Coverage Report

Created: 2025-07-18 06:10

/src/cpython3/Python/dtoa.c
Line
Count
Source (jump to first uncovered line)
1
/****************************************************************
2
 *
3
 * The author of this software is David M. Gay.
4
 *
5
 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
6
 *
7
 * Permission to use, copy, modify, and distribute this software for any
8
 * purpose without fee is hereby granted, provided that this entire notice
9
 * is included in all copies of any software which is or includes a copy
10
 * or modification of this software and in all copies of the supporting
11
 * documentation for such software.
12
 *
13
 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
14
 * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
15
 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
16
 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
17
 *
18
 ***************************************************************/
19
20
/****************************************************************
21
 * This is dtoa.c by David M. Gay, downloaded from
22
 * http://www.netlib.org/fp/dtoa.c on April 15, 2009 and modified for
23
 * inclusion into the Python core by Mark E. T. Dickinson and Eric V. Smith.
24
 *
25
 * Please remember to check http://www.netlib.org/fp regularly (and especially
26
 * before any Python release) for bugfixes and updates.
27
 *
28
 * The major modifications from Gay's original code are as follows:
29
 *
30
 *  0. The original code has been specialized to Python's needs by removing
31
 *     many of the #ifdef'd sections.  In particular, code to support VAX and
32
 *     IBM floating-point formats, hex NaNs, hex floats, locale-aware
33
 *     treatment of the decimal point, and setting of the inexact flag have
34
 *     been removed.
35
 *
36
 *  1. We use PyMem_Malloc and PyMem_Free in place of malloc and free.
37
 *
38
 *  2. The public functions strtod, dtoa and freedtoa all now have
39
 *     a _Py_dg_ prefix.
40
 *
41
 *  3. Instead of assuming that PyMem_Malloc always succeeds, we thread
42
 *     PyMem_Malloc failures through the code.  The functions
43
 *
44
 *       Balloc, multadd, s2b, i2b, mult, pow5mult, lshift, diff, d2b
45
 *
46
 *     of return type *Bigint all return NULL to indicate a malloc failure.
47
 *     Similarly, rv_alloc and nrv_alloc (return type char *) return NULL on
48
 *     failure.  bigcomp now has return type int (it used to be void) and
49
 *     returns -1 on failure and 0 otherwise.  _Py_dg_dtoa returns NULL
50
 *     on failure.  _Py_dg_strtod indicates failure due to malloc failure
51
 *     by returning -1.0, setting errno=ENOMEM and *se to s00.
52
 *
53
 *  4. The static variable dtoa_result has been removed.  Callers of
54
 *     _Py_dg_dtoa are expected to call _Py_dg_freedtoa to free
55
 *     the memory allocated by _Py_dg_dtoa.
56
 *
57
 *  5. The code has been reformatted to better fit with Python's
58
 *     C style guide (PEP 7).
59
 *
60
 *  6. A bug in the memory allocation has been fixed: to avoid FREEing memory
61
 *     that hasn't been MALLOC'ed, private_mem should only be used when k <=
62
 *     Kmax.
63
 *
64
 *  7. _Py_dg_strtod has been modified so that it doesn't accept strings with
65
 *     leading whitespace.
66
 *
67
 *  8. A corner case where _Py_dg_dtoa didn't strip trailing zeros has been
68
 *     fixed. (bugs.python.org/issue40780)
69
 *
70
 ***************************************************************/
71
72
/* Please send bug reports for the original dtoa.c code to David M. Gay (dmg
73
 * at acm dot org, with " at " changed at "@" and " dot " changed to ".").
74
 * Please report bugs for this modified version using the Python issue tracker
75
 * as detailed at (https://devguide.python.org/triage/issue-tracker/). */
76
77
/* On a machine with IEEE extended-precision registers, it is
78
 * necessary to specify double-precision (53-bit) rounding precision
79
 * before invoking strtod or dtoa.  If the machine uses (the equivalent
80
 * of) Intel 80x87 arithmetic, the call
81
 *      _control87(PC_53, MCW_PC);
82
 * does this with many compilers.  Whether this or another call is
83
 * appropriate depends on the compiler; for this to work, it may be
84
 * necessary to #include "float.h" or another system-dependent header
85
 * file.
86
 */
87
88
/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
89
 *
90
 * This strtod returns a nearest machine number to the input decimal
91
 * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
92
 * broken by the IEEE round-even rule.  Otherwise ties are broken by
93
 * biased rounding (add half and chop).
94
 *
95
 * Inspired loosely by William D. Clinger's paper "How to Read Floating
96
 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
97
 *
98
 * Modifications:
99
 *
100
 *      1. We only require IEEE, IBM, or VAX double-precision
101
 *              arithmetic (not IEEE double-extended).
102
 *      2. We get by with floating-point arithmetic in a case that
103
 *              Clinger missed -- when we're computing d * 10^n
104
 *              for a small integer d and the integer n is not too
105
 *              much larger than 22 (the maximum integer k for which
106
 *              we can represent 10^k exactly), we may be able to
107
 *              compute (d*10^k) * 10^(e-k) with just one roundoff.
108
 *      3. Rather than a bit-at-a-time adjustment of the binary
109
 *              result in the hard case, we use floating-point
110
 *              arithmetic to determine the adjustment to within
111
 *              one bit; only in really hard cases do we need to
112
 *              compute a second residual.
113
 *      4. Because of 3., we don't need a large table of powers of 10
114
 *              for ten-to-e (just some small tables, e.g. of 10^k
115
 *              for 0 <= k <= 22).
116
 */
117
118
/* Linking of Python's #defines to Gay's #defines starts here. */
119
120
#include "Python.h"
121
#include "pycore_dtoa.h"          // _PY_SHORT_FLOAT_REPR
122
#include "pycore_interp_structs.h"// struct Bigint
123
#include "pycore_pystate.h"       // _PyInterpreterState_GET()
124
#include <stdlib.h>               // exit()
125
126
127
/* if _PY_SHORT_FLOAT_REPR == 0, then don't even try to compile
128
   the following code */
129
#if _PY_SHORT_FLOAT_REPR == 1
130
131
#include "float.h"
132
133
59
#define MALLOC PyMem_Malloc
134
0
#define FREE PyMem_Free
135
136
/* This code should also work for ARM mixed-endian format on little-endian
137
   machines, where doubles have byte order 45670123 (in increasing address
138
   order, 0 being the least significant byte). */
139
#ifdef DOUBLE_IS_LITTLE_ENDIAN_IEEE754
140
#  define IEEE_8087
141
#endif
142
#if defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) ||  \
143
  defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)
144
#  define IEEE_MC68k
145
#endif
146
#if defined(IEEE_8087) + defined(IEEE_MC68k) != 1
147
#error "Exactly one of IEEE_8087 or IEEE_MC68k should be defined."
148
#endif
149
150
/* The code below assumes that the endianness of integers matches the
151
   endianness of the two 32-bit words of a double.  Check this. */
152
#if defined(WORDS_BIGENDIAN) && (defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) || \
153
                                 defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754))
154
#error "doubles and ints have incompatible endianness"
155
#endif
156
157
#if !defined(WORDS_BIGENDIAN) && defined(DOUBLE_IS_BIG_ENDIAN_IEEE754)
158
#error "doubles and ints have incompatible endianness"
159
#endif
160
161
162
typedef uint32_t ULong;
163
typedef int32_t Long;
164
typedef uint64_t ULLong;
165
166
#undef DEBUG
167
#ifdef Py_DEBUG
168
#define DEBUG
169
#endif
170
171
/* End Python #define linking */
172
173
#ifdef DEBUG
174
#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
175
#endif
176
177
typedef union { double d; ULong L[2]; } U;
178
179
#ifdef IEEE_8087
180
1.65M
#define word0(x) (x)->L[1]
181
878k
#define word1(x) (x)->L[0]
182
#else
183
#define word0(x) (x)->L[0]
184
#define word1(x) (x)->L[1]
185
#endif
186
3.53M
#define dval(x) (x)->d
187
188
#ifndef STRTOD_DIGLIM
189
135k
#define STRTOD_DIGLIM 40
190
#endif
191
192
/* maximum permitted exponent value for strtod; exponents larger than
193
   MAX_ABS_EXP in absolute value get truncated to +-MAX_ABS_EXP.  MAX_ABS_EXP
194
   should fit into an int. */
195
#ifndef MAX_ABS_EXP
196
153k
#define MAX_ABS_EXP 1100000000U
197
#endif
198
/* Bound on length of pieces of input strings in _Py_dg_strtod; specifically,
199
   this is used to bound the total number of digits ignoring leading zeros and
200
   the number of digits that follow the decimal point.  Ideally, MAX_DIGITS
201
   should satisfy MAX_DIGITS + 400 < MAX_ABS_EXP; that ensures that the
202
   exponent clipping in _Py_dg_strtod can't affect the value of the output. */
203
#ifndef MAX_DIGITS
204
1.36M
#define MAX_DIGITS 1000000000U
205
#endif
206
207
/* Guard against trying to use the above values on unusual platforms with ints
208
 * of width less than 32 bits. */
209
#if MAX_ABS_EXP > INT_MAX
210
#error "MAX_ABS_EXP should fit in an int"
211
#endif
212
#if MAX_DIGITS > INT_MAX
213
#error "MAX_DIGITS should fit in an int"
214
#endif
215
216
/* The following definition of Storeinc is appropriate for MIPS processors.
217
 * An alternative that might be better on some machines is
218
 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
219
 */
220
#if defined(IEEE_8087)
221
#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b,  \
222
                         ((unsigned short *)a)[0] = (unsigned short)c, a++)
223
#else
224
#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b,  \
225
                         ((unsigned short *)a)[1] = (unsigned short)c, a++)
226
#endif
227
228
/* #define P DBL_MANT_DIG */
229
/* Ten_pmax = floor(P*log(2)/log(5)) */
230
/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
231
/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
232
/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
233
234
285k
#define Exp_shift  20
235
76.6k
#define Exp_shift1 20
236
764k
#define Exp_msk1    0x100000
237
#define Exp_msk11   0x100000
238
718k
#define Exp_mask  0x7ff00000
239
510k
#define P 53
240
#define Nbits 53
241
264k
#define Bias 1023
242
#define Emax 1023
243
#define Emin (-1022)
244
506k
#define Etiny (-1074)  /* smallest denormal is 2**Etiny */
245
180k
#define Exp_1  0x3ff00000
246
33.7k
#define Exp_11 0x3ff00000
247
378k
#define Ebits 11
248
249k
#define Frac_mask  0xfffff
249
33.8k
#define Frac_mask1 0xfffff
250
290k
#define Ten_pmax 22
251
0
#define Bletch 0x10
252
111k
#define Bndry_mask  0xfffff
253
7.33k
#define Bndry_mask1 0xfffff
254
42.3k
#define Sign_bit 0x80000000
255
9.11k
#define Log2P 1
256
#define Tiny0 0
257
19.9k
#define Tiny1 1
258
38.3k
#define Quick_max 14
259
21.4k
#define Int_max 14
260
261
#ifndef Flt_Rounds
262
#ifdef FLT_ROUNDS
263
383k
#define Flt_Rounds FLT_ROUNDS
264
#else
265
#define Flt_Rounds 1
266
#endif
267
#endif /*Flt_Rounds*/
268
269
#define Rounding Flt_Rounds
270
271
113
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
272
74
#define Big1 0xffffffff
273
274
/* Bits of the representation of positive infinity. */
275
276
#define POSINF_WORD0 0x7ff00000
277
#define POSINF_WORD1 0
278
279
/* struct BCinfo is used to pass information from _Py_dg_strtod to bigcomp */
280
281
typedef struct BCinfo BCinfo;
282
struct
283
BCinfo {
284
    int e0, nd, nd0, scale;
285
};
286
287
20.2M
#define FFFFFFFF 0xffffffffUL
288
289
/* struct Bigint is used to represent arbitrary-precision integers.  These
290
   integers are stored in sign-magnitude format, with the magnitude stored as
291
   an array of base 2**32 digits.  Bigints are always normalized: if x is a
292
   Bigint then x->wds >= 1, and either x->wds == 1 or x[wds-1] is nonzero.
293
294
   The Bigint fields are as follows:
295
296
     - next is a header used by Balloc and Bfree to keep track of lists
297
         of freed Bigints;  it's also used for the linked list of
298
         powers of 5 of the form 5**2**i used by pow5mult.
299
     - k indicates which pool this Bigint was allocated from
300
     - maxwds is the maximum number of words space was allocated for
301
       (usually maxwds == 2**k)
302
     - sign is 1 for negative Bigints, 0 for positive.  The sign is unused
303
       (ignored on inputs, set to 0 on outputs) in almost all operations
304
       involving Bigints: a notable exception is the diff function, which
305
       ignores signs on inputs but sets the sign of the output correctly.
306
     - wds is the actual number of significant words
307
     - x contains the vector of words (digits) for this Bigint, from least
308
       significant (x[0]) to most significant (x[wds-1]).
309
*/
310
311
// struct Bigint is defined in pycore_dtoa.h.
312
typedef struct Bigint Bigint;
313
314
#if !defined(Py_GIL_DISABLED) && !defined(Py_USING_MEMORY_DEBUGGER)
315
316
/* Memory management: memory is allocated from, and returned to, Kmax+1 pools
317
   of memory, where pool k (0 <= k <= Kmax) is for Bigints b with b->maxwds ==
318
   1 << k.  These pools are maintained as linked lists, with freelist[k]
319
   pointing to the head of the list for pool k.
320
321
   On allocation, if there's no free slot in the appropriate pool, MALLOC is
322
   called to get more memory.  This memory is not returned to the system until
323
   Python quits.  There's also a private memory pool that's allocated from
324
   in preference to using MALLOC.
325
326
   For Bigints with more than (1 << Kmax) digits (which implies at least 1233
327
   decimal digits), memory is directly allocated using MALLOC, and freed using
328
   FREE.
