Coverage Report

Created: 2025-11-11 07:03

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/cpython3/Objects/longobject.c
Line
Count
Source
1
/* Long (arbitrary precision) integer object implementation */
2
3
/* XXX The functional organization of this file is terrible */
4
5
#include "Python.h"
6
#include "pycore_bitutils.h"      // _Py_popcount32()
7
#include "pycore_initconfig.h"    // _PyStatus_OK()
8
#include "pycore_call.h"          // _PyObject_MakeTpCall
9
#include "pycore_freelist.h"      // _Py_FREELIST_FREE, _Py_FREELIST_POP
10
#include "pycore_long.h"          // _Py_SmallInts
11
#include "pycore_object.h"        // _PyObject_Init()
12
#include "pycore_runtime.h"       // _PY_NSMALLPOSINTS
13
#include "pycore_stackref.h"
14
#include "pycore_structseq.h"     // _PyStructSequence_FiniBuiltin()
15
#include "pycore_unicodeobject.h" // _PyUnicode_Equal()
16
17
#include <float.h>                // DBL_MANT_DIG
18
#include <stddef.h>               // offsetof
19
20
#include "clinic/longobject.c.h"
21
/*[clinic input]
22
class int "PyObject *" "&PyLong_Type"
23
[clinic start generated code]*/
24
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=ec0275e3422a36e3]*/
25
26
165M
#define medium_value(x) ((stwodigits)_PyLong_CompactValue(x))
27
28
185M
#define IS_SMALL_INT(ival) (-_PY_NSMALLNEGINTS <= (ival) && (ival) < _PY_NSMALLPOSINTS)
29
178k
#define IS_SMALL_UINT(ival) ((ival) < _PY_NSMALLPOSINTS)
30
31
42
#define _MAX_STR_DIGITS_ERROR_FMT_TO_INT "Exceeds the limit (%d digits) for integer string conversion: value has %zd digits; use sys.set_int_max_str_digits() to increase the limit"
32
0
#define _MAX_STR_DIGITS_ERROR_FMT_TO_STR "Exceeds the limit (%d digits) for integer string conversion; use sys.set_int_max_str_digits() to increase the limit"
33
34
/* If defined, use algorithms from the _pylong.py module */
35
#define WITH_PYLONG_MODULE 1
36
37
// Forward declarations
38
static PyLongObject* long_neg(PyLongObject *v);
39
static PyLongObject *x_divrem(PyLongObject *, PyLongObject *, PyLongObject **);
40
static PyObject* long_long(PyObject *v);
41
static PyObject* long_lshift_int64(PyLongObject *a, int64_t shiftby);
42
43
44
static inline void
45
_Py_DECREF_INT(PyLongObject *op)
46
5.64M
{
47
5.64M
    assert(PyLong_CheckExact(op));
48
5.64M
    _Py_DECREF_SPECIALIZED((PyObject *)op, _PyLong_ExactDealloc);
49
5.64M
}
50
51
static inline int
52
is_medium_int(stwodigits x)
53
52.9M
{
54
    /* Take care that we are comparing unsigned values. */
55
52.9M
    twodigits x_plus_mask = ((twodigits)x) + PyLong_MASK;
56
52.9M
    return x_plus_mask < ((twodigits)PyLong_MASK) + PyLong_BASE;
57
52.9M
}
58
59
static PyObject *
60
get_small_int(sdigit ival)
61
133M
{
62
133M
    assert(IS_SMALL_INT(ival));
63
133M
    return (PyObject *)&_PyLong_SMALL_INTS[_PY_NSMALLNEGINTS + ival];
64
133M
}
65
66
static PyLongObject *
67
maybe_small_long(PyLongObject *v)
68
2.31M
{
69
2.31M
    if (v && _PyLong_IsCompact(v)) {
70
1.80M
        stwodigits ival = medium_value(v);
71
1.80M
        if (IS_SMALL_INT(ival)) {
72
1.72M
            _Py_DECREF_INT(v);
73
1.72M
            return (PyLongObject *)get_small_int((sdigit)ival);
74
1.72M
        }
75
1.80M
    }
76
593k
    return v;
77
2.31M
}
78
79
/* For int multiplication, use the O(N**2) school algorithm unless
80
 * both operands contain more than KARATSUBA_CUTOFF digits (this
81
 * being an internal Python int digit, in base BASE).
82
 */
83
2.75M
#define KARATSUBA_CUTOFF 70
84
166k
#define KARATSUBA_SQUARE_CUTOFF (2 * KARATSUBA_CUTOFF)
85
86
/* For exponentiation, use the binary left-to-right algorithm unless the
87
 ^ exponent contains more than HUGE_EXP_CUTOFF bits.  In that case, do
88
 * (no more than) EXP_WINDOW_SIZE bits at a time.  The potential drawback is
89
 * that a table of 2**(EXP_WINDOW_SIZE - 1) intermediate results is
90
 * precomputed.
91
 */
92
297k
#define EXP_WINDOW_SIZE 5
93
58.7k
#define EXP_TABLE_LEN (1 << (EXP_WINDOW_SIZE - 1))
94
/* Suppose the exponent has bit length e. All ways of doing this
95
 * need e squarings. The binary method also needs a multiply for
96
 * each bit set. In a k-ary method with window width w, a multiply
97
 * for each non-zero window, so at worst (and likely!)
98
 * ceiling(e/w). The k-ary sliding window method has the same
99
 * worst case, but the window slides so it can sometimes skip
100
 * over an all-zero window that the fixed-window method can't
101
 * exploit. In addition, the windowing methods need multiplies
102
 * to precompute a table of small powers.
103
 *
104
 * For the sliding window method with width 5, 16 precomputation
105
 * multiplies are needed. Assuming about half the exponent bits
106
 * are set, then, the binary method needs about e/2 extra mults
107
 * and the window method about 16 + e/5.
108
 *
109
 * The latter is smaller for e > 53 1/3. We don't have direct
110
 * access to the bit length, though, so call it 60, which is a
111
 * multiple of a long digit's max bit length (15 or 30 so far).
112
 */
113
48.2k
#define HUGE_EXP_CUTOFF 60
114
115
#define SIGCHECK(PyTryBlock)                    \
116
30.6M
    do {                                        \
117
30.6M
        if (PyErr_CheckSignals()) PyTryBlock    \
118
30.6M
    } while(0)
119
120
/* Normalize (remove leading zeros from) an int object.
121
   Doesn't attempt to free the storage--in most cases, due to the nature
122
   of the algorithms used, this could save at most be one word anyway. */
123
124
static PyLongObject *
125
long_normalize(PyLongObject *v)
126
6.80M
{
127
6.80M
    Py_ssize_t j = _PyLong_DigitCount(v);
128
6.80M
    Py_ssize_t i = j;
129
130
11.3M
    while (i > 0 && v->long_value.ob_digit[i-1] == 0)
131
4.57M
        --i;
132
6.80M
    if (i != j) {
133
2.82M
        if (i == 0) {
134
165k
            _PyLong_SetSignAndDigitCount(v, 0, 0);
135
165k
        }
136
2.65M
        else {
137
2.65M
            _PyLong_SetDigitCount(v, i);
138
2.65M
        }
139
2.82M
    }
140
6.80M
    return v;
141
6.80M
}
142
143
/* Allocate a new int object with size digits.
144
   Return NULL and set exception if we run out of memory. */
145
146
#if SIZEOF_SIZE_T < 8
147
# define MAX_LONG_DIGITS \
148
    ((PY_SSIZE_T_MAX - offsetof(PyLongObject, long_value.ob_digit))/sizeof(digit))
149
#else
150
/* Guarantee that the number of bits fits in int64_t.
151
   This is more than an exbibyte, that is more than many of modern
152
   architectures support in principle.
153
   -1 is added to avoid overflow in _PyLong_Frexp(). */
154
10.4M
# define MAX_LONG_DIGITS ((INT64_MAX-1) / PyLong_SHIFT)
155
#endif
156
157
static PyLongObject *
158
long_alloc(Py_ssize_t size)
159
8.73M
{
160
8.73M
    assert(size >= 0);
161
8.73M
    PyLongObject *result = NULL;
162
8.73M
    if (size > (Py_ssize_t)MAX_LONG_DIGITS) {
163
0
        PyErr_SetString(PyExc_OverflowError,
164
0
                        "too many digits in integer");
165
0
        return NULL;
166
0
    }
167
    /* Fast operations for single digit integers (including zero)
168
     * assume that there is always at least one digit present. */
169
8.73M
    Py_ssize_t ndigits = size ? size : 1;
170
171
8.73M
    if (ndigits == 1) {
172
1.79M
        result = (PyLongObject *)_Py_FREELIST_POP(PyLongObject, ints);
173
1.79M
    }
174
8.73M
    if (result == NULL) {
175
        /* Number of bytes needed is: offsetof(PyLongObject, ob_digit) +
176
        sizeof(digit)*size.  Previous incarnations of this code used
177
        sizeof() instead of the offsetof, but this risks being
178
        incorrect in the presence of padding between the header
179
        and the digits. */
180
6.95M
        result = PyObject_Malloc(offsetof(PyLongObject, long_value.ob_digit) +
181
6.95M
                                ndigits*sizeof(digit));
182
6.95M
        if (!result) {
183
0
            PyErr_NoMemory();
184
0
            return NULL;
185
0
        }
186
6.95M
        _PyObject_Init((PyObject*)result, &PyLong_Type);
187
6.95M
    }
188
8.73M
    _PyLong_SetSignAndDigitCount(result, size != 0, size);
189
    /* The digit has to be initialized explicitly to avoid
190
     * use-of-uninitialized-value. */
191
8.73M
    result->long_value.ob_digit[0] = 0;
192
8.73M
    return result;
193
8.73M
}
194
195
PyLongObject *
196
_PyLong_New(Py_ssize_t size)
197
0
{
198
0
    return long_alloc(size);
199
0
}
200
201
PyLongObject *
202
_PyLong_FromDigits(int negative, Py_ssize_t digit_count, digit *digits)
203
0
{
204
0
    assert(digit_count >= 0);
205
0
    if (digit_count == 0) {
206
0
        return (PyLongObject *)_PyLong_GetZero();
207
0
    }
208
0
    PyLongObject *result = long_alloc(digit_count);
209
0
    if (result == NULL) {
210
0
        return NULL;
211
0
    }
212
0
    _PyLong_SetSignAndDigitCount(result, negative?-1:1, digit_count);
213
0
    memcpy(result->long_value.ob_digit, digits, digit_count * sizeof(digit));
214
0
    return result;
215
0
}
216
217
PyObject *
218
_PyLong_Copy(PyLongObject *src)
219
19.2k
{
220
19.2k
    assert(src != NULL);
221
19.2k
    int sign;
222
223
19.2k
    if (_PyLong_IsCompact(src)) {
224
1.10k
        stwodigits ival = medium_value(src);
225
1.10k
        if (IS_SMALL_INT(ival)) {
226
1.10k
            return get_small_int((sdigit)ival);
227
1.10k
        }
228
0
        sign = _PyLong_CompactSign(src);
229
0
    }
230
18.1k
    else {
231
18.1k
        sign = _PyLong_NonCompactSign(src);
232
18.1k
    }
233
234
18.1k
    Py_ssize_t size = _PyLong_DigitCount(src);
235
18.1k
    PyLongObject *result = long_alloc(size);
236
237
18.1k
    if (result == NULL) {
238
0
        return NULL;
239
0
    }
240
18.1k
    _PyLong_SetSignAndDigitCount(result, sign, size);
241
18.1k
    memcpy(result->long_value.ob_digit, src->long_value.ob_digit,
242
18.1k
           size * sizeof(digit));
243
18.1k
    return (PyObject *)result;
244
18.1k
}
245
246
static PyObject *
247
_PyLong_FromMedium(sdigit x)
248
21.7M
{
249
21.7M
    assert(!IS_SMALL_INT(x));
250
21.7M
    assert(is_medium_int(x));
251
252
21.7M
    PyLongObject *v = (PyLongObject *)_Py_FREELIST_POP(PyLongObject, ints);
253
21.7M
    if (v == NULL) {
254
1.69M
        v = PyObject_Malloc(sizeof(PyLongObject));
255
1.69M
        if (v == NULL) {
256
0
            PyErr_NoMemory();
257
0
            return NULL;
258
0
        }
259
1.69M
        _PyObject_Init((PyObject*)v, &PyLong_Type);
260
1.69M
    }
261
21.7M
    digit abs_x = x < 0 ? -x : x;
262
21.7M
    _PyLong_SetSignAndDigitCount(v, x<0?-1:1, 1);
263
21.7M
    v->long_value.ob_digit[0] = abs_x;
264
21.7M
    return (PyObject*)v;
265
21.7M
}
266
267
static PyObject *
268
_PyLong_FromLarge(stwodigits ival)
269
45.9k
{
270
45.9k
    twodigits abs_ival;
271
45.9k
    int sign;
272
45.9k
    assert(!is_medium_int(ival));
273
274
45.9k
    if (ival < 0) {
275
        /* negate: can't write this as abs_ival = -ival since that
276
           invokes undefined behaviour when ival is LONG_MIN */
277
1.08k
        abs_ival = 0U-(twodigits)ival;
278
1.08k
        sign = -1;
279
1.08k
    }
280
44.8k
    else {
281
44.8k
        abs_ival = (twodigits)ival;
282
44.8k
        sign = 1;
283
44.8k
    }
284
    /* Must be at least two digits */
285
45.9k
    assert(abs_ival >> PyLong_SHIFT != 0);
286
45.9k
    twodigits t = abs_ival >> (PyLong_SHIFT * 2);
287
45.9k
    Py_ssize_t ndigits = 2;
288
45.9k
    while (t) {
289
0
        ++ndigits;
290
0
        t >>= PyLong_SHIFT;
291
0
    }
292
45.9k
    PyLongObject *v = long_alloc(ndigits);
293
45.9k
    if (v != NULL) {
294
45.9k
        digit *p = v->long_value.ob_digit;
295
45.9k
        _PyLong_SetSignAndDigitCount(v, sign, ndigits);
296
45.9k
        t = abs_ival;
297
137k
        while (t) {
298
91.8k
            *p++ = Py_SAFE_DOWNCAST(
299
91.8k
                t & PyLong_MASK, twodigits, digit);
300
91.8k
            t >>= PyLong_SHIFT;
301
91.8k
        }
302
45.9k
    }
303
45.9k
    return (PyObject *)v;
304
45.9k
}
305
306
/* Create a new int object from a C word-sized int */
307
static inline PyLongObject *
308
_PyLong_FromSTwoDigits(stwodigits x)
309
12.1M
{
310
12.1M
    if (IS_SMALL_INT(x)) {
311
11.6M
        return (PyLongObject*)get_small_int((sdigit)x);
312
11.6M
    }
313
12.1M
    assert(x != 0);
314
454k
    if (is_medium_int(x)) {
315
408k
        return (PyLongObject*)_PyLong_FromMedium((sdigit)x);
316
408k
    }
317
45.9k
    return (PyLongObject*)_PyLong_FromLarge(x);
318
454k
}
319
320
/* Create a new medium int object from a medium int.
321
 * Do not raise. Return NULL if not medium or can't allocate. */
322
static inline _PyStackRef
323
medium_from_stwodigits(stwodigits x)
324
70.0M
{
325
70.0M
    if (IS_SMALL_INT(x)) {
326
39.3M
        return PyStackRef_FromPyObjectBorrow(get_small_int((sdigit)x));
327
39.3M
    }
328
70.0M
    assert(x != 0);
329
30.7M
    if(!is_medium_int(x)) {
330
3.57k
        return PyStackRef_NULL;
331
3.57k
    }
332
30.6M
    PyLongObject *v = (PyLongObject *)_Py_FREELIST_POP(PyLongObject, ints);
333
30.6M
    if (v == NULL) {
334
1.22M
        v = PyObject_Malloc(sizeof(PyLongObject));
335
1.22M
        if (v == NULL) {
336
0
            return PyStackRef_NULL;
337
0
        }
338
1.22M
        _PyObject_Init((PyObject*)v, &PyLong_Type);
339
1.22M
    }
340
30.6M
    digit abs_x = x < 0 ? (digit)(-x) : (digit)x;
341
30.6M
    _PyLong_SetSignAndDigitCount(v, x<0?-1:1, 1);
342
30.6M
    v->long_value.ob_digit[0] = abs_x;
343
30.6M
    return PyStackRef_FromPyObjectStealMortal((PyObject *)v);
344
30.6M
}
345
346
347
/* If a freshly-allocated int is already shared, it must
348
   be a small integer, so negating it must go to PyLong_FromLong */
349
Py_LOCAL_INLINE(void)
350
_PyLong_Negate(PyLongObject **x_p)
351
242k
{
352
242k
    PyLongObject *x;
353
354
242k
    x = (PyLongObject *)*x_p;
355
242k
    if (_PyObject_IsUniquelyReferenced((PyObject *)x)) {
356
22.0k
         _PyLong_FlipSign(x);
357
22.0k
        return;
358
22.0k
    }
359
360
220k
    *x_p = _PyLong_FromSTwoDigits(-medium_value(x));
361
220k
    Py_DECREF(x);
362
220k
}
363
364
#define PYLONG_FROM_INT(UINT_TYPE, INT_TYPE, ival)                                  \
365
101M
    do {                                                                            \
366
101M
        /* Handle small and medium cases. */                                        \
367
101M
        if (IS_SMALL_INT(ival)) {                                                   \
368
80.5M
            return get_small_int((sdigit)(ival));                                   \
369
80.5M
        }                                                                           \
370
101M
        if (-(INT_TYPE)PyLong_MASK <= (ival) && (ival) <= (INT_TYPE)PyLong_MASK) {  \
371
21.2M
            return _PyLong_FromMedium((sdigit)(ival));                              \
372
21.2M
        }                                                                           \
373
21.3M
        UINT_TYPE abs_ival = (ival) < 0 ? 0U-(UINT_TYPE)(ival) : (UINT_TYPE)(ival); \
374
111k
        /* Do shift in two steps to avoid possible undefined behavior. */           \
375
111k
        UINT_TYPE t = abs_ival >> PyLong_SHIFT >> PyLong_SHIFT;                     \
376
111k
        /* Count digits (at least two - smaller cases were handled above). */       \
377
111k
        Py_ssize_t ndigits = 2;                                                     \
378
125k
        while (t) {                                                                 \
379
14.0k
            ++ndigits;                                                              \
380
14.0k
            t >>= PyLong_SHIFT;                                                     \
381
14.0k
        }                                                                           \
382
111k
        /* Construct output value. */                                               \
383
111k
        PyLongObject *v = long_alloc(ndigits);                                      \
384
111k
        if (v == NULL) {                                                            \
385
0
            return NULL;                                                            \
386
0
        }                                                                           \
387
111k
        digit *p = v->long_value.ob_digit;                                          \
388
111k
        _PyLong_SetSignAndDigitCount(v, (ival) < 0 ? -1 : 1, ndigits);              \
389
111k
        t = abs_ival;                                                               \
390
347k
        while (t) {                                                                 \
391
236k
            *p++ = (digit)(t & PyLong_MASK);                                        \
392
236k
            t >>= PyLong_SHIFT;                                                     \
393
236k
        }                                                                           \
394
111k
        return (PyObject *)v;                                                       \
395
111k
    } while(0)
396
397
398
/* Create a new int object from a C long int */
399
400
PyObject *
401
PyLong_FromLong(long ival)
402
55.6M
{
403
55.6M
    PYLONG_FROM_INT(unsigned long, long, ival);
404
55.6M
}
405
406
#define PYLONG_FROM_UINT(INT_TYPE, ival) \
407
178k
    do { \
408
178k
        /* Handle small and medium cases. */ \
409
178k
        if (IS_SMALL_UINT(ival)) { \
410
8.15k
            return get_small_int((sdigit)(ival)); \
411
8.15k
        } \
412
178k
        if ((ival) <= PyLong_MASK) { \
413
9.34k
            return _PyLong_FromMedium((sdigit)(ival)); \
414
9.34k
        } \
415
170k
        /* Do shift in two steps to avoid possible undefined behavior. */ \
416
170k
        INT_TYPE t = (ival) >> PyLong_SHIFT >> PyLong_SHIFT; \
417
160k
        /* Count digits (at least two - smaller cases were handled above). */ \
418
160k
        Py_ssize_t ndigits = 2; \
419
162k
        while (t) { \
420
1.79k
            ++ndigits; \
421
1.79k
            t >>= PyLong_SHIFT; \
422
1.79k
        } \
423
160k
        /* Construct output value. */ \
424
160k
        PyLongObject *v = long_alloc(ndigits); \
425
160k
        if (v == NULL) { \
426
0
            return NULL; \
427
0
        } \
428
160k
        digit *p = v->long_value.ob_digit; \
429
484k
        while ((ival)) { \
430
323k
            *p++ = (digit)((ival) & PyLong_MASK); \
431
323k
            (ival) >>= PyLong_SHIFT; \
432
323k
        } \
433
160k
        return (PyObject *)v; \
434
160k
    } while(0)
435
436
/* Create a new int object from a C unsigned long int */
437
438
PyObject *
439
PyLong_FromUnsignedLong(unsigned long ival)
440
166k
{
441
166k
    PYLONG_FROM_UINT(unsigned long, ival);
442
166k
}
443
444
/* Create a new int object from a C unsigned long long int. */
445
446
PyObject *
447
PyLong_FromUnsignedLongLong(unsigned long long ival)
448
9.91k
{
449
9.91k
    PYLONG_FROM_UINT(unsigned long long, ival);
450
9.91k
}
451
452
/* Create a new int object from a C size_t. */
453
454
PyObject *
455
PyLong_FromSize_t(size_t ival)
456
1.93k
{
457
1.93k
    PYLONG_FROM_UINT(size_t, ival);
458
1.93k
}
459
460
/* Create a new int object from a C double */
461
462
PyObject *
463
PyLong_FromDouble(double dval)
464
678
{
465
    /* Try to get out cheap if this fits in a long. When a finite value of real
466
     * floating type is converted to an integer type, the value is truncated
467
     * toward zero. If the value of the integral part cannot be represented by
468
     * the integer type, the behavior is undefined. Thus, we must check that
469
     * value is in range (LONG_MIN - 1, LONG_MAX + 1). If a long has more bits
470
     * of precision than a double, casting LONG_MIN - 1 to double may yield an
471
     * approximation, but LONG_MAX + 1 is a power of two and can be represented
472
     * as double exactly (assuming FLT_RADIX is 2 or 16), so for simplicity
473
     * check against [-(LONG_MAX + 1), LONG_MAX + 1).
