Coverage Report

Created: 2025-07-12 07:00

/src/cpython3/Objects/mimalloc/random.c
Line
Count
Source (jump to first uncovered line)
1
/* ----------------------------------------------------------------------------
2
Copyright (c) 2019-2021, Microsoft Research, Daan Leijen
3
This is free software; you can redistribute it and/or modify it under the
4
terms of the MIT license. A copy of the license can be found in the file
5
"LICENSE" at the root of this distribution.
6
-----------------------------------------------------------------------------*/
7
#include "mimalloc.h"
8
#include "mimalloc/internal.h"
9
#include "mimalloc/prim.h"    // _mi_prim_random_buf
10
#include <string.h>       // memset
11
12
/* ----------------------------------------------------------------------------
13
We use our own PRNG to keep predictable performance of random number generation
14
and to avoid implementations that use a lock. We only use the OS provided
15
random source to initialize the initial seeds. Since we do not need ultimate
16
performance but we do rely on the security (for secret cookies in secure mode)
17
we use a cryptographically secure generator (chacha20).
18
-----------------------------------------------------------------------------*/
19
20
242
#define MI_CHACHA_ROUNDS (20)   // perhaps use 12 for better performance?
21
22
23
/* ----------------------------------------------------------------------------
24
Chacha20 implementation as the original algorithm with a 64-bit nonce
25
and counter: https://en.wikipedia.org/wiki/Salsa20
26
The input matrix has sixteen 32-bit values:
27
Position  0 to  3: constant key
28
Position  4 to 11: the key
29
Position 12 to 13: the counter.
30
Position 14 to 15: the nonce.
31
32
The implementation uses regular C code which compiles very well on modern compilers.
33
(gcc x64 has no register spills, and clang 6+ uses SSE instructions)
34
-----------------------------------------------------------------------------*/
35
36
7.04k
static inline uint32_t rotl(uint32_t x, uint32_t shift) {
37
7.04k
  return (x << shift) | (x >> (32 - shift));
38
7.04k
}
39
40
1.76k
static inline void qround(uint32_t x[16], size_t a, size_t b, size_t c, size_t d) {
41
1.76k
  x[a] += x[b]; x[d] = rotl(x[d] ^ x[a], 16);
42
1.76k
  x[c] += x[d]; x[b] = rotl(x[b] ^ x[c], 12);
43
1.76k
  x[a] += x[b]; x[d] = rotl(x[d] ^ x[a], 8);
44
1.76k
  x[c] += x[d]; x[b] = rotl(x[b] ^ x[c], 7);
45
1.76k
}
46
47
static void chacha_block(mi_random_ctx_t* ctx)
48
22
{
49
  // scramble into `x`
50
22
  uint32_t x[16];
51
374
  for (size_t i = 0; i < 16; i++) {
52
352
    x[i] = ctx->input[i];
53
352
  }
54
242
  for (size_t i = 0; i < MI_CHACHA_ROUNDS; i += 2) {
55
220
    qround(x, 0, 4,  8, 12);
56
220
    qround(x, 1, 5,  9, 13);
57
220
    qround(x, 2, 6, 10, 14);
58
220
    qround(x, 3, 7, 11, 15);
59
220
    qround(x, 0, 5, 10, 15);
60
220
    qround(x, 1, 6, 11, 12);
61
220
    qround(x, 2, 7,  8, 13);
62
220
    qround(x, 3, 4,  9, 14);
63
220
  }
64
65
  // add scrambled data to the initial state
66
374
  for (size_t i = 0; i < 16; i++) {
67
352
    ctx->output[i] = x[i] + ctx->input[i];
68
352
  }
69
22
  ctx->output_available = 16;
70
71
  // increment the counter for the next round
72
22
  ctx->input[12] += 1;
73
22
  if (ctx->input[12] == 0) {
74
0
    ctx->input[13] += 1;
75
0
    if (ctx->input[13] == 0) {  // and keep increasing into the nonce
76
0
      ctx->input[14] += 1;
77
0
    }
78
0
  }
79
22
}
80
81
132
static uint32_t chacha_next32(mi_random_ctx_t* ctx) {
82
132
  if (ctx->output_available <= 0) {
83
22
    chacha_block(ctx);
84
22
    ctx->output_available = 16; // (assign again to suppress static analysis warning)
85
22
  }
86
132
  const uint32_t x = ctx->output[16 - ctx->output_available];
87
132
  ctx->output[16 - ctx->output_available] = 0; // reset once the data is handed out
88
132
  ctx->output_available--;