329
330
   XXX: it would be easy to bypass this memory-management system and
331
   translate each call to Balloc into a call to PyMem_Malloc, and each
332
   Bfree to PyMem_Free.  Investigate whether this has any significant
333
   performance on impact. */
334
335
8.72M
#define freelist interp->dtoa.freelist
336
295
#define private_mem interp->dtoa.preallocated
337
767
#define pmem_next interp->dtoa.preallocated_next
338
339
/* Allocate space for a Bigint with up to 1<<k digits */
340
341
static Bigint *
342
Balloc(int k)
343
2.18M
{
344
2.18M
    int x;
345
2.18M
    Bigint *rv;
346
2.18M
    unsigned int len;
347
2.18M
    PyInterpreterState *interp = _PyInterpreterState_GET();
348
349
2.18M
    if (k <= Bigint_Kmax && (rv = freelist[k]))
350
2.18M
        freelist[k] = rv->next;
351
295
    else {
352
295
        x = 1 << k;
353
295
        len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
354
295
            /sizeof(double);
355
295
        if (k <= Bigint_Kmax &&
356
295
            pmem_next - private_mem + len <= (Py_ssize_t)Bigint_PREALLOC_SIZE
357
295
        ) {
358
236
            rv = (Bigint*)pmem_next;
359
236
            pmem_next += len;
360
236
        }
361
59
        else {
362
59
            rv = (Bigint*)MALLOC(len*sizeof(double));
363
59
            if (rv == NULL)
364
0
                return NULL;
365
59
        }
366
295
        rv->k = k;
367
295
        rv->maxwds = x;
368
295
    }
369
2.18M
    rv->sign = rv->wds = 0;
370
2.18M
    return rv;
371
2.18M
}
372
373
/* Free a Bigint allocated with Balloc */
374
375
static void
376
Bfree(Bigint *v)
377
3.79M
{
378
3.79M
    if (v) {
379
2.18M
        if (v->k > Bigint_Kmax)
380
0
            FREE((void*)v);
381
2.18M
        else {
382
2.18M
            PyInterpreterState *interp = _PyInterpreterState_GET();
383
2.18M
            v->next = freelist[v->k];
384
2.18M
            freelist[v->k] = v;
385
2.18M
        }
386
2.18M
    }
387
3.79M
}
388
389
#undef pmem_next
390
#undef private_mem
391
#undef freelist
392
393
#else
394
395
/* Alternative versions of Balloc and Bfree that use PyMem_Malloc and
396
   PyMem_Free directly in place of the custom memory allocation scheme above.
397
   These are provided for the benefit of memory debugging tools like
398
   Valgrind. */
399
400
/* Allocate space for a Bigint with up to 1<<k digits */
401
402
static Bigint *
403
Balloc(int k)
404
{
405
    int x;
406
    Bigint *rv;
407
    unsigned int len;
408
409
    x = 1 << k;
410
    len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
411
        /sizeof(double);
412
413
    rv = (Bigint*)MALLOC(len*sizeof(double));
414
    if (rv == NULL)
415
        return NULL;
416
417
    rv->k = k;
418
    rv->maxwds = x;
419
    rv->sign = rv->wds = 0;
420
    return rv;
421
}
422
423
/* Free a Bigint allocated with Balloc */
424
425
static void
426
Bfree(Bigint *v)
427
{
428
    if (v) {
429
        FREE((void*)v);
430
    }
431
}
432
433
#endif /* !defined(Py_GIL_DISABLED) && !defined(Py_USING_MEMORY_DEBUGGER) */
434
435
190k
#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign,   \
436
190k
                          y->wds*sizeof(Long) + 2*sizeof(int))
437
438
/* Multiply a Bigint b by m and add a.  Either modifies b in place and returns
439
   a pointer to the modified b, or Bfrees b and returns a pointer to a copy.
440
   On failure, return NULL.  In this case, b will have been already freed. */
441
442
static Bigint *
443
multadd(Bigint *b, int m, int a)       /* multiply by m and add a */
444
1.72M
{
445
1.72M
    int i, wds;
446
1.72M
    ULong *x;
447
1.72M
    ULLong carry, y;
448
1.72M
    Bigint *b1;
449
450
1.72M
    wds = b->wds;
451
1.72M
    x = b->x;
452
1.72M
    i = 0;
453
1.72M
    carry = a;
454
5.55M
    do {
455
5.55M
        y = *x * (ULLong)m + carry;
456
5.55M
        carry = y >> 32;
457
5.55M
        *x++ = (ULong)(y & FFFFFFFF);
458
5.55M
    }
459
5.55M
    while(++i < wds);
460
1.72M
    if (carry) {
461
144k
        if (wds >= b->maxwds) {
462
2.24k
            b1 = Balloc(b->k+1);
463
2.24k
            if (b1 == NULL){
464
0
                Bfree(b);
465
0
                return NULL;
466
0
            }
467
2.24k
            Bcopy(b1, b);
468
2.24k
            Bfree(b);
469
2.24k
            b = b1;
470
2.24k
        }
471
144k
        b->x[wds++] = (ULong)carry;
472
144k
        b->wds = wds;
473
144k
    }
474
1.72M
    return b;
475
1.72M
}
476
477
/* convert a string s containing nd decimal digits (possibly containing a
478
   decimal separator at position nd0, which is ignored) to a Bigint.  This
479
   function carries on where the parsing code in _Py_dg_strtod leaves off: on
480
   entry, y9 contains the result of converting the first 9 digits.  Returns
481
   NULL on failure. */
482
483
static Bigint *
484
s2b(const char *s, int nd0, int nd, ULong y9)
485
135k
{
486
135k
    Bigint *b;
487
135k
    int i, k;
488
135k
    Long x, y;
489
490
135k
    x = (nd + 8) / 9;
491
261k
    for(k = 0, y = 1; x > y; y <<= 1, k++) ;
492
135k
    b = Balloc(k);
493
135k
    if (b == NULL)
494
0
        return NULL;
495
135k
    b->x[0] = y9;
496
135k
    b->wds = 1;
497
498
135k
    if (nd <= 9)
499
46.9k
      return b;
500
501
88.5k
    s += 9;
502
847k
    for (i = 9; i < nd0; i++) {
503
758k
        b = multadd(b, 10, *s++ - '0');
504
758k
        if (b == NULL)
505
0
            return NULL;
506
758k
    }
507
88.5k
    s++;
508
323k
    for(; i < nd; i++) {
509
235k
        b = multadd(b, 10, *s++ - '0');
510
235k
        if (b == NULL)
511
0
            return NULL;
512
235k
    }
513
88.5k
    return b;
514
88.5k
}
515
516
/* count leading 0 bits in the 32-bit integer x. */
517
518
static int
519
hi0bits(ULong x)
520
215k
{
521
215k
    int k = 0;
522
523
215k
    if (!(x & 0xffff0000)) {
524
132k
        k = 16;
525
132k
        x <<= 16;
526
132k
    }
527
215k
    if (!(x & 0xff000000)) {
528
126k
        k += 8;
529
126k
        x <<= 8;
530
126k
    }
531
215k
    if (!(x & 0xf0000000)) {
532
135k
        k += 4;
533
135k
        x <<= 4;
534
135k
    }
535
215k
    if (!(x & 0xc0000000)) {
536
113k
        k += 2;
537
113k
        x <<= 2;
538
113k
    }
539
215k
    if (!(x & 0x80000000)) {
540
138k
        k++;
541
138k
        if (!(x & 0x40000000))
542
0
            return 32;
543
138k
    }
544
215k
    return k;
545
215k
}
546
547
/* count trailing 0 bits in the 32-bit integer y, and shift y right by that
548
   number of bits. */
549
550
static int
551
lo0bits(ULong *y)
552
38.3k
{
553
38.3k
    int k;
554
38.3k
    ULong x = *y;
555
556
38.3k
    if (x & 7) {
557
21.4k
        if (x & 1)
558
8.48k
            return 0;
559
12.9k
        if (x & 2) {
560
8.74k
            *y = x >> 1;
561
8.74k
            return 1;
562
8.74k
        }
563
4.19k
        *y = x >> 2;
564
4.19k
        return 2;
565
12.9k
    }
566
16.8k
    k = 0;
567
16.8k
    if (!(x & 0xffff)) {
568
9.63k
        k = 16;
569
9.63k
        x >>= 16;
570
9.63k
    }
571
16.8k
    if (!(x & 0xff)) {
572
3.26k
        k += 8;
573
3.26k
        x >>= 8;
574
3.26k
    }
575
16.8k
    if (!(x & 0xf)) {
576
9.02k
        k += 4;
577
9.02k
        x >>= 4;
578
9.02k
    }
579
16.8k
    if (!(x & 0x3)) {
580
7.31k
        k += 2;
581
7.31k
        x >>= 2;
582
7.31k
    }
583
16.8k
    if (!(x & 1)) {
584
8.58k
        k++;
585
8.58k
        x >>= 1;
586
8.58k
        if (!x)
587
0
            return 32;
588
8.58k
    }
589
16.8k
    *y = x;
590
16.8k
    return k;
591
16.8k
}
592
593
/* convert a small nonnegative integer to a Bigint */
594
595
static Bigint *
596
i2b(int i)
597
267k
{
598
267k
    Bigint *b;
599
600
267k
    b = Balloc(1);
601
267k
    if (b == NULL)
602
0
        return NULL;
603
267k
    b->x[0] = i;
604
267k
    b->wds = 1;
605
267k
    return b;
606
267k
}
607
608
/* multiply two Bigints.  Returns a new Bigint, or NULL on failure.  Ignores
609
   the signs of a and b. */
610
611
static Bigint *
612
mult(Bigint *a, Bigint *b)
613
494k
{
614
494k
    Bigint *c;
615
494k
    int k, wa, wb, wc;
616
494k
    ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
617
494k
    ULong y;
618
494k
    ULLong carry, z;
619
620
494k
    if ((!a->x[0] && a->wds == 1) || (!b->x[0] && b->wds == 1)) {
621
2.89k
        c = Balloc(0);
622
2.89k
        if (c == NULL)
623
0
            return NULL;
624
2.89k
        c->wds = 1;
625
2.89k
        c->x[0] = 0;
626
2.89k
        return c;
627
2.89k
    }
628
629
491k
    if (a->wds < b->wds) {
630
238k
        c = a;
631
238k
        a = b;
632
238k
        b = c;
633
238k
    }
634
491k
    k = a->k;
635
491k
    wa = a->wds;
636
491k
    wb = b->wds;
637
491k
    wc = wa + wb;
638
491k
    if (wc > a->maxwds)
639
214k
        k++;
640
491k
    c = Balloc(k);
641
491k
    if (c == NULL)
642
0
        return NULL;
643
4.29M
    for(x = c->x, xa = x + wc; x < xa; x++)
644
3.80M
        *x = 0;
645
491k
    xa = a->x;
646
491k
    xae = xa + wa;
647
491k
    xb = b->x;
648
491k
    xbe = xb + wb;
649
491k
    xc0 = c->x;
650
1.43M
    for(; xb < xbe; xc0++) {
651
939k
        if ((y = *xb++)) {
652
931k
            x = xa;
653
931k
            xc = xc0;
654
931k
            carry = 0;
655
8.14M
            do {
656
8.14M
                z = *x++ * (ULLong)y + *xc + carry;
657
8.14M
                carry = z >> 32;
658
8.14M
                *xc++ = (ULong)(z & FFFFFFFF);
659
8.14M
            }
660
8.14M
            while(x < xae);
661
931k
            *xc = (ULong)carry;
662
931k
        }
663
939k
    }
664
841k
    for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
665
491k
    c->wds = wc;
666
491k
    return c;
667
491k
}
668
669
#ifndef Py_USING_MEMORY_DEBUGGER
670
671
/* multiply the Bigint b by 5**k.  Returns a pointer to the result, or NULL on
672
   failure; if the returned pointer is distinct from b then the original
673
   Bigint b will have been Bfree'd.   Ignores the sign of b. */
674
675
static Bigint *
676
pow5mult(Bigint *b, int k)
677
184k
{
678
184k
    Bigint *b1, *p5, **p5s;
679
184k
    int i;
680
184k
    static const int p05[3] = { 5, 25, 125 };
681
682
    // For double-to-string conversion, the maximum value of k is limited by
683
    // DBL_MAX_10_EXP (308), the maximum decimal base-10 exponent for binary64.
684
    // For string-to-double conversion, the extreme case is constrained by our
685
    // hardcoded exponent limit before we underflow of -512, adjusted by
686
    // STRTOD_DIGLIM-DBL_DIG-1, giving a maximum of k=535.