474
     */
475
678
    const double int_max = (unsigned long)LONG_MAX + 1;
476
678
    if (-int_max < dval && dval < int_max) {
477
430
        return PyLong_FromLong((long)dval);
478
430
    }
479
480
248
    PyLongObject *v;
481
248
    double frac;
482
248
    int i, ndig, expo, neg;
483
248
    neg = 0;
484
248
    if (isinf(dval)) {
485
0
        PyErr_SetString(PyExc_OverflowError,
486
0
                        "cannot convert float infinity to integer");
487
0
        return NULL;
488
0
    }
489
248
    if (isnan(dval)) {
490
0
        PyErr_SetString(PyExc_ValueError,
491
0
                        "cannot convert float NaN to integer");
492
0
        return NULL;
493
0
    }
494
248
    if (dval < 0.0) {
495
0
        neg = 1;
496
0
        dval = -dval;
497
0
    }
498
248
    frac = frexp(dval, &expo); /* dval = frac*2**expo; 0.0 <= frac < 1.0 */
499
248
    assert(expo > 0);
500
248
    ndig = (expo-1) / PyLong_SHIFT + 1; /* Number of 'digits' in result */
501
248
    v = long_alloc(ndig);
502
248
    if (v == NULL)
503
0
        return NULL;
504
248
    frac = ldexp(frac, (expo-1) % PyLong_SHIFT + 1);
505
992
    for (i = ndig; --i >= 0; ) {
506
744
        digit bits = (digit)frac;
507
744
        v->long_value.ob_digit[i] = bits;
508
744
        frac = frac - (double)bits;
509
744
        frac = ldexp(frac, PyLong_SHIFT);
510
744
    }
511
248
    if (neg) {
512
0
        _PyLong_FlipSign(v);
513
0
    }
514
248
    return (PyObject *)v;
515
248
}
516
517
/* Checking for overflow in PyLong_AsLong is a PITA since C doesn't define
518
 * anything about what happens when a signed integer operation overflows,
519
 * and some compilers think they're doing you a favor by being "clever"
520
 * then.  The bit pattern for the largest positive signed long is
521
 * (unsigned long)LONG_MAX, and for the smallest negative signed long
522
 * it is abs(LONG_MIN), which we could write -(unsigned long)LONG_MIN.
523
 * However, some other compilers warn about applying unary minus to an
524
 * unsigned operand.  Hence the weird "0-".
525
 */
526
1.99k
#define PY_ABS_LONG_MIN         (0-(unsigned long)LONG_MIN)
527
853
#define PY_ABS_SSIZE_T_MIN      (0-(size_t)PY_SSIZE_T_MIN)
528
529
static inline unsigned long
530
unroll_digits_ulong(PyLongObject *v, Py_ssize_t *iptr)
531
829k
{
532
829k
    assert(ULONG_MAX >= ((1UL << PyLong_SHIFT) - 1));
533
534
829k
    Py_ssize_t i = *iptr;
535
829k
    assert(i >= 2);
536
537
    /* unroll 1 digit */
538
829k
    --i;
539
829k
    digit *digits = v->long_value.ob_digit;
540
829k
    unsigned long x = digits[i];
541
542
829k
#if (ULONG_MAX >> PyLong_SHIFT) >= ((1UL << PyLong_SHIFT) - 1)
543
    /* unroll another digit */
544
829k
    x <<= PyLong_SHIFT;
545
829k
    --i;
546
829k
    x |= digits[i];
547
829k
#endif
548
549
829k
    *iptr = i;
550
829k
    return x;
551
829k
}
552
553
static inline size_t
554
unroll_digits_size_t(PyLongObject *v, Py_ssize_t *iptr)
555
9.06k
{
556
9.06k
    assert(SIZE_MAX >= ((1UL << PyLong_SHIFT) - 1));
557
558
9.06k
    Py_ssize_t i = *iptr;
559
9.06k
    assert(i >= 2);
560
561
    /* unroll 1 digit */
562
9.06k
    --i;
563
9.06k
    digit *digits = v->long_value.ob_digit;
564
9.06k
    size_t x = digits[i];
565
566
9.06k
#if (SIZE_MAX >> PyLong_SHIFT) >= ((1 << PyLong_SHIFT) - 1)
567
    /* unroll another digit */
568
9.06k
    x <<= PyLong_SHIFT;
569
9.06k
    --i;
570
9.06k
    x |= digits[i];
571
9.06k
#endif
572
573
9.06k
    *iptr = i;
574
9.06k
    return x;
575
9.06k
}
576
577
/* Get a C long int from an int object or any object that has an __index__
578
   method.
579
580
   On overflow, return -1 and set *overflow to 1 or -1 depending on the sign of
581
   the result.  Otherwise *overflow is 0.
582
583
   For other errors (e.g., TypeError), return -1 and set an error condition.
584
   In this case *overflow will be 0.
585
*/
586
long
587
PyLong_AsLongAndOverflow(PyObject *vv, int *overflow)
588
51.0M
{
589
    /* This version originally by Tim Peters */
590
51.0M
    PyLongObject *v;
591
51.0M
    long res;
592
51.0M
    Py_ssize_t i;
593
51.0M
    int sign;
594
51.0M
    int do_decref = 0; /* if PyNumber_Index was called */
595
596
51.0M
    *overflow = 0;
597
51.0M
    if (vv == NULL) {
598
0
        PyErr_BadInternalCall();
599
0
        return -1;
600
0
    }
601
602
51.0M
    if (PyLong_Check(vv)) {
603
51.0M
        v = (PyLongObject *)vv;
604
51.0M
    }
605
342
    else {
606
342
        v = (PyLongObject *)_PyNumber_Index(vv);
607
342
        if (v == NULL)
608
342
            return -1;
609
0
        do_decref = 1;
610
0
    }
611
51.0M
    if (_PyLong_IsCompact(v)) {
612
#if SIZEOF_LONG < SIZEOF_SIZE_T
613
        Py_ssize_t tmp = _PyLong_CompactValue(v);
614
        if (tmp < LONG_MIN) {
615
            *overflow = -1;
616
            res = -1;
617
        }
618
        else if (tmp > LONG_MAX) {
619
            *overflow = 1;
620
            res = -1;
621
        }
622
        else {
623
            res = (long)tmp;
624
        }
625
#else
626
50.8M
        res = _PyLong_CompactValue(v);
627
50.8M
#endif
628
50.8M
    }
629
168k
    else {
630
168k
        res = -1;
631
168k
        i = _PyLong_DigitCount(v);
632
168k
        sign = _PyLong_NonCompactSign(v);
633
634
168k
        unsigned long x = unroll_digits_ulong(v, &i);
635
189k
        while (--i >= 0) {
636
74.7k
            if (x > (ULONG_MAX >> PyLong_SHIFT)) {
637
53.0k
                *overflow = sign;
638
53.0k
                goto exit;
639
53.0k
            }
640
21.7k
            x = (x << PyLong_SHIFT) | v->long_value.ob_digit[i];
641
21.7k
        }
642
        /* Haven't lost any bits, but casting to long requires extra
643
        * care (see comment above).
644
        */
645
115k
        if (x <= (unsigned long)LONG_MAX) {
646
108k
            res = (long)x * sign;
647
108k
        }
648
6.40k
        else if (sign < 0 && x == PY_ABS_LONG_MIN) {
649
659
            res = LONG_MIN;
650
659
        }
651
5.74k
        else {
652
5.74k
            *overflow = sign;
653
            /* res is already set to -1 */
654
5.74k
        }
655
115k
    }
656
51.0M
  exit:
657
51.0M
    if (do_decref) {
658
0
        Py_DECREF(v);
659
0
    }
660
51.0M
    return res;
661
51.0M
}
662
663
/* Get a C long int from an int object or any object that has an __index__
664
   method.  Return -1 and set an error if overflow occurs. */
665
666
long
667
PyLong_AsLong(PyObject *obj)
668
12.7M
{
669
12.7M
    int overflow;
670
12.7M
    long result = PyLong_AsLongAndOverflow(obj, &overflow);
671
12.7M
    if (overflow) {
672
        /* XXX: could be cute and give a different
673
           message for overflow == -1 */
674
210
        PyErr_SetString(PyExc_OverflowError,
675
210
                        "Python int too large to convert to C long");
676
210
    }
677
12.7M
    return result;
678
12.7M
}
679
680
/* Get a C int from an int object or any object that has an __index__
681
   method.  Return -1 and set an error if overflow occurs. */
682
683
int
684
PyLong_AsInt(PyObject *obj)
685
13.5M
{
686
13.5M
    int overflow;
687
13.5M
    long result = PyLong_AsLongAndOverflow(obj, &overflow);
688
13.5M
    if (overflow || result > INT_MAX || result < INT_MIN) {
689
        /* XXX: could be cute and give a different
690
           message for overflow == -1 */
691
0
        PyErr_SetString(PyExc_OverflowError,
692
0
                        "Python int too large to convert to C int");
693
0
        return -1;
694
0
    }
695
13.5M
    return (int)result;
696
13.5M
}
697
698
/* Get a Py_ssize_t from an int object.
699
   Returns -1 and sets an error condition if overflow occurs. */
700
701
Py_ssize_t
702
39.0M
PyLong_AsSsize_t(PyObject *vv) {
703
39.0M
    PyLongObject *v;
704
39.0M
    Py_ssize_t i;
705
39.0M
    int sign;
706
707
39.0M
    if (vv == NULL) {
708
0
        PyErr_BadInternalCall();
709
0
        return -1;
710
0
    }
711
39.0M
    if (!PyLong_Check(vv)) {
712
0
        PyErr_SetString(PyExc_TypeError, "an integer is required");
713
0
        return -1;
714
0
    }
715
716
39.0M
    v = (PyLongObject *)vv;
717
39.0M
    if (_PyLong_IsCompact(v)) {
718
39.0M
        return _PyLong_CompactValue(v);
719
39.0M
    }
720
7.70k
    i = _PyLong_DigitCount(v);
721
7.70k
    sign = _PyLong_NonCompactSign(v);
722
723
7.70k
    size_t x = unroll_digits_size_t(v, &i);
724
9.52k
    while (--i >= 0) {
725
3.81k
        if (x > (SIZE_MAX >> PyLong_SHIFT)) {
726
1.99k
            goto overflow;
727
1.99k
        }
728
1.82k
        x = (x << PyLong_SHIFT) | v->long_value.ob_digit[i];
729
1.82k
    }
730
    /* Haven't lost any bits, but casting to a signed type requires
731
     * extra care (see comment above).
732
     */
733
5.70k
    if (x <= (size_t)PY_SSIZE_T_MAX) {
734
4.33k
        return (Py_ssize_t)x * sign;
735
4.33k
    }
736
1.37k
    else if (sign < 0 && x == PY_ABS_SSIZE_T_MIN) {
737
300
        return PY_SSIZE_T_MIN;
738
300
    }
739
    /* else overflow */
740
741
3.06k
  overflow:
742
3.06k
    PyErr_SetString(PyExc_OverflowError,
743
3.06k
                    "Python int too large to convert to C ssize_t");
744
3.06k
    return -1;
745
5.70k
}
746
747
/* Get a C unsigned long int from an int object.
748
   Returns -1 and sets an error condition if overflow occurs. */
749
750
unsigned long
751
PyLong_AsUnsignedLong(PyObject *vv)
752
15.9M
{
753
15.9M
    PyLongObject *v;
754
15.9M
    Py_ssize_t i;
755
756
15.9M
    if (vv == NULL) {
757
0
        PyErr_BadInternalCall();
758
0
        return (unsigned long)-1;
759
0
    }
760
15.9M
    if (!PyLong_Check(vv)) {
761
0
        PyErr_SetString(PyExc_TypeError, "an integer is required");
762
0
        return (unsigned long)-1;
763
0
    }
764
765
15.9M
    v = (PyLongObject *)vv;
766
15.9M
    if (_PyLong_IsNonNegativeCompact(v)) {
767
#if SIZEOF_LONG < SIZEOF_SIZE_T
768
        size_t tmp = (size_t)_PyLong_CompactValue(v);
769
        unsigned long res = (unsigned long)tmp;
770
        if (res != tmp) {
771
            goto overflow;
772
        }
773
        return res;
774
#else
775
15.2M
        return (unsigned long)(size_t)_PyLong_CompactValue(v);
776
15.2M
#endif
777
15.2M
    }
778
661k
    if (_PyLong_IsNegative(v)) {
779
0
        PyErr_SetString(PyExc_OverflowError,
780
0
                        "can't convert negative value to unsigned int");
781
0
        return (unsigned long) -1;
782
0
    }
783
661k
    i = _PyLong_DigitCount(v);
784
785
661k
    unsigned long x = unroll_digits_ulong(v, &i);
786
661k
    while (--i >= 0) {
787
0
        if (x > (ULONG_MAX >> PyLong_SHIFT)) {
788
0
            goto overflow;
789
0
        }
790
0
        x = (x << PyLong_SHIFT) | v->long_value.ob_digit[i];
791
0
    }
792
661k
    return x;
793
0
overflow:
794
0
    PyErr_SetString(PyExc_OverflowError,
795
0
                    "Python int too large to convert "
796
0
                    "to C unsigned long");
797
0
    return (unsigned long) -1;
798
661k
}
799
800
/* Get a C size_t from an int object. Returns (size_t)-1 and sets
801
   an error condition if overflow occurs. */
802
803
size_t
804
PyLong_AsSize_t(PyObject *vv)
805
35.6k
{
806
35.6k
    PyLongObject *v;
807
35.6k
    Py_ssize_t i;
808
809
35.6k
    if (vv == NULL) {
810
0
        PyErr_BadInternalCall();
811
0
        return (size_t) -1;
812
0
    }
813
35.6k
    if (!PyLong_Check(vv)) {
814
0
        PyErr_SetString(PyExc_TypeError, "an integer is required");
815
0
        return (size_t)-1;
816
0
    }
817
818
35.6k
    v = (PyLongObject *)vv;
819
35.6k
    if (_PyLong_IsNonNegativeCompact(v)) {
820
33.7k
        return (size_t)_PyLong_CompactValue(v);
821
33.7k
    }
822
1.95k
    if (_PyLong_IsNegative(v)) {
823
592
        PyErr_SetString(PyExc_OverflowError,
824
592
                   "can't convert negative value to size_t");
825
592
        return (size_t) -1;
826
592
    }
827
1.36k
    i = _PyLong_DigitCount(v);
828
829
1.36k
    size_t x = unroll_digits_size_t(v, &i);
830
1.73k
    while (--i >= 0) {
831
1.00k
            if (x > (SIZE_MAX >> PyLong_SHIFT)) {
832
636
                PyErr_SetString(PyExc_OverflowError,
833
636
                    "Python int too large to convert to C size_t");
834
636
                return (size_t) -1;
835
636
            }
836
372
            x = (x << PyLong_SHIFT) | v->long_value.ob_digit[i];
837
372
        }
838
728
    return x;
839
1.36k
}
840
841
/* Get a C unsigned long int from an int object, ignoring the high bits.
842
   Returns -1 and sets an error condition if an error occurs. */
843
844
static unsigned long
845
_PyLong_AsUnsignedLongMask(PyObject *vv)
846
0
{
847
0
    PyLongObject *v;
848
0
    Py_ssize_t i;
849
850
0
    if (vv == NULL || !PyLong_Check(vv)) {
851
0
        PyErr_BadInternalCall();
852
0
        return (unsigned long) -1;
853
0
    }
854
0
    v = (PyLongObject *)vv;
855
0
    if (_PyLong_IsCompact(v)) {
856
#if SIZEOF_LONG < SIZEOF_SIZE_T
857
        return (unsigned long)(size_t)_PyLong_CompactValue(v);
858
#else
859
0
        return (unsigned long)(long)_PyLong_CompactValue(v);
860
0
#endif
861
0
    }
862
0
    i = _PyLong_DigitCount(v);
863
0
    int sign = _PyLong_NonCompactSign(v);
864
0
    unsigned long x = unroll_digits_ulong(v, &i);
865
0
    while (--i >= 0) {
866
0
        x = (x << PyLong_SHIFT) | v->long_value.ob_digit[i];
867
0
    }
868
0
    return x * sign;
869
0
}
870
871
unsigned long
872
PyLong_AsUnsignedLongMask(PyObject *op)
873
0
{
874
0
    PyLongObject *lo;
875
0
    unsigned long val;
876
877
0
    if (op == NULL) {
878
0
        PyErr_BadInternalCall();
879
0
        return (unsigned long)-1;
880
0
    }
881
882
0
    if (PyLong_Check(op)) {
883
0
        return _PyLong_AsUnsignedLongMask(op);
884
0
    }
885
886
0
    lo = (PyLongObject *)_PyNumber_Index(op);
887
0
    if (lo == NULL)
888
0
        return (unsigned long)-1;
889
890
0
    val = _PyLong_AsUnsignedLongMask((PyObject *)lo);
891
0
    Py_DECREF(lo);
892
0
    return val;
893
0
}
894
895
int
896
PyLong_IsPositive(PyObject *obj)
897
0
{
898
0
    assert(obj != NULL);
899
0
    if (!PyLong_Check(obj)) {
900
0
        PyErr_Format(PyExc_TypeError, "expected int, got %T", obj);
901
0
        return -1;
902
0
    }
903
0
    return _PyLong_IsPositive((PyLongObject *)obj);
904
0
}
905
906
int
907
PyLong_IsNegative(PyObject *obj)
908
0
{
909
0
    assert(obj != NULL);
910
0
    if (!PyLong_Check(obj)) {
911
0
        PyErr_Format(PyExc_TypeError, "expected int, got %T", obj);
912
0
        return -1;
913
0
    }
914
0
    return _PyLong_IsNegative((PyLongObject *)obj);
915
0
}
916
917
int
918
PyLong_IsZero(PyObject *obj)
919
0
{
920
0
    assert(obj != NULL);
921
0
    if (!PyLong_Check(obj)) {
922
0
        PyErr_Format(PyExc_TypeError, "expected int, got %T", obj);
923
0
        return -1;
924
0
    }
925
0
    return _PyLong_IsZero((PyLongObject *)obj);
926
0
}
927
928
static int
929
long_sign(PyObject *vv)
930
2.42M
{
931
2.42M
    assert(vv != NULL);
932
2.42M
    assert(PyLong_Check(vv));
933
2.42M
    PyLongObject *v = (PyLongObject *)vv;
934
935
2.42M
    if (_PyLong_IsCompact(v)) {
936
2.42M
        return _PyLong_CompactSign(v);
937
2.42M
    }
938
647
    return _PyLong_NonCompactSign(v);
939
2.42M
}
940
941
int
942
_PyLong_Sign(PyObject *vv)
943
0
{
944
0
    return long_sign(vv);
945
0
}
946
947
int
948
PyLong_GetSign(PyObject *vv, int *sign)
949
2.42M
{
950
2.42M
    if (!PyLong_Check(vv)) {
951
0
        PyErr_Format(PyExc_TypeError, "expect int, got %T", vv);
952
0
        return -1;
953
0
    }
954
955
2.42M
    *sign = long_sign(vv);
956
2.42M
    return 0;
957
2.42M
}
958
959
static int
960
bit_length_digit(digit x)
961
177k
{
962
    // digit can be larger than unsigned long, but only PyLong_SHIFT bits
963
    // of it will be ever used.
964
177k
    static_assert(PyLong_SHIFT <= sizeof(unsigned long) * 8,
965
177k
                  "digit is larger than unsigned long");
966
177k
    return _Py_bit_length((unsigned long)x);
967
177k
}
968
969
int64_t
970
_PyLong_NumBits(PyObject *vv)
971
89.1k
{
972
89.1k
    PyLongObject *v = (PyLongObject *)vv;
973
89.1k
    int64_t result = 0;
974
89.1k
    Py_ssize_t ndigits;
975
89.1k
    int msd_bits;
976
977
89.1k
    assert(v != NULL);
978
89.1k
    assert(PyLong_Check(v));
979
89.1k
    ndigits = _PyLong_DigitCount(v);
980
89.1k
    assert(ndigits == 0 || v->long_value.ob_digit[ndigits - 1] != 0);
981
89.1k
    if (ndigits > 0) {
982
88.4k
        digit msd = v->long_value.ob_digit[ndigits - 1];
983
88.4k
#if SIZEOF_SIZE_T == 8
984
88.4k
        assert(ndigits <= INT64_MAX / PyLong_SHIFT);
985
88.4k
#endif
986
88.4k
        result = (int64_t)(ndigits - 1) * PyLong_SHIFT;
987
88.4k
        msd_bits = bit_length_digit(msd);
988
88.4k
        result += msd_bits;
989
88.4k
    }
990
89.1k
    return result;
991
89.1k
}
992
993
PyObject *
994
_PyLong_FromByteArray(const unsigned char* bytes, size_t n,
995
                      int little_endian, int is_signed)
996
1.02k
{
997
1.02k
    const unsigned char* pstartbyte;    /* LSB of bytes */
998
1.02k
    int incr;                           /* direction to move pstartbyte */
999
1.02k
    const unsigned char* pendbyte;      /* MSB of bytes */
1000
1.02k
    size_t numsignificantbytes;         /* number of bytes that matter */
1001
1.02k
    Py_ssize_t ndigits;                 /* number of Python int digits */
1002
1.02k
    PyLongObject* v;                    /* result */
1003
1.02k
    Py_ssize_t idigit = 0;              /* next free index in v->long_value.ob_digit */
1004
1005
1.02k
    if (n == 0)
1006
0
        return PyLong_FromLong(0L);
1007
1008
1.02k
    if (little_endian) {
1009
1.02k
        pstartbyte = bytes;
1010
1.02k
        pendbyte = bytes + n - 1;
1011
1.02k
        incr = 1;
1012
1.02k
    }
1013
0
    else {
1014
0
        pstartbyte = bytes + n - 1;
1015
0
        pendbyte = bytes;
1016
0
        incr = -1;
1017
0
    }
1018
1019
1.02k
    if (is_signed)
1020
0
        is_signed = *pendbyte >= 0x80;
1021
1022
    /* Compute numsignificantbytes.  This consists of finding the most
1023
       significant byte.  Leading 0 bytes are insignificant if the number
1024
       is positive, and leading 0xff bytes if negative. */
1025
1.02k
    {
1026
1.02k
        size_t i;
1027
1.02k
        const unsigned char* p = pendbyte;
1028
1.02k
        const int pincr = -incr;  /* search MSB to LSB */
1029
1.02k
        const unsigned char insignificant = is_signed ? 0xff : 0x00;
1030
1031
3.06k
        for (i = 0; i < n; ++i, p += pincr) {
1032
2.72k
            if (*p != insignificant)
1033
684
                break;
1034
2.72k
        }
1035
1.02k
        numsignificantbytes = n - i;
1036
        /* 2's-comp is a bit tricky here, e.g. 0xff00 == -0x0100, so
1037
           actually has 2 significant bytes.  OTOH, 0xff0001 ==
1038
           -0x00ffff, so we wouldn't *need* to bump it there; but we
1039
           do for 0xffff = -0x0001.  To be safe without bothering to
1040
           check every case, bump it regardless. */
1041
1.02k
        if (is_signed && numsignificantbytes < n)
1042
0
            ++numsignificantbytes;
1043
1.02k
    }
1044
1045
    /* avoid integer overflow */
1046
1.02k
    ndigits = numsignificantbytes / PyLong_SHIFT * 8
1047
1.02k
        + (numsignificantbytes % PyLong_SHIFT * 8 + PyLong_SHIFT - 1) / PyLong_SHIFT;
1048
1.02k
    v = long_alloc(ndigits);
1049
1.02k
    if (v == NULL)
1050
0
        return NULL;
1051
1052
    /* Copy the bits over.  The tricky parts are computing 2's-comp on
1053
       the fly for signed numbers, and dealing with the mismatch between
1054
       8-bit bytes and (probably) 15-bit Python digits.*/
1055
1.02k
    {
1056
1.02k
        size_t i;
1057
1.02k
        twodigits carry = 1;                    /* for 2's-comp calculation */
1058
1.02k
        twodigits accum = 0;                    /* sliding register */
1059
1.02k
        unsigned int accumbits = 0;             /* number of bits in accum */
1060
1.02k
        const unsigned char* p = pstartbyte;
1061
1062
3.08k
        for (i = 0; i < numsignificantbytes; ++i, p += incr) {
1063
2.06k
            twodigits thisbyte = *p;
1064
            /* Compute correction for 2's comp, if needed. */
1065
2.06k
            if (is_signed) {
1066
0
                thisbyte = (0xff ^ thisbyte) + carry;
1067
0
                carry = thisbyte >> 8;
1068
0
                thisbyte &= 0xff;
1069
0
            }
1070
            /* Because we're going LSB to MSB, thisbyte is
1071
               more significant than what's already in accum,
1072
               so needs to be prepended to accum. */
1073
2.06k
            accum |= thisbyte << accumbits;
1074
2.06k
            accumbits += 8;
1075
2.06k
            if (accumbits >= PyLong_SHIFT) {
1076
                /* There's enough to fill a Python digit. */
1077
342
                assert(idigit < ndigits);
1078
342
                v->long_value.ob_digit[idigit] = (digit)(accum & PyLong_MASK);
1079
342
                ++idigit;
1080
342
                accum >>= PyLong_SHIFT;
1081
342
                accumbits -= PyLong_SHIFT;
1082
342
                assert(accumbits < PyLong_SHIFT);
1083
342
            }
1084
2.06k
        }
1085
1.02k
        assert(accumbits < PyLong_SHIFT);
1086
1.02k
        if (accumbits) {
1087
684
            assert(idigit < ndigits);
1088
684
            v->long_value.ob_digit[idigit] = (digit)accum;
1089
684
            ++idigit;
1090
684
        }
1091
1.02k
    }
1092
1093
1.02k
    int sign = is_signed ? -1: 1;
1094
1.02k
    if (idigit == 0) {
1095
342
        sign = 0;
1096
342
    }
1097
1.02k
    _PyLong_SetSignAndDigitCount(v, sign, idigit);
1098
1.02k
    return (PyObject *)maybe_small_long(long_normalize(v));
1099
1.02k
}
1100
1101
int
1102
_PyLong_AsByteArray(PyLongObject* v,
1103
                    unsigned char* bytes, size_t n,
1104
                    int little_endian, int is_signed,
1105
                    int with_exceptions)
1106
3.94k
{
1107
3.94k
    Py_ssize_t i;               /* index into v->long_value.ob_digit */
1108
3.94k
    Py_ssize_t ndigits;         /* number of digits */
1109
3.94k
    twodigits accum;            /* sliding register */
1110
3.94k
    unsigned int accumbits;     /* # bits in accum */
1111
3.94k
    int do_twos_comp;           /* store 2's-comp?  is_signed and v < 0 */
1112
3.94k
    digit carry;                /* for computing 2's-comp */
1113
3.94k
    size_t j;                   /* # bytes filled */
1114
3.94k
    unsigned char* p;           /* pointer to next byte in bytes */
1115
3.94k
    int pincr;                  /* direction to move p */
1116
1117
3.94k
    assert(v != NULL && PyLong_Check(v));
1118
1119
3.94k
    ndigits = _PyLong_DigitCount(v);
1120
3.94k
    if (_PyLong_IsNegative(v)) {
1121
0
        if (!is_signed) {
1122
0
            if (with_exceptions) {
1123
0
                PyErr_SetString(PyExc_OverflowError,
1124
0
                                "can't convert negative int to unsigned");
1125
0
            }
1126
0
            return -1;
1127
0
        }
1128
0
        do_twos_comp = 1;
1129
0
    }
1130
3.94k
    else {
1131
3.94k
        do_twos_comp = 0;
1132
3.94k
    }
1133
1134
3.94k
    if (little_endian) {
1135
3.94k
        p = bytes;
1136
3.94k
        pincr = 1;
1137
3.94k
    }
1138
0
    else {
1139
0
        p = bytes + n - 1;
1140
0
        pincr = -1;
1141
0
    }
1142
1143
    /* Copy over all the Python digits.
