);
1007
0
   }
1008
0
#endif
1009
1010
0
#if defined(BOTAN_HAS_AES_VPERM)
1011
0
   if(CPUID::has(CPUID::Feature::SIMD_4X32)) {
1012
0
      return vperm_encrypt_n(in, out, blocks);
1013
0
   }
1014
0
#endif
1015
1016
0
   aes_encrypt_n(in, out, blocks, m_EK);
1017
0
}
1018
1019
0
void AES_256::decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const {
1020
0
   assert_key_material_set();
1021
1022
0
#if defined(BOTAN_HAS_AES_VAES)
1023
0
   if(CPUID::has(CPUID::Feature::AVX2_AES)) {
1024
0
      return x86_vaes_decrypt_n(in, out, blocks);
1025
0
   }
1026
0
#endif
1027
1028
0
#if defined(BOTAN_HAS_HW_AES_SUPPORT)
1029
0
   if(CPUID::has(CPUID::Feature::HW_AES)) {
1030
0
      return hw_aes_decrypt_n(in, out, blocks);
1031
0
   }
1032
0
#endif
1033
1034
0
#if defined(BOTAN_HAS_AES_VPERM)
1035
0
   if(CPUID::has(CPUID::Feature::SIMD_4X32)) {
1036
0
      return vperm_decrypt_n(in, out, blocks);
1037
0
   }
1038
0
#endif
1039
1040
0
   aes_decrypt_n(in, out, blocks, m_DK);
1041
0
}
1042
1043
0
void AES_256::key_schedule(std::span<const uint8_t> key) {
1044
0
#if defined(BOTAN_HAS_AES_NI)
1045
0
   if(CPUID::has(CPUID::Feature::AESNI)) {
1046
0
      return aesni_key_schedule(key.data(), key.size());
1047
0
   }
1048
0
#endif
1049
1050
0
#if defined(BOTAN_HAS_AES_VAES)
1051
0
   if(CPUID::has(CPUID::Feature::AVX2_AES)) {
1052
0
      return aes_key_schedule(key.data(), key.size(), m_EK, m_DK, true);
1053
0
   }
1054
0
#endif
1055
1056
0
#if defined(BOTAN_HAS_HW_AES_SUPPORT)
1057
0
   if(CPUID::has(CPUID::Feature::HW_AES)) {
1058
0
      constexpr bool is_little_endian = std::endian::native == std::endian::little;
1059
0
      return aes_key_schedule(key.data(), key.size(), m_EK, m_DK, is_little_endian);
1060
0
   }
1061
0
#endif
1062
1063
0
#if defined(BOTAN_HAS_AES_VPERM)
1064
0
   if(CPUID::has(CPUID::Feature::SIMD_4X32)) {
1065
0
      return vperm_key_schedule(key.data(), key.size());
1066
0
   }
1067
0
#endif
1068
1069
0
   aes_key_schedule(key.data(), key.size(), m_EK, m_DK);
1070
0
}
1071
1072
0
void AES_256::clear() {
1073
0
   zap(m_EK);
1074
0
   zap(m_DK);
1075
0
}
1076
1077
}  // namespace Botan