687
184k
    assert(0 <= k && k < 1024);
688
689
184k
    if ((i = k & 3)) {
690
150k
        b = multadd(b, p05[i-1], 0);
691
150k
        if (b == NULL)
692
0
            return NULL;
693
150k
    }
694
695
184k
    if (!(k >>= 2))
696
11.0k
        return b;
697
172k
    PyInterpreterState *interp = _PyInterpreterState_GET();
698
172k
    p5s = interp->dtoa.p5s;
699
797k
    for(;;) {
700
797k
        assert(p5s != interp->dtoa.p5s + Bigint_Pow5size);
701
797k
        p5 = *p5s;
702
797k
        p5s++;
703
797k
        if (k & 1) {
704
408k
            b1 = mult(b, p5);
705
408k
            Bfree(b);
706
408k
            b = b1;
707
408k
            if (b == NULL)
708
0
                return NULL;
709
408k
        }
710
797k
        if (!(k >>= 1))
711
172k
            break;
712
797k
    }
713
172k
    return b;
714
172k
}
715
716
#else
717
718
/* Version of pow5mult that doesn't cache powers of 5. Provided for
719
   the benefit of memory debugging tools like Valgrind. */
720
721
static Bigint *
722
pow5mult(Bigint *b, int k)
723
{
724
    Bigint *b1, *p5, *p51;
725
    int i;
726
    static const int p05[3] = { 5, 25, 125 };
727
728
    if ((i = k & 3)) {
729
        b = multadd(b, p05[i-1], 0);
730
        if (b == NULL)
731
            return NULL;
732
    }
733
734
    if (!(k >>= 2))
735
        return b;
736
    p5 = i2b(625);
737
    if (p5 == NULL) {
738
        Bfree(b);
739
        return NULL;
740
    }
741
742
    for(;;) {
743
        if (k & 1) {
744
            b1 = mult(b, p5);
745
            Bfree(b);
746
            b = b1;
747
            if (b == NULL) {
748
                Bfree(p5);
749
                return NULL;
750
            }
751
        }
752
        if (!(k >>= 1))
753
            break;
754
        p51 = mult(p5, p5);
755
        Bfree(p5);
756
        p5 = p51;
757
        if (p5 == NULL) {
758
            Bfree(b);
759
            return NULL;
760
        }
761
    }
762
    Bfree(p5);
763
    return b;
764
}
765
766
#endif /* Py_USING_MEMORY_DEBUGGER */
767
768
/* shift a Bigint b left by k bits.  Return a pointer to the shifted result,
769
   or NULL on failure.  If the returned pointer is distinct from b then the
770
   original b will have been Bfree'd.   Ignores the sign of b. */
771
772
static Bigint *
773
lshift(Bigint *b, int k)
774
508k
{
775
508k
    int i, k1, n, n1;
776
508k
    Bigint *b1;
777
508k
    ULong *x, *x1, *xe, z;
778
779
508k
    if (!k || (!b->x[0] && b->wds == 1))
780
2.94k
        return b;
781
782
505k
    n = k >> 5;
783
505k
    k1 = b->k;
784
505k
    n1 = n + b->wds + 1;
785
1.12M
    for(i = b->maxwds; n1 > i; i <<= 1)
786
622k
        k1++;
787
505k
    b1 = Balloc(k1);
788
505k
    if (b1 == NULL) {
789
0
        Bfree(b);
790
0
        return NULL;
791
0
    }
792
505k
    x1 = b1->x;
793
2.32M
    for(i = 0; i < n; i++)
794
1.81M
        *x1++ = 0;
795
505k
    x = b->x;
796
505k
    xe = x + b->wds;
797
505k
    if (k &= 0x1f) {
798
499k
        k1 = 32 - k;
799
499k
        z = 0;
800
2.02M
        do {
801
2.02M
            *x1++ = *x << k | z;
802
2.02M
            z = *x++ >> k1;
803
2.02M
        }
804
2.02M
        while(x < xe);
805
499k
        if ((*x1 = z))
806
82.6k
            ++n1;
807
499k
    }
808
5.45k
    else do
809
21.5k
             *x1++ = *x++;
810
21.5k
        while(x < xe);
811
505k
    b1->wds = n1 - 1;
812
505k
    Bfree(b);
813
505k
    return b1;
814
505k
}
815
816
/* Do a three-way compare of a and b, returning -1 if a < b, 0 if a == b and
817
   1 if a > b.  Ignores signs of a and b. */
818
819
static int
820
cmp(Bigint *a, Bigint *b)
821
1.25M
{
822
1.25M
    ULong *xa, *xa0, *xb, *xb0;
823
1.25M
    int i, j;
824
825
1.25M
    i = a->wds;
826
1.25M
    j = b->wds;
827
#ifdef DEBUG
828
    if (i > 1 && !a->x[i-1])
829
        Bug("cmp called with a->x[a->wds-1] == 0");
830
    if (j > 1 && !b->x[j-1])
831
        Bug("cmp called with b->x[b->wds-1] == 0");
832
#endif
833
1.25M
    if (i -= j)
834
163k
        return i;
835
1.09M
    xa0 = a->x;
836
1.09M
    xa = xa0 + j;
837
1.09M
    xb0 = b->x;
838
1.09M
    xb = xb0 + j;
839
1.34M
    for(;;) {
840
1.34M
        if (*--xa != *--xb)
841
1.06M
            return *xa < *xb ? -1 : 1;
842
278k
        if (xa <= xa0)
843
28.3k
            break;
844
278k
    }
845
28.3k
    return 0;
846
1.09M
}
847
848
/* Take the difference of Bigints a and b, returning a new Bigint.  Returns
849
   NULL on failure.  The signs of a and b are ignored, but the sign of the
850
   result is set appropriately. */
851
852
static Bigint *
853
diff(Bigint *a, Bigint *b)
854
296k
{
855
296k
    Bigint *c;
856
296k
    int i, wa, wb;
857
296k
    ULong *xa, *xae, *xb, *xbe, *xc;
858
296k
    ULLong borrow, y;
859
860
296k
    i = cmp(a,b);
861
296k
    if (!i) {
862
3.99k
        c = Balloc(0);
863
3.99k
        if (c == NULL)
864
0
            return NULL;
865
3.99k
        c->wds = 1;
866
3.99k
        c->x[0] = 0;
867
3.99k
        return c;
868
3.99k
    }
869
292k
    if (i < 0) {
870
105k
        c = a;
871
105k
        a = b;
872
105k
        b = c;
873
105k
        i = 1;
874
105k
    }
875
187k
    else
876
187k
        i = 0;
877
292k
    c = Balloc(a->k);
878
292k
    if (c == NULL)
879
0
        return NULL;
880
292k
    c->sign = i;
881
292k
    wa = a->wds;
882
292k
    xa = a->x;
883
292k
    xae = xa + wa;
884
292k
    wb = b->wds;
885
292k
    xb = b->x;
886
292k
    xbe = xb + wb;
887
292k
    xc = c->x;
888
292k
    borrow = 0;
889
2.11M
    do {
890
2.11M
        y = (ULLong)*xa++ - *xb++ - borrow;
891
2.11M
        borrow = y >> 32 & (ULong)1;
892
2.11M
        *xc++ = (ULong)(y & FFFFFFFF);
893
2.11M
    }
894
2.11M
    while(xb < xbe);
895
441k
    while(xa < xae) {
896
149k
        y = *xa++ - borrow;
897
149k
        borrow = y >> 32 & (ULong)1;
898
149k
        *xc++ = (ULong)(y & FFFFFFFF);
899
149k
    }
900
544k
    while(!*--xc)
901
251k
        wa--;
902
292k
    c->wds = wa;
903
292k
    return c;
904
292k
}
905
906
/* Given a positive normal double x, return the difference between x and the
907
   next double up.  Doesn't give correct results for subnormals. */
908
909
static double
910
ulp(U *x)
911
101k
{
912
101k
    Long L;
913
101k
    U u;
914
915
101k
    L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
916
101k
    word0(&u) = L;
917
101k
    word1(&u) = 0;
918
101k
    return dval(&u);
919
101k
}
920
921
/* Convert a Bigint to a double plus an exponent */
922
923
static double
924
b2d(Bigint *a, int *e)
925
157k
{
926
157k
    ULong *xa, *xa0, w, y, z;
927
157k
    int k;
928
157k
    U d;
929
930
157k
    xa0 = a->x;
931
157k
    xa = xa0 + a->wds;
932
157k
    y = *--xa;
933
#ifdef DEBUG
934
    if (!y) Bug("zero y in b2d");
935
#endif
936
157k
    k = hi0bits(y);
937
157k
    *e = 32 - k;
938
157k
    if (k < Ebits) {
939
31.5k
        word0(&d) = Exp_1 | y >> (Ebits - k);
940
31.5k
        w = xa > xa0 ? *--xa : 0;
941
31.5k
        word1(&d) = y << ((32-Ebits) + k) | w >> (Ebits - k);
942
31.5k
        goto ret_d;
943
31.5k
    }
944
126k
    z = xa > xa0 ? *--xa : 0;
945
126k
    if (k -= Ebits) {
946
105k
        word0(&d) = Exp_1 | y << k | z >> (32 - k);
947
105k
        y = xa > xa0 ? *--xa : 0;
948
105k
        word1(&d) = z << k | y >> (32 - k);
949
105k
    }
950
20.2k
    else {
951
20.2k
        word0(&d) = Exp_1 | y;
952
20.2k
        word1(&d) = z;
953
20.2k
    }
954
157k
  ret_d:
955
157k
    return dval(&d);
956
126k
}
957
958
/* Convert a scaled double to a Bigint plus an exponent.  Similar to d2b,
959
   except that it accepts the scale parameter used in _Py_dg_strtod (which
960
   should be either 0 or 2*P), and the normalization for the return value is
961
   different (see below).  On input, d should be finite and nonnegative, and d
962
   / 2**scale should be exactly representable as an IEEE 754 double.
963
964
   Returns a Bigint b and an integer e such that
965
966
     dval(d) / 2**scale = b * 2**e.
967
968
   Unlike d2b, b is not necessarily odd: b and e are normalized so
969
   that either 2**(P-1) <= b < 2**P and e >= Etiny, or b < 2**P
970
   and e == Etiny.  This applies equally to an input of 0.0: in that
971
   case the return values are b = 0 and e = Etiny.
972
973
   The above normalization ensures that for all possible inputs d,
974
   2**e gives ulp(d/2**scale).
975
976
   Returns NULL on failure.
977
*/
978
979
static Bigint *
980
sd2b(U *d, int scale, int *e)
981
211k
{
982
211k
    Bigint *b;
983
984
211k
    b = Balloc(1);
985
211k
    if (b == NULL)
986
0
        return NULL;
987
988
    /* First construct b and e assuming that scale == 0. */
989
211k
    b->wds = 2;
990
211k
    b->x[0] = word1(d);
991
211k
    b->x[1] = word0(d) & Frac_mask;
992
211k
    *e = Etiny - 1 + (int)((word0(d) & Exp_mask) >> Exp_shift);
993
211k
    if (*e < Etiny)
994
2.94k
        *e = Etiny;
995
208k
    else
996
208k
        b->x[1] |= Exp_msk1;
997
998
    /* Now adjust for scale, provided that b != 0. */
999
211k
    if (scale && (b->x[0] || b->x[1])) {
1000
32.0k
        *e -= scale;
1001
32.0k
        if (*e < Etiny) {
1002
24.5k
            scale = Etiny - *e;
1003
24.5k
            *e = Etiny;
1004
            /* We can't shift more than P-1 bits without shifting out a 1. */
1005
24.5k
            assert(0 < scale && scale <= P - 1);
1006
24.5k
            if (scale >= 32) {
1007
                /* The bits shifted out should all be zero. */
1008
16.7k
                assert(b->x[0] == 0);
1009
16.7k
                b->x[0] = b->x[1];
1010
16.7k
                b->x[1] = 0;
1011
16.7k
                scale -= 32;
1012
16.7k
            }
1013
24.5k
            if (scale) {
1014
                /* The bits shifted out should all be zero. */
1015
23.8k
                assert(b->x[0] << (32 - scale) == 0);
1016
23.8k
                b->x[0] = (b->x[0] >> scale) | (b->x[1] << (32 - scale));
1017
23.8k
                b->x[1] >>= scale;
1018
23.8k
            }
1019
24.5k
        }
1020
32.0k
    }
1021
    /* Ensure b is normalized. */
1022
211k
    if (!b->x[1])
1023
21.5k
        b->wds = 1;
1024
1025
211k
    return b;
1026
211k
}
1027
1028
/* Convert a double to a Bigint plus an exponent.  Return NULL on failure.
1029
1030
   Given a finite nonzero double d, return an odd Bigint b and exponent *e
1031
   such that fabs(d) = b * 2**e.  On return, *bbits gives the number of
1032
   significant bits of b; that is, 2**(*bbits-1) <= b < 2**(*bbits).
1033
1034
   If d is zero, then b == 0, *e == -1010, *bbits = 0.
1035
 */
1036
1037
static Bigint *
1038
d2b(U *d, int *e, int *bits)
1039
38.3k
{
1040
38.3k
    Bigint *b;
1041
38.3k
    int de, k;
1042
38.3k
    ULong *x, y, z;
1043
38.3k
    int i;
1044
1045
38.3k
    b = Balloc(1);
1046
38.3k
    if (b == NULL)
1047
0
        return NULL;
1048
38.3k
    x = b->x;
1049
1050
38.3k
    z = word0(d) & Frac_mask;
1051
38.3k
    word0(d) &= 0x7fffffff;   /* clear sign bit, which we ignore */
1052
38.3k
    if ((de = (int)(word0(d) >> Exp_shift)))
1053
33.7k
        z |= Exp_msk1;
1054
38.3k
    if ((y = word1(d))) {
1055
27.9k
        if ((k = lo0bits(&y))) {
1056
19.6k
            x[0] = y | z << (32 - k);
1057
19.6k
            z >>= k;
1058
19.6k
        }
1059
8.25k
        else
1060
8.25k
            x[0] = y;
1061
27.9k
        i =
1062
27.9k
            b->wds = (x[1] = z) ? 2 : 1;
1063
27.9k
    }
1064
10.4k
    else {
1065
10.4k
        k = lo0bits(&z);
1066
10.4k
        x[0] = z;
1067
10.4k
        i =
1068
10.4k
            b->wds = 1;
1069
10.4k
        k += 32;
1070
10.4k
    }
1071
38.3k
    if (de) {
1072
33.7k
        *e = de - Bias - (P-1) + k;
1073
33.7k
        *bits = P - k;
1074
33.7k
    }
1075
4.59k
    else {
1076
4.59k
        *e = de - Bias - (P-1) + 1 + k;
1077
4.59k
        *bits = 32*i - hi0bits(x[i-1]);
1078
4.59k
    }
1079
38.3k
    return b;
1080
38.3k
}
1081
1082
/* Compute the ratio of two Bigints, as a double.  The result may have an
1083
   error of up to 2.5 ulps. */
1084
1085
static double
1086
ratio(Bigint *a, Bigint *b)
1087
78.8k
{
1088
78.8k
    U da, db;
1089
78.8k
    int k, ka, kb;
1090
1091
78.8k
    dval(&da) = b2d(a, &ka);
1092
78.8k
    dval(&db) = b2d(b, &kb);
1093
78.8k
    k = ka - kb + 32*(a->wds - b->wds);
1094
78.8k
    if (k > 0)
1095
53.9k
        word0(&da) += k*Exp_msk1;
1096
24.9k
    else {
1097
24.9k
        k = -k;
1098
24.9k
        word0(&db) += k*Exp_msk1;
1099
24.9k
    }
1100
78.8k
    return dval(&da) / dval(&db);
1101
78.8k
}
1102
1103
static const double
1104
tens[] = {
1105
    1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1106
    1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1107
    1e20, 1e21, 1e22
1108
};
1109
1110
static const double
1111
bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1112
static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
1113
                                   9007199254740992.*9007199254740992.e-256
1114
                                   /* = 2^106 * 1e-256 */
1115
};
1116
/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
1117
/* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
1118
37.8k
#define Scale_Bit 0x10
1119
46.8k
#define n_bigtens 5
1120
1121
#define ULbits 32
1122
#define kshift 5
1123
53.0k
#define kmask 31
1124
1125
1126
static int
1127
dshift(Bigint *b, int p2)
1128
53.0k
{
1129
53.0k
    int rv = hi0bits(b->x[b->wds-1]) - 4;
1130
53.0k
    if (p2 > 0)
1131
27.6k
        rv -= p2;
1132
53.0k
    return rv & kmask;
1133
53.0k
}
1134
1135
/* special case of Bigint division.  The quotient is always in the range 0 <=
1136
   quotient < 10, and on entry the divisor S is normalized so that its top 4
1137
   bits (28--31) are zero and bit 27 is set. */
1138
1139
static int
1140
quorem(Bigint *b, Bigint *S)
1141
516k
{
1142
516k
    int n;
1143
516k
    ULong *bx, *bxe, q, *sx, *sxe;
1144
516k
    ULLong borrow, carry, y, ys;
1145
1146
516k
    n = S->wds;
1147
#ifdef DEBUG
1148
    /*debug*/ if (b->wds > n)
1149
        /*debug*/       Bug("oversize b in quorem");
1150
#endif
1151
516k
    if (b->wds < n)
1152
15.3k
        return 0;
1153
501k
    sx = S->x;
1154
501k
    sxe = sx + --n;
1155
501k
    bx = b->x;
1156
501k
    bxe = bx + n;
1157
501k
    q = *bxe / (*sxe + 1);      /* ensure q <= true quotient */
1158
#ifdef DEBUG
1159
    /*debug*/ if (q > 9)
1160
        /*debug*/       Bug("oversized quotient in quorem");
1161
#endif
1162
501k
    if (q) {
1163
392k
        borrow = 0;
1164
392k
        carry = 0;
1165
1.99M
        do {
1166
1.99M
            ys = *sx++ * (ULLong)q + carry;
1167
1.99M
            carry = ys >> 32;
1168
1.99M
            y = *bx - (ys & FFFFFFFF) - borrow;
1169
1.99M
            borrow = y >> 32 & (ULong)1;
1170
1.99M
            *bx++ = (ULong)(y & FFFFFFFF);
1171
1.99M
        }
1172
1.99M
        while(sx <= sxe);
1173
392k
        if (!*bxe) {
1174
367
            bx = b->x;
1175
367
            while(--bxe > bx && !*bxe)
1176
0
                --n;
1177
367
            b->wds = n;
1178
367
        }
1179
392k
    }
1180
501k
    if (cmp(b, S) >= 0) {
1181
18.7k
        q++;
1182
18.7k
        borrow = 0;
1183
18.7k
        carry = 0;
1184
18.7k
        bx = b->x;
1185
18.7k
        sx = S->x;
1186
141k
        do {
1187
141k
            ys = *sx++ + carry;
1188
141k
            carry = ys >> 32;
1189
141k
            y = *bx - (ys & FFFFFFFF) - borrow;
1190
141k
            borrow = y >> 32 & (ULong)1;
1191
141k
            *bx++ = (ULong)(y & FFFFFFFF);
1192
141k
        }
1193
141k
        while(sx <= sxe);
1194
18.7k
        bx = b->x;
1195
18.7k
        bxe = bx + n;
1196
18.7k
        if (!*bxe) {
1197
18.7k
            while(--bxe > bx && !*bxe)
1198
49
                --n;
1199
18.6k
            b->wds = n;
1200
18.6k
        }
1201
18.7k
    }
1202
501k
    return q;
1203
516k
}
1204
1205
/* sulp(x) is a version of ulp(x) that takes bc.scale into account.