1144
       It's crucial that every Python digit except for the MSD contribute
1145
       exactly PyLong_SHIFT bits to the total, so first assert that the int is
1146
       normalized.
1147
       NOTE: PyLong_AsNativeBytes() assumes that this function will fill in 'n'
1148
       bytes even if it eventually fails to convert the whole number. Make sure
1149
       you account for that if you are changing this algorithm to return without
1150
       doing that.
1151
       */
1152
3.94k
    assert(ndigits == 0 || v->long_value.ob_digit[ndigits - 1] != 0);
1153
3.94k
    j = 0;
1154
3.94k
    accum = 0;
1155
3.94k
    accumbits = 0;
1156
3.94k
    carry = do_twos_comp ? 1 : 0;
1157
12.9k
    for (i = 0; i < ndigits; ++i) {
1158
9.86k
        digit thisdigit = v->long_value.ob_digit[i];
1159
9.86k
        if (do_twos_comp) {
1160
0
            thisdigit = (thisdigit ^ PyLong_MASK) + carry;
1161
0
            carry = thisdigit >> PyLong_SHIFT;
1162
0
            thisdigit &= PyLong_MASK;
1163
0
        }
1164
        /* Because we're going LSB to MSB, thisdigit is more
1165
           significant than what's already in accum, so needs to be
1166
           prepended to accum. */
1167
9.86k
        accum |= (twodigits)thisdigit << accumbits;
1168
1169
        /* The most-significant digit may be (probably is) at least
1170
           partly empty. */
1171
9.86k
        if (i == ndigits - 1) {
1172
            /* Count # of sign bits -- they needn't be stored,
1173
             * although for signed conversion we need later to
1174
             * make sure at least one sign bit gets stored. */
1175
3.45k
            digit s = do_twos_comp ? thisdigit ^ PyLong_MASK : thisdigit;
1176
37.5k
            while (s != 0) {
1177
34.1k
                s >>= 1;
1178
34.1k
                accumbits++;
1179
34.1k
            }
1180
3.45k
        }
1181
6.40k
        else
1182
6.40k
            accumbits += PyLong_SHIFT;
1183
1184
        /* Store as many bytes as possible. */
1185
34.6k
        while (accumbits >= 8) {
1186
25.6k
            if (j >= n)
1187
840
                goto Overflow;
1188
24.7k
            ++j;
1189
24.7k
            *p = (unsigned char)(accum & 0xff);
1190
24.7k
            p += pincr;
1191
24.7k
            accumbits -= 8;
1192
24.7k
            accum >>= 8;
1193
24.7k
        }
1194
9.86k
    }
1195
1196
    /* Store the straggler (if any). */
1197
3.94k
    assert(accumbits < 8);
1198
3.10k
    assert(carry == 0);  /* else do_twos_comp and *every* digit was 0 */
1199
3.10k
    if (accumbits > 0) {
1200
2.30k
        if (j >= n)
1201
502
            goto Overflow;
1202
1.80k
        ++j;
1203
1.80k
        if (do_twos_comp) {
1204
            /* Fill leading bits of the byte with sign bits
1205
               (appropriately pretending that the int had an
1206
               infinite supply of sign bits). */
1207
0
            accum |= (~(twodigits)0) << accumbits;
1208
0
        }
1209
1.80k
        *p = (unsigned char)(accum & 0xff);
1210
1.80k
        p += pincr;
1211
1.80k
    }
1212
803
    else if (j == n && is_signed) {
1213
        /* The main loop filled the byte array exactly, so the code
1214
           just above didn't get to ensure there's a sign bit, and the
1215
           loop below wouldn't add one either.  Make sure a sign bit
1216
           exists. */
1217
597
        int sign_bit_set;
1218
597
        if (n > 0) {
1219
597
            unsigned char msb = *(p - pincr);
1220
597
            sign_bit_set = msb >= 0x80;
1221
597
        }
1222
0
        else {
1223
0
            sign_bit_set = 0;
1224
0
        }
1225
597
        assert(accumbits == 0);
1226
597
        if (sign_bit_set == do_twos_comp)
1227
0
            return 0;
1228
597
        else
1229
597
            goto Overflow;
1230
597
    }
1231
1232
    /* Fill remaining bytes with copies of the sign bit. */
1233
2.01k
    {
1234
2.01k
        unsigned char signbyte = do_twos_comp ? 0xffU : 0U;
1235
6.92k
        for ( ; j < n; ++j, p += pincr)
1236
4.91k
            *p = signbyte;
1237
2.01k
    }
1238
1239
2.01k
    return 0;
1240
1241
1.93k
  Overflow:
1242
1.93k
    if (with_exceptions) {
1243
0
        PyErr_SetString(PyExc_OverflowError, "int too big to convert");
1244
0
    }
1245
1.93k
    return -1;
1246
1247
3.10k
}
1248
1249
// Refactored out for readability, not reuse
1250
static inline int
1251
_fits_in_n_bits(Py_ssize_t v, Py_ssize_t n)
1252
281k
{
1253
281k
    if (n >= (Py_ssize_t)sizeof(Py_ssize_t) * 8) {
1254
281k
        return 1;
1255
281k
    }
1256
    // If all bits above n are the same, we fit.
1257
    // (Use n-1 if we require the sign bit to be consistent.)
1258
0
    Py_ssize_t v_extended = v >> ((int)n - 1);
1259
0
    return v_extended == 0 || v_extended == -1;
1260
281k
}
1261
1262
static inline int
1263
_resolve_endianness(int *endianness)
1264
285k
{
1265
285k
    if (*endianness == -1 || (*endianness & 2)) {
1266
285k
        *endianness = PY_LITTLE_ENDIAN;
1267
285k
    } else {
1268
0
        *endianness &= 1;
1269
0
    }
1270
285k
    assert(*endianness == 0 || *endianness == 1);
1271
285k
    return 0;
1272
285k
}
1273
1274
Py_ssize_t
1275
PyLong_AsNativeBytes(PyObject* vv, void* buffer, Py_ssize_t n, int flags)
1276
285k
{
1277
285k
    PyLongObject *v;
1278
285k
    union {
1279
285k
        Py_ssize_t v;
1280
285k
        unsigned char b[sizeof(Py_ssize_t)];
1281
285k
    } cv;
1282
285k
    int do_decref = 0;
1283
285k
    Py_ssize_t res = 0;
1284
1285
285k
    if (vv == NULL || n < 0) {
1286
0
        PyErr_BadInternalCall();
1287
0
        return -1;
1288
0
    }
1289
1290
285k
    int little_endian = flags;
1291
285k
    if (_resolve_endianness(&little_endian) < 0) {
1292
0
        return -1;
1293
0
    }
1294
1295
285k
    if (PyLong_Check(vv)) {
1296
285k
        v = (PyLongObject *)vv;
1297
285k
    }
1298
0
    else if (flags != -1 && (flags & Py_ASNATIVEBYTES_ALLOW_INDEX)) {
1299
0
        v = (PyLongObject *)_PyNumber_Index(vv);
1300
0
        if (v == NULL) {
1301
0
            return -1;
1302
0
        }
1303
0
        do_decref = 1;
1304
0
    }
1305
0
    else {
1306
0
        PyErr_Format(PyExc_TypeError, "expect int, got %T", vv);
1307
0
        return -1;
1308
0
    }
1309
1310
285k
    if ((flags != -1 && (flags & Py_ASNATIVEBYTES_REJECT_NEGATIVE))
1311
0
        && _PyLong_IsNegative(v)) {
1312
0
        PyErr_SetString(PyExc_ValueError, "Cannot convert negative int");
1313
0
        if (do_decref) {
1314
0
            Py_DECREF(v);
1315
0
        }
1316
0
        return -1;
1317
0
    }
1318
1319
285k
    if (_PyLong_IsCompact(v)) {
1320
281k
        res = 0;
1321
281k
        cv.v = _PyLong_CompactValue(v);
1322
        /* Most paths result in res = sizeof(compact value). Only the case
1323
         * where 0 < n < sizeof(compact value) do we need to check and adjust
1324
         * our return value. */
1325
281k
        res = sizeof(cv.b);
1326
281k
        if (n <= 0) {
1327
            // nothing to do!
1328
0
        }
1329
281k
        else if (n <= (Py_ssize_t)sizeof(cv.b)) {
1330
281k
#if PY_LITTLE_ENDIAN
1331
281k
            if (little_endian) {
1332
281k
                memcpy(buffer, cv.b, n);
1333
281k
            }
1334
0
            else {
1335
0
                for (Py_ssize_t i = 0; i < n; ++i) {
1336
0
                    ((unsigned char*)buffer)[n - i - 1] = cv.b[i];
1337
0
                }
1338
0
            }
1339
#else
1340
            if (little_endian) {
1341
                for (Py_ssize_t i = 0; i < n; ++i) {
1342
                    ((unsigned char*)buffer)[i] = cv.b[sizeof(cv.b) - i - 1];
1343
                }
1344
            }
1345
            else {
1346
                memcpy(buffer, &cv.b[sizeof(cv.b) - n], n);
1347
            }
1348
#endif
1349
1350
            /* If we fit, return the requested number of bytes */
1351
281k
            if (_fits_in_n_bits(cv.v, n * 8)) {
1352
281k
                res = n;
1353
281k
            } else if (cv.v > 0 && _fits_in_n_bits(cv.v, n * 8 + 1)) {
1354
                /* Positive values with the MSB set do not require an
1355
                 * additional bit when the caller's intent is to treat them
1356
                 * as unsigned. */
1357
0
                if (flags == -1 || (flags & Py_ASNATIVEBYTES_UNSIGNED_BUFFER)) {
1358
0
                    res = n;
1359
0
                } else {
1360
0
                    res = n + 1;
1361
0
                }
1362
0
            }
1363
281k
        }
1364
0
        else {
1365
0
            unsigned char fill = cv.v < 0 ? 0xFF : 0x00;
1366
0
#if PY_LITTLE_ENDIAN
1367
0
            if (little_endian) {
1368
0
                memcpy(buffer, cv.b, sizeof(cv.b));
1369
0
                memset((char *)buffer + sizeof(cv.b), fill, n - sizeof(cv.b));
1370
0
            }
1371
0
            else {
1372
0
                unsigned char *b = (unsigned char *)buffer;
1373
0
                for (Py_ssize_t i = 0; i < n - (int)sizeof(cv.b); ++i) {
1374
0
                    *b++ = fill;
1375
0
                }
1376
0
                for (Py_ssize_t i = sizeof(cv.b); i > 0; --i) {
1377
0
                    *b++ = cv.b[i - 1];
1378
0
                }
1379
0
            }
1380
#else
1381
            if (little_endian) {
1382
                unsigned char *b = (unsigned char *)buffer;
1383
                for (Py_ssize_t i = sizeof(cv.b); i > 0; --i) {
1384
                    *b++ = cv.b[i - 1];
1385
                }
1386
                for (Py_ssize_t i = 0; i < n - (int)sizeof(cv.b); ++i) {
1387
                    *b++ = fill;
1388
                }
1389
            }
1390
            else {
1391
                memset(buffer, fill, n - sizeof(cv.b));
1392
                memcpy((char *)buffer + n - sizeof(cv.b), cv.b, sizeof(cv.b));
1393
            }
1394
#endif
1395
0
        }
1396
281k
    }
1397
3.92k
    else {
1398
3.92k
        if (n > 0) {
1399
3.92k
            _PyLong_AsByteArray(v, buffer, (size_t)n, little_endian, 1, 0);
1400
3.92k
        }
1401
1402
        /* Calculates the number of bits required for the *absolute* value
1403
         * of v. This does not take sign into account, only magnitude. */
1404
3.92k
        int64_t nb = _PyLong_NumBits((PyObject *)v);
1405
3.92k
        assert(nb >= 0);
1406
        /* Normally this would be ((nb - 1) / 8) + 1 to avoid rounding up
1407
         * multiples of 8 to the next byte, but we add an implied bit for
1408
         * the sign and it cancels out. */
1409
3.92k
        res = (Py_ssize_t)(nb / 8) + 1;
1410
1411
        /* Two edge cases exist that are best handled after extracting the
1412
         * bits. These may result in us reporting overflow when the value
1413
         * actually fits.
1414
         */
1415
3.92k
        if (n > 0 && res == n + 1 && nb % 8 == 0) {
1416
597
            if (_PyLong_IsNegative(v)) {
1417
                /* Values of 0x80...00 from negative values that use every
1418
                 * available bit in the buffer do not require an additional
1419
                 * bit to store the sign. */
1420
0
                int is_edge_case = 1;
1421
0
                unsigned char *b = (unsigned char *)buffer;
1422
0
                for (Py_ssize_t i = 0; i < n && is_edge_case; ++i, ++b) {
1423
0
                    if (i == 0) {
1424
0
                        is_edge_case = (*b == (little_endian ? 0 : 0x80));
1425
0
                    } else if (i < n - 1) {
1426
0
                        is_edge_case = (*b == 0);
1427
0
                    } else {
1428
0
                        is_edge_case = (*b == (little_endian ? 0x80 : 0));
1429
0
                    }
1430
0
                }
1431
0
                if (is_edge_case) {
1432
0
                    res = n;
1433
0
                }
1434
0
            }
1435
597
            else {
1436
                /* Positive values with the MSB set do not require an
1437
                 * additional bit when the caller's intent is to treat them
1438
                 * as unsigned. */
1439
597
                unsigned char *b = (unsigned char *)buffer;
1440
597
                if (b[little_endian ? n - 1 : 0] & 0x80) {
1441
597
                    if (flags == -1 || (flags & Py_ASNATIVEBYTES_UNSIGNED_BUFFER)) {
1442
0
                        res = n;
1443
597
                    } else {
1444
597
                        res = n + 1;
1445
597
                    }
1446
597
                }
1447
597
            }
1448
597
        }
1449
3.92k
    }
1450
1451
285k
    if (do_decref) {
1452
0
        Py_DECREF(v);
1453
0
    }
1454
1455
285k
    return res;
1456
285k
}
1457
1458
1459
PyObject *
1460
PyLong_FromNativeBytes(const void* buffer, size_t n, int flags)
1461
0
{
1462
0
    if (!buffer) {
1463
0
        PyErr_BadInternalCall();
1464
0
        return NULL;
1465
0
    }
1466
1467
0
    int little_endian = flags;
1468
0
    if (_resolve_endianness(&little_endian) < 0) {
1469
0
        return NULL;
1470
0
    }
1471
1472
0
    return _PyLong_FromByteArray(
1473
0
        (const unsigned char *)buffer,
1474
0
        n,
1475
0
        little_endian,
1476
0
        (flags == -1 || !(flags & Py_ASNATIVEBYTES_UNSIGNED_BUFFER)) ? 1 : 0
1477
0
    );
1478
0
}
1479
1480
1481
PyObject *
1482
PyLong_FromUnsignedNativeBytes(const void* buffer, size_t n, int flags)
1483
0
{
1484
0
    if (!buffer) {
1485
0
        PyErr_BadInternalCall();
1486
0
        return NULL;
1487
0
    }
1488
1489
0
    int little_endian = flags;
1490
0
    if (_resolve_endianness(&little_endian) < 0) {
1491
0
        return NULL;
1492
0
    }
1493
1494
0
    return _PyLong_FromByteArray((const unsigned char *)buffer, n, little_endian, 0);
1495
0
}
1496
1497
1498
/* Create a new int object from a C pointer */
1499
1500
PyObject *
1501
PyLong_FromVoidPtr(void *p)
1502
155k
{
1503
155k
#if SIZEOF_VOID_P <= SIZEOF_LONG
1504
155k
    return PyLong_FromUnsignedLong((unsigned long)(uintptr_t)p);
1505
#else
1506
1507
#if SIZEOF_LONG_LONG < SIZEOF_VOID_P
1508
#   error "PyLong_FromVoidPtr: sizeof(long long) < sizeof(void*)"
1509
#endif
1510
    return PyLong_FromUnsignedLongLong((unsigned long long)(uintptr_t)p);
1511
#endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
1512
1513
155k
}
1514
1515
/* Get a C pointer from an int object. */
1516
1517
void *
1518
PyLong_AsVoidPtr(PyObject *vv)
1519
16.5k
{
1520
16.5k
#if SIZEOF_VOID_P <= SIZEOF_LONG
1521
16.5k
    long x;
1522
1523
16.5k
    if (PyLong_Check(vv) && _PyLong_IsNegative((PyLongObject *)vv)) {
1524
0
        x = PyLong_AsLong(vv);
1525
0
    }
1526
16.5k
    else {
1527
16.5k
        x = PyLong_AsUnsignedLong(vv);
1528
16.5k
    }
1529
#else
1530
1531
#if SIZEOF_LONG_LONG < SIZEOF_VOID_P
1532
#   error "PyLong_AsVoidPtr: sizeof(long long) < sizeof(void*)"
1533
#endif
1534
    long long x;
1535
1536
    if (PyLong_Check(vv) && _PyLong_IsNegative((PyLongObject *)vv)) {
1537
        x = PyLong_AsLongLong(vv);
1538
    }
1539
    else {
1540
        x = PyLong_AsUnsignedLongLong(vv);
1541
    }
1542
1543
#endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
1544
1545
16.5k
    if (x == -1 && PyErr_Occurred())
1546
0
        return NULL;
1547
16.5k
    return (void *)x;
1548
16.5k
}
1549
1550
/* Initial long long support by Chris Herborth (chrish@qnx.com), later
1551
 * rewritten to use the newer PyLong_{As,From}ByteArray API.
1552
 */
1553
1554
0
#define PY_ABS_LLONG_MIN (0-(unsigned long long)LLONG_MIN)
1555
1556
/* Create a new int object from a C long long int. */
1557
1558
PyObject *
1559
PyLong_FromLongLong(long long ival)
1560
14.9k
{
1561
14.9k
    PYLONG_FROM_INT(unsigned long long, long long, ival);
1562
14.9k
}
1563
1564
/* Create a new int object from a C Py_ssize_t. */
1565
1566
PyObject *
1567
PyLong_FromSsize_t(Py_ssize_t ival)
1568
46.3M
{
1569
46.3M
    PYLONG_FROM_INT(size_t, Py_ssize_t, ival);
1570
46.3M
}
1571
1572
/* Get a C long long int from an int object or any object that has an
1573
   __index__ method.  Return -1 and set an error if overflow occurs. */
1574
1575
long long
1576
PyLong_AsLongLong(PyObject *vv)
1577
0
{
1578
0
    PyLongObject *v;
1579
0
    long long bytes;
1580
0
    int res;
1581
0
    int do_decref = 0; /* if PyNumber_Index was called */
1582
1583
0
    if (vv == NULL) {
1584
0
        PyErr_BadInternalCall();
1585
0
        return -1;
1586
0
    }
1587
1588
0
    if (PyLong_Check(vv)) {
1589
0
        v = (PyLongObject *)vv;
1590
0
    }
1591
0
    else {
1592
0
        v = (PyLongObject *)_PyNumber_Index(vv);
1593
0
        if (v == NULL)
1594
0
            return -1;
1595
0
        do_decref = 1;
1596
0
    }
1597
1598
0
    if (_PyLong_IsCompact(v)) {
1599
0
        res = 0;
1600
0
        bytes = _PyLong_CompactValue(v);
1601
0
    }
1602
0
    else {
1603
0
        res = _PyLong_AsByteArray((PyLongObject *)v, (unsigned char *)&bytes,
1604
0
                                  SIZEOF_LONG_LONG, PY_LITTLE_ENDIAN, 1, 1);
1605
0
    }
1606
0
    if (do_decref) {
1607
0
        Py_DECREF(v);
1608
0
    }
1609
1610
    /* Plan 9 can't handle long long in ? : expressions */
1611
0
    if (res < 0)
1612
0
        return (long long)-1;
1613
0
    else
1614
0
        return bytes;
1615
0
}
1616
1617
/* Get a C unsigned long long int from an int object.