89
132
  return x;
90
132
}
91
92
264
static inline uint32_t read32(const uint8_t* p, size_t idx32) {
93
264
  const size_t i = 4*idx32;
94
264
  return ((uint32_t)p[i+0] | (uint32_t)p[i+1] << 8 | (uint32_t)p[i+2] << 16 | (uint32_t)p[i+3] << 24);
95
264
}
96
97
static void chacha_init(mi_random_ctx_t* ctx, const uint8_t key[32], uint64_t nonce)
98
22
{
99
  // since we only use chacha for randomness (and not encryption) we
100
  // do not _need_ to read 32-bit values as little endian but we do anyways
101
  // just for being compatible :-)
102
22
  memset(ctx, 0, sizeof(*ctx));
103
110
  for (size_t i = 0; i < 4; i++) {
104
88
    const uint8_t* sigma = (uint8_t*)"expand 32-byte k";
105
88
    ctx->input[i] = read32(sigma,i);
106
88
  }
107
198
  for (size_t i = 0; i < 8; i++) {
108
176
    ctx->input[i + 4] = read32(key,i);
109
176
  }
110
22
  ctx->input[12] = 0;
111
22
  ctx->input[13] = 0;
112
22
  ctx->input[14] = (uint32_t)nonce;
113
22
  ctx->input[15] = (uint32_t)(nonce >> 32);
114
22
}
115
116
0
static void chacha_split(mi_random_ctx_t* ctx, uint64_t nonce, mi_random_ctx_t* ctx_new) {
117
0
  memset(ctx_new, 0, sizeof(*ctx_new));
118
0
  _mi_memcpy(ctx_new->input, ctx->input, sizeof(ctx_new->input));
119
0
  ctx_new->input[12] = 0;
120
0
  ctx_new->input[13] = 0;
121
0
  ctx_new->input[14] = (uint32_t)nonce;
122
0
  ctx_new->input[15] = (uint32_t)(nonce >> 32);
123
0
  mi_assert_internal(ctx->input[14] != ctx_new->input[14] || ctx->input[15] != ctx_new->input[15]); // do not reuse nonces!
124
0
  chacha_block(ctx_new);
125
0
}
126
127
128
/* ----------------------------------------------------------------------------
129
Random interface
130
-----------------------------------------------------------------------------*/
131
132
#if MI_DEBUG>1
133
static bool mi_random_is_initialized(mi_random_ctx_t* ctx) {
134
  return (ctx != NULL && ctx->input[0] != 0);
135
}
136
#endif
137
138
0
void _mi_random_split(mi_random_ctx_t* ctx, mi_random_ctx_t* ctx_new) {
139
0
  mi_assert_internal(mi_random_is_initialized(ctx));
140
0
  mi_assert_internal(ctx != ctx_new);
141
0
  chacha_split(ctx, (uintptr_t)ctx_new /*nonce*/, ctx_new);
142
0
}
143
144
66
uintptr_t _mi_random_next(mi_random_ctx_t* ctx) {
145
66
  mi_assert_internal(mi_random_is_initialized(ctx));
146
  #if MI_INTPTR_SIZE <= 4
147
    return chacha_next32(ctx);
148
  #elif MI_INTPTR_SIZE == 8
149
    return (((uintptr_t)chacha_next32(ctx) << 32) | chacha_next32(ctx));
150
  #else
151
  # error "define mi_random_next for this platform"
152
  #endif
153
66
}
154
155
156
/* ----------------------------------------------------------------------------
157
To initialize a fresh random context.
158
If we cannot get good randomness, we fall back to weak randomness based on a timer and ASLR.
159
-----------------------------------------------------------------------------*/
160
161
0
uintptr_t _mi_os_random_weak(uintptr_t extra_seed) {
162
0
  uintptr_t x = (uintptr_t)&_mi_os_random_weak ^ extra_seed; // ASLR makes the address random
163
0
  x ^= _mi_prim_clock_now();
164
  // and do a few randomization steps
165
0
  uintptr_t max = ((x ^ (x >> 17)) & 0x0F) + 1;
166
0
  for (uintptr_t i = 0; i < max; i++) {
167
0
    x = _mi_random_shuffle(x);
168
0
  }
169
0
  mi_assert_internal(x != 0);
170
0
  return x;
171
0
}
172
173
22
static void mi_random_init_ex(mi_random_ctx_t* ctx, bool use_weak) {
174
22
  uint8_t key[32] = {0};
175
22
  if (use_weak || !_mi_prim_random_buf(key, sizeof(key))) {
176
    // if we fail to get random data from the OS, we fall back to a
177
    // weak random source based on the current time
178
0
    #if !defined(__wasi__)
179
0
    if (!use_weak) { _mi_warning_message("unable to use secure randomness\n"); }
180
0
    #endif
181
0
    uintptr_t x = _mi_os_random_weak(0);
182
0
    for (size_t i = 0; i < 8; i++) {  // key is eight 32-bit words.