1206
1207
   Assuming that x is finite and nonnegative (positive zero is fine
1208
   here) and x / 2^bc.scale is exactly representable as a double,
1209
   sulp(x) is equivalent to 2^bc.scale * ulp(x / 2^bc.scale). */
1210
1211
static double
1212
sulp(U *x, BCinfo *bc)
1213
23.3k
{
1214
23.3k
    U u;
1215
1216
23.3k
    if (bc->scale && 2*P + 1 > (int)((word0(x) & Exp_mask) >> Exp_shift)) {
1217
        /* rv/2^bc->scale is subnormal */
1218
438
        word0(&u) = (P+2)*Exp_msk1;
1219
438
        word1(&u) = 0;
1220
438
        return u.d;
1221
438
    }
1222
22.8k
    else {
1223
22.8k
        assert(word0(x) || word1(x)); /* x != 0.0 */
1224
22.8k
        return ulp(x);
1225
22.8k
    }
1226
23.3k
}
1227
1228
/* The bigcomp function handles some hard cases for strtod, for inputs
1229
   with more than STRTOD_DIGLIM digits.  It's called once an initial
1230
   estimate for the double corresponding to the input string has
1231
   already been obtained by the code in _Py_dg_strtod.
1232
1233
   The bigcomp function is only called after _Py_dg_strtod has found a
1234
   double value rv such that either rv or rv + 1ulp represents the
1235
   correctly rounded value corresponding to the original string.  It
1236
   determines which of these two values is the correct one by
1237
   computing the decimal digits of rv + 0.5ulp and comparing them with
1238
   the corresponding digits of s0.
1239
1240
   In the following, write dv for the absolute value of the number represented
1241
   by the input string.
1242
1243
   Inputs:
1244
1245
     s0 points to the first significant digit of the input string.
1246
1247
     rv is a (possibly scaled) estimate for the closest double value to the
1248
        value represented by the original input to _Py_dg_strtod.  If
1249
        bc->scale is nonzero, then rv/2^(bc->scale) is the approximation to
1250
        the input value.
1251
1252
     bc is a struct containing information gathered during the parsing and
1253
        estimation steps of _Py_dg_strtod.  Description of fields follows:
1254
1255
        bc->e0 gives the exponent of the input value, such that dv = (integer
1256
           given by the bd->nd digits of s0) * 10**e0
1257
1258
        bc->nd gives the total number of significant digits of s0.  It will
1259
           be at least 1.
1260
1261
        bc->nd0 gives the number of significant digits of s0 before the
1262
           decimal separator.  If there's no decimal separator, bc->nd0 ==
1263
           bc->nd.
1264
1265
        bc->scale is the value used to scale rv to avoid doing arithmetic with
1266
           subnormal values.  It's either 0 or 2*P (=106).
1267
1268
   Outputs:
1269
1270
     On successful exit, rv/2^(bc->scale) is the closest double to dv.
1271
1272
     Returns 0 on success, -1 on failure (e.g., due to a failed malloc call). */
1273
1274
static int
1275
bigcomp(U *rv, const char *s0, BCinfo *bc)
1276
24.8k
{
1277
24.8k
    Bigint *b, *d;
1278
24.8k
    int b2, d2, dd, i, nd, nd0, odd, p2, p5;
1279
1280
24.8k
    nd = bc->nd;
1281
24.8k
    nd0 = bc->nd0;
1282
24.8k
    p5 = nd + bc->e0;
1283
24.8k
    b = sd2b(rv, bc->scale, &p2);
1284
24.8k
    if (b == NULL)
1285
0
        return -1;
1286
1287
    /* record whether the lsb of rv/2^(bc->scale) is odd:  in the exact halfway
1288
       case, this is used for round to even. */
1289
24.8k
    odd = b->x[0] & 1;
1290
1291
    /* left shift b by 1 bit and or a 1 into the least significant bit;
1292
       this gives us b * 2**p2 = rv/2^(bc->scale) + 0.5 ulp. */
1293
24.8k
    b = lshift(b, 1);
1294
24.8k
    if (b == NULL)
1295
0
        return -1;
1296
24.8k
    b->x[0] |= 1;
1297
24.8k
    p2--;
1298
1299
24.8k
    p2 -= p5;
1300
24.8k
    d = i2b(1);
1301
24.8k
    if (d == NULL) {
1302
0
        Bfree(b);
1303
0
        return -1;
1304
0
    }
1305
    /* Arrange for convenient computation of quotients:
1306
     * shift left if necessary so divisor has 4 leading 0 bits.
1307
     */
1308
24.8k
    if (p5 > 0) {
1309
20.8k
        d = pow5mult(d, p5);
1310
20.8k
        if (d == NULL) {
1311
0
            Bfree(b);
1312
0
            return -1;
1313
0
        }
1314
20.8k
    }
1315
3.99k
    else if (p5 < 0) {
1316
1.17k
        b = pow5mult(b, -p5);
1317
1.17k
        if (b == NULL) {
1318
0
            Bfree(d);
1319
0
            return -1;
1320
0
        }
1321
1.17k
    }
1322
24.8k
    if (p2 > 0) {
1323
17.3k
        b2 = p2;
1324
17.3k
        d2 = 0;
1325
17.3k
    }
1326
7.55k
    else {
1327
7.55k
        b2 = 0;
1328
7.55k
        d2 = -p2;
1329
7.55k
    }
1330
24.8k
    i = dshift(d, d2);
1331
24.8k
    if ((b2 += i) > 0) {
1332
24.7k
        b = lshift(b, b2);
1333
24.7k
        if (b == NULL) {
1334
0
            Bfree(d);
1335
0
            return -1;
1336
0
        }
1337
24.7k
    }
1338
24.8k
    if ((d2 += i) > 0) {
1339
24.2k
        d = lshift(d, d2);
1340
24.2k
        if (d == NULL) {
1341
0
            Bfree(b);
1342
0
            return -1;
1343
0
        }
1344
24.2k
    }
1345
1346
    /* Compare s0 with b/d: set dd to -1, 0, or 1 according as s0 < b/d, s0 ==
1347
     * b/d, or s0 > b/d.  Here the digits of s0 are thought of as representing
1348
     * a number in the range [0.1, 1). */
1349
24.8k
    if (cmp(b, d) >= 0)
1350
        /* b/d >= 1 */
1351
494
        dd = -1;
1352
24.3k
    else {
1353
24.3k
        i = 0;
1354
406k
        for(;;) {
1355
406k
            b = multadd(b, 10, 0);
1356
406k
            if (b == NULL) {
1357
0
                Bfree(d);
1358
0
                return -1;
1359
0
            }
1360
406k
            dd = s0[i < nd0 ? i : i+1] - '0' - quorem(b, d);
1361
406k
            i++;
1362
1363
406k
            if (dd)
1364
24.0k
                break;
1365
382k
            if (!b->x[0] && b->wds == 1) {
1366
                /* b/d == 0 */
1367
352
                dd = i < nd;
1368
352
                break;
1369
352
            }
1370
382k
            if (!(i < nd)) {
1371
                /* b/d != 0, but digits of s0 exhausted */
1372
1
                dd = -1;
1373
1
                break;
1374
1
            }
1375
382k
        }
1376
24.3k
    }
1377
24.8k
    Bfree(b);
1378
24.8k
    Bfree(d);
1379
24.8k
    if (dd > 0 || (dd == 0 && odd))
1380
10.9k
        dval(rv) += sulp(rv, bc);
1381
24.8k
    return 0;
1382
24.8k
}
1383
1384
1385
double
1386
_Py_dg_strtod(const char *s00, char **se)
1387
457k
{
1388
457k
    int bb2, bb5, bbe, bd2, bd5, bs2, c, dsign, e, e1, error;
1389
457k
    int esign, i, j, k, lz, nd, nd0, odd, sign;
1390
457k
    const char *s, *s0, *s1;
1391
457k
    double aadj, aadj1;
1392
457k
    U aadj2, adj, rv, rv0;
1393
457k
    ULong y, z, abs_exp;
1394
457k
    Long L;
1395
457k
    BCinfo bc;
1396
457k
    Bigint *bb = NULL, *bd = NULL, *bd0 = NULL, *bs = NULL, *delta = NULL;
1397
457k
    size_t ndigits, fraclen;
1398
457k
    double result;
1399
1400
457k
    dval(&rv) = 0.;
1401
1402
    /* Start parsing. */
1403
457k
    c = *(s = s00);
1404
1405
    /* Parse optional sign, if present. */
1406
457k
    sign = 0;
1407
457k
    switch (c) {
1408
18.9k
    case '-':
1409
18.9k
        sign = 1;
1410
18.9k
        _Py_FALLTHROUGH;
1411
18.9k
    case '+':
1412
18.9k
        c = *++s;
1413
457k
    }
1414
1415
    /* Skip leading zeros: lz is true iff there were leading zeros. */
1416
457k
    s1 = s;
1417
512k
    while (c == '0')
1418
54.4k
        c = *++s;
1419
457k
    lz = s != s1;
1420
1421
    /* Point s0 at the first nonzero digit (if any).  fraclen will be the
1422
       number of digits between the decimal point and the end of the
1423
       digit string.  ndigits will be the total number of digits ignoring
1424
       leading zeros. */
1425
457k
    s0 = s1 = s;
1426
16.8M
    while ('0' <= c && c <= '9')
1427
16.3M
        c = *++s;
1428
457k
    ndigits = s - s1;
1429
457k
    fraclen = 0;
1430
1431
    /* Parse decimal point and following digits. */
1432
457k
    if (c == '.') {
1433
194k
        c = *++s;
1434
194k
        if (!ndigits) {
1435
52.1k
            s1 = s;
1436
83.1k
            while (c == '0')
1437
31.0k
                c = *++s;
1438
52.1k
            lz = lz || s != s1;
1439
52.1k
            fraclen += (s - s1);
1440
52.1k
            s0 = s;
1441
52.1k
        }
1442
194k
        s1 = s;
1443
27.2M
        while ('0' <= c && c <= '9')
1444
27.0M
            c = *++s;
1445
194k
        ndigits += s - s1;
1446
194k
        fraclen += s - s1;
1447
194k
    }
1448
1449
    /* Now lz is true if and only if there were leading zero digits, and
1450
       ndigits gives the total number of digits ignoring leading zeros.  A
1451
       valid input must have at least one digit. */
1452
457k
    if (!ndigits && !lz) {
1453
1.72k
        if (se)
1454
1.72k
            *se = (char *)s00;
1455
1.72k
        goto parse_error;
1456
1.72k
    }
1457
1458
    /* Range check ndigits and fraclen to make sure that they, and values
1459
       computed with them, can safely fit in an int. */
1460
455k
    if (ndigits > MAX_DIGITS || fraclen > MAX_DIGITS) {
1461
0
        if (se)
1462
0
            *se = (char *)s00;
1463
0
        goto parse_error;
1464
0
    }
1465
455k
    nd = (int)ndigits;
1466
455k
    nd0 = (int)ndigits - (int)fraclen;
1467
1468
    /* Parse exponent. */
1469
455k
    e = 0;
1470
455k
    if (c == 'e' || c == 'E') {
1471
153k
        s00 = s;
1472
153k
        c = *++s;
1473
1474
        /* Exponent sign. */
1475
153k
        esign = 0;
1476
153k
        switch (c) {
1477
44.7k
        case '-':
1478
44.7k
            esign = 1;
1479
44.7k
            _Py_FALLTHROUGH;
1480
57.9k
        case '+':
1481
57.9k
            c = *++s;
1482
153k
        }
1483
1484
        /* Skip zeros.  lz is true iff there are leading zeros. */
1485
153k
        s1 = s;
1486
188k
        while (c == '0')
1487
35.5k
            c = *++s;
1488
153k
        lz = s != s1;
1489
1490
        /* Get absolute value of the exponent. */
1491
153k
        s1 = s;
1492
153k
        abs_exp = 0;
1493
2.83M
        while ('0' <= c && c <= '9') {
1494
2.68M
            abs_exp = 10*abs_exp + (c - '0');
1495
2.68M
            c = *++s;
1496
2.68M
        }
1497
1498
        /* abs_exp will be correct modulo 2**32.  But 10**9 < 2**32, so if
1499
           there are at most 9 significant exponent digits then overflow is
1500
           impossible. */
1501
153k
        if (s - s1 > 9 || abs_exp > MAX_ABS_EXP)
1502
4.95k
            e = (int)MAX_ABS_EXP;
1503
148k
        else
1504
148k
            e = (int)abs_exp;
1505
153k
        if (esign)
1506
44.7k
            e = -e;
1507
1508
        /* A valid exponent must have at least one digit. */
1509
153k
        if (s == s1 && !lz)
1510
22
            s = s00;
1511
153k
    }
1512
1513
    /* Adjust exponent to take into account position of the point. */
1514
455k
    e -= nd - nd0;
1515
455k
    if (nd0 <= 0)
1516
65.1k
        nd0 = nd;
1517
1518
    /* Finished parsing.  Set se to indicate how far we parsed */
1519
455k
    if (se)
1520
455k
        *se = (char *)s;
1521
1522
    /* If all digits were zero, exit with return value +-0.0.  Otherwise,
1523
       strip trailing zeros: scan back until we hit a nonzero digit. */
1524
455k
    if (!nd)
1525
23.4k
        goto ret;
1526
5.09M
    for (i = nd; i > 0; ) {
1527
5.09M
        --i;
1528
5.09M
        if (s0[i < nd0 ? i : i+1] != '0') {
1529
432k
            ++i;
1530
432k
            break;
1531
432k
        }
1532
5.09M
    }
1533
432k
    e += nd - i;
1534
432k
    nd = i;
1535
432k
    if (nd0 > nd)
1536
24.9k
        nd0 = nd;
1537
1538
    /* Summary of parsing results.  After parsing, and dealing with zero
1539
     * inputs, we have values s0, nd0, nd, e, sign, where:
1540
     *
1541
     *  - s0 points to the first significant digit of the input string
1542
     *
1543
     *  - nd is the total number of significant digits (here, and
1544
     *    below, 'significant digits' means the set of digits of the
1545
     *    significand of the input that remain after ignoring leading
1546
     *    and trailing zeros).