1618
   Return -1 and set an error if overflow occurs. */
1619
1620
unsigned long long
1621
PyLong_AsUnsignedLongLong(PyObject *vv)
1622
0
{
1623
0
    PyLongObject *v;
1624
0
    unsigned long long bytes;
1625
0
    int res;
1626
1627
0
    if (vv == NULL) {
1628
0
        PyErr_BadInternalCall();
1629
0
        return (unsigned long long)-1;
1630
0
    }
1631
0
    if (!PyLong_Check(vv)) {
1632
0
        PyErr_SetString(PyExc_TypeError, "an integer is required");
1633
0
        return (unsigned long long)-1;
1634
0
    }
1635
1636
0
    v = (PyLongObject*)vv;
1637
0
    if (_PyLong_IsNonNegativeCompact(v)) {
1638
0
        res = 0;
1639
#if SIZEOF_LONG_LONG < SIZEOF_SIZE_T
1640
        size_t tmp = (size_t)_PyLong_CompactValue(v);
1641
        bytes = (unsigned long long)tmp;
1642
        if (bytes != tmp) {
1643
            PyErr_SetString(PyExc_OverflowError,
1644
                            "Python int too large to convert "
1645
                            "to C unsigned long long");
1646
            res = -1;
1647
        }
1648
#else
1649
0
        bytes = (unsigned long long)(size_t)_PyLong_CompactValue(v);
1650
0
#endif
1651
0
    }
1652
0
    else {
1653
0
        res = _PyLong_AsByteArray((PyLongObject *)vv, (unsigned char *)&bytes,
1654
0
                              SIZEOF_LONG_LONG, PY_LITTLE_ENDIAN, 0, 1);
1655
0
    }
1656
1657
    /* Plan 9 can't handle long long in ? : expressions */
1658
0
    if (res < 0)
1659
0
        return (unsigned long long)res;
1660
0
    else
1661
0
        return bytes;
1662
0
}
1663
1664
/* Get a C unsigned long int from an int object, ignoring the high bits.
1665
   Returns -1 and sets an error condition if an error occurs. */
1666
1667
static unsigned long long
1668
_PyLong_AsUnsignedLongLongMask(PyObject *vv)
1669
0
{
1670
0
    PyLongObject *v;
1671
0
    Py_ssize_t i;
1672
0
    int sign;
1673
1674
0
    if (vv == NULL || !PyLong_Check(vv)) {
1675
0
        PyErr_BadInternalCall();
1676
0
        return (unsigned long long) -1;
1677
0
    }
1678
0
    v = (PyLongObject *)vv;
1679
0
    if (_PyLong_IsCompact(v)) {
1680
#if SIZEOF_LONG_LONG < SIZEOF_SIZE_T
1681
        return (unsigned long long)(size_t)_PyLong_CompactValue(v);
1682
#else
1683
0
        return (unsigned long long)(long long)_PyLong_CompactValue(v);
1684
0
#endif
1685
0
    }
1686
0
    i = _PyLong_DigitCount(v);
1687
0
    sign = _PyLong_NonCompactSign(v);
1688
0
    unsigned long long x = unroll_digits_ulong(v, &i);
1689
0
    while (--i >= 0) {
1690
0
        x = (x << PyLong_SHIFT) | v->long_value.ob_digit[i];
1691
0
    }
1692
0
    return x * sign;
1693
0
}
1694
1695
unsigned long long
1696
PyLong_AsUnsignedLongLongMask(PyObject *op)
1697
0
{
1698
0
    PyLongObject *lo;
1699
0
    unsigned long long val;
1700
1701
0
    if (op == NULL) {
1702
0
        PyErr_BadInternalCall();
1703
0
        return (unsigned long long)-1;
1704
0
    }
1705
1706
0
    if (PyLong_Check(op)) {
1707
0
        return _PyLong_AsUnsignedLongLongMask(op);
1708
0
    }
1709
1710
0
    lo = (PyLongObject *)_PyNumber_Index(op);
1711
0
    if (lo == NULL)
1712
0
        return (unsigned long long)-1;
1713
1714
0
    val = _PyLong_AsUnsignedLongLongMask((PyObject *)lo);
1715
0
    Py_DECREF(lo);
1716
0
    return val;
1717
0
}
1718
1719
/* Get a C long long int from an int object or any object that has an
1720
   __index__ method.
1721
1722
   On overflow, return -1 and set *overflow to 1 or -1 depending on the sign of
1723
   the result.  Otherwise *overflow is 0.
1724
1725
   For other errors (e.g., TypeError), return -1 and set an error condition.
1726
   In this case *overflow will be 0.
1727
*/
1728
1729
long long
1730
PyLong_AsLongLongAndOverflow(PyObject *vv, int *overflow)
1731
0
{
1732
    /* This version by Tim Peters */
1733
0
    PyLongObject *v;
1734
0
    long long res;
1735
0
    Py_ssize_t i;
1736
0
    int sign;
1737
0
    int do_decref = 0; /* if PyNumber_Index was called */
1738
1739
0
    *overflow = 0;
1740
0
    if (vv == NULL) {
1741
0
        PyErr_BadInternalCall();
1742
0
        return -1;
1743
0
    }
1744
1745
0
    if (PyLong_Check(vv)) {
1746
0
        v = (PyLongObject *)vv;
1747
0
    }
1748
0
    else {
1749
0
        v = (PyLongObject *)_PyNumber_Index(vv);
1750
0
        if (v == NULL)
1751
0
            return -1;
1752
0
        do_decref = 1;
1753
0
    }
1754
0
    if (_PyLong_IsCompact(v)) {
1755
#if SIZEOF_LONG_LONG < SIZEOF_SIZE_T
1756
        Py_ssize_t tmp = _PyLong_CompactValue(v);
1757
        if (tmp < LLONG_MIN) {
1758
            *overflow = -1;
1759
            res = -1;
1760
        }
1761
        else if (tmp > LLONG_MAX) {
1762
            *overflow = 1;
1763
            res = -1;
1764
        }
1765
        else {
1766
            res = (long long)tmp;
1767
        }
1768
#else
1769
0
        res = _PyLong_CompactValue(v);
1770
0
#endif
1771
0
    }
1772
0
    else {
1773
0
        i = _PyLong_DigitCount(v);
1774
0
        sign = _PyLong_NonCompactSign(v);
1775
0
        unsigned long long x = unroll_digits_ulong(v, &i);
1776
0
        while (--i >= 0) {
1777
0
            if (x > ULLONG_MAX >> PyLong_SHIFT) {
1778
0
                *overflow = sign;
1779
0
                res = -1;
1780
0
                goto exit;
1781
0
            }
1782
0
            x = (x << PyLong_SHIFT) + v->long_value.ob_digit[i];
1783
0
        }
1784
        /* Haven't lost any bits, but casting to long requires extra
1785
         * care (see comment above).
1786
         */
1787
0
        if (x <= (unsigned long long)LLONG_MAX) {
1788
0
            res = (long long)x * sign;
1789
0
        }
1790
0
        else if (sign < 0 && x == PY_ABS_LLONG_MIN) {
1791
0
            res = LLONG_MIN;
1792
0
        }
1793
0
        else {
1794
0
            *overflow = sign;
1795
0
            res = -1;
1796
0
        }
1797
0
    }
1798
0
  exit:
1799
0
    if (do_decref) {
1800
0
        Py_DECREF(v);
1801
0
    }
1802
0
    return res;
1803
0
}
1804
1805
#define UNSIGNED_INT_CONVERTER(NAME, TYPE)                          \
1806
int                                                                 \
1807
0
_PyLong_##NAME##_Converter(PyObject *obj, void *ptr)                \
1808
0
{                                                                   \
1809
0
    Py_ssize_t bytes = PyLong_AsNativeBytes(obj, ptr, sizeof(TYPE), \
1810
0
            Py_ASNATIVEBYTES_NATIVE_ENDIAN |                        \
1811
0
            Py_ASNATIVEBYTES_ALLOW_INDEX |                          \
1812
0
            Py_ASNATIVEBYTES_REJECT_NEGATIVE |                      \
1813
0
            Py_ASNATIVEBYTES_UNSIGNED_BUFFER);                      \
1814
0
    if (bytes < 0) {                                                \
1815
0
        return 0;                                                   \
1816
0
    }                                                               \
1817
0
    if ((size_t)bytes > sizeof(TYPE)) {                             \
1818
0
        PyErr_SetString(PyExc_OverflowError,                        \
1819
0
                        "Python int too large for C "#TYPE);        \
1820
0
        return 0;                                                   \
1821
0
    }                                                               \
1822
0
    return 1;                                                       \
1823
0
}
Unexecuted instantiation: _PyLong_UnsignedShort_Converter
Unexecuted instantiation: _PyLong_UnsignedInt_Converter
Unexecuted instantiation: _PyLong_UnsignedLong_Converter
Unexecuted instantiation: _PyLong_UnsignedLongLong_Converter
Unexecuted instantiation: _PyLong_Size_t_Converter
Unexecuted instantiation: _PyLong_UInt8_Converter
Unexecuted instantiation: _PyLong_UInt16_Converter
Unexecuted instantiation: _PyLong_UInt32_Converter
Unexecuted instantiation: _PyLong_UInt64_Converter
1824
1825
UNSIGNED_INT_CONVERTER(UnsignedShort, unsigned short)
1826
UNSIGNED_INT_CONVERTER(UnsignedInt, unsigned int)
1827
UNSIGNED_INT_CONVERTER(UnsignedLong, unsigned long)
1828
UNSIGNED_INT_CONVERTER(UnsignedLongLong, unsigned long long)
1829
UNSIGNED_INT_CONVERTER(Size_t, size_t)
1830
UNSIGNED_INT_CONVERTER(UInt8, uint8_t)
1831
UNSIGNED_INT_CONVERTER(UInt16, uint16_t)
1832
UNSIGNED_INT_CONVERTER(UInt32, uint32_t)
1833
UNSIGNED_INT_CONVERTER(UInt64, uint64_t)
1834
1835
1836
#define CHECK_BINOP(v,w)                                \
1837
27.7M
    do {                                                \
1838
27.7M
        if (!PyLong_Check(v) || !PyLong_Check(w))       \
1839
27.7M
            Py_RETURN_NOTIMPLEMENTED;                   \
1840
27.7M
    } while(0)
1841
1842
/* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required.  x[0:n]
1843
 * is modified in place, by adding y to it.  Carries are propagated as far as
1844
 * x[m-1], and the remaining carry (0 or 1) is returned.
1845
 */
1846
static digit
1847
v_iadd(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
1848
274k
{
1849
274k
    Py_ssize_t i;
1850
274k
    digit carry = 0;
1851
1852
274k
    assert(m >= n);
1853
36.1M
    for (i = 0; i < n; ++i) {
1854
35.8M
        carry += x[i] + y[i];
1855
35.8M
        x[i] = carry & PyLong_MASK;
1856
35.8M
        carry >>= PyLong_SHIFT;
1857
35.8M
        assert((carry & 1) == carry);
1858
35.8M
    }
1859
335k
    for (; carry && i < m; ++i) {
1860
60.3k
        carry += x[i];
1861
60.3k
        x[i] = carry & PyLong_MASK;
1862
60.3k
        carry >>= PyLong_SHIFT;
1863
60.3k
        assert((carry & 1) == carry);
1864
60.3k
    }
1865
274k
    return carry;
1866
274k
}
1867
1868
/* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required.  x[0:n]
1869
 * is modified in place, by subtracting y from it.  Borrows are propagated as
1870
 * far as x[m-1], and the remaining borrow (0 or 1) is returned.
1871
 */
1872
static digit
1873
v_isub(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
1874
512k
{
1875
512k
    Py_ssize_t i;
1876
512k
    digit borrow = 0;
1877
1878
512k
    assert(m >= n);
1879
60.3M
    for (i = 0; i < n; ++i) {
1880
59.8M
        borrow = x[i] - y[i] - borrow;
1881
59.8M
        x[i] = borrow & PyLong_MASK;
1882
59.8M
        borrow >>= PyLong_SHIFT;
1883
59.8M
        borrow &= 1;            /* keep only 1 sign bit */
1884
59.8M
    }
1885
615k
    for (; borrow && i < m; ++i) {
1886
103k
        borrow = x[i] - borrow;
1887
103k
        x[i] = borrow & PyLong_MASK;
1888
103k
        borrow >>= PyLong_SHIFT;
1889
103k
        borrow &= 1;
1890
103k
    }
1891
512k
    return borrow;
1892
512k
}
1893
1894
/* Shift digit vector a[0:m] d bits left, with 0 <= d < PyLong_SHIFT.  Put
1895
 * result in z[0:m], and return the d bits shifted out of the top.
1896
 */
1897
static digit
1898
v_lshift(digit *z, digit *a, Py_ssize_t m, int d)
1899
66.8k
{
1900
66.8k
    Py_ssize_t i;
1901
66.8k
    digit carry = 0;
1902
1903
66.8k
    assert(0 <= d && d < PyLong_SHIFT);
1904
361k
    for (i=0; i < m; i++) {
1905
295k
        twodigits acc = (twodigits)a[i] << d | carry;
1906
295k
        z[i] = (digit)acc & PyLong_MASK;
1907
295k
        carry = (digit)(acc >> PyLong_SHIFT);
1908
295k
    }
1909
66.8k
    return carry;
1910
66.8k
}
1911
1912
/* Shift digit vector a[0:m] d bits right, with 0 <= d < PyLong_SHIFT.  Put
1913
 * result in z[0:m], and return the d bits shifted out of the bottom.
1914
 */
1915
static digit
1916
v_rshift(digit *z, digit *a, Py_ssize_t m, int d)
1917
32.3k
{
1918
32.3k
    Py_ssize_t i;
1919
32.3k
    digit carry = 0;
1920
32.3k
    digit mask = ((digit)1 << d) - 1U;
1921
1922
32.3k
    assert(0 <= d && d < PyLong_SHIFT);
1923
160k
    for (i=m; i-- > 0;) {
1924
128k
        twodigits acc = (twodigits)carry << PyLong_SHIFT | a[i];
1925
128k
        carry = (digit)acc & mask;
1926
128k
        z[i] = (digit)(acc >> d);
1927
128k
    }
1928
32.3k
    return carry;
1929
32.3k
}
1930
1931
/* Divide long pin, w/ size digits, by non-zero digit n, storing quotient
1932
   in pout, and returning the remainder.  pin and pout point at the LSD.
1933
   It's OK for pin == pout on entry, which saves oodles of mallocs/frees in
1934
   _PyLong_Format, but that should be done with great care since ints are
1935
   immutable.
1936
1937
   This version of the code can be 20% faster than the pre-2022 version
1938
   on todays compilers on architectures like amd64.  It evolved from Mark
1939
   Dickinson observing that a 128:64 divide instruction was always being
1940
   generated by the compiler despite us working with 30-bit digit values.
1941
   See the thread for full context:
1942
1943
     https://mail.python.org/archives/list/python-dev@python.org/thread/ZICIMX5VFCX4IOFH5NUPVHCUJCQ4Q7QM/#NEUNFZU3TQU4CPTYZNF3WCN7DOJBBTK5
1944
1945
   If you ever want to change this code, pay attention to performance using
1946
   different compilers, optimization levels, and cpu architectures. Beware of
1947
   PGO/FDO builds doing value specialization such as a fast path for //10. :)
1948
1949
   Verify that 17 isn't specialized and this works as a quick test:
1950
     python -m timeit -s 'x = 10**1000; r=x//10; assert r == 10**999, r' 'x//17'
1951
*/
1952
static digit
1953
inplace_divrem1(digit *pout, digit *pin, Py_ssize_t size, digit n)
1954
10.8k
{
1955
10.8k
    digit remainder = 0;
1956
1957
10.8k
    assert(n > 0 && n <= PyLong_MASK);
1958
41.9k
    while (--size >= 0) {
1959
31.1k
        twodigits dividend;
1960
31.1k
        dividend = ((twodigits)remainder << PyLong_SHIFT) | pin[size];
1961
31.1k
        digit quotient;
1962
31.1k
        quotient = (digit)(dividend / n);
1963
31.1k
        remainder = dividend % n;
1964
31.1k
        pout[size] = quotient;
1965
31.1k
    }
1966
10.8k
    return remainder;
1967
10.8k
}
1968
1969
1970
/* Divide an integer by a digit, returning both the quotient
1971
   (as function result) and the remainder (through *prem).
1972
   The sign of a is ignored; n should not be zero. */
1973
1974
static PyLongObject *
1975
divrem1(PyLongObject *a, digit n, digit *prem)
1976
5.11k
{
1977
5.11k
    const Py_ssize_t size = _PyLong_DigitCount(a);
1978
5.11k
    PyLongObject *z;
1979
1980
5.11k
    assert(n > 0 && n <= PyLong_MASK);
1981
5.11k
    z = long_alloc(size);
1982
5.11k
    if (z == NULL)
1983
0
        return NULL;
1984
5.11k
    *prem = inplace_divrem1(z->long_value.ob_digit, a->long_value.ob_digit, size, n);
1985
5.11k
    return long_normalize(z);
1986
5.11k
}
1987
1988
/* Remainder of long pin, w/ size digits, by non-zero digit n,
1989
   returning the remainder. pin points at the LSD. */
1990
1991
static digit
1992
inplace_rem1(digit *pin, Py_ssize_t size, digit n)
1993
3.69k
{
1994
3.69k
    twodigits rem = 0;
1995
1996
3.69k
    assert(n > 0 && n <= PyLong_MASK);
1997
12.2k
    while (--size >= 0)
1998
8.52k
        rem = ((rem << PyLong_SHIFT) | pin[size]) % n;
1999
3.69k
    return (digit)rem;
2000
3.69k
}
2001
2002
/* Get the remainder of an integer divided by a digit, returning
2003
   the remainder as the result of the function. The sign of a is
2004
   ignored; n should not be zero. */
2005
2006
static PyLongObject *
2007
rem1(PyLongObject *a, digit n)
2008
3.69k
{
2009
3.69k
    const Py_ssize_t size = _PyLong_DigitCount(a);
2010
2011
3.69k
    assert(n > 0 && n <= PyLong_MASK);
2012
3.69k
    return (PyLongObject *)PyLong_FromLong(
2013
3.69k
        (long)inplace_rem1(a->long_value.ob_digit, size, n)
2014
3.69k
    );
2015
3.69k
}
2016
2017
#ifdef WITH_PYLONG_MODULE
2018
/* asymptotically faster long_to_decimal_string, using _pylong.py */
2019
static int
2020
pylong_int_to_decimal_string(PyObject *aa,
2021
                             PyObject **p_output,
2022
                             _PyUnicodeWriter *writer,
2023
                             PyBytesWriter *bytes_writer,
2024
                             char **bytes_str)
2025
0
{
2026
0
    PyObject *s = NULL;
2027
0
    PyObject *mod = PyImport_ImportModule("_pylong");
2028
0
    if (mod == NULL) {
2029
0
        return -1;
2030
0
    }
2031
0
    s = PyObject_CallMethod(mod, "int_to_decimal_string", "O", aa);
2032
0
    if (s == NULL) {
2033
0
        goto error;
2034
0
    }
2035
0
    if (!PyUnicode_Check(s)) {
2036
0
        PyErr_SetString(PyExc_TypeError,
2037
0
                        "_pylong.int_to_decimal_string did not return a str");
2038
0
        goto error;
2039
0
    }
2040
0
    if (writer) {
2041
0
        Py_ssize_t size = PyUnicode_GET_LENGTH(s);
2042
0
        if (_PyUnicodeWriter_Prepare(writer, size, '9') == -1) {
2043
0
            goto error;
2044
0
        }
2045
0
        if (_PyUnicodeWriter_WriteStr(writer, s) < 0) {
2046
0
            goto error;
2047
0
        }
2048
0
        goto success;
2049
0
    }
2050
0
    else if (bytes_writer) {
2051
0
        Py_ssize_t size = PyUnicode_GET_LENGTH(s);
2052
0
        const void *data = PyUnicode_DATA(s);
2053
0
        int kind = PyUnicode_KIND(s);
2054
0
        *bytes_str = PyBytesWriter_GrowAndUpdatePointer(bytes_writer, size,
2055
0
                                                        *bytes_str);
2056
0
        if (*bytes_str == NULL) {
2057
0
            goto error;
2058
0
        }
2059
0
        char *p = *bytes_str;
2060
0
        for (Py_ssize_t i=0; i < size; i++) {
2061
0
            Py_UCS4 ch = PyUnicode_READ(kind, data, i);
2062
0
            *p++ = (char) ch;
2063
0
        }
2064
0
        (*bytes_str) = p;
2065
0
        goto success;
2066
0
    }
2067
0
    else {
2068
0
        *p_output = Py_NewRef(s);
2069
0
        goto success;
2070
0
    }
2071
2072
0
error:
2073
0
        Py_DECREF(mod);
2074
0
        Py_XDECREF(s);
2075
0
        return -1;
2076
2077
0
success:
2078
0
        Py_DECREF(mod);
2079
0
        Py_DECREF(s);
2080
0
        return 0;
2081
0
}
2082
#endif /* WITH_PYLONG_MODULE */
2083
2084
/* Convert an integer to a base 10 string.  Returns a new non-shared
2085
   string.  (Return value is non-shared so that callers can modify the
2086
   returned value if necessary.) */
2087
2088
static int
2089
long_to_decimal_string_internal(PyObject *aa,
2090
                                PyObject **p_output,
2091
                                _PyUnicodeWriter *writer,
2092
                                PyBytesWriter *bytes_writer,
2093
                                char **bytes_str)
2094
1.58M
{
2095
1.58M
    PyLongObject *scratch, *a;
2096
1.58M
    PyObject *str = NULL;
2097
1.58M
    Py_ssize_t size, strlen, size_a, i, j;
2098
1.58M
    digit *pout, *pin, rem, tenpow;
2099
1.58M
    int negative;
2100
1.58M
    int d;
2101
2102
    // writer or bytes_writer can be used, but not both at the same time.