183
0
      x = _mi_random_shuffle(x);
184
0
      ((uint32_t*)key)[i] = (uint32_t)x;
185
0
    }
186
0
    ctx->weak = true;
187
0
  }
188
22
  else {
189
22
    ctx->weak = false;
190
22
  }
191
22
  chacha_init(ctx, key, (uintptr_t)ctx /*nonce*/ );
192
22
}
193
194
22
void _mi_random_init(mi_random_ctx_t* ctx) {
195
22
  mi_random_init_ex(ctx, false);
196
22
}
197
198
0
void _mi_random_init_weak(mi_random_ctx_t * ctx) {
199
0
  mi_random_init_ex(ctx, true);
200
0
}
201
202
22
void _mi_random_reinit_if_weak(mi_random_ctx_t * ctx) {
203
22
  if (ctx->weak) {
204
0
    _mi_random_init(ctx);
205
0
  }
206
22
}
207
208
/* --------------------------------------------------------
209
test vectors from <https://tools.ietf.org/html/rfc8439>
210
----------------------------------------------------------- */
211
/*
212
static bool array_equals(uint32_t* x, uint32_t* y, size_t n) {
213
  for (size_t i = 0; i < n; i++) {
214
    if (x[i] != y[i]) return false;
215
  }
216
  return true;
217
}
218
static void chacha_test(void)
219
{
220
  uint32_t x[4] = { 0x11111111, 0x01020304, 0x9b8d6f43, 0x01234567 };
221
  uint32_t x_out[4] = { 0xea2a92f4, 0xcb1cf8ce, 0x4581472e, 0x5881c4bb };
222
  qround(x, 0, 1, 2, 3);
223
  mi_assert_internal(array_equals(x, x_out, 4));
224
225
  uint32_t y[16] = {
226
       0x879531e0,  0xc5ecf37d,  0x516461b1,  0xc9a62f8a,
227
       0x44c20ef3,  0x3390af7f,  0xd9fc690b,  0x2a5f714c,
228
       0x53372767,  0xb00a5631,  0x974c541a,  0x359e9963,
229
       0x5c971061,  0x3d631689,  0x2098d9d6,  0x91dbd320 };
230
  uint32_t y_out[16] = {
231
       0x879531e0,  0xc5ecf37d,  0xbdb886dc,  0xc9a62f8a,
232
       0x44c20ef3,  0x3390af7f,  0xd9fc690b,  0xcfacafd2,
233
       0xe46bea80,  0xb00a5631,  0x974c541a,  0x359e9963,
234
       0x5c971061,  0xccc07c79,  0x2098d9d6,  0x91dbd320 };
235
  qround(y, 2, 7, 8, 13);
236
  mi_assert_internal(array_equals(y, y_out, 16));
237
238
  mi_random_ctx_t r = {
239
    { 0x61707865, 0x3320646e, 0x79622d32, 0x6b206574,
240
      0x03020100, 0x07060504, 0x0b0a0908, 0x0f0e0d0c,
241
      0x13121110, 0x17161514, 0x1b1a1918, 0x1f1e1d1c,
242
      0x00000001, 0x09000000, 0x4a000000, 0x00000000 },
243
    {0},
244
    0
245
  };
246
  uint32_t r_out[16] = {
247
       0xe4e7f110, 0x15593bd1, 0x1fdd0f50, 0xc47120a3,
248
       0xc7f4d1c7, 0x0368c033, 0x9aaa2204, 0x4e6cd4c3,
249
       0x466482d2, 0x09aa9f07, 0x05d7c214, 0xa2028bd9,
250
       0xd19c12b5, 0xb94e16de, 0xe883d0cb, 0x4e3c50a2 };
251
  chacha_block(&r);
252
  mi_assert_internal(array_equals(r.output, r_out, 16));
253
}
254
*/