1547
     *
1548
     *  - nd0 indicates the position of the decimal point, if present; it
1549
     *    satisfies 1 <= nd0 <= nd.  The nd significant digits are in
1550
     *    s0[0:nd0] and s0[nd0+1:nd+1] using the usual Python half-open slice
1551
     *    notation.  (If nd0 < nd, then s0[nd0] contains a '.'  character; if
1552
     *    nd0 == nd, then s0[nd0] could be any non-digit character.)
1553
     *
1554
     *  - e is the adjusted exponent: the absolute value of the number
1555
     *    represented by the original input string is n * 10**e, where
1556
     *    n is the integer represented by the concatenation of
1557
     *    s0[0:nd0] and s0[nd0+1:nd+1]
1558
     *
1559
     *  - sign gives the sign of the input:  1 for negative, 0 for positive
1560
     *
1561
     *  - the first and last significant digits are nonzero
1562
     */
1563
1564
    /* put first DBL_DIG+1 digits into integer y and z.
1565
     *
1566
     *  - y contains the value represented by the first min(9, nd)
1567
     *    significant digits
1568
     *
1569
     *  - if nd > 9, z contains the value represented by significant digits
1570
     *    with indices in [9, min(16, nd)).  So y * 10**(min(16, nd) - 9) + z
1571
     *    gives the value represented by the first min(16, nd) sig. digits.
1572
     */
1573
1574
432k
    bc.e0 = e1 = e;
1575
432k
    y = z = 0;
1576
3.11M
    for (i = 0; i < nd; i++) {
1577
2.76M
        if (i < 9)
1578
1.89M
            y = 10*y + s0[i < nd0 ? i : i+1] - '0';
1579
867k
        else if (i < DBL_DIG+1)
1580
783k
            z = 10*z + s0[i < nd0 ? i : i+1] - '0';
1581
83.8k
        else
1582
83.8k
            break;
1583
2.76M
    }
1584
1585
432k
    k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
1586
432k
    dval(&rv) = y;
1587
432k
    if (k > 9) {
1588
134k
        dval(&rv) = tens[k - 9] * dval(&rv) + z;
1589
134k
    }
1590
432k
    if (nd <= DBL_DIG
1591
432k
        && Flt_Rounds == 1
1592
432k
        ) {
1593
344k
        if (!e)
1594
139k
            goto ret;
1595
205k
        if (e > 0) {
1596
84.9k
            if (e <= Ten_pmax) {
1597
24.5k
                dval(&rv) *= tens[e];
1598
24.5k
                goto ret;
1599
24.5k
            }
1600
60.4k
            i = DBL_DIG - nd;
1601
60.4k
            if (e <= Ten_pmax + i) {
1602
                /* A fancier test would sometimes let us do
1603
                 * this for larger i values.
1604
                 */
1605
7.93k
                e -= i;
1606
7.93k
                dval(&rv) *= tens[i];
1607
7.93k
                dval(&rv) *= tens[e];
1608
7.93k
                goto ret;
1609
7.93k
            }
1610
60.4k
        }
1611
120k
        else if (e >= -Ten_pmax) {
1612
88.6k
            dval(&rv) /= tens[-e];
1613
88.6k
            goto ret;
1614
88.6k
        }
1615
205k
    }
1616
171k
    e1 += nd - k;
1617
1618
171k
    bc.scale = 0;
1619
1620
    /* Get starting approximation = rv * 10**e1 */
1621
1622
171k
    if (e1 > 0) {
1623
105k
        if ((i = e1 & 15))
1624
96.2k
            dval(&rv) *= tens[i];
1625
105k
        if (e1 &= ~15) {
1626
76.7k
            if (e1 > DBL_MAX_10_EXP)
1627
26.6k
                goto ovfl;
1628
50.0k
            e1 >>= 4;
1629
123k
            for(j = 0; e1 > 1; j++, e1 >>= 1)
1630
73.0k
                if (e1 & 1)
1631
26.3k
                    dval(&rv) *= bigtens[j];
1632
            /* The last multiplication could overflow. */
1633
50.0k
            word0(&rv) -= P*Exp_msk1;
1634
50.0k
            dval(&rv) *= bigtens[j];
1635
50.0k
            if ((z = word0(&rv) & Exp_mask)
1636
50.0k
                > Exp_msk1*(DBL_MAX_EXP+Bias-P))
1637
373
                goto ovfl;
1638
49.6k
            if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
1639
                /* set to largest number */
1640
                /* (Can't trust DBL_MAX) */
1641
31
                word0(&rv) = Big0;
1642
31
                word1(&rv) = Big1;
1643
31
            }
1644
49.6k
            else
1645
49.6k
                word0(&rv) += P*Exp_msk1;
1646
49.6k
        }
1647
105k
    }
1648
66.3k
    else if (e1 < 0) {
1649
        /* The input decimal value lies in [10**e1, 10**(e1+16)).
1650
1651
           If e1 <= -512, underflow immediately.
1652
           If e1 <= -256, set bc.scale to 2*P.
1653
1654
           So for input value < 1e-256, bc.scale is always set;
1655
           for input value >= 1e-240, bc.scale is never set.
1656
           For input values in [1e-256, 1e-240), bc.scale may or may
1657
           not be set. */
1658
1659
63.1k
        e1 = -e1;
1660
63.1k
        if ((i = e1 & 15))
1661
49.7k
            dval(&rv) /= tens[i];
1662
63.1k
        if (e1 >>= 4) {
1663
46.8k
            if (e1 >= 1 << n_bigtens)
1664
8.97k
                goto undfl;
1665
37.8k
            if (e1 & Scale_Bit)
1666
22.6k
                bc.scale = 2*P;
1667
170k
            for(j = 0; e1 > 0; j++, e1 >>= 1)
1668
132k
                if (e1 & 1)
1669
68.6k
                    dval(&rv) *= tinytens[j];
1670
37.8k
            if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
1671
22.6k
                                            >> Exp_shift)) > 0) {
1672
                /* scaled rv is denormal; clear j low bits */
1673
17.5k
                if (j >= 32) {
1674
12.1k
                    word1(&rv) = 0;
1675
12.1k
                    if (j >= 53)
1676
3.34k
                        word0(&rv) = (P+2)*Exp_msk1;
1677
8.85k
                    else
1678
8.85k
                        word0(&rv) &= 0xffffffff << (j-32);
1679
12.1k
                }
1680
5.31k
                else
1681
5.31k
                    word1(&rv) &= 0xffffffff << j;
1682
17.5k
            }
1683
37.8k
            if (!dval(&rv))
1684
0
                goto undfl;
1685
37.8k
        }
1686
63.1k
    }
1687
1688
    /* Now the hard part -- adjusting rv to the correct value.*/
1689
1690
    /* Put digits into bd: true value = bd * 10^e */
1691
1692
135k
    bc.nd = nd;
1693
135k
    bc.nd0 = nd0;       /* Only needed if nd > STRTOD_DIGLIM, but done here */
1694
                        /* to silence an erroneous warning about bc.nd0 */
1695
                        /* possibly not being initialized. */
1696
135k
    if (nd > STRTOD_DIGLIM) {
1697
        /* ASSERT(STRTOD_DIGLIM >= 18); 18 == one more than the */
1698
        /* minimum number of decimal digits to distinguish double values */
1699
        /* in IEEE arithmetic. */
1700
1701
        /* Truncate input to 18 significant digits, then discard any trailing
1702
           zeros on the result by updating nd, nd0, e and y suitably. (There's
1703
           no need to update z; it's not reused beyond this point.) */
1704
129k
        for (i = 18; i > 0; ) {
1705
            /* scan back until we hit a nonzero digit.  significant digit 'i'
1706
            is s0[i] if i < nd0, s0[i+1] if i >= nd0. */
1707
129k
            --i;
1708
129k
            if (s0[i < nd0 ? i : i+1] != '0') {
1709
31.6k
                ++i;
1710
31.6k
                break;
1711
31.6k
            }
1712
129k
        }
1713
31.6k
        e += nd - i;
1714
31.6k
        nd = i;
1715
31.6k
        if (nd0 > nd)
1716
25.8k
            nd0 = nd;
1717
31.6k
        if (nd < 9) { /* must recompute y */
1718
7.40k
            y = 0;
1719
44.8k
            for(i = 0; i < nd0; ++i)
1720
37.4k
                y = 10*y + s0[i] - '0';
1721
10.2k
            for(; i < nd; ++i)
1722
2.83k
                y = 10*y + s0[i+1] - '0';
1723
7.40k
        }
1724
31.6k
    }
1725
135k
    bd0 = s2b(s0, nd0, nd, y);
1726
135k
    if (bd0 == NULL)
1727
0
        goto failed_malloc;
1728
1729
    /* Notation for the comments below.  Write:
1730
1731
         - dv for the absolute value of the number represented by the original
1732
           decimal input string.
1733
1734
         - if we've truncated dv, write tdv for the truncated value.
1735
           Otherwise, set tdv == dv.
1736
1737
         - srv for the quantity rv/2^bc.scale; so srv is the current binary
1738
           approximation to tdv (and dv).  It should be exactly representable
1739
           in an IEEE 754 double.
1740
    */
1741
1742
186k
    for(;;) {
1743
1744
        /* This is the main correction loop for _Py_dg_strtod.
1745
1746
           We've got a decimal value tdv, and a floating-point approximation
1747
           srv=rv/2^bc.scale to tdv.  The aim is to determine whether srv is
1748
           close enough (i.e., within 0.5 ulps) to tdv, and to compute a new
1749
           approximation if not.
1750
1751
           To determine whether srv is close enough to tdv, compute integers
1752
           bd, bb and bs proportional to tdv, srv and 0.5 ulp(srv)
1753
           respectively, and then use integer arithmetic to determine whether
1754
           |tdv - srv| is less than, equal to, or greater than 0.5 ulp(srv).
1755
        */
1756
1757
186k
        bd = Balloc(bd0->k);
1758
186k
        if (bd == NULL) {
1759
0
            goto failed_malloc;
1760
0
        }
1761
186k
        Bcopy(bd, bd0);
1762
186k
        bb = sd2b(&rv, bc.scale, &bbe);   /* srv = bb * 2^bbe */
1763
186k
        if (bb == NULL) {
1764
0
            goto failed_malloc;
1765
0
        }
1766
        /* Record whether lsb of bb is odd, in case we need this
1767
           for the round-to-even step later. */
1768
186k
        odd = bb->x[0] & 1;
1769
1770
        /* tdv = bd * 10**e;  srv = bb * 2**bbe */
1771
186k
        bs = i2b(1);
1772
186k
        if (bs == NULL) {
1773
0
            goto failed_malloc;
1774
0
        }
1775
1776
186k
        if (e >= 0) {
1777
113k
            bb2 = bb5 = 0;
1778
113k
            bd2 = bd5 = e;
1779
113k
        }
1780
73.1k
        else {
1781
73.1k
            bb2 = bb5 = -e;
1782
73.1k
            bd2 = bd5 = 0;
1783
73.1k
        }
1784
186k
        if (bbe >= 0)
1785
115k
            bb2 += bbe;
1786
71.1k
        else
1787
71.1k
            bd2 -= bbe;
1788
186k
        bs2 = bb2;
1789
186k
        bb2++;
1790
186k
        bd2++;
1791
1792
        /* At this stage bd5 - bb5 == e == bd2 - bb2 + bbe, bb2 - bs2 == 1,
1793
           and bs == 1, so:
1794
1795
              tdv == bd * 10**e = bd * 2**(bbe - bb2 + bd2) * 5**(bd5 - bb5)
1796
              srv == bb * 2**bbe = bb * 2**(bbe - bb2 + bb2)
1797
              0.5 ulp(srv) == 2**(bbe-1) = bs * 2**(bbe - bb2 + bs2)
1798
1799
           It follows that:
1800
1801
              M * tdv = bd * 2**bd2 * 5**bd5
1802
              M * srv = bb * 2**bb2 * 5**bb5
1803
              M * 0.5 ulp(srv) = bs * 2**bs2 * 5**bb5
1804
1805
           for some constant M.  (Actually, M == 2**(bb2 - bbe) * 5**bb5, but
1806
           this fact is not needed below.)