2103
1.58M
    assert(writer == NULL || bytes_writer == NULL);
2104
2105
1.58M
    a = (PyLongObject *)aa;
2106
1.58M
    if (a == NULL || !PyLong_Check(a)) {
2107
0
        PyErr_BadInternalCall();
2108
0
        return -1;
2109
0
    }
2110
1.58M
    size_a = _PyLong_DigitCount(a);
2111
1.58M
    negative = _PyLong_IsNegative(a);
2112
2113
    /* quick and dirty pre-check for overflowing the decimal digit limit,
2114
       based on the inequality 10/3 >= log2(10)
2115
2116
       explanation in https://github.com/python/cpython/pull/96537
2117
    */
2118
1.58M
    if (size_a >= 10 * _PY_LONG_MAX_STR_DIGITS_THRESHOLD
2119
1.58M
                  / (3 * PyLong_SHIFT) + 2) {
2120
156
        PyInterpreterState *interp = _PyInterpreterState_GET();
2121
156
        int max_str_digits = interp->long_state.max_str_digits;
2122
156
        if ((max_str_digits > 0) &&
2123
156
            (max_str_digits / (3 * PyLong_SHIFT) <= (size_a - 11) / 10)) {
2124
0
            PyErr_Format(PyExc_ValueError, _MAX_STR_DIGITS_ERROR_FMT_TO_STR,
2125
0
                         max_str_digits);
2126
0
            return -1;
2127
0
        }
2128
156
    }
2129
2130
1.58M
#if WITH_PYLONG_MODULE
2131
1.58M
    if (size_a > 1000) {
2132
        /* Switch to _pylong.int_to_decimal_string(). */
2133
0
        return pylong_int_to_decimal_string(aa,
2134
0
                                         p_output,
2135
0
                                         writer,
2136
0
                                         bytes_writer,
2137
0
                                         bytes_str);
2138
0
    }
2139
1.58M
#endif
2140
2141
    /* quick and dirty upper bound for the number of digits
2142
       required to express a in base _PyLong_DECIMAL_BASE:
2143
2144
         #digits = 1 + floor(log2(a) / log2(_PyLong_DECIMAL_BASE))
2145
2146
       But log2(a) < size_a * PyLong_SHIFT, and
2147
       log2(_PyLong_DECIMAL_BASE) = log2(10) * _PyLong_DECIMAL_SHIFT
2148
                                  > 3.3 * _PyLong_DECIMAL_SHIFT
2149
2150
         size_a * PyLong_SHIFT / (3.3 * _PyLong_DECIMAL_SHIFT) =
2151
             size_a + size_a / d < size_a + size_a / floor(d),
2152
       where d = (3.3 * _PyLong_DECIMAL_SHIFT) /
2153
                 (PyLong_SHIFT - 3.3 * _PyLong_DECIMAL_SHIFT)
2154
    */
2155
1.58M
    d = (33 * _PyLong_DECIMAL_SHIFT) /
2156
1.58M
        (10 * PyLong_SHIFT - 33 * _PyLong_DECIMAL_SHIFT);
2157
1.58M
    assert(size_a < PY_SSIZE_T_MAX/2);
2158
1.58M
    size = 1 + size_a + size_a / d;
2159
1.58M
    scratch = long_alloc(size);
2160
1.58M
    if (scratch == NULL)
2161
0
        return -1;
2162
2163
    /* convert array of base _PyLong_BASE digits in pin to an array of
2164
       base _PyLong_DECIMAL_BASE digits in pout, following Knuth (TAOCP,
2165
       Volume 2 (3rd edn), section 4.4, Method 1b). */
2166
1.58M
    pin = a->long_value.ob_digit;
2167
1.58M
    pout = scratch->long_value.ob_digit;
2168
1.58M
    size = 0;
2169
3.04M
    for (i = size_a; --i >= 0; ) {
2170
1.45M
        digit hi = pin[i];
2171
24.0M
        for (j = 0; j < size; j++) {
2172
22.5M
            twodigits z = (twodigits)pout[j] << PyLong_SHIFT | hi;
2173
22.5M
            hi = (digit)(z / _PyLong_DECIMAL_BASE);
2174
22.5M
            pout[j] = (digit)(z - (twodigits)hi *
2175
22.5M
                              _PyLong_DECIMAL_BASE);
2176
22.5M
        }
2177
2.90M
        while (hi) {
2178
1.45M
            pout[size++] = hi % _PyLong_DECIMAL_BASE;
2179
1.45M
            hi /= _PyLong_DECIMAL_BASE;
2180
1.45M
        }
2181
        /* check for keyboard interrupt */
2182
1.45M
        SIGCHECK({
2183
1.45M
                Py_DECREF(scratch);
2184
1.45M
                return -1;
2185
1.45M
            });
2186
1.45M
    }
2187
    /* pout should have at least one digit, so that the case when a = 0
2188
       works correctly */
2189
1.58M
    if (size == 0)
2190
212k
        pout[size++] = 0;
2191
2192
    /* calculate exact length of output string, and allocate */
2193
1.58M
    strlen = negative + 1 + (size - 1) * _PyLong_DECIMAL_SHIFT;
2194
1.58M
    tenpow = 10;
2195
1.58M
    rem = pout[size-1];
2196
6.03M
    while (rem >= tenpow) {
2197
4.44M
        tenpow *= 10;
2198
4.44M
        strlen++;
2199
4.44M
    }
2200
1.58M
    if (strlen > _PY_LONG_MAX_STR_DIGITS_THRESHOLD) {
2201
157
        PyInterpreterState *interp = _PyInterpreterState_GET();
2202
157
        int max_str_digits = interp->long_state.max_str_digits;
2203
157
        Py_ssize_t strlen_nosign = strlen - negative;
2204
157
        if ((max_str_digits > 0) && (strlen_nosign > max_str_digits)) {
2205
0
            Py_DECREF(scratch);
2206
0
            PyErr_Format(PyExc_ValueError, _MAX_STR_DIGITS_ERROR_FMT_TO_STR,
2207
0
                         max_str_digits);
2208
0
            return -1;
2209
0
        }
2210
157
    }
2211
1.58M
    if (writer) {
2212
1.28M
        if (_PyUnicodeWriter_Prepare(writer, strlen, '9') == -1) {
2213
0
            Py_DECREF(scratch);
2214
0
            return -1;
2215
0
        }
2216
1.28M
    }
2217
308k
    else if (bytes_writer) {
2218
0
        *bytes_str = PyBytesWriter_GrowAndUpdatePointer(bytes_writer, strlen,
2219
0
                                                        *bytes_str);
2220
0
        if (*bytes_str == NULL) {
2221
0
            Py_DECREF(scratch);
2222
0
            return -1;
2223
0
        }
2224
0
    }
2225
308k
    else {
2226
308k
        str = PyUnicode_New(strlen, '9');
2227
308k
        if (str == NULL) {
2228
0
            Py_DECREF(scratch);
2229
0
            return -1;
2230
0
        }
2231
308k
    }
2232
2233
1.58M
#define WRITE_DIGITS(p)                                               \
2234
1.58M
    do {                                                              \
2235
        /* pout[0] through pout[size-2] contribute exactly            \
2236
           _PyLong_DECIMAL_SHIFT digits each */                       \
2237
1.66M
        for (i=0; i < size - 1; i++) {                                \
2238
77.5k
            rem = pout[i];                                            \
2239
775k
            for (j = 0; j < _PyLong_DECIMAL_SHIFT; j++) {             \
2240
698k
                *--p = '0' + rem % 10;                                \
2241
698k
                rem /= 10;                                            \
2242
698k
            }                                                         \
2243
77.5k
        }                                                             \
2244
        /* pout[size-1]: always produce at least one decimal digit */ \
2245
1.58M
        rem = pout[i];                                                \
2246
6.03M
        do {                                                          \
2247
6.03M
            *--p = '0' + rem % 10;                                    \
2248
6.03M
            rem /= 10;                                                \
2249
6.03M
        } while (rem != 0);                                           \
2250
1.58M
                                                                      \
2251
        /* and sign */                                                \
2252
1.58M
        if (negative)                                                 \
2253
1.58M
            *--p = '-';                                               \
2254
1.58M
    } while (0)
2255
2256
1.58M
#define WRITE_UNICODE_DIGITS(TYPE)                                    \
2257
1.58M
    do {                                                              \
2258
1.58M
        if (writer)                                                   \
2259
1.58M
            p = (TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos + strlen; \
2260
1.58M
        else                                                          \
2261
1.58M
            p = (TYPE*)PyUnicode_DATA(str) + strlen;                  \
2262
1.58M
                                                                      \
2263
1.58M
        WRITE_DIGITS(p);                                              \
2264
1.58M
                                                                      \
2265
        /* check we've counted correctly */                           \
2266
1.58M
        if (writer)                                                   \
2267
1.58M
            assert(p == ((TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos)); \
2268
1.58M
        else                                                          \
2269
1.58M
            assert(p == (TYPE*)PyUnicode_DATA(str));                  \
2270
1.58M
    } while (0)
2271
2272
    /* fill the string right-to-left */
2273
1.58M
    if (bytes_writer) {
2274
0
        char *p = *bytes_str + strlen;
2275
0
        WRITE_DIGITS(p);
2276
0
        assert(p == *bytes_str);
2277
0
    }
2278
1.58M
    else {
2279
1.58M
        int kind = writer ? writer->kind : PyUnicode_KIND(str);
2280
1.58M
        if (kind == PyUnicode_1BYTE_KIND) {
2281
1.58M
            Py_UCS1 *p;
2282
1.58M
            WRITE_UNICODE_DIGITS(Py_UCS1);
2283
1.58M
        }
2284
0
        else if (kind == PyUnicode_2BYTE_KIND) {
2285
0
            Py_UCS2 *p;
2286
0
            WRITE_UNICODE_DIGITS(Py_UCS2);
2287
0
        }
2288
0
        else {
2289
0
            assert (kind == PyUnicode_4BYTE_KIND);
2290
0
            Py_UCS4 *p;
2291
0
            WRITE_UNICODE_DIGITS(Py_UCS4);
2292
0
        }
2293
1.58M
    }
2294
2295
1.58M
#undef WRITE_DIGITS
2296
1.58M
#undef WRITE_UNICODE_DIGITS
2297
2298
1.58M
    _Py_DECREF_INT(scratch);
2299
1.58M
    if (writer) {
2300
1.28M
        writer->pos += strlen;
2301
1.28M
    }
2302
308k
    else if (bytes_writer) {
2303
0
        (*bytes_str) += strlen;
2304
0
    }
2305
308k
    else {
2306
308k
        assert(_PyUnicode_CheckConsistency(str, 1));
2307
308k
        *p_output = (PyObject *)str;
2308
308k
    }
2309
1.58M
    return 0;
2310
1.58M
}
2311
2312
static PyObject *
2313
long_to_decimal_string(PyObject *aa)
2314
308k
{
2315
308k
    PyObject *v;
2316
308k
    if (long_to_decimal_string_internal(aa, &v, NULL, NULL, NULL) == -1)
2317
0
        return NULL;
2318
308k
    return v;
2319
308k
}
2320
2321
/* Convert an int object to a string, using a given conversion base,
2322
   which should be one of 2, 8 or 16.  Return a string object.
2323
   If base is 2, 8 or 16, add the proper prefix '0b', '0o' or '0x'
2324
   if alternate is nonzero. */
2325
2326
static int
2327
long_format_binary(PyObject *aa, int base, int alternate,
2328
                   PyObject **p_output, _PyUnicodeWriter *writer,
2329
                   PyBytesWriter *bytes_writer, char **bytes_str)
2330
99
{
2331
99
    PyLongObject *a = (PyLongObject *)aa;
2332
99
    PyObject *v = NULL;
2333
99
    Py_ssize_t sz;
2334
99
    Py_ssize_t size_a;
2335
99
    int negative;
2336
99
    int bits;
2337
2338
99
    assert(base == 2 || base == 8 || base == 16);
2339
    // writer or bytes_writer can be used, but not both at the same time.
2340
99
    assert(writer == NULL || bytes_writer == NULL);
2341
99
    if (a == NULL || !PyLong_Check(a)) {
2342
0
        PyErr_BadInternalCall();
2343
0
        return -1;
2344
0
    }
2345
99
    size_a = _PyLong_DigitCount(a);
2346
99
    negative = _PyLong_IsNegative(a);
2347
2348
    /* Compute a rough upper bound for the length of the string */
2349
99
    switch (base) {
2350
99
    case 16:
2351
99
        bits = 4;
2352
99
        break;
2353
0
    case 8:
2354
0
        bits = 3;
2355
0
        break;
2356
0
    case 2:
2357
0
        bits = 1;
2358
0
        break;
2359
0
    default:
2360
0
        Py_UNREACHABLE();
2361
99
    }
2362
2363
    /* Compute exact length 'sz' of output string. */
2364
99
    if (size_a == 0) {
2365
1
        sz = 1;
2366
1
    }
2367
98
    else {
2368
98
        Py_ssize_t size_a_in_bits;
2369
        /* Ensure overflow doesn't occur during computation of sz. */
2370
98
        if (size_a > (PY_SSIZE_T_MAX - 3) / PyLong_SHIFT) {
2371
0
            PyErr_SetString(PyExc_OverflowError,
2372
0
                            "int too large to format");
2373
0
            return -1;
2374
0
        }
2375
98
        size_a_in_bits = (size_a - 1) * PyLong_SHIFT +
2376
98
                         bit_length_digit(a->long_value.ob_digit[size_a - 1]);
2377
        /* Allow 1 character for a '-' sign. */
2378
98
        sz = negative + (size_a_in_bits + (bits - 1)) / bits;
2379
98
    }
2380
99
    if (alternate) {
2381
        /* 2 characters for prefix  */
2382
32
        sz += 2;
2383
32
    }
2384
2385
99
    if (writer) {
2386
67
        if (_PyUnicodeWriter_Prepare(writer, sz, 'x') == -1)
2387
0
            return -1;
2388
67
    }
2389
32
    else if (bytes_writer) {
2390
0
        *bytes_str = PyBytesWriter_GrowAndUpdatePointer(bytes_writer, sz,
2391
0
                                                        *bytes_str);
2392
0
        if (*bytes_str == NULL)
2393
0
            return -1;
2394
0
    }
2395
32
    else {
2396
32
        v = PyUnicode_New(sz, 'x');
2397
32
        if (v == NULL)
2398
0
            return -1;
2399
32
    }
2400
2401
99
#define WRITE_DIGITS(p)                                                 \
2402
99
    do {                                                                \
2403
99
        if (size_a == 0) {                                              \
2404
1
            *--p = '0';                                                 \
2405
1
        }                                                               \
2406
99
        else {                                                          \
2407
            /* JRH: special case for power-of-2 bases */                \
2408
98
            twodigits accum = 0;                                        \
2409
98
            int accumbits = 0;   /* # of bits in accum */               \
2410
98
            Py_ssize_t i;                                               \
2411
1.38k
            for (i = 0; i < size_a; ++i) {                              \
2412
1.28k
                accum |= (twodigits)a->long_value.ob_digit[i] << accumbits;        \
2413
1.28k
                accumbits += PyLong_SHIFT;                              \
2414
1.28k
                assert(accumbits >= bits);                              \
2415
9.23k
                do {                                                    \
2416
9.23k
                    char cdigit;                                        \
2417
9.23k
                    cdigit = (char)(accum & (base - 1));                \
2418
9.23k
                    cdigit += (cdigit < 10) ? '0' : 'a'-10;             \
2419
9.23k
                    *--p = cdigit;                                      \
2420
9.23k
                    accumbits -= bits;                                  \
2421
9.23k
                    accum >>= bits;                                     \
2422
9.23k
                } while (i < size_a-1 ? accumbits >= bits : accum > 0); \
2423
1.28k
            }                                                           \
2424
98
        }                                                               \
2425
99
                                                                        \
2426
99
        if (alternate) {                                                \
2427
32
            if (base == 16)                                             \
2428
32
                *--p = 'x';                                             \
2429
32
            else if (base == 8)                                         \
2430
0
                *--p = 'o';                                             \
2431
0
            else /* (base == 2) */                                      \
2432
0
                *--p = 'b';                                             \
2433
32
            *--p = '0';                                                 \
2434
32
        }                                                               \
2435
99
        if (negative)                                                   \
2436
99
            *--p = '-';                                                 \
2437
99
    } while (0)
2438
2439
99
#define WRITE_UNICODE_DIGITS(TYPE)                                      \
2440
99
    do {                                                                \
2441
99
        if (writer)                                                     \
2442
99
            p = (TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos + sz; \
2443
99
        else                                                            \
2444
99
            p = (TYPE*)PyUnicode_DATA(v) + sz;                          \
2445
99
                                                                        \
2446
99
        WRITE_DIGITS(p);                                                \
2447
99
                                                                        \
2448
99
        if (writer)                                                     \
2449
99
            assert(p == ((TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos)); \
2450
99
        else                                                            \
2451
99
            assert(p == (TYPE*)PyUnicode_DATA(v));                      \
2452
99
    } while (0)
2453
2454
99
    if (bytes_writer) {
2455
0
        char *p = *bytes_str + sz;
2456
0
        WRITE_DIGITS(p);
2457
0
        assert(p == *bytes_str);
2458
0
    }
2459
99
    else {
2460
99
        int kind = writer ? writer->kind : PyUnicode_KIND(v);
2461
99
        if (kind == PyUnicode_1BYTE_KIND) {
2462
99
            Py_UCS1 *p;
2463
99
            WRITE_UNICODE_DIGITS(Py_UCS1);
2464
99
        }
2465
0
        else if (kind == PyUnicode_2BYTE_KIND) {
2466
0
            Py_UCS2 *p;
2467
0
            WRITE_UNICODE_DIGITS(Py_UCS2);
2468
0
        }
2469
0
        else {
2470
0
            assert (kind == PyUnicode_4BYTE_KIND);
2471
0
            Py_UCS4 *p;
2472
0
            WRITE_UNICODE_DIGITS(Py_UCS4);
2473
0
        }
2474
99
    }
2475
2476
99
#undef WRITE_DIGITS
2477
99
#undef WRITE_UNICODE_DIGITS
2478
2479
99
    if (writer) {
2480
67
        writer->pos += sz;
2481
67
    }
2482
32
    else if (bytes_writer) {
2483
0
        (*bytes_str) += sz;
2484
0
    }
2485
32
    else {
2486
32
        assert(_PyUnicode_CheckConsistency(v, 1));
2487
32
        *p_output = v;
2488
32
    }
2489
99
    return 0;
2490
99
}
2491
2492
PyObject *
2493
_PyLong_Format(PyObject *obj, int base)
2494
32
{
2495
32
    PyObject *str;
2496
32
    int err;
2497
32
    if (base == 10)
2498
0
        err = long_to_decimal_string_internal(obj, &str, NULL, NULL, NULL);
2499
32
    else
2500
32
        err = long_format_binary(obj, base, 1, &str, NULL, NULL, NULL);
2501
32
    if (err == -1)
2502
0
        return NULL;
2503
32
    return str;
2504
32
}
2505
2506
int
2507
_PyLong_FormatWriter(_PyUnicodeWriter *writer,
2508
                     PyObject *obj,
2509
                     int base, int alternate)
2510
1.28M
{
2511
1.28M
    if (base == 10)
2512
1.28M
        return long_to_decimal_string_internal(obj, NULL, writer,
2513
1.28M
                                               NULL, NULL);
2514
67
    else
2515
67
        return long_format_binary(obj, base, alternate, NULL, writer,
2516
67
                                  NULL, NULL);
2517
1.28M
}
2518
2519
char*
2520
_PyLong_FormatBytesWriter(PyBytesWriter *writer, char *str,
2521
                          PyObject *obj,
2522
                          int base, int alternate)
2523
0
{
2524
0
    char *str2;
2525
0
    int res;
2526
0
    str2 = str;
2527
0
    if (base == 10)
2528
0
        res = long_to_decimal_string_internal(obj, NULL, NULL,
2529
0
                                              writer, &str2);
2530
0
    else
2531
0
        res = long_format_binary(obj, base, alternate, NULL, NULL,
2532
0
                                 writer, &str2);
2533
0
    if (res < 0)
2534
0
        return NULL;
2535
0
    assert(str2 != NULL);
2536
0
    return str2;
2537
0
}
2538
2539
/* Table of digit values for 8-bit string -> integer conversion.
2540
 * '0' maps to 0, ..., '9' maps to 9.
2541
 * 'a' and 'A' map to 10, ..., 'z' and 'Z' map to 35.
2542
 * All other indices map to 37.
2543
 * Note that when converting a base B string, a char c is a legitimate
2544
 * base B digit iff _PyLong_DigitValue[Py_CHARPyLong_MASK(c)] < B.
2545
 */
2546
unsigned char _PyLong_DigitValue[256] = {
2547
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2548
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2549
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2550
    0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  37, 37, 37, 37, 37, 37,
2551
    37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
2552
    25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
2553
    37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
2554
    25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
2555
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2556
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2557
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2558
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2559
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2560
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2561
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2562
    37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
2563
};
2564
2565
/* `start` and `end` point to the start and end of a string of base `base`
2566
 * digits.  base is a power of 2 (2, 4, 8, 16, or 32). An unnormalized int is
2567
 * returned in *res. The string should be already validated by the caller and
2568
 * consists only of valid digit characters and underscores. `digits` gives the
2569
 * number of digit characters.
2570
 *
2571
 * The point to this routine is that it takes time linear in the
2572
 * number of string characters.
2573
 *
2574
 * Return values:
2575
 *   -1 on syntax error (exception needs to be set, *res is untouched)
2576
 *   0 else (exception may be set, in that case *res is set to NULL)
2577
 */
2578
static int
2579
long_from_binary_base(const char *start, const char *end, Py_ssize_t digits, int base, PyLongObject **res)
2580
464k
{
2581
464k
    const char *p;
2582
464k
    int bits_per_char;
2583
464k
    Py_ssize_t n;
2584
464k
    PyLongObject *z;
2585
464k
    twodigits accum;
2586
464k
    int bits_in_accum;
2587
464k
    digit *pdigit;
2588
2589
464k
    assert(base >= 2 && base <= 32 && (base & (base - 1)) == 0);
2590
464k
    n = base;
2591
1.40M
    for (bits_per_char = -1; n; ++bits_per_char) {
2592
941k
        n >>= 1;
2593
941k
    }
2594
2595
    /* n <- the number of Python digits needed,
2596
            = ceiling((digits * bits_per_char) / PyLong_SHIFT). */
2597
464k
    if (digits > (PY_SSIZE_T_MAX - (PyLong_SHIFT - 1)) / bits_per_char) {
2598
0
        PyErr_SetString(PyExc_ValueError,
2599
0
                        "int string too large to convert");
2600
0
        *res = NULL;
2601
0
        return 0;
2602
0
    }
2603
464k
    n = (digits * bits_per_char + PyLong_SHIFT - 1) / PyLong_SHIFT;
2604
464k
    z = long_alloc(n);
2605
464k
    if (z == NULL) {
2606
0
        *res = NULL;
2607
0
        return 0;
2608
0
    }
2609
    /* Read string from right, and fill in int from left; i.e.,
2610
     * from least to most significant in both.
2611
     */
2612
464k
    accum = 0;
2613
464k
    bits_in_accum = 0;
2614
464k
    pdigit = z->long_value.ob_digit;
2615
464k
    p = end;
2616
16.1M
    while (--p >= start) {
2617
15.7M
        int k;
2618
15.7M
        if (*p == '_') {
2619
1.56k
            continue;
2620
1.56k
        }
2621
15.7M
        k = (int)_PyLong_DigitValue[Py_CHARMASK(*p)];
2622
15.7M
        assert(k >= 0 && k < base);
2623
15.7M
        accum |= (twodigits)k << bits_in_accum;
2624
15.7M
        bits_in_accum += bits_per_char;
2625
15.7M
        if (bits_in_accum >= PyLong_SHIFT) {
2626
590k
            *pdigit++ = (digit)(accum & PyLong_MASK);
2627
590k
            assert(pdigit - z->long_value.ob_digit <= n);
2628
590k
            accum >>= PyLong_SHIFT;
2629
590k
            bits_in_accum -= PyLong_SHIFT;
2630
590k
            assert(bits_in_accum < PyLong_SHIFT);
2631
590k
        }
2632
15.7M
    }
2633
464k
    if (bits_in_accum) {
2634
463k
        assert(bits_in_accum <= PyLong_SHIFT);
2635
463k
        *pdigit++ = (digit)accum;
2636
463k
        assert(pdigit - z->long_value.ob_digit <= n);
2637
463k
    }
2638
464k
    while (pdigit - z->long_value.ob_digit < n)
2639
0
        *pdigit++ = 0;
2640
464k
    *res = z;
2641
464k
    return 0;
2642
464k
}
2643
2644
#ifdef WITH_PYLONG_MODULE
2645
/* asymptotically faster str-to-long conversion for base 10, using _pylong.py */
2646
static int
2647
pylong_int_from_string(const char *start, const char *end, PyLongObject **res)
2648
20.7k
{
2649
20.7k
    PyObject *mod = PyImport_ImportModule("_pylong");
2650
20.7k
    if (mod == NULL) {
2651
0
        goto error;
2652
0
    }
2653
20.7k
    PyObject *s = PyUnicode_FromStringAndSize(start, end-start);
2654
20.7k
    if (s == NULL) {
2655
0
        Py_DECREF(mod);
2656
0
        goto error;
2657
0
    }
2658
20.7k
    PyObject *result = PyObject_CallMethod(mod, "int_from_string", "O", s);
2659
20.7k
    Py_DECREF(s);
2660
20.7k
    Py_DECREF(mod);
2661
20.7k
    if (result == NULL) {
2662
4
        goto error;
2663
4
    }
2664
20.7k
    if (!PyLong_Check(result)) {
2665
0
        Py_DECREF(result);
2666
0
        PyErr_SetString(PyExc_TypeError,
2667
0
                        "_pylong.int_from_string did not return an int");
2668
0
        goto error;
2669
0
    }
2670
20.7k
    *res = (PyLongObject *)result;
2671
20.7k
    return 0;
2672
4
error:
2673
4
    *res = NULL;
2674
4
    return 0;  // See the long_from_string_base() API comment.
2675
20.7k
}
2676
#endif /* WITH_PYLONG_MODULE */
2677
2678
/***
2679
long_from_non_binary_base: parameters and return values are the same as
2680
long_from_binary_base.
2681
2682
Binary bases can be converted in time linear in the number of digits, because
2683
Python's representation base is binary.  Other bases (including decimal!) use
2684
the simple quadratic-time algorithm below, complicated by some speed tricks.
2685
2686
First some math:  the largest integer that can be expressed in N base-B digits
2687
is B**N-1.  Consequently, if we have an N-digit input in base B, the worst-
2688
case number of Python digits needed to hold it is the smallest integer n s.t.
2689
2690
    BASE**n-1 >= B**N-1  [or, adding 1 to both sides]
2691
    BASE**n >= B**N      [taking logs to base BASE]
2692
    n >= log(B**N)/log(BASE) = N * log(B)/log(BASE)
2693
2694
The static array log_base_BASE[base] == log(base)/log(BASE) so we can compute
2695
this quickly.  A Python int with that much space is reserved near the start,
2696
and the result is computed into it.
2697
2698
The input string is actually treated as being in base base**i (i.e., i digits
2699
are processed at a time), where two more static arrays hold:
2700
2701
    convwidth_base[base] = the largest integer i such that base**i <= BASE
2702
    convmultmax_base[base] = base ** convwidth_base[base]
2703
2704
The first of these is the largest i such that i consecutive input digits
2705
must fit in a single Python digit.  The second is effectively the input
2706
base we're really using.
2707
2708
Viewing the input as a sequence <c0, c1, ..., c_n-1> of digits in base
2709
convmultmax_base[base], the result is "simply"
2710
2711
   (((c0*B + c1)*B + c2)*B + c3)*B + ... ))) + c_n-1
2712
2713
where B = convmultmax_base[base].
2714
2715
Error analysis:  as above, the number of Python digits `n` needed is worst-
2716
case
2717
2718
    n >= N * log(B)/log(BASE)
2719
2720
where `N` is the number of input digits in base `B`.  This is computed via
2721
2722
    size_z = (Py_ssize_t)((scan - str) * log_base_BASE[base]) + 1;
2723
2724
below.  Two numeric concerns are how much space this can waste, and whether
2725
the computed result can be too small.  To be concrete, assume BASE = 2**15,
2726
which is the default (and it's unlikely anyone changes that).
2727
2728
Waste isn't a problem:  provided the first input digit isn't 0, the difference
2729
between the worst-case input with N digits and the smallest input with N
2730
digits is about a factor of B, but B is small compared to BASE so at most
2731
one allocated Python digit can remain unused on that count.  If
2732
N*log(B)/log(BASE) is mathematically an exact integer, then truncating that
2733
and adding 1 returns a result 1 larger than necessary.  However, that can't
2734
happen:  whenever B is a power of 2, long_from_binary_base() is called
2735
instead, and it's impossible for B**i to be an integer power of 2**15 when
2736
B is not a power of 2 (i.e., it's impossible for N*log(B)/log(BASE) to be
2737
an exact integer when B is not a power of 2, since B**i has a prime factor
2738
other than 2 in that case, but (2**15)**j's only prime factor is 2).
2739
2740
The computed result can be too small if the true value of N*log(B)/log(BASE)
2741
is a little bit larger than an exact integer, but due to roundoff errors (in
2742
computing log(B), log(BASE), their quotient, and/or multiplying that by N)
2743
yields a numeric result a little less than that integer.  Unfortunately, "how
2744
close can a transcendental function get to an integer over some range?"
2745
questions are generally theoretically intractable.  Computer analysis via
2746
continued fractions is practical:  expand log(B)/log(BASE) via continued
2747
fractions, giving a sequence i/j of "the best" rational approximations.  Then
2748
j*log(B)/log(BASE) is approximately equal to (the integer) i.  This shows that
2749
we can get very close to being in trouble, but very rarely.  For example,
2750
76573 is a denominator in one of the continued-fraction approximations to
2751
log(10)/log(2**15), and indeed:
2752
2753
    >>> log(10)/log(2**15)*76573
2754
    16958.000000654003
2755
2756
is very close to an integer.  If we were working with IEEE single-precision,
2757
rounding errors could kill us.  Finding worst cases in IEEE double-precision
2758
requires better-than-double-precision log() functions, and Tim didn't bother.
2759
Instead the code checks to see whether the allocated space is enough as each
2760
new Python digit is added, and copies the whole thing to a larger int if not.
2761
This should happen extremely rarely, and in fact I don't have a test case
2762
that triggers it(!).  Instead the code was tested by artificially allocating
2763
just 1 digit at the start, so that the copying code was exercised for every
2764
digit beyond the first.
2765
***/
2766
2767
// Tables are computed by Tools/scripts/long_conv_tables.py
2768
#if PYLONG_BITS_IN_DIGIT == 15
2769
    static const double log_base_BASE[37] = {0.0, 0.0, 0.0,
2770
        0.10566416671474375, 0.0, 0.15479520632582416,
2771
        0.17233083338141042, 0.18715699480384027, 0.0,
2772
        0.2113283334294875, 0.22146187299249084, 0.23062877457581984,
2773
        0.2389975000480771, 0.24669598120940617, 0.25382366147050694,
2774
        0.26045937304056793, 0.0, 0.27249752275002265,
2775
        0.27799500009615413, 0.2831951675629057, 0.28812853965915747,
2776
        0.29282116151858406, 0.2972954412424865, 0.3015707970704675,
2777
        0.3056641667147438, 0.30959041265164833, 0.3133626478760728,
2778
        0.31699250014423125, 0.3204903281371736, 0.3238653996751715,
2779
        0.3271260397072346, 0.3302797540257917, 0.0,
2780
        0.3362929412905636, 0.3391641894166893, 0.34195220112966446,
2781
        0.34466166676282084};
2782
    static const int convwidth_base[37] = {0, 0, 0, 9, 0, 6, 5, 5, 0,
2783
        4, 4, 4, 4, 4, 3, 3, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
2784
        3, 3, 0, 2, 2, 2, 2};
2785
    static const twodigits convmultmax_base[37] = {0, 0, 0, 19683, 0,
2786
        15625, 7776, 16807, 0, 6561, 10000, 14641, 20736, 28561, 2744,
2787
        3375, 0, 4913, 5832, 6859, 8000, 9261, 10648, 12167, 13824,
2788
        15625, 17576, 19683, 21952, 24389, 27000, 29791, 0, 1089,
2789
        1156, 1225, 1296};
2790
#elif PYLONG_BITS_IN_DIGIT == 30
2791
    static const double log_base_BASE[37] = {0.0, 0.0, 0.0,
2792
        0.05283208335737188, 0.0, 0.07739760316291208,
2793
        0.08616541669070521, 0.09357849740192013, 0.0,
2794
        0.10566416671474375, 0.11073093649624542, 0.11531438728790992,
2795
        0.11949875002403855, 0.12334799060470308, 0.12691183073525347,
2796
        0.13022968652028397, 0.0, 0.13624876137501132,
2797
        0.13899750004807707, 0.14159758378145285, 0.14406426982957873,
2798
        0.14641058075929203, 0.14864772062124326, 0.15078539853523376,
2799
        0.1528320833573719, 0.15479520632582416, 0.1566813239380364,
2800
        0.15849625007211562, 0.1602451640685868, 0.16193269983758574,
2801
        0.1635630198536173, 0.16513987701289584, 0.0,
2802
        0.1681464706452818, 0.16958209470834465, 0.17097610056483223,
2803
        0.17233083338141042};
2804
    static const int convwidth_base[37] = {0, 0, 0, 18, 0, 12, 11, 10,
2805
        0, 9, 9, 8, 8, 8, 7, 7, 0, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6,
2806
        6, 6, 6, 0, 5, 5, 5, 5};
2807
    static const twodigits convmultmax_base[37] = {0, 0, 0, 387420489,
2808
        0, 244140625, 362797056, 282475249, 0, 387420489, 1000000000,
2809
        214358881, 429981696, 815730721, 105413504, 170859375, 0,
2810
        410338673, 612220032, 893871739, 64000000, 85766121,
2811
        113379904, 148035889, 191102976, 244140625, 308915776,
2812
        387420489, 481890304, 594823321, 729000000, 887503681, 0,
2813
        39135393, 45435424, 52521875, 60466176};
2814
#else
2815
    #error "invalid PYLONG_BITS_IN_DIGIT value"
2816
#endif
2817
2818
static int
2819
long_from_non_binary_base(const char *start, const char *end, Py_ssize_t digits, int base, PyLongObject **res)
2820
1.72M
{
2821
1.72M
    twodigits c;           /* current input character */
2822
1.72M
    Py_ssize_t size_z;
2823
1.72M
    int i;
2824
1.72M
    int convwidth;
2825
1.72M
    twodigits convmultmax, convmult;
2826
1.72M
    digit *pz, *pzstop;
2827
1.72M
    PyLongObject *z;
2828
1.72M
    const char *p;
2829
2830
1.72M
    assert(log_base_BASE[base] != 0.0);
2831
2832
    /* Create an int object that can contain the largest possible
2833
     * integer with this base and length.  Note that there's no
2834
     * need to initialize z->long_value.ob_digit -- no slot is read up before
2835
     * being stored into.
2836
     */
2837
1.72M
    double fsize_z = (double)digits * log_base_BASE[base] + 1.0;
2838
1.72M
    if (fsize_z > (double)MAX_LONG_DIGITS) {
2839
        /* The same exception as in long_alloc(). */
2840
0
        PyErr_SetString(PyExc_OverflowError,
2841
0
                        "too many digits in integer");
2842
0
        *res = NULL;
2843
0
        return 0;
2844
0
    }
2845
1.72M
    size_z = (Py_ssize_t)fsize_z;
2846
    /* Uncomment next line to test exceedingly rare copy code */
2847
    /* size_z = 1; */
2848
1.72M
    assert(size_z > 0);
2849
1.72M
    z = long_alloc(size_z);
2850
1.72M
    if (z == NULL) {
2851
0
        *res = NULL;
2852
0
        return 0;
2853
0
    }
2854
1.72M
    _PyLong_SetSignAndDigitCount(z, 0, 0);
2855
2856
    /* `convwidth` consecutive input digits are treated as a single
2857
     * digit in base `convmultmax`.
2858
     */
2859
1.72M
    convwidth = convwidth_base[base];
2860
1.72M
    convmultmax = convmultmax_base[base];
2861
2862
    /* Work ;-) */
2863
1.72M
    p = start;
2864
19.6M
    while (p < end) {
2865
17.8M
        if (*p == '_') {
2866
776
            p++;
2867
776
            continue;
2868
776
        }
2869
        /* grab up to convwidth digits from the input string */
2870
17.8M
        c = (digit)_PyLong_DigitValue[Py_CHARMASK(*p++)];
2871
147M
        for (i = 1; i < convwidth && p != end; ++p) {
2872
129M
            if (*p == '_') {
2873
4.40k
                continue;
2874
4.40k
            }
2875
129M
            i++;
2876
129M
            c = (twodigits)(c *  base +
2877
129M
                            (int)_PyLong_DigitValue[Py_CHARMASK(*p)]);
2878
129M
            assert(c < PyLong_BASE);
2879
129M
        }
2880
2881
17.8M
        convmult = convmultmax;
2882
        /* Calculate the shift only if we couldn't get
2883
         * convwidth digits.
2884
         */
2885
17.8M
        if (i != convwidth) {
2886
1.70M
            convmult = base;
2887
2.26M
            for ( ; i > 1; --i) {
2888
553k
                convmult *= base;
2889
553k
            }
2890
1.70M
        }
2891
2892
        /* Multiply z by convmult, and add c. */
2893
17.8M
        pz = z->long_value.ob_digit;
2894
17.8M
        pzstop = pz + _PyLong_DigitCount(z);
2895
736M
        for (; pz < pzstop; ++pz) {
2896
718M
            c += (twodigits)*pz * convmult;
2897
718M
            *pz = (digit)(c & PyLong_MASK);
2898
718M
            c >>= PyLong_SHIFT;
2899
718M
        }
2900
        /* carry off the current end? */
2901
17.8M
        if (c) {
2902
9.05M
            assert(c < PyLong_BASE);
2903
9.05M
            if (_PyLong_DigitCount(z) < size_z) {
2904
9.05M
                *pz = (digit)c;
2905
9.05M
                assert(!_PyLong_IsNegative(z));
2906
9.05M
                _PyLong_SetSignAndDigitCount(z, 1, _PyLong_DigitCount(z) + 1);
2907
9.05M
            }
2908
0
            else {
2909
0
                PyLongObject *tmp;
2910
                /* Extremely rare.  Get more space. */
2911
0
                assert(_PyLong_DigitCount(z) == size_z);
2912
0
                tmp = long_alloc(size_z + 1);
2913
0
                if (tmp == NULL) {
2914
0
                    Py_DECREF(z);
2915
0
                    *res = NULL;
2916
0
                    return 0;
2917
0
                }
2918
0
                memcpy(tmp->long_value.ob_digit,
2919
0
                       z->long_value.ob_digit,
2920
0
                       sizeof(digit) * size_z);
2921
0
                Py_SETREF(z, tmp);
2922
0
                z->long_value.ob_digit[size_z] = (digit)c;
2923
0
                ++size_z;
2924
0
            }
2925
9.05M
        }
2926
17.8M
    }
2927
1.72M
    *res = z;
2928
1.72M
    return 0;
2929
1.72M
}
2930
2931
/* *str points to the first digit in a string of base `base` digits. base is an
2932
 * integer from 2 to 36 inclusive. Here we don't need to worry about prefixes
2933
 * like 0x or leading +- signs. The string should be null terminated consisting
2934
 * of ASCII digits and separating underscores possibly with trailing whitespace
2935
 * but we have to validate all of those points here.
2936
 *
2937
 * If base is a power of 2 then the complexity is linear in the number of
2938
 * characters in the string. Otherwise a quadratic algorithm is used for
2939
 * non-binary bases.
2940
 *
2941
 * Return values:
2942
 *
2943
 *   - Returns -1 on syntax error (exception needs to be set, *res is untouched)
2944
 *   - Returns 0 and sets *res to NULL for MemoryError, OverflowError, or
2945
 *     _pylong.int_from_string() errors.
2946
 *   - Returns 0 and sets *res to an unsigned, unnormalized PyLong (success!).
2947
 *
2948
 * Afterwards *str is set to point to the first non-digit (which may be *str!).
2949
 */
2950
static int
2951
long_from_string_base(const char **str, int base, PyLongObject **res)
2952
2.21M
{
2953
2.21M
    const char *start, *end, *p;
2954
2.21M
    char prev = 0;
2955
2.21M
    Py_ssize_t digits = 0;
2956
2.21M
    int is_binary_base = (base & (base - 1)) == 0;
2957
2958
    /* Here we do four things:
2959
     *
2960
     * - Find the `end` of the string.
2961
     * - Validate the string.
2962
     * - Count the number of `digits` (rather than underscores)
2963
     * - Point *str to the end-of-string or first invalid character.
2964
     */
2965
2.21M
    start = p = *str;
2966
    /* Leading underscore not allowed. */
2967
2.21M
    if (*start == '_') {
2968
3
        return -1;
2969
3
    }
2970
    /* Verify all characters are digits and underscores. */
2971
299M
    while (_PyLong_DigitValue[Py_CHARMASK(*p)] < base || *p == '_') {
2972
297M
        if (*p == '_') {
2973
            /* Double underscore not allowed. */
2974
7.58k
            if (prev == '_') {
2975
1
                *str = p - 1;
2976
1
                return -1;
2977
1
            }
2978
297M
        } else {
2979
297M
            ++digits;
2980
297M
        }
2981
297M
        prev = *p;
2982
297M
        ++p;
2983
297M
    }
2984
    /* Trailing underscore not allowed. */
2985
2.21M
    if (prev == '_') {
2986
15
        *str = p - 1;
2987
15
        return -1;
2988
15
    }
2989
2.21M
    *str = end = p;
2990
    /* Reject empty strings */
2991
2.21M
    if (start == end) {
2992
1.36k
        return -1;
2993
1.36k
    }
2994
    /* Allow only trailing whitespace after `end` */
2995
2.21M
    while (*p && Py_ISSPACE(*p)) {
2996
649
        p++;
2997
649
    }
2998
2.21M
    *str = p;
2999
2.21M
    if (*p != '\0') {
3000
312
        return -1;
3001
312
    }
3002
3003
    /*
3004
     * Pass a validated string consisting of only valid digits and underscores
3005
     * to long_from_xxx_base.
3006
     */
3007
2.21M
    if (is_binary_base) {
3008
        /* Use the linear algorithm for binary bases. */
3009
464k
        return long_from_binary_base(start, end, digits, base, res);
3010
464k
    }
3011
1.75M
    else {
3012
        /* Limit the size to avoid excessive computation attacks exploiting the
3013
         * quadratic algorithm. */
3014
1.75M
        if (digits > _PY_LONG_MAX_STR_DIGITS_THRESHOLD) {
3015
110k
            PyInterpreterState *interp = _PyInterpreterState_GET();
3016
110k
            int max_str_digits = interp->long_state.max_str_digits;
3017
110k
            if ((max_str_digits > 0) && (digits > max_str_digits)) {
3018
42
                PyErr_Format(PyExc_ValueError, _MAX_STR_DIGITS_ERROR_FMT_TO_INT,
3019
42
                             max_str_digits, digits);
3020
42
                *res = NULL;
3021
42
                return 0;
3022
42
            }
3023
110k
        }
3024
1.75M
#if WITH_PYLONG_MODULE
3025
1.75M
        if (digits > 6000 && base == 10) {
3026
            /* Switch to _pylong.int_from_string() */
3027
20.7k
            return pylong_int_from_string(start, end, res);
3028
20.7k
        }
3029
1.72M
#endif
3030
        /* Use the quadratic algorithm for non binary bases. */
3031
1.72M
        return long_from_non_binary_base(start, end, digits, base, res);
3032
1.75M
    }
3033
2.21M
}
3034
3035
/* Parses an int from a bytestring. Leading and trailing whitespace will be
3036
 * ignored.
3037
 *
3038
 * If successful, a PyLong object will be returned and 'pend' will be pointing
3039
 * to the first unused byte unless it's NULL.
3040
 *
3041
 * If unsuccessful, NULL will be returned.
3042
 */
3043
PyObject *
3044
PyLong_FromString(const char *str, char **pend, int base)
3045
2.21M
{
3046
2.21M
    int sign = 1, error_if_nonzero = 0;
3047
2.21M
    const char *orig_str = str;
3048
2.21M
    PyLongObject *z = NULL;
3049
2.21M
    PyObject *strobj;
3050
2.21M
    Py_ssize_t slen;
3051
3052
2.21M
    if ((base != 0 && base < 2) || base > 36) {
3053
0
        PyErr_SetString(PyExc_ValueError,
3054
0
                        "int() arg 2 must be >= 2 and <= 36");
3055
0
        return NULL;
3056
0
    }
3057
2.22M
    while (*str != '\0' && Py_ISSPACE(*str)) {
3058
5.81k
        ++str;
3059
5.81k
    }
3060
2.21M
    if (*str == '+') {
3061
3
        ++str;
3062
3
    }
3063
2.21M
    else if (*str == '-') {
3064
9.06k
        ++str;
3065
9.06k
        sign = -1;
3066
9.06k
    }
3067
2.21M
    if (base == 0) {
3068
44.8k
        if (str[0] != '0') {
3069
41.7k
            base = 10;
3070
41.7k
        }
3071
3.07k
        else if (str[1] == 'x' || str[1] == 'X') {
3072
1.15k
            base = 16;
3073
1.15k
        }
3074
1.91k
        else if (str[1] == 'o' || str[1] == 'O') {
3075
1.16k
            base = 8;
3076
1.16k
        }
3077
745
        else if (str[1] == 'b' || str[1] == 'B') {
3078
726
            base = 2;
3079
726
        }
3080
19
        else {
3081
            /* "old" (C-style) octal literal, now invalid.
3082
               it might still be zero though */
3083
19
            error_if_nonzero = 1;
3084
19
            base = 10;
3085
19
        }
3086
44.8k
    }
3087
2.21M
    if (str[0] == '0' &&
3088
621k
        ((base == 16 && (str[1] == 'x' || str[1] == 'X')) ||
3089
620k
         (base == 8  && (str[1] == 'o' || str[1] == 'O')) ||
3090
619k
         (base == 2  && (str[1] == 'b' || str[1] == 'B')))) {
3091
3.05k
        str += 2;
3092
        /* One underscore allowed here. */
3093
3.05k
        if (*str == '_') {
3094
1
            ++str;
3095
1
        }
3096
3.05k
    }
3097
3098
    /* long_from_string_base is the main workhorse here. */
3099
2.21M
    int ret = long_from_string_base(&str, base, &z);
3100
2.21M
    if (ret == -1) {
3101
        /* Syntax error. */
3102
1.69k
        goto onError;
3103
1.69k
    }
3104
2.21M
    if (z == NULL) {
3105
        /* Error. exception already set. */
3106
46
        return NULL;
3107
46
    }
3108
3109
2.21M
    if (error_if_nonzero) {
3110
        /* reset the base to 0, else the exception message
3111
           doesn't make too much sense */
3112
13
        base = 0;
3113
13
        if (!_PyLong_IsZero(z)) {
3114
8
            goto onError;
3115
8
        }
3116
        /* there might still be other problems, therefore base
3117
           remains zero here for the same reason */
3118
13
    }
3119
3120
    /* Set sign and normalize */
3121
2.21M
    if (sign < 0) {
3122
8.98k
        _PyLong_FlipSign(z);
3123
8.98k
    }
3124
2.21M
    long_normalize(z);
3125
2.21M
    z = maybe_small_long(z);
3126
3127
2.21M
    if (pend != NULL) {
3128
608k
        *pend = (char *)str;
3129
608k
    }
3130
2.21M
    return (PyObject *) z;
3131
3132
1.70k
  onError:
3133
1.70k
    if (pend != NULL) {
3134
1.70k
        *pend = (char *)str;
3135
1.70k
    }
3136
1.70k
    Py_XDECREF(z);
3137
1.70k
    slen = strlen(orig_str) < 200 ? strlen(orig_str) : 200;
3138
1.70k
    strobj = PyUnicode_FromStringAndSize(orig_str, slen);
3139
1.70k
    if (strobj == NULL) {
3140
0
        return NULL;
3141
0
    }
3142
1.70k
    PyErr_Format(PyExc_ValueError,
3143
1.70k
                 "invalid literal for int() with base %d: %.200R",
3144
1.70k
                 base, strobj);
3145
1.70k
    Py_DECREF(strobj);
3146
1.70k
    return NULL;
3147
1.70k
}
3148
3149
/* Since PyLong_FromString doesn't have a length parameter,
3150
 * check here for possible NULs in the string.