1807
        */
1808
1809
        /* Remove factor of 2**i, where i = min(bb2, bd2, bs2). */
1810
186k
        i = bb2 < bd2 ? bb2 : bd2;
1811
186k
        if (i > bs2)
1812
70.0k
            i = bs2;
1813
186k
        if (i > 0) {
1814
185k
            bb2 -= i;
1815
185k
            bd2 -= i;
1816
185k
            bs2 -= i;
1817
185k
        }
1818
1819
        /* Scale bb, bd, bs by the appropriate powers of 2 and 5. */
1820
186k
        if (bb5 > 0) {
1821
73.1k
            bs = pow5mult(bs, bb5);
1822
73.1k
            if (bs == NULL) {
1823
0
                goto failed_malloc;
1824
0
            }
1825
73.1k
            Bigint *bb1 = mult(bs, bb);
1826
73.1k
            Bfree(bb);
1827
73.1k
            bb = bb1;
1828
73.1k
            if (bb == NULL) {
1829
0
                goto failed_malloc;
1830
0
            }
1831
73.1k
        }
1832
186k
        if (bb2 > 0) {
1833
186k
            bb = lshift(bb, bb2);
1834
186k
            if (bb == NULL) {
1835
0
                goto failed_malloc;
1836
0
            }
1837
186k
        }
1838
186k
        if (bd5 > 0) {
1839
63.3k
            bd = pow5mult(bd, bd5);
1840
63.3k
            if (bd == NULL) {
1841
0
                goto failed_malloc;
1842
0
            }
1843
63.3k
        }
1844
186k
        if (bd2 > 0) {
1845
70.0k
            bd = lshift(bd, bd2);
1846
70.0k
            if (bd == NULL) {
1847
0
                goto failed_malloc;
1848
0
            }
1849
70.0k
        }
1850
186k
        if (bs2 > 0) {
1851
85.8k
            bs = lshift(bs, bs2);
1852
85.8k
            if (bs == NULL) {
1853
0
                goto failed_malloc;
1854
0
            }
1855
85.8k
        }
1856
1857
        /* Now bd, bb and bs are scaled versions of tdv, srv and 0.5 ulp(srv),
1858
           respectively.  Compute the difference |tdv - srv|, and compare
1859
           with 0.5 ulp(srv). */
1860
1861
186k
        delta = diff(bb, bd);
1862
186k
        if (delta == NULL) {
1863
0
            goto failed_malloc;
1864
0
        }
1865
186k
        dsign = delta->sign;
1866
186k
        delta->sign = 0;
1867
186k
        i = cmp(delta, bs);
1868
186k
        if (bc.nd > nd && i <= 0) {
1869
31.6k
            if (dsign)
1870
13.0k
                break;  /* Must use bigcomp(). */
1871
1872
            /* Here rv overestimates the truncated decimal value by at most
1873
               0.5 ulp(rv).  Hence rv either overestimates the true decimal
1874
               value by <= 0.5 ulp(rv), or underestimates it by some small
1875
               amount (< 0.1 ulp(rv)); either way, rv is within 0.5 ulps of
1876
               the true decimal value, so it's possible to exit.
1877
1878
               Exception: if scaled rv is a normal exact power of 2, but not
1879
               DBL_MIN, then rv - 0.5 ulp(rv) takes us all the way down to the
1880
               next double, so the correctly rounded result is either rv - 0.5
1881
               ulp(rv) or rv; in this case, use bigcomp to distinguish. */
1882
1883
18.5k
            if (!word1(&rv) && !(word0(&rv) & Bndry_mask)) {
1884
                /* rv can't be 0, since it's an overestimate for some
1885
                   nonzero value.  So rv is a normal power of 2. */
1886
12.5k
                j = (int)(word0(&rv) & Exp_mask) >> Exp_shift;
1887
                /* rv / 2^bc.scale = 2^(j - 1023 - bc.scale); use bigcomp if
1888
                   rv / 2^bc.scale >= 2^-1021. */
1889
12.5k
                if (j - bc.scale >= 2) {
1890
11.7k
                    dval(&rv) -= 0.5 * sulp(&rv, &bc);
1891
11.7k
                    break; /* Use bigcomp. */
1892
11.7k
                }
1893
12.5k
            }
1894
1895
6.77k
            {
1896
6.77k
                bc.nd = nd;
1897
6.77k
                i = -1; /* Discarded digits make delta smaller. */
1898
6.77k
            }
1899
6.77k
        }
1900
1901
161k
        if (i < 0) {
1902
            /* Error is less than half an ulp -- check for
1903
             * special case of mantissa a power of two.
1904
             */
1905
66.9k
            if (dsign || word1(&rv) || word0(&rv) & Bndry_mask
1906
66.9k
                || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
1907
66.9k
                ) {
1908
60.4k
                break;
1909
60.4k
            }
1910
6.48k
            if (!delta->x[0] && delta->wds <= 1) {
1911
                /* exact result */
1912
1.29k
                break;
1913
1.29k
            }
1914
5.18k
            delta = lshift(delta,Log2P);
1915
5.18k
            if (delta == NULL) {
1916
0
                goto failed_malloc;
1917
0
            }
1918
5.18k
            if (cmp(delta, bs) > 0)
1919
2.82k
                goto drop_down;
1920
2.36k
            break;
1921
5.18k
        }
1922
94.7k
        if (i == 0) {
1923
            /* exactly half-way between */
1924
15.8k
            if (dsign) {
1925
1.50k
                if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
1926
1.50k
                    &&  word1(&rv) == (
1927
166
                        (bc.scale &&
1928
166
                         (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) ?
1929
0
                        (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
1930
166
                        0xffffffff)) {
1931
                    /*boundary case -- increment exponent*/
1932
80
                    word0(&rv) = (word0(&rv) & Exp_mask)
1933
80
                        + Exp_msk1
1934
80
                        ;
1935
80
                    word1(&rv) = 0;
1936
                    /* dsign = 0; */
1937
80
                    break;
1938
80
                }
1939
1.50k
            }
1940
14.3k
            else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
1941
2.82k
              drop_down:
1942
                /* boundary case -- decrement exponent */
1943
2.82k
                if (bc.scale) {
1944
0
                    L = word0(&rv) & Exp_mask;
1945
0
                    if (L <= (2*P+1)*Exp_msk1) {
1946
0
                        if (L > (P+2)*Exp_msk1)
1947
                            /* round even ==> */
1948
                            /* accept rv */
1949
0
                            break;
1950
                        /* rv = smallest denormal */
1951
0
                        if (bc.nd > nd)
1952
0
                            break;
1953
0
                        goto undfl;
1954
0
                    }
1955
0
                }
1956
2.82k
                L = (word0(&rv) & Exp_mask) - Exp_msk1;
1957
2.82k
                word0(&rv) = L | Bndry_mask1;
1958
2.82k
                word1(&rv) = 0xffffffff;
1959
2.82k
                break;
1960
2.82k
            }
1961
15.8k
            if (!odd)
1962
15.2k
                break;
1963
601
            if (dsign)
1964
576
                dval(&rv) += sulp(&rv, &bc);
1965
25
            else {
1966
25
                dval(&rv) -= sulp(&rv, &bc);
1967
25
                if (!dval(&rv)) {
1968
0
                    if (bc.nd >nd)
1969
0
                        break;
1970
0
                    goto undfl;
1971
0
                }
1972
25
            }
1973
            /* dsign = 1 - dsign; */
1974
601
            break;
1975
601
        }
1976
78.8k
        if ((aadj = ratio(delta, bs)) <= 2.) {
1977
39.8k
            if (dsign)
1978
27.0k
                aadj = aadj1 = 1.;
1979
12.8k
            else if (word1(&rv) || word0(&rv) & Bndry_mask) {
1980
9.95k
                if (word1(&rv) == Tiny1 && !word0(&rv)) {
1981
0
                    if (bc.nd >nd)
1982
0
                        break;
1983
0
                    goto undfl;
1984
0
                }
1985
9.95k
                aadj = 1.;
1986
9.95k
                aadj1 = -1.;
1987
9.95k
            }
1988
2.89k
            else {
1989
                /* special case -- power of FLT_RADIX to be */
1990
                /* rounded down... */
1991
1992
2.89k
                if (aadj < 2./FLT_RADIX)
1993
0
                    aadj = 1./FLT_RADIX;
1994
2.89k
                else
1995
2.89k
                    aadj *= 0.5;
1996
2.89k
                aadj1 = -aadj;
1997
2.89k
            }
1998
39.8k
        }
1999
38.9k
        else {
2000
38.9k
            aadj *= 0.5;
2001
38.9k
            aadj1 = dsign ? aadj : -aadj;
2002
38.9k
            if (Flt_Rounds == 0)
2003
0
                aadj1 += 0.5;
2004
38.9k
        }
2005
78.8k
        y = word0(&rv) & Exp_mask;
2006
2007
        /* Check for overflow */
2008
2009
78.8k
        if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
2010
130
            dval(&rv0) = dval(&rv);
2011
130
            word0(&rv) -= P*Exp_msk1;
2012
130
            adj.d = aadj1 * ulp(&rv);
2013
130
            dval(&rv) += adj.d;
2014
130
            if ((word0(&rv) & Exp_mask) >=
2015
130
                Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
2016
39
                if (word0(&rv0) == Big0 && word1(&rv0) == Big1) {
2017
35
                    goto ovfl;
2018
35
                }
2019
4
                word0(&rv) = Big0;
2020
4
                word1(&rv) = Big1;
2021
4
                goto cont;
2022
39
            }
2023
91
            else
2024
91
                word0(&rv) += P*Exp_msk1;
2025
130
        }
2026
78.7k
        else {
2027
78.7k
            if (bc.scale && y <= 2*P*Exp_msk1) {
2028
9.02k
                if (aadj <= 0x7fffffff) {
2029
9.02k
                    if ((z = (ULong)aadj) <= 0)
2030
1.58k
                        z = 1;
2031
9.02k
                    aadj = z;
2032
9.02k
                    aadj1 = dsign ? aadj : -aadj;
2033
9.02k
                }
2034
9.02k
                dval(&aadj2) = aadj1;
2035
9.02k
                word0(&aadj2) += (2*P+1)*Exp_msk1 - y;
2036
9.02k
                aadj1 = dval(&aadj2);
2037
9.02k
            }
2038
78.7k
            adj.d = aadj1 * ulp(&rv);
2039
78.7k
            dval(&rv) += adj.d;
2040
78.7k
        }
2041
78.8k
        z = word0(&rv) & Exp_mask;
2042
78.8k
        if (bc.nd == nd) {
2043
57.4k
            if (!bc.scale)
2044
46.9k
                if (y == z) {
2045
                    /* Can we stop now? */
2046
42.3k
                    L = (Long)aadj;
2047
42.3k
                    aadj -= L;
2048
                    /* The tolerances below are conservative. */
2049
42.3k
                    if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
2050
42.3k
                        if (aadj < .4999999 || aadj > .5000001)
2051
27.8k
                            break;
2052
42.3k
                    }
2053
2
                    else if (aadj < .4999999/FLT_RADIX)
2054
2
                        break;
2055
42.3k
                }
2056
57.4k
        }
2057
51.0k
      cont:
2058
51.0k
        Bfree(bb); bb = NULL;
2059
51.0k
        Bfree(bd); bd = NULL;
2060
51.0k
        Bfree(bs); bs = NULL;
2061
51.0k
        Bfree(delta); delta = NULL;
2062
51.0k
    }
2063
135k
    if (bc.nd > nd) {
2064
24.8k
        error = bigcomp(&rv, s0, &bc);
2065
24.8k
        if (error)
2066
0
            goto failed_malloc;
2067
24.8k
    }
2068
2069
135k
    if (bc.scale) {
2070
22.6k
        word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
2071
22.6k
        word1(&rv0) = 0;
2072
22.6k
        dval(&rv) *= dval(&rv0);
2073
22.6k
    }
2074
2075
419k
  ret:
2076
419k
    result = sign ? -dval(&rv) : dval(&rv);
2077
419k
    goto done;
2078
2079
1.72k
  parse_error:
2080
1.72k
    result = 0.0;
2081
1.72k
    goto done;
2082
2083
0
  failed_malloc:
2084
0
    errno = ENOMEM;
2085
0
    result = -1.0;
2086
0
    goto done;
2087
2088
8.97k
  undfl:
2089
8.97k
    result = sign ? -0.0 : 0.0;
2090
8.97k
    goto done;
2091
2092
27.0k
  ovfl:
2093
27.0k
    errno = ERANGE;
2094
    /* Can't trust HUGE_VAL */
2095
27.0k
    word0(&rv) = Exp_mask;
2096
27.0k
    word1(&rv) = 0;
2097
27.0k
    result = sign ? -dval(&rv) : dval(&rv);
2098
27.0k
    goto done;
2099
2100
457k
  done:
2101
457k
    Bfree(bb);
2102
457k
    Bfree(bd);
2103
457k
    Bfree(bs);
2104
457k
    Bfree(bd0);
2105
457k
    Bfree(delta);
2106
457k
    return result;
2107
2108
135k
}
2109
2110
static char *
2111
rv_alloc(int i)
2112
42.3k
{
2113
42.3k
    int j, k, *r;
2114
2115
42.3k
    j = sizeof(ULong);
2116
42.3k
    for(k = 0;
2117
42.3k
        sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (unsigned)i;
2118
42.3k
        j <<= 1)
2119
0
        k++;
2120
42.3k
    r = (int*)Balloc(k);
2121
42.3k
    if (r == NULL)
2122
0
        return NULL;
2123
42.3k
    *r = k;
2124
42.3k
    return (char *)(r+1);
2125
42.3k
}
2126
2127
static char *
2128
nrv_alloc(const char *s, char **rve, int n)
2129
4.06k
{
2130
4.06k
    char *rv, *t;
2131
2132
4.06k
    rv = rv_alloc(n);
2133
4.06k
    if (rv == NULL)
2134
0
        return NULL;
2135
4.06k
    t = rv;
2136
20.9k
    while((*t = *s++)) t++;
2137
4.06k
    if (rve)
2138
4.06k
        *rve = t;
2139
4.06k
    return rv;
2140
4.06k
}
2141
2142
/* freedtoa(s) must be used to free values s returned by dtoa
2143
 * when MULTIPLE_THREADS is #defined.  It should be used in all cases,
2144
 * but for consistency with earlier versions of dtoa, it is optional
2145
 * when MULTIPLE_THREADS is not defined.