3151
 *
3152
 * Reports an invalid literal as a bytes object.
3153
 */
3154
PyObject *
3155
_PyLong_FromBytes(const char *s, Py_ssize_t len, int base)
3156
457k
{
3157
457k
    PyObject *result, *strobj;
3158
457k
    char *end = NULL;
3159
3160
457k
    result = PyLong_FromString(s, &end, base);
3161
457k
    if (end == NULL || (result != NULL && end == s + len))
3162
457k
        return result;
3163
0
    Py_XDECREF(result);
3164
0
    strobj = PyBytes_FromStringAndSize(s, Py_MIN(len, 200));
3165
0
    if (strobj != NULL) {
3166
0
        PyErr_Format(PyExc_ValueError,
3167
0
                     "invalid literal for int() with base %d: %.200R",
3168
0
                     base, strobj);
3169
0
        Py_DECREF(strobj);
3170
0
    }
3171
0
    return NULL;
3172
457k
}
3173
3174
PyObject *
3175
PyLong_FromUnicodeObject(PyObject *u, int base)
3176
151k
{
3177
151k
    PyObject *result, *asciidig;
3178
151k
    const char *buffer;
3179
151k
    char *end = NULL;
3180
151k
    Py_ssize_t buflen;
3181
3182
151k
    asciidig = _PyUnicode_TransformDecimalAndSpaceToASCII(u);
3183
151k
    if (asciidig == NULL)
3184
0
        return NULL;
3185
151k
    assert(PyUnicode_IS_ASCII(asciidig));
3186
    /* Simply get a pointer to existing ASCII characters. */
3187
151k
    buffer = PyUnicode_AsUTF8AndSize(asciidig, &buflen);
3188
151k
    assert(buffer != NULL);
3189
3190
151k
    result = PyLong_FromString(buffer, &end, base);
3191
151k
    if (end == NULL || (result != NULL && end == buffer + buflen)) {
3192
150k
        Py_DECREF(asciidig);
3193
150k
        return result;
3194
150k
    }
3195
1.92k
    Py_DECREF(asciidig);
3196
1.92k
    Py_XDECREF(result);
3197
1.92k
    PyErr_Format(PyExc_ValueError,
3198
1.92k
                 "invalid literal for int() with base %d: %.200R",
3199
1.92k
                 base, u);
3200
1.92k
    return NULL;
3201
151k
}
3202
3203
/* Int division with remainder, top-level routine */
3204
3205
static int
3206
long_divrem(PyLongObject *a, PyLongObject *b,
3207
            PyLongObject **pdiv, PyLongObject **prem)
3208
65.4k
{
3209
65.4k
    Py_ssize_t size_a = _PyLong_DigitCount(a), size_b = _PyLong_DigitCount(b);
3210
65.4k
    PyLongObject *z;
3211
3212
65.4k
    if (size_b == 0) {
3213
407
        PyErr_SetString(PyExc_ZeroDivisionError, "division by zero");
3214
407
        return -1;
3215
407
    }
3216
64.9k
    if (size_a < size_b ||
3217
8.49k
        (size_a == size_b &&
3218
56.8k
         a->long_value.ob_digit[size_a-1] < b->long_value.ob_digit[size_b-1])) {
3219
        /* |a| < |b|. */
3220
56.8k
        *prem = (PyLongObject *)long_long((PyObject *)a);
3221
56.8k
        if (*prem == NULL) {
3222
0
            return -1;
3223
0
        }
3224
56.8k
        *pdiv = (PyLongObject*)_PyLong_GetZero();
3225
56.8k
        return 0;
3226
56.8k
    }
3227
8.15k
    if (size_b == 1) {
3228
5.11k
        digit rem = 0;
3229
5.11k
        z = divrem1(a, b->long_value.ob_digit[0], &rem);
3230
5.11k
        if (z == NULL)
3231
0
            return -1;
3232
5.11k
        *prem = (PyLongObject *) PyLong_FromLong((long)rem);
3233
5.11k
        if (*prem == NULL) {
3234
0
            Py_DECREF(z);
3235
0
            return -1;
3236
0
        }
3237
5.11k
    }
3238
3.04k
    else {
3239
3.04k
        z = x_divrem(a, b, prem);
3240
3.04k
        *prem = maybe_small_long(*prem);
3241
3.04k
        if (z == NULL)
3242
0
            return -1;
3243
3.04k
    }
3244
    /* Set the signs.
3245
       The quotient z has the sign of a*b;
3246
       the remainder r has the sign of a,
3247
       so a = b*z + r. */
3248
8.15k
    if ((_PyLong_IsNegative(a)) != (_PyLong_IsNegative(b))) {
3249
5.65k
        _PyLong_Negate(&z);
3250
5.65k
        if (z == NULL) {
3251
0
            Py_CLEAR(*prem);
3252
0
            return -1;
3253
0
        }
3254
5.65k
    }
3255
8.15k
    if (_PyLong_IsNegative(a) && !_PyLong_IsZero(*prem)) {
3256
4.94k
        _PyLong_Negate(prem);
3257
4.94k
        if (*prem == NULL) {
3258
0
            Py_DECREF(z);
3259
0
            Py_CLEAR(*prem);
3260
0
            return -1;
3261
0
        }
3262
4.94k
    }
3263
8.15k
    *pdiv = maybe_small_long(z);
3264
8.15k
    return 0;
3265
8.15k
}
3266
3267
/* Int remainder, top-level routine */
3268
3269
static int
3270
long_rem(PyLongObject *a, PyLongObject *b, PyLongObject **prem)
3271
16.1k
{
3272
16.1k
    Py_ssize_t size_a = _PyLong_DigitCount(a), size_b = _PyLong_DigitCount(b);
3273
3274
16.1k
    if (size_b == 0) {
3275
214
        PyErr_SetString(PyExc_ZeroDivisionError,
3276
214
                        "division by zero");
3277
214
        return -1;
3278
214
    }
3279
15.9k
    if (size_a < size_b ||
3280
9.21k
        (size_a == size_b &&
3281
8.51k
         a->long_value.ob_digit[size_a-1] < b->long_value.ob_digit[size_b-1])) {
3282
        /* |a| < |b|. */
3283
8.51k
        *prem = (PyLongObject *)long_long((PyObject *)a);
3284
8.51k
        return -(*prem == NULL);
3285
8.51k
    }
3286
7.39k
    if (size_b == 1) {
3287
3.69k
        *prem = rem1(a, b->long_value.ob_digit[0]);
3288
3.69k
        if (*prem == NULL)
3289
0
            return -1;
3290
3.69k
    }
3291
3.70k
    else {
3292
        /* Slow path using divrem. */
3293
3.70k
        Py_XDECREF(x_divrem(a, b, prem));
3294
3.70k
        *prem = maybe_small_long(*prem);
3295
3.70k
        if (*prem == NULL)
3296
0
            return -1;
3297
3.70k
    }
3298
    /* Set the sign. */
3299
7.39k
    if (_PyLong_IsNegative(a) && !_PyLong_IsZero(*prem)) {
3300
3.76k
        _PyLong_Negate(prem);
3301
3.76k
        if (*prem == NULL) {
3302
0
            Py_CLEAR(*prem);
3303
0
            return -1;
3304
0
        }
3305
3.76k
    }
3306
7.39k
    return 0;
3307
7.39k
}
3308
3309
/* Unsigned int division with remainder -- the algorithm.  The arguments v1
3310
   and w1 should satisfy 2 <= _PyLong_DigitCount(w1) <= _PyLong_DigitCount(v1). */
3311
3312
static PyLongObject *
3313
x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem)
3314
22.9k
{
3315
22.9k
    PyLongObject *v, *w, *a;
3316
22.9k
    Py_ssize_t i, k, size_v, size_w;
3317
22.9k
    int d;
3318
22.9k
    digit wm1, wm2, carry, q, r, vtop, *v0, *vk, *w0, *ak;
3319
22.9k
    twodigits vv;
3320
22.9k
    sdigit zhi;
3321
22.9k
    stwodigits z;
3322
3323
    /* We follow Knuth [The Art of Computer Programming, Vol. 2 (3rd
3324
       edn.), section 4.3.1, Algorithm D], except that we don't explicitly
3325
       handle the special case when the initial estimate q for a quotient
3326
       digit is >= PyLong_BASE: the max value for q is PyLong_BASE+1, and
3327
       that won't overflow a digit. */
3328
3329
    /* allocate space; w will also be used to hold the final remainder */
3330
22.9k
    size_v = _PyLong_DigitCount(v1);
3331
22.9k
    size_w = _PyLong_DigitCount(w1);
3332
22.9k
    assert(size_v >= size_w && size_w >= 2); /* Assert checks by div() */
3333
22.9k
    v = long_alloc(size_v+1);
3334
22.9k
    if (v == NULL) {
3335
0
        *prem = NULL;
3336
0
        return NULL;
3337
0
    }
3338
22.9k
    w = long_alloc(size_w);
3339
22.9k
    if (w == NULL) {
3340
0
        Py_DECREF(v);
3341
0
        *prem = NULL;
3342
0
        return NULL;
3343
0
    }
3344
3345
    /* normalize: shift w1 left so that its top digit is >= PyLong_BASE/2.
3346
       shift v1 left by the same amount.  Results go into w and v. */
3347
22.9k
    d = PyLong_SHIFT - bit_length_digit(w1->long_value.ob_digit[size_w-1]);
3348
22.9k
    carry = v_lshift(w->long_value.ob_digit, w1->long_value.ob_digit, size_w, d);
3349
22.9k
    assert(carry == 0);
3350
22.9k
    carry = v_lshift(v->long_value.ob_digit, v1->long_value.ob_digit, size_v, d);
3351
22.9k
    if (carry != 0 || v->long_value.ob_digit[size_v-1] >= w->long_value.ob_digit[size_w-1]) {
3352
10.8k
        v->long_value.ob_digit[size_v] = carry;
3353
10.8k
        size_v++;
3354
10.8k
    }
3355
3356
    /* Now v->long_value.ob_digit[size_v-1] < w->long_value.ob_digit[size_w-1], so quotient has
3357
       at most (and usually exactly) k = size_v - size_w digits. */
3358
22.9k
    k = size_v - size_w;
3359
22.9k
    assert(k >= 0);
3360
22.9k
    a = long_alloc(k);
3361
22.9k
    if (a == NULL) {
3362
0
        Py_DECREF(w);
3363
0
        Py_DECREF(v);
3364
0
        *prem = NULL;
3365
0
        return NULL;
3366
0
    }
3367
22.9k
    v0 = v->long_value.ob_digit;
3368
22.9k
    w0 = w->long_value.ob_digit;
3369
22.9k
    wm1 = w0[size_w-1];
3370
22.9k
    wm2 = w0[size_w-2];
3371
95.7k
    for (vk = v0+k, ak = a->long_value.ob_digit + k; vk-- > v0;) {
3372
        /* inner loop: divide vk[0:size_w+1] by w0[0:size_w], giving
3373
           single-digit quotient q, remainder in vk[0:size_w]. */
3374
3375
72.8k
        SIGCHECK({
3376
72.8k
                Py_DECREF(a);
3377
72.8k
                Py_DECREF(w);
3378
72.8k
                Py_DECREF(v);
3379
72.8k
                *prem = NULL;
3380
72.8k
                return NULL;
3381
72.8k
            });
3382
3383
        /* estimate quotient digit q; may overestimate by 1 (rare) */
3384
72.8k
        vtop = vk[size_w];
3385
72.8k
        assert(vtop <= wm1);
3386
72.8k
        vv = ((twodigits)vtop << PyLong_SHIFT) | vk[size_w-1];
3387
        /* The code used to compute the remainder via
3388
         *     r = (digit)(vv - (twodigits)wm1 * q);
3389
         * and compilers generally generated code to do the * and -.
3390
         * But modern processors generally compute q and r with a single
3391
         * instruction, and modern optimizing compilers exploit that if we
3392
         * _don't_ try to optimize it.
3393
         */
3394
72.8k
        q = (digit)(vv / wm1);
3395
72.8k
        r = (digit)(vv % wm1);
3396
88.4k
        while ((twodigits)wm2 * q > (((twodigits)r << PyLong_SHIFT)
3397
88.4k
                                     | vk[size_w-2])) {
3398
20.9k
            --q;
3399
20.9k
            r += wm1;
3400
20.9k
            if (r >= PyLong_BASE)
3401
5.36k
                break;
3402
20.9k
        }
3403
72.8k
        assert(q <= PyLong_BASE);
3404
3405
        /* subtract q*w0[0:size_w] from vk[0:size_w+1] */
3406
72.8k
        zhi = 0;
3407
2.65M
        for (i = 0; i < size_w; ++i) {
3408
            /* invariants: -PyLong_BASE <= -q <= zhi <= 0;
3409
               -PyLong_BASE * q <= z < PyLong_BASE */
3410
2.58M
            z = (sdigit)vk[i] + zhi -
3411
2.58M
                (stwodigits)q * (stwodigits)w0[i];
3412
2.58M
            vk[i] = (digit)z & PyLong_MASK;
3413
2.58M
            zhi = (sdigit)Py_ARITHMETIC_RIGHT_SHIFT(stwodigits,
3414
2.58M
                                                    z, PyLong_SHIFT);
3415
2.58M
        }
3416
3417
        /* add w back if q was too large (this branch taken rarely) */
3418
72.8k
        assert((sdigit)vtop + zhi == -1 || (sdigit)vtop + zhi == 0);
3419
72.8k
        if ((sdigit)vtop + zhi < 0) {
3420
526
            carry = 0;
3421
2.15k
            for (i = 0; i < size_w; ++i) {
3422
1.63k
                carry += vk[i] + w0[i];
3423
1.63k
                vk[i] = carry & PyLong_MASK;
3424
1.63k
                carry >>= PyLong_SHIFT;
3425
1.63k
            }
3426
526
            --q;
3427
526
        }
3428
3429
        /* store quotient digit */
3430
72.8k
        assert(q < PyLong_BASE);
3431
72.8k
        *--ak = q;
3432
72.8k
    }
3433
3434
    /* unshift remainder; we reuse w to store the result */
3435
22.9k
    carry = v_rshift(w0, v0, size_w, d);
3436
22.9k
    assert(carry==0);
3437
22.9k
    Py_DECREF(v);
3438
3439
22.9k
    *prem = long_normalize(w);
3440
22.9k
    return long_normalize(a);
3441
22.9k
}
3442
3443
/* For a nonzero PyLong a, express a in the form x * 2**e, with 0.5 <=
3444
   abs(x) < 1.0 and e >= 0; return x and put e in *e.  Here x is
3445
   rounded to DBL_MANT_DIG significant bits using round-half-to-even.
3446
   If a == 0, return 0.0 and set *e = 0.  */
3447
3448
/* attempt to define 2.0**DBL_MANT_DIG as a compile-time constant */
3449
#if DBL_MANT_DIG == 53
3450
8.42k
#define EXP2_DBL_MANT_DIG 9007199254740992.0
3451
#else
3452
#define EXP2_DBL_MANT_DIG (ldexp(1.0, DBL_MANT_DIG))
3453
#endif
3454
3455
double
3456
_PyLong_Frexp(PyLongObject *a, int64_t *e)
3457
8.42k
{
3458
8.42k
    Py_ssize_t a_size, shift_digits, x_size;
3459
8.42k
    int shift_bits;
3460
8.42k
    int64_t a_bits;
3461
    /* See below for why x_digits is always large enough. */
3462
8.42k
    digit rem;
3463
8.42k
    digit x_digits[2 + (DBL_MANT_DIG + 1) / PyLong_SHIFT] = {0,};
3464
8.42k
    double dx;
3465
    /* Correction term for round-half-to-even rounding.  For a digit x,
3466
       "x + half_even_correction[x & 7]" gives x rounded to the nearest
3467
       multiple of 4, rounding ties to a multiple of 8. */
3468
8.42k
    static const int half_even_correction[8] = {0, -1, -2, 1, 0, -1, 2, 1};
3469
3470
8.42k
    a_size = _PyLong_DigitCount(a);
3471
8.42k
    if (a_size == 0) {
3472
        /* Special case for 0: significand 0.0, exponent 0. */
3473
0
        *e = 0;
3474
0
        return 0.0;
3475
0
    }
3476
8.42k
    a_bits = _PyLong_NumBits((PyObject *)a);
3477
3478
    /* Shift the first DBL_MANT_DIG + 2 bits of a into x_digits[0:x_size]
3479
       (shifting left if a_bits <= DBL_MANT_DIG + 2).
3480
3481
       Number of digits needed for result: write // for floor division.
3482
       Then if shifting left, we end up using
3483
3484
         1 + a_size + (DBL_MANT_DIG + 2 - a_bits) // PyLong_SHIFT
3485
3486
       digits.  If shifting right, we use
3487
3488
         a_size - (a_bits - DBL_MANT_DIG - 2) // PyLong_SHIFT
3489
3490
       digits.  Using a_size = 1 + (a_bits - 1) // PyLong_SHIFT along with
3491
       the inequalities
3492
3493
         m // PyLong_SHIFT + n // PyLong_SHIFT <= (m + n) // PyLong_SHIFT
3494
         m // PyLong_SHIFT - n // PyLong_SHIFT <=
3495
                                          1 + (m - n - 1) // PyLong_SHIFT,
3496
3497
       valid for any integers m and n, we find that x_size satisfies
3498
3499
         x_size <= 2 + (DBL_MANT_DIG + 1) // PyLong_SHIFT
3500
3501
       in both cases.
3502
    */
3503
8.42k
    if (a_bits <= DBL_MANT_DIG + 2) {
3504
4.07k
        shift_digits = (DBL_MANT_DIG + 2 - (Py_ssize_t)a_bits) / PyLong_SHIFT;
3505
4.07k
        shift_bits = (DBL_MANT_DIG + 2 - (int)a_bits) % PyLong_SHIFT;
3506
4.07k
        x_size = shift_digits;
3507
4.07k
        rem = v_lshift(x_digits + x_size, a->long_value.ob_digit, a_size,
3508
4.07k
                       shift_bits);
3509
4.07k
        x_size += a_size;
3510
4.07k
        x_digits[x_size++] = rem;
3511
4.07k
    }
3512
4.34k
    else {
3513
4.34k
        shift_digits = (Py_ssize_t)((a_bits - DBL_MANT_DIG - 2) / PyLong_SHIFT);
3514
4.34k
        shift_bits = (int)((a_bits - DBL_MANT_DIG - 2) % PyLong_SHIFT);
3515
4.34k
        rem = v_rshift(x_digits, a->long_value.ob_digit + shift_digits,
3516
4.34k
                       a_size - shift_digits, shift_bits);
3517
4.34k
        x_size = a_size - shift_digits;
3518
        /* For correct rounding below, we need the least significant
3519
           bit of x to be 'sticky' for this shift: if any of the bits
3520
           shifted out was nonzero, we set the least significant bit
3521
           of x. */
3522
4.34k
        if (rem)
3523
3.24k
            x_digits[0] |= 1;
3524
1.10k
        else
3525
2.90k
            while (shift_digits > 0)
3526
2.51k
                if (a->long_value.ob_digit[--shift_digits]) {
3527
718
                    x_digits[0] |= 1;
3528
718
                    break;
3529
718
                }
3530
4.34k
    }
3531
8.42k
    assert(1 <= x_size && x_size <= (Py_ssize_t)Py_ARRAY_LENGTH(x_digits));
3532
3533
    /* Round, and convert to double. */
3534
8.42k
    x_digits[0] += half_even_correction[x_digits[0] & 7];
3535
8.42k
    dx = x_digits[--x_size];
3536
23.6k
    while (x_size > 0)
3537
15.2k
        dx = dx * PyLong_BASE + x_digits[--x_size];
3538
3539
    /* Rescale;  make correction if result is 1.0. */
3540
8.42k
    dx /= 4.0 * EXP2_DBL_MANT_DIG;
3541
8.42k
    if (dx == 1.0) {
3542
96
        assert(a_bits < INT64_MAX);
3543
96
        dx = 0.5;
3544
96
        a_bits += 1;
3545
96
    }
3546
3547
8.42k
    *e = a_bits;
3548
8.42k
    return _PyLong_IsNegative(a) ? -dx : dx;
3549
8.42k
}
3550
3551
/* Get a C double from an int object.  Rounds to the nearest double,
3552
   using the round-half-to-even rule in the case of a tie. */
3553
3554
double
3555
PyLong_AsDouble(PyObject *v)
3556
102k
{
3557
102k
    int64_t exponent;
3558
102k
    double x;
3559
3560
102k
    if (v == NULL) {
3561
0
        PyErr_BadInternalCall();
3562
0
        return -1.0;
3563
0
    }
3564
102k
    if (!PyLong_Check(v)) {
3565
0
        PyErr_SetString(PyExc_TypeError, "an integer is required");
3566
0
        return -1.0;
3567
0
    }
3568
102k
    if (_PyLong_IsCompact((PyLongObject *)v)) {
3569
        /* Fast path; single digit long (31 bits) will cast safely
3570
           to double.  This improves performance of FP/long operations
3571
           by 20%.