2146
 */
2147
2148
void
2149
_Py_dg_freedtoa(char *s)
2150
42.3k
{
2151
42.3k
    Bigint *b = (Bigint *)((int *)s - 1);
2152
42.3k
    b->maxwds = 1 << (b->k = *(int*)b);
2153
42.3k
    Bfree(b);
2154
42.3k
}
2155
2156
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
2157
 *
2158
 * Inspired by "How to Print Floating-Point Numbers Accurately" by
2159
 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
2160
 *
2161
 * Modifications:
2162
 *      1. Rather than iterating, we use a simple numeric overestimate
2163
 *         to determine k = floor(log10(d)).  We scale relevant
2164
 *         quantities using O(log2(k)) rather than O(k) multiplications.
2165
 *      2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
2166
 *         try to generate digits strictly left to right.  Instead, we
2167
 *         compute with fewer bits and propagate the carry if necessary
2168
 *         when rounding the final digit up.  This is often faster.
2169
 *      3. Under the assumption that input will be rounded nearest,
2170
 *         mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
2171
 *         That is, we allow equality in stopping tests when the
2172
 *         round-nearest rule will give the same floating-point value
2173
 *         as would satisfaction of the stopping test with strict
2174
 *         inequality.
2175
 *      4. We remove common factors of powers of 2 from relevant
2176
 *         quantities.
2177
 *      5. When converting floating-point integers less than 1e16,
2178
 *         we use floating-point arithmetic rather than resorting
2179
 *         to multiple-precision integers.
2180
 *      6. When asked to produce fewer than 15 digits, we first try
2181
 *         to get by with floating-point arithmetic; we resort to
2182
 *         multiple-precision integer arithmetic only if we cannot
2183
 *         guarantee that the floating-point calculation has given
2184
 *         the correctly rounded result.  For k requested digits and
2185
 *         "uniformly" distributed input, the probability is
2186
 *         something like 10^(k-15) that we must resort to the Long
2187
 *         calculation.
2188
 */
2189
2190
/* Additional notes (METD): (1) returns NULL on failure.  (2) to avoid memory
2191
   leakage, a successful call to _Py_dg_dtoa should always be matched by a
2192
   call to _Py_dg_freedtoa. */
2193
2194
char *
2195
_Py_dg_dtoa(double dd, int mode, int ndigits,
2196
            int *decpt, int *sign, char **rve)
2197
42.3k
{
2198
    /*  Arguments ndigits, decpt, sign are similar to those
2199
        of ecvt and fcvt; trailing zeros are suppressed from
2200
        the returned string.  If not null, *rve is set to point
2201
        to the end of the return value.  If d is +-Infinity or NaN,
2202
        then *decpt is set to 9999.
2203
2204
        mode:
2205
        0 ==> shortest string that yields d when read in
2206
        and rounded to nearest.
2207
        1 ==> like 0, but with Steele & White stopping rule;
2208
        e.g. with IEEE P754 arithmetic , mode 0 gives
2209
        1e23 whereas mode 1 gives 9.999999999999999e22.
2210
        2 ==> max(1,ndigits) significant digits.  This gives a
2211
        return value similar to that of ecvt, except
2212
        that trailing zeros are suppressed.
2213
        3 ==> through ndigits past the decimal point.  This
2214
        gives a return value similar to that from fcvt,
2215
        except that trailing zeros are suppressed, and
2216
        ndigits can be negative.
2217
        4,5 ==> similar to 2 and 3, respectively, but (in
2218
        round-nearest mode) with the tests of mode 0 to
2219
        possibly return a shorter string that rounds to d.
2220
        With IEEE arithmetic and compilation with
2221
        -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
2222
        as modes 2 and 3 when FLT_ROUNDS != 1.
2223
        6-9 ==> Debugging modes similar to mode - 4:  don't try
2224
        fast floating-point estimate (if applicable).
2225
2226
        Values of mode other than 0-9 are treated as mode 0.
2227
2228
        Sufficient space is allocated to the return value
2229
        to hold the suppressed trailing zeros.
2230
    */
2231
2232
42.3k
    int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
2233
42.3k
        j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
2234
42.3k
        spec_case, try_quick;
2235
42.3k
    Long L;
2236
42.3k
    int denorm;
2237
42.3k
    ULong x;
2238
42.3k
    Bigint *b, *b1, *delta, *mlo, *mhi, *S;
2239
42.3k
    U d2, eps, u;
2240
42.3k
    double ds;
2241
42.3k
    char *s, *s0;
2242
2243
    /* set pointers to NULL, to silence gcc compiler warnings and make
2244
       cleanup easier on error */
2245
42.3k
    mlo = mhi = S = 0;
2246
42.3k
    s0 = 0;
2247
2248
42.3k
    u.d = dd;
2249
42.3k
    if (word0(&u) & Sign_bit) {
2250
        /* set sign for everything, including 0's and NaNs */
2251
0
        *sign = 1;
2252
0
        word0(&u) &= ~Sign_bit; /* clear sign bit */
2253
0
    }
2254
42.3k
    else
2255
42.3k
        *sign = 0;
2256
2257
    /* quick return for Infinities, NaNs and zeros */
2258
42.3k
    if ((word0(&u) & Exp_mask) == Exp_mask)
2259
1.83k
    {
2260
        /* Infinity or NaN */
2261
1.83k
        *decpt = 9999;
2262
1.83k
        if (!word1(&u) && !(word0(&u) & 0xfffff))
2263
1.83k
            return nrv_alloc("Infinity", rve, 8);
2264
0
        return nrv_alloc("NaN", rve, 3);
2265
1.83k
    }
2266
40.5k
    if (!dval(&u)) {
2267
2.23k
        *decpt = 1;
2268
2.23k
        return nrv_alloc("0", rve, 1);
2269
2.23k
    }
2270
2271
    /* compute k = floor(log10(d)).  The computation may leave k
2272
       one too large, but should never leave k too small. */
2273
38.3k
    b = d2b(&u, &be, &bbits);
2274
38.3k
    if (b == NULL)
2275
0
        goto failed_malloc;
2276
38.3k
    if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
2277
33.7k
        dval(&d2) = dval(&u);
2278
33.7k
        word0(&d2) &= Frac_mask1;
2279
33.7k
        word0(&d2) |= Exp_11;
2280
2281
        /* log(x)       ~=~ log(1.5) + (x-1.5)/1.5
2282
         * log10(x)      =  log(x) / log(10)
2283
         *              ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
2284
         * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
2285
         *
2286
         * This suggests computing an approximation k to log10(d) by
2287
         *
2288
         * k = (i - Bias)*0.301029995663981
2289
         *      + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
2290
         *
2291
         * We want k to be too large rather than too small.
2292
         * The error in the first-order Taylor series approximation
2293
         * is in our favor, so we just round up the constant enough
2294
         * to compensate for any error in the multiplication of
2295
         * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
2296
         * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
2297
         * adding 1e-13 to the constant term more than suffices.
2298
         * Hence we adjust the constant term to 0.1760912590558.
2299
         * (We could get a more accurate k by invoking log10,
2300
         *  but this is probably not worthwhile.)
2301
         */
2302
2303
33.7k
        i -= Bias;
2304
33.7k
        denorm = 0;
2305
33.7k
    }
2306
4.59k
    else {
2307
        /* d is denormalized */
2308
2309
4.59k
        i = bbits + be + (Bias + (P-1) - 1);
2310
4.59k
        x = i > 32  ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
2311
4.59k
            : word1(&u) << (32 - i);
2312
4.59k
        dval(&d2) = x;
2313
4.59k
        word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
2314
4.59k
        i -= (Bias + (P-1) - 1) + 1;
2315
4.59k
        denorm = 1;
2316
4.59k
    }
2317
38.3k
    ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 +
2318
38.3k
        i*0.301029995663981;
2319
38.3k
    k = (int)ds;
2320
38.3k
    if (ds < 0. && ds != k)
2321
13.4k
        k--;    /* want k = floor(ds) */
2322
38.3k
    k_check = 1;
2323
38.3k
    if (k >= 0 && k <= Ten_pmax) {
2324
17.2k
        if (dval(&u) < tens[k])
2325
858
            k--;
2326
17.2k
        k_check = 0;
2327
17.2k
    }
2328
38.3k
    j = bbits - i - 1;
2329
38.3k
    if (j >= 0) {
2330
19.0k
        b2 = 0;
2331
19.0k
        s2 = j;
2332
19.0k
    }
2333
19.3k
    else {
2334
19.3k
        b2 = -j;
2335
19.3k
        s2 = 0;
2336
19.3k
    }
2337
38.3k
    if (k >= 0) {
2338
24.8k
        b5 = 0;
2339
24.8k
        s5 = k;
2340
24.8k
        s2 += k;
2341
24.8k
    }
2342
13.4k
    else {
2343
13.4k
        b2 -= k;
2344
13.4k
        b5 = -k;
2345
13.4k
        s5 = 0;
2346
13.4k
    }
2347
38.3k
    if (mode < 0 || mode > 9)
2348
0
        mode = 0;
2349
2350
38.3k
    try_quick = 1;
2351
2352
38.3k
    if (mode > 5) {
2353
0
        mode -= 4;
2354
0
        try_quick = 0;
2355
0
    }
2356
38.3k
    leftright = 1;
2357
38.3k
    ilim = ilim1 = -1;  /* Values for cases 0 and 1; done here to */
2358
    /* silence erroneous "gcc -Wall" warning. */
2359
38.3k
    switch(mode) {
2360
38.3k
    case 0:
2361
38.3k
    case 1:
2362
38.3k
        i = 18;
2363
38.3k
        ndigits = 0;
2364
38.3k
        break;
2365
0
    case 2:
2366
0
        leftright = 0;
2367
0
        _Py_FALLTHROUGH;
2368
0
    case 4:
2369
0
        if (ndigits <= 0)
2370
0
            ndigits = 1;
2371
0
        ilim = ilim1 = i = ndigits;
2372
0
        break;
2373
0
    case 3:
2374
0
        leftright = 0;
2375
0
        _Py_FALLTHROUGH;
2376
0
    case 5:
2377
0
        i = ndigits + k + 1;
2378
0
        ilim = i;
2379
0
        ilim1 = i - 1;
2380
0
        if (i <= 0)
2381
0
            i = 1;
2382
38.3k
    }
2383
38.3k
    s0 = rv_alloc(i);
2384
38.3k
    if (s0 == NULL)
2385
0
        goto failed_malloc;
2386
38.3k
    s = s0;
2387
2388
2389
38.3k
    if (ilim >= 0 && ilim <= Quick_max && try_quick) {
2390
2391
        /* Try to get by with floating-point arithmetic. */
2392
2393
0
        i = 0;
2394
0
        dval(&d2) = dval(&u);
2395
0
        k0 = k;
2396
0
        ilim0 = ilim;
2397
0
        ieps = 2; /* conservative */
2398
0
        if (k > 0) {
2399
0
            ds = tens[k&0xf];
2400
0
            j = k >> 4;
2401
0
            if (j & Bletch) {
2402
                /* prevent overflows */
2403
0
                j &= Bletch - 1;
2404
0
                dval(&u) /= bigtens[n_bigtens-1];
2405
0
                ieps++;
2406
0
            }
2407
0
            for(; j; j >>= 1, i++)
2408
0
                if (j & 1) {
2409
0
                    ieps++;
2410
0
                    ds *= bigtens[i];
2411
0
                }
2412
0
            dval(&u) /= ds;
2413
0
        }
2414
0
        else if ((j1 = -k)) {
2415
0
            dval(&u) *= tens[j1 & 0xf];
2416
0
            for(j = j1 >> 4; j; j >>= 1, i++)
2417
0
                if (j & 1) {
2418
0
                    ieps++;
2419
0
                    dval(&u) *= bigtens[i];
2420
0
                }
2421
0
        }
2422
0
        if (k_check && dval(&u) < 1. && ilim > 0) {
2423
0
            if (ilim1 <= 0)
2424
0
                goto fast_failed;
2425
0
            ilim = ilim1;
2426
0
            k--;
2427
0
            dval(&u) *= 10.;
2428
0
            ieps++;
2429
0
        }
2430
0
        dval(&eps) = ieps*dval(&u) + 7.;
2431
0
        word0(&eps) -= (P-1)*Exp_msk1;
2432
0
        if (ilim == 0) {
2433
0
            S = mhi = 0;
2434
0
            dval(&u) -= 5.;
2435
0
            if (dval(&u) > dval(&eps))
2436
0
                goto one_digit;
2437
0
            if (dval(&u) < -dval(&eps))
2438
0
                goto no_digits;
2439
0
            goto fast_failed;
2440
0
        }
2441
0
        if (leftright) {
2442
            /* Use Steele & White method of only
2443
             * generating digits needed.
2444
             */
2445
0
            dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
2446
0
            for(i = 0;;) {
2447
0
                L = (Long)dval(&u);
2448
0
                dval(&u) -= L;
2449
0
                *s++ = '0' + (int)L;
2450
0
                if (dval(&u) < dval(&eps))
2451
0
                    goto ret1;
2452
0
                if (1. - dval(&u) < dval(&eps))
2453
0
                    goto bump_up;
2454
0
                if (++i >= ilim)
2455
0
                    break;
2456
0
                dval(&eps) *= 10.;
2457
0
                dval(&u) *= 10.;
2458
0
            }
2459
0
        }
2460
0
        else {
2461
            /* Generate ilim digits, then fix them up. */
2462
0
            dval(&eps) *= tens[ilim-1];
2463
0
            for(i = 1;; i++, dval(&u) *= 10.) {
2464
0
                L = (Long)(dval(&u));
2465
0
                if (!(dval(&u) -= L))
2466
0
                    ilim = i;
2467
0
                *s++ = '0' + (int)L;
2468
0
                if (i == ilim) {
2469
0
                    if (dval(&u) > 0.5 + dval(&eps))
2470
0
                        goto bump_up;
2471
0
                    else if (dval(&u) < 0.5 - dval(&eps)) {
2472
0
                        while(*--s == '0');
2473
0
                        s++;
2474
0
                        goto ret1;
2475
0
                    }
2476
0
                    break;
2477
0
                }
2478
0
            }
2479
0
        }
2480
0
      fast_failed:
2481
0
        s = s0;
2482
0
        dval(&u) = dval(&d2);
2483
0
        k = k0;
2484
0
        ilim = ilim0;
2485
0
    }
2486
2487
    /* Do we have a "small" integer? */
2488
2489
38.3k
    if (be >= 0 && k <= Int_max) {
2490
        /* Yes. */
2491
10.1k
        ds = tens[k];
2492
10.1k
        if (ndigits < 0 && ilim <= 0) {
2493
0
            S = mhi = 0;
2494
0
            if (ilim < 0 || dval(&u) <= 5*ds)
2495
0
                goto no_digits;
2496
0
            goto one_digit;
2497
0
        }
2498
31.6k
        for(i = 1;; i++, dval(&u) *= 10.) {
2499
31.6k
            L = (Long)(dval(&u) / ds);
2500
31.6k
            dval(&u) -= L*ds;
2501
31.6k
            *s++ = '0' + (int)L;
2502
31.6k
            if (!dval(&u)) {
2503
10.1k
                break;
2504
10.1k
            }
2505
21.4k
            if (i == ilim) {
2506
0
                dval(&u) += dval(&u);
2507
0
                if (dval(&u) > ds || (dval(&u) == ds && L & 1)) {
2508
0
                  bump_up:
2509
0
                    while(*--s == '9')
2510
0
                        if (s == s0) {
2511
0
                            k++;
2512
0
                            *s = '0';
2513
0
                            break;
2514
0
                        }
2515
0
                    ++*s++;
2516
0
                }
2517
0
                else {
2518
                    /* Strip trailing zeros. This branch was missing from the
2519
                       original dtoa.c, leading to surplus trailing zeros in
2520
                       some cases. See bugs.python.org/issue40780. */
2521
0
                    while (s > s0 && s[-1] == '0') {
2522
0
                        --s;
2523
0
                    }
2524
0
                }
2525
0
                break;
2526
0
            }
2527
21.4k
        }
2528
10.1k
        goto ret1;
2529
10.1k
    }
2530
2531
28.1k
    m2 = b2;
2532
28.1k
    m5 = b5;
2533
28.1k
    if (leftright) {
2534
28.1k
        i =
2535
28.1k
            denorm ? be + (Bias + (P-1) - 1 + 1) :
2536
28.1k
            1 + P - bbits;
2537
28.1k
        b2 += i;
2538
28.1k
        s2 += i;
2539
28.1k
        mhi = i2b(1);
2540
28.1k
        if (mhi == NULL)
2541
0
            goto failed_malloc;
2542
28.1k
    }
2543
28.1k
    if (m2 > 0 && s2 > 0) {
2544
24.6k
        i = m2 < s2 ? m2 : s2;
2545
24.6k
        b2 -= i;
2546
24.6k
        m2 -= i;
2547
24.6k
        s2 -= i;
2548
24.6k
    }
2549
28.1k
    if (b5 > 0) {
2550
13.4k
        if (leftright) {
2551
13.4k
            if (m5 > 0) {
2552
13.4k
                mhi = pow5mult(mhi, m5);
2553
13.4k
                if (mhi == NULL)
2554
0
                    goto failed_malloc;
2555
13.4k
                b1 = mult(mhi, b);
2556
13.4k
                Bfree(b);
2557
13.4k
                b = b1;
2558
13.4k
                if (b == NULL)
2559
0
                    goto failed_malloc;
2560
13.4k
            }
2561
13.4k
            if ((j = b5 - m5)) {
2562
0
                b = pow5mult(b, j);
2563
0
                if (b == NULL)
2564
0
                    goto failed_malloc;
2565
0
            }
2566
13.4k
        }
2567
0
        else {
2568
0
            b = pow5mult(b, b5);
2569
0
            if (b == NULL)
2570
0
                goto failed_malloc;
2571
0
        }
2572
13.4k
    }
2573
28.1k
    S = i2b(1);
2574
28.1k
    if (S == NULL)
2575
0
        goto failed_malloc;
2576
28.1k
    if (s5 > 0) {
2577
12.0k
        S = pow5mult(S, s5);
2578
12.0k
        if (S == NULL)
2579
0
            goto failed_malloc;
2580
12.0k
    }
2581
2582
    /* Check for special case that d is a normalized power of 2. */
2583
2584
28.1k
    spec_case = 0;
2585
28.1k
    if ((mode < 2 || leftright)
2586
28.1k
        ) {
2587
28.1k
        if (!word1(&u) && !(word0(&u) & Bndry_mask)
2588
28.1k
            && word0(&u) & (Exp_mask & ~Exp_msk1)
2589
28.1k
            ) {
2590
            /* The special case */
2591
1.31k
            b2 += Log2P;
2592
1.31k
            s2 += Log2P;
2593
1.31k
            spec_case = 1;
2594
1.31k
        }
2595
28.1k
    }
2596
2597
    /* Arrange for convenient computation of quotients:
2598
     * shift left if necessary so divisor has 4 leading 0 bits.
2599
     *
2600
     * Perhaps we should just compute leading 28 bits of S once
2601
     * and for all and pass them and a shift to quorem, so it
2602
     * can do shifts and ors to compute the numerator for q.
2603
     */
2604
28.1k
#define iInc 28
2605
28.1k
    i = dshift(S, s2);
2606
28.1k
    b2 += i;
2607
28.1k
    m2 += i;
2608
28.1k
    s2 += i;
2609
28.1k
    if (b2 > 0) {
2610
28.1k
        b = lshift(b, b2);
2611
28.1k
        if (b == NULL)
2612
0
            goto failed_malloc;
2613
28.1k
    }
2614
28.1k
    if (s2 > 0) {
2615
27.4k
        S = lshift(S, s2);
2616
27.4k
        if (S == NULL)
2617
0
            goto failed_malloc;
2618
27.4k
    }
2619
28.1k
    if (k_check) {
2620
21.1k
        if (cmp(b,S) < 0) {
2621
3.12k
            k--;
2622
3.12k
            b = multadd(b, 10, 0);      /* we botched the k estimate */
2623
3.12k
            if (b == NULL)
2624
0
                goto failed_malloc;
2625
3.12k
            if (leftright) {
2626
3.12k
                mhi = multadd(mhi, 10, 0);
2627
3.12k
                if (mhi == NULL)
2628
0
                    goto failed_malloc;
2629
3.12k
            }
2630
3.12k
            ilim = ilim1;
2631
3.12k
        }
2632
21.1k
    }
2633
28.1k
    if (ilim <= 0 && (mode == 3 || mode == 5)) {
2634
0
        if (ilim < 0) {
2635
            /* no digits, fcvt style */
2636
0
          no_digits:
2637
0
            k = -1 - ndigits;
2638
0
            goto ret;
2639
0
        }
2640
0
        else {
2641
0
            S = multadd(S, 5, 0);
2642
0
            if (S == NULL)
2643
0
                goto failed_malloc;
2644
0
            if (cmp(b, S) <= 0)
2645
0
                goto no_digits;
2646
0
        }
2647
0
      one_digit:
2648
0
        *s++ = '1';
2649
0
        k++;
2650
0
        goto ret;
2651
0
    }
2652
28.1k
    if (leftright) {
2653
28.1k
        if (m2 > 0) {
2654
27.5k
            mhi = lshift(mhi, m2);
2655
27.5k
            if (mhi == NULL)
2656
0
                goto failed_malloc;
2657
27.5k
        }
2658
2659
        /* Compute mlo -- check for special case
2660
         * that d is a normalized power of 2.
2661
         */
2662
2663
28.1k
        mlo = mhi;
2664
28.1k
        if (spec_case) {
2665
1.31k
            mhi = Balloc(mhi->k);
2666
1.31k
            if (mhi == NULL)
2667
0
                goto failed_malloc;
2668
1.31k
            Bcopy(mhi, mlo);
2669
1.31k
            mhi = lshift(mhi, Log2P);
2670
1.31k
            if (mhi == NULL)
2671
0
                goto failed_malloc;
2672
1.31k
        }
2673
2674
110k
        for(i = 1;;i++) {
2675
110k
            dig = quorem(b,S) + '0';
2676
            /* Do we yet have the shortest decimal string
2677
             * that will round to d?
2678
             */
2679
110k
            j = cmp(b, mlo);
2680
110k
            delta = diff(S, mhi);
2681
110k
            if (delta == NULL)
2682
0
                goto failed_malloc;
2683
110k
            j1 = delta->sign ? 1 : cmp(b, delta);
2684
110k
            Bfree(delta);
2685
110k
            if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
2686
110k
                ) {
2687
1.60k
                if (dig == '9')
2688
865
                    goto round_9_up;
2689
743
                if (j > 0)
2690
600
                    dig++;
2691
743
                *s++ = dig;
2692
743
                goto ret;
2693
1.60k
            }
2694
108k
            if (j < 0 || (j == 0 && mode != 1
2695
92.4k
                          && !(word1(&u) & 1)
2696
92.4k
                    )) {
2697
16.3k
                if (!b->x[0] && b->wds <= 1) {
2698
3.75k
                    goto accept_dig;
2699
3.75k
                }
2700
12.6k
                if (j1 > 0) {
2701
2.21k
                    b = lshift(b, 1);
2702
2.21k
                    if (b == NULL)
2703
0
                        goto failed_malloc;
2704
2.21k
                    j1 = cmp(b, S);
2705
2.21k
                    if ((j1 > 0 || (j1 == 0 && dig & 1))
2706
2.21k
                        && dig++ == '9')
2707
508
                        goto round_9_up;
2708
2.21k
                }
2709
15.8k
              accept_dig:
2710
15.8k
                *s++ = dig;
2711
15.8k
                goto ret;
2712
12.6k
            }
2713
92.2k
            if (j1 > 0) {
2714
10.1k
                if (dig == '9') { /* possible if i == 1 */
2715
3.51k
                  round_9_up:
2716
3.51k
                    *s++ = '9';
2717
3.51k
                    goto roundoff;
2718
2.14k
                }
2719
8.02k
                *s++ = dig + 1;
2720
8.02k
                goto ret;
2721
10.1k
            }
2722
82.0k
            *s++ = dig;
2723
82.0k
            if (i == ilim)
2724
0
                break;
2725
82.0k
            b = multadd(b, 10, 0);
2726
82.0k
            if (b == NULL)
2727
0
                goto failed_malloc;
2728
82.0k
            if (mlo == mhi) {
2729
78.3k
                mlo = mhi = multadd(mhi, 10, 0);
2730
78.3k
                if (mlo == NULL)
2731
0
                    goto failed_malloc;
2732
78.3k
            }
2733
3.69k
            else {
2734
3.69k
                mlo = multadd(mlo, 10, 0);
2735
3.69k
                if (mlo == NULL)
2736
0
                    goto failed_malloc;
2737
3.69k
                mhi = multadd(mhi, 10, 0);
2738
3.69k
                if (mhi == NULL)
2739
0
                    goto failed_malloc;
2740
3.69k
            }
2741
82.0k
        }
2742
28.1k
    }
2743
0
    else
2744
0
        for(i = 1;; i++) {
2745
0
            *s++ = dig = quorem(b,S) + '0';
2746
0
            if (!b->x[0] && b->wds <= 1) {
2747
0
                goto ret;
2748
0
            }
2749
0
            if (i >= ilim)
2750
0
                break;
2751
0
            b = multadd(b, 10, 0);
2752
0
            if (b == NULL)
2753
0
                goto failed_malloc;
2754
0
        }
2755
2756
    /* Round off last digit */
2757
2758
0
    b = lshift(b, 1);
2759
0
    if (b == NULL)
2760
0
        goto failed_malloc;
2761
0
    j = cmp(b, S);
2762
0
    if (j > 0 || (j == 0 && dig & 1)) {
2763
3.51k
      roundoff:
2764
3.51k
        while(*--s == '9')
2765
3.51k
            if (s == s0) {
2766
3.51k
                k++;
2767
3.51k
                *s++ = '1';
2768
3.51k
                goto ret;
2769
3.51k
            }
2770
0
        ++*s++;
2771
0
    }
2772
0
    else {
2773
0
        while(*--s == '0');
2774
0
        s++;
2775
0
    }
2776
28.1k
  ret:
2777
28.1k
    Bfree(S);
2778
28.1k
    if (mhi) {
2779
28.1k
        if (mlo && mlo != mhi)
2780
1.31k
            Bfree(mlo);
2781
28.1k
        Bfree(mhi);
2782
28.1k
    }
2783
38.3k
  ret1:
2784
38.3k
    Bfree(b);
2785
38.3k
    *s = 0;
2786
38.3k
    *decpt = k + 1;
2787
38.3k
    if (rve)
2788
38.3k
        *rve = s;
2789
38.3k
    return s0;
2790
0
  failed_malloc:
2791
0
    if (S)
2792
0
        Bfree(S);
2793
0
    if (mlo && mlo != mhi)
2794
0
        Bfree(mlo);
2795
0
    if (mhi)
2796
0
        Bfree(mhi);
2797
0
    if (b)
2798
0
        Bfree(b);
2799
0
    if (s0)
2800
0
        _Py_dg_freedtoa(s0);
2801
0
    return NULL;
2802
28.1k
}
2803
2804
#endif  // _PY_SHORT_FLOAT_REPR == 1
2805
2806
PyStatus
2807
_PyDtoa_Init(PyInterpreterState *interp)
2808
22
{
2809
22
#if _PY_SHORT_FLOAT_REPR == 1 && !defined(Py_USING_MEMORY_DEBUGGER)
2810
22
    Bigint **p5s = interp->dtoa.p5s;
2811
2812
    // 5**4 = 625
2813
22
    Bigint *p5 = i2b(625);
2814
22
    if (p5 == NULL) {
2815
0
        return PyStatus_NoMemory();
2816
0
    }
2817
22
    p5s[0] = p5;
2818
2819
    // compute 5**8, 5**16, 5**32, ..., 5**512
2820
176
    for (Py_ssize_t i = 1; i < Bigint_Pow5size; i++) {
2821
154
        p5 = mult(p5, p5);
2822
154
        if (p5 == NULL) {
2823
0
            return PyStatus_NoMemory();
2824
0
        }
2825
154
        p5s[i] = p5;
2826
154
    }
2827
2828
22
#endif
2829
22
    return PyStatus_Ok();
2830
22
}
2831
2832
void
2833
_PyDtoa_Fini(PyInterpreterState *interp)
2834
0
{
2835
0
#if _PY_SHORT_FLOAT_REPR == 1 && !defined(Py_USING_MEMORY_DEBUGGER)
2836
0
    Bigint **p5s = interp->dtoa.p5s;
2837
0
    for (Py_ssize_t i = 0; i < Bigint_Pow5size; i++) {
2838
0
        Bigint *p5 = p5s[i];
2839
0
        p5s[i] = NULL;
2840
0
        Bfree(p5);
2841
0
    }
2842
0
#endif
2843
0
}