3572
        */
3573
93.8k
        return (double)medium_value((PyLongObject *)v);
3574
93.8k
    }
3575
8.42k
    x = _PyLong_Frexp((PyLongObject *)v, &exponent);
3576
8.42k
    assert(exponent >= 0);
3577
8.42k
    assert(!PyErr_Occurred());
3578
8.42k
    if (exponent > DBL_MAX_EXP) {
3579
617
        PyErr_SetString(PyExc_OverflowError,
3580
617
                        "int too large to convert to float");
3581
617
        return -1.0;
3582
617
    }
3583
7.80k
    return ldexp(x, (int)exponent);
3584
8.42k
}
3585
3586
/* Methods */
3587
3588
/* if a < b, return a negative number
3589
   if a == b, return 0
3590
   if a > b, return a positive number */
3591
3592
static Py_ssize_t
3593
long_compare(PyLongObject *a, PyLongObject *b)
3594
10.3M
{
3595
10.3M
    if (_PyLong_BothAreCompact(a, b)) {
3596
926k
        return _PyLong_CompactValue(a) - _PyLong_CompactValue(b);
3597
926k
    }
3598
9.43M
    Py_ssize_t sign = _PyLong_SignedDigitCount(a) - _PyLong_SignedDigitCount(b);
3599
9.43M
    if (sign == 0) {
3600
676k
        Py_ssize_t i = _PyLong_DigitCount(a);
3601
676k
        sdigit diff = 0;
3602
2.53M
        while (--i >= 0) {
3603
1.88M
            diff = (sdigit) a->long_value.ob_digit[i] - (sdigit) b->long_value.ob_digit[i];
3604
1.88M
            if (diff) {
3605
33.9k
                break;
3606
33.9k
            }
3607
1.88M
        }
3608
676k
        sign = _PyLong_IsNegative(a) ? -diff : diff;
3609
676k
    }
3610
9.43M
    return sign;
3611
10.3M
}
3612
3613
static PyObject *
3614
long_richcompare(PyObject *self, PyObject *other, int op)
3615
13.4M
{
3616
13.4M
    Py_ssize_t result;
3617
13.4M
    CHECK_BINOP(self, other);
3618
13.4M
    if (self == other)
3619
3.10M
        result = 0;
3620
10.3M
    else
3621
10.3M
        result = long_compare((PyLongObject*)self, (PyLongObject*)other);
3622
13.4M
    Py_RETURN_RICHCOMPARE(result, 0, op);
3623
13.4M
}
3624
3625
static inline int
3626
/// Return 1 if the object is one of the immortal small ints
3627
_long_is_small_int(PyObject *op)
3628
61.1M
{
3629
61.1M
    PyLongObject *long_object = (PyLongObject *)op;
3630
61.1M
    int is_small_int = (long_object->long_value.lv_tag & IMMORTALITY_BIT_MASK) != 0;
3631
61.1M
    assert((!is_small_int) || PyLong_CheckExact(op));
3632
61.1M
    return is_small_int;
3633
61.1M
}
3634
3635
void
3636
_PyLong_ExactDealloc(PyObject *self)
3637
18.2M
{
3638
18.2M
    assert(PyLong_CheckExact(self));
3639
18.2M
    if (_long_is_small_int(self)) {
3640
        // See PEP 683, section Accidental De-Immortalizing for details
3641
0
        _Py_SetImmortal(self);
3642
0
        return;
3643
0
    }
3644
18.2M
    if (_PyLong_IsCompact((PyLongObject *)self)) {
3645
14.5M
        _Py_FREELIST_FREE(ints, self, PyObject_Free);
3646
14.5M
        return;
3647
14.5M
    }
3648
3.64M
    PyObject_Free(self);
3649
3.64M
}
3650
3651
static void
3652
long_dealloc(PyObject *self)
3653
42.8M
{
3654
42.8M
    if (_long_is_small_int(self)) {
3655
        /* This should never get called, but we also don't want to SEGV if
3656
         * we accidentally decref small Ints out of existence. Instead,
3657
         * since small Ints are immortal, re-set the reference count.
3658
         *
3659
         * See PEP 683, section Accidental De-Immortalizing for details
3660
         */
3661
0
        _Py_SetImmortal(self);
3662
0
        return;
3663
0
    }
3664
42.8M
    if (PyLong_CheckExact(self) && _PyLong_IsCompact((PyLongObject *)self)) {
3665
39.8M
        _Py_FREELIST_FREE(ints, self, PyObject_Free);
3666
39.8M
        return;
3667
39.8M
    }
3668
3.03M
    Py_TYPE(self)->tp_free(self);
3669
3.03M
}
3670
3671
static Py_hash_t
3672
long_hash(PyObject *obj)
3673
219M
{
3674
219M
    PyLongObject *v = (PyLongObject *)obj;
3675
219M
    Py_uhash_t x;
3676
219M
    Py_ssize_t i;
3677
219M
    int sign;
3678
3679
219M
    if (_PyLong_IsCompact(v)) {
3680
204M
        x = (Py_uhash_t)_PyLong_CompactValue(v);
3681
204M
        if (x == (Py_uhash_t)-1) {
3682
30.8k
            x = (Py_uhash_t)-2;
3683
30.8k
        }
3684
204M
        return x;
3685
204M
    }
3686
15.5M
    i = _PyLong_DigitCount(v);
3687
15.5M
    sign = _PyLong_NonCompactSign(v);
3688
3689
    // unroll first digit
3690
15.5M
    Py_BUILD_ASSERT(PyHASH_BITS > PyLong_SHIFT);
3691
15.5M
    assert(i >= 1);
3692
15.5M
    --i;
3693
15.5M
    x = v->long_value.ob_digit[i];
3694
15.5M
    assert(x < PyHASH_MODULUS);
3695
3696
15.5M
#if PyHASH_BITS >= 2 * PyLong_SHIFT
3697
    // unroll second digit
3698
15.5M
    assert(i >= 1);
3699
15.5M
    --i;
3700
15.5M
    x <<= PyLong_SHIFT;
3701
15.5M
    x += v->long_value.ob_digit[i];
3702
15.5M
    assert(x < PyHASH_MODULUS);
3703
15.5M
#endif
3704
3705
21.6M
    while (--i >= 0) {
3706
        /* Here x is a quantity in the range [0, PyHASH_MODULUS); we
3707
           want to compute x * 2**PyLong_SHIFT + v->long_value.ob_digit[i] modulo
3708
           PyHASH_MODULUS.
3709
3710
           The computation of x * 2**PyLong_SHIFT % PyHASH_MODULUS
3711
           amounts to a rotation of the bits of x.  To see this, write
3712
3713
             x * 2**PyLong_SHIFT = y * 2**PyHASH_BITS + z
3714
3715
           where y = x >> (PyHASH_BITS - PyLong_SHIFT) gives the top
3716
           PyLong_SHIFT bits of x (those that are shifted out of the
3717
           original PyHASH_BITS bits, and z = (x << PyLong_SHIFT) &
3718
           PyHASH_MODULUS gives the bottom PyHASH_BITS - PyLong_SHIFT
3719
           bits of x, shifted up.  Then since 2**PyHASH_BITS is
3720
           congruent to 1 modulo PyHASH_MODULUS, y*2**PyHASH_BITS is
3721
           congruent to y modulo PyHASH_MODULUS.  So
3722
3723
             x * 2**PyLong_SHIFT = y + z (mod PyHASH_MODULUS).
3724
3725
           The right-hand side is just the result of rotating the
3726
           PyHASH_BITS bits of x left by PyLong_SHIFT places; since
3727
           not all PyHASH_BITS bits of x are 1s, the same is true
3728
           after rotation, so 0 <= y+z < PyHASH_MODULUS and y + z is
3729
           the reduction of x*2**PyLong_SHIFT modulo
3730
           PyHASH_MODULUS. */
3731
6.10M
        x = ((x << PyLong_SHIFT) & PyHASH_MODULUS) |
3732
6.10M
            (x >> (PyHASH_BITS - PyLong_SHIFT));
3733
6.10M
        x += v->long_value.ob_digit[i];
3734
6.10M
        if (x >= PyHASH_MODULUS)
3735
7.54k
            x -= PyHASH_MODULUS;
3736
6.10M
    }
3737
15.5M
    x = x * sign;
3738
15.5M
    if (x == (Py_uhash_t)-1)
3739
354
        x = (Py_uhash_t)-2;
3740
15.5M
    return (Py_hash_t)x;
3741
15.5M
}
3742
3743
3744
/* Add the absolute values of two integers. */
3745
3746
static PyLongObject *
3747
x_add(PyLongObject *a, PyLongObject *b)
3748
2.26M
{
3749
2.26M
    Py_ssize_t size_a = _PyLong_DigitCount(a), size_b = _PyLong_DigitCount(b);
3750
2.26M
    PyLongObject *z;
3751
2.26M
    Py_ssize_t i;
3752
2.26M
    digit carry = 0;
3753
3754
    /* Ensure a is the larger of the two: */
3755
2.26M
    if (size_a < size_b) {
3756
575k
        { PyLongObject *temp = a; a = b; b = temp; }
3757
575k
        { Py_ssize_t size_temp = size_a;
3758
575k
            size_a = size_b;
3759
575k
            size_b = size_temp; }
3760
575k
    }
3761
2.26M
    z = long_alloc(size_a+1);
3762
2.26M
    if (z == NULL)
3763
0
        return NULL;
3764
36.0M
    for (i = 0; i < size_b; ++i) {
3765
33.7M
        carry += a->long_value.ob_digit[i] + b->long_value.ob_digit[i];
3766
33.7M
        z->long_value.ob_digit[i] = carry & PyLong_MASK;
3767
33.7M
        carry >>= PyLong_SHIFT;
3768
33.7M
    }
3769
30.3M
    for (; i < size_a; ++i) {
3770
28.1M
        carry += a->long_value.ob_digit[i];
3771
28.1M
        z->long_value.ob_digit[i] = carry & PyLong_MASK;
3772
28.1M
        carry >>= PyLong_SHIFT;
3773
28.1M
    }
3774
2.26M
    z->long_value.ob_digit[i] = carry;
3775
2.26M
    return long_normalize(z);
3776
2.26M
}
3777
3778
/* Subtract the absolute values of two integers. */
3779
3780
static PyLongObject *
3781
x_sub(PyLongObject *a, PyLongObject *b)
3782
16.5k
{
3783
16.5k
    Py_ssize_t size_a = _PyLong_DigitCount(a), size_b = _PyLong_DigitCount(b);
3784
16.5k
    PyLongObject *z;
3785
16.5k
    Py_ssize_t i;
3786
16.5k
    int sign = 1;
3787
16.5k
    digit borrow = 0;
3788
3789
    /* Ensure a is the larger of the two: */
3790
16.5k
    if (size_a < size_b) {
3791
6.22k
        sign = -1;
3792
6.22k
        { PyLongObject *temp = a; a = b; b = temp; }
3793
6.22k
        { Py_ssize_t size_temp = size_a;
3794
6.22k
            size_a = size_b;
3795
6.22k
            size_b = size_temp; }
3796
6.22k
    }
3797
10.3k
    else if (size_a == size_b) {
3798
        /* Find highest digit where a and b differ: */
3799
5.57k
        i = size_a;
3800
6.44k
        while (--i >= 0 && a->long_value.ob_digit[i] == b->long_value.ob_digit[i])
3801
866
            ;
3802
5.57k
        if (i < 0)
3803
127
            return (PyLongObject *)PyLong_FromLong(0);
3804
5.45k
        if (a->long_value.ob_digit[i] < b->long_value.ob_digit[i]) {
3805
2.01k
            sign = -1;
3806
2.01k
            { PyLongObject *temp = a; a = b; b = temp; }
3807
2.01k
        }
3808
5.45k
        size_a = size_b = i+1;
3809
5.45k
    }
3810
16.4k
    z = long_alloc(size_a);
3811
16.4k
    if (z == NULL)
3812
0
        return NULL;
3813
196k
    for (i = 0; i < size_b; ++i) {
3814
        /* The following assumes unsigned arithmetic
3815
           works module 2**N for some N>PyLong_SHIFT. */
3816
179k
        borrow = a->long_value.ob_digit[i] - b->long_value.ob_digit[i] - borrow;
3817
179k
        z->long_value.ob_digit[i] = borrow & PyLong_MASK;
3818
179k
        borrow >>= PyLong_SHIFT;
3819
179k
        borrow &= 1; /* Keep only one sign bit */
3820
179k
    }
3821
136k
    for (; i < size_a; ++i) {
3822
120k
        borrow = a->long_value.ob_digit[i] - borrow;
3823
120k
        z->long_value.ob_digit[i] = borrow & PyLong_MASK;
3824
120k
        borrow >>= PyLong_SHIFT;
3825
120k
        borrow &= 1; /* Keep only one sign bit */
3826
120k
    }
3827
16.4k
    assert(borrow == 0);
3828
16.4k
    if (sign < 0) {
3829
8.24k
        _PyLong_FlipSign(z);
3830
8.24k
    }
3831
16.4k
    return maybe_small_long(long_normalize(z));
3832
16.4k
}
3833
3834
static PyLongObject *
3835
long_add(PyLongObject *a, PyLongObject *b)
3836
9.55M
{
3837
9.55M
    if (_PyLong_BothAreCompact(a, b)) {
3838
7.79M
        stwodigits z = medium_value(a) + medium_value(b);
3839
7.79M
        return _PyLong_FromSTwoDigits(z);
3840
7.79M
    }
3841
3842
1.76M
    PyLongObject *z;
3843
1.76M
    if (_PyLong_IsNegative(a)) {
3844
5.79k
        if (_PyLong_IsNegative(b)) {
3845
148
            z = x_add(a, b);
3846
148
            if (z != NULL) {
3847
                /* x_add received at least one multiple-digit int,
3848
                   and thus z must be a multiple-digit int.
3849
                   That also means z is not an element of
3850
                   small_ints, so negating it in-place is safe. */
3851
148
                assert(Py_REFCNT(z) == 1);
3852
148
                _PyLong_FlipSign(z);
3853
148
            }
3854
148
        }
3855
5.64k
        else
3856
5.64k
            z = x_sub(b, a);
3857
5.79k
    }
3858
1.75M
    else {
3859
1.75M
        if (_PyLong_IsNegative(b))
3860
5.40k
            z = x_sub(a, b);
3861
1.74M
        else
3862
1.74M
            z = x_add(a, b);
3863
1.75M
    }
3864
1.76M
    return z;
3865
1.76M
}
3866
3867
_PyStackRef
3868
_PyCompactLong_Add(PyLongObject *a, PyLongObject *b)
3869
52.1M
{
3870
52.1M
    assert(_PyLong_BothAreCompact(a, b));
3871
52.1M
    stwodigits v = medium_value(a) + medium_value(b);
3872
52.1M
    return medium_from_stwodigits(v);
3873
52.1M
}
3874
3875
static PyObject *
3876
long_add_method(PyObject *a, PyObject *b)
3877
9.53M
{
3878
9.53M
    CHECK_BINOP(a, b);
3879
9.53M
    return (PyObject*)long_add((PyLongObject*)a, (PyLongObject*)b);
3880
9.53M
}
3881
3882
3883
static PyLongObject *
3884
long_sub(PyLongObject *a, PyLongObject *b)
3885
26.5k
{
3886
26.5k
    if (_PyLong_BothAreCompact(a, b)) {
3887
13.3k
        return _PyLong_FromSTwoDigits(medium_value(a) - medium_value(b));
3888
13.3k
    }
3889
3890
13.1k
    PyLongObject *z;
3891
13.1k
    if (_PyLong_IsNegative(a)) {
3892
6.93k
        if (_PyLong_IsNegative(b)) {
3893
623
            z = x_sub(b, a);
3894
623
        }
3895
6.31k
        else {
3896
6.31k
            z = x_add(a, b);
3897
6.31k
            if (z != NULL) {
3898
6.31k
                assert(_PyLong_IsZero(z) || Py_REFCNT(z) == 1);
3899
6.31k
                _PyLong_FlipSign(z);
3900
6.31k
            }
3901
6.31k
        }
3902
6.93k
    }
3903
6.22k
    else {
3904
6.22k
        if (_PyLong_IsNegative(b))
3905
1.36k
            z = x_add(a, b);
3906
4.85k
        else
3907
4.85k
            z = x_sub(a, b);
3908
6.22k
    }
3909
13.1k
    return z;
3910
13.1k
}
3911
3912
_PyStackRef
3913
_PyCompactLong_Subtract(PyLongObject *a, PyLongObject *b)
3914
14.5M
{
3915
14.5M
    assert(_PyLong_BothAreCompact(a, b));
3916
14.5M
    stwodigits v = medium_value(a) - medium_value(b);
3917
14.5M
    return medium_from_stwodigits(v);
3918
14.5M
}
3919
3920
static PyObject *
3921
long_sub_method(PyObject *a, PyObject *b)
3922
24.7k
{
3923
24.7k
    CHECK_BINOP(a, b);
3924
20.3k
    return (PyObject*)long_sub((PyLongObject*)a, (PyLongObject*)b);
3925
24.7k
}
3926
3927
3928
/* Grade school multiplication, ignoring the signs.
3929
 * Returns the absolute value of the product, or NULL if error.
3930
 */
3931
static PyLongObject *
3932
x_mul(PyLongObject *a, PyLongObject *b)
3933
870k
{
3934
870k
    PyLongObject *z;
3935
870k
    Py_ssize_t size_a = _PyLong_DigitCount(a);
3936
870k
    Py_ssize_t size_b = _PyLong_DigitCount(b);
3937
870k
    Py_ssize_t i;
3938
3939
870k
    z = long_alloc(size_a + size_b);
3940
870k
    if (z == NULL)
3941
0
        return NULL;
3942
3943
870k
    memset(z->long_value.ob_digit, 0, _PyLong_DigitCount(z) * sizeof(digit));
3944
870k
    if (a == b) {
3945
        /* Efficient squaring per HAC, Algorithm 14.16:
3946
         * https://cacr.uwaterloo.ca/hac/about/chap14.pdf
3947
         * Gives slightly less than a 2x speedup when a == b,
3948
         * via exploiting that each entry in the multiplication
3949
         * pyramid appears twice (except for the size_a squares).
3950
         */
3951
165k
        digit *paend = a->long_value.ob_digit + size_a;
3952
5.42M
        for (i = 0; i < size_a; ++i) {
3953
5.26M
            twodigits carry;
3954
5.26M
            twodigits f = a->long_value.ob_digit[i];
3955
5.26M
            digit *pz = z->long_value.ob_digit + (i << 1);
3956
5.26M
            digit *pa = a->long_value.ob_digit + i + 1;
3957
3958
5.26M
            SIGCHECK({
3959
5.26M
                    Py_DECREF(z);
3960
5.26M
                    return NULL;
3961
5.26M
                });
3962
3963
5.26M
            carry = *pz + f * f;
3964
5.26M
            *pz++ = (digit)(carry & PyLong_MASK);
3965
5.26M
            carry >>= PyLong_SHIFT;
3966
5.26M
            assert(carry <= PyLong_MASK);
3967
3968
            /* Now f is added in twice in each column of the
3969
             * pyramid it appears.  Same as adding f<<1 once.
3970
             */
3971
5.26M
            f <<= 1;
3972
208M
            while (pa < paend) {
3973
203M
                carry += *pz + *pa++ * f;
3974
203M
                *pz++ = (digit)(carry & PyLong_MASK);
3975
203M
                carry >>= PyLong_SHIFT;
3976
203M
                assert(carry <= (PyLong_MASK << 1));
3977
203M
            }
3978
5.26M
            if (carry) {
3979
                /* See comment below. pz points at the highest possible
3980
                 * carry position from the last outer loop iteration, so
3981
                 * *pz is at most 1.
3982
                 */
3983
5.00M
                assert(*pz <= 1);
3984
5.00M
                carry += *pz;
3985
5.00M
                *pz = (digit)(carry & PyLong_MASK);
3986
5.00M
                carry >>= PyLong_SHIFT;
3987
5.00M
                if (carry) {
3988
                    /* If there's still a carry, it must be into a position
3989
                     * that still holds a 0. Where the base
3990
                     ^ B is 1 << PyLong_SHIFT, the last add was of a carry no
3991
                     * more than 2*B - 2 to a stored digit no more than 1.
3992
                     * So the sum was no more than 2*B - 1, so the current
3993
                     * carry no more than floor((2*B - 1)/B) = 1.
3994
                     */
3995
56.9k
                    assert(carry == 1);
3996
56.9k
                    assert(pz[1] == 0);
3997
56.9k
                    pz[1] = (digit)carry;
3998
56.9k
                }
3999
5.00M
            }
4000
5.26M
        }
4001
165k
    }
4002
705k
    else {      /* a is not the same as b -- gradeschool int mult */
4003
24.5M
        for (i = 0; i < size_a; ++i) {
4004
23.8M
            twodigits carry = 0;
4005
23.8M
            twodigits f = a->long_value.ob_digit[i];
4006
23.8M
            digit *pz = z->long_value.ob_digit + i;
4007
23.8M
            digit *pb = b->long_value.ob_digit;
4008
23.8M
            digit *pbend = b->long_value.ob_digit + size_b;
4009
4010
23.8M
            SIGCHECK({
4011
23.8M
                    Py_DECREF(z);
4012
23.8M
                    return NULL;
4013
23.8M
                });
4014
4015
1.24G
            while (pb < pbend) {
4016
1.22G
                carry += *pz + *pb++ * f;
4017
1.22G
                *pz++ = (digit)(carry & PyLong_MASK);
4018
1.22G
                carry >>= PyLong_SHIFT;
4019
1.22G
                assert(carry <= PyLong_MASK);
4020
1.22G
            }
4021
23.8M
            if (carry)
4022
21.3M
                *pz += (digit)(carry & PyLong_MASK);
4023
23.8M
            assert((carry >> PyLong_SHIFT) == 0);
4024
23.8M
        }
4025
705k
    }
4026
870k
    return long_normalize(z);
4027
870k
}
4028
4029
/* A helper for Karatsuba multiplication (k_mul).
4030
   Takes an int "n" and an integer "size" representing the place to
4031
   split, and sets low and high such that abs(n) == (high << size) + low,
4032
   viewing the shift as being by digits.  The sign bit is ignored, and
4033
   the return values are >= 0.
4034
   Returns 0 on success, -1 on failure.
4035
*/
4036
static int
4037
kmul_split(PyLongObject *n,
4038
           Py_ssize_t size,
4039
           PyLongObject **high,
4040
           PyLongObject **low)
4041
510k
{
4042
510k
    PyLongObject *hi, *lo;
4043
510k
    Py_ssize_t size_lo, size_hi;
4044
510k
    const Py_ssize_t size_n = _PyLong_DigitCount(n);
4045
4046
510k
    size_lo = Py_MIN(size_n, size);
4047
510k
    size_hi = size_n - size_lo;
4048
4049
510k
    if ((hi = long_alloc(size_hi)) == NULL)
4050
0
        return -1;
4051
510k
    if ((lo = long_alloc(size_lo)) == NULL) {
4052
0
        Py_DECREF(hi);
4053
0
        return -1;
4054
0
    }
4055
4056
510k
    memcpy(lo->long_value.ob_digit, n->long_value.ob_digit, size_lo * sizeof(digit));
4057
510k
    memcpy(hi->long_value.ob_digit, n->long_value.ob_digit + size_lo, size_hi * sizeof(digit));
4058
4059
510k
    *high = long_normalize(hi);
4060
510k
    *low = long_normalize(lo);
4061
510k
    return 0;
4062
510k
}
4063
4064
static PyLongObject *k_lopsided_mul(PyLongObject *a, PyLongObject *b);
4065
4066
/* Karatsuba multiplication.  Ignores the input signs, and returns the
4067
 * absolute value of the product (or NULL if error).
4068
 * See Knuth Vol. 2 Chapter 4.3.3 (Pp. 294-295).
4069
 */
4070
static PyLongObject *
4071
k_mul(PyLongObject *a, PyLongObject *b)
4072
1.37M
{
4073
1.37M
    Py_ssize_t asize = _PyLong_DigitCount(a);
4074
1.37M
    Py_ssize_t bsize = _PyLong_DigitCount(b);
4075
1.37M
    PyLongObject *ah = NULL;
4076
1.37M
    PyLongObject *al = NULL;
4077
1.37M
    PyLongObject *bh = NULL;
4078
1.37M
    PyLongObject *bl = NULL;
4079
1.37M
    PyLongObject *ret = NULL;
4080
1.37M
    PyLongObject *t1, *t2, *t3;
4081
1.37M
    Py_ssize_t shift;           /* the number of digits we split off */
4082
1.37M
    Py_ssize_t i;
4083
4084
    /* (ah*X+al)(bh*X+bl) = ah*bh*X*X + (ah*bl + al*bh)*X + al*bl
4085
     * Let k = (ah+al)*(bh+bl) = ah*bl + al*bh  + ah*bh + al*bl
4086
     * Then the original product is
4087
     *     ah*bh*X*X + (k - ah*bh - al*bl)*X + al*bl
4088
     * By picking X to be a power of 2, "*X" is just shifting, and it's
4089
     * been reduced to 3 multiplies on numbers half the size.
4090
     */
4091
4092
    /* We want to split based on the larger number; fiddle so that b
4093
     * is largest.
4094
     */
4095
1.37M
    if (asize > bsize) {
4096
242k
        t1 = a;
4097
242k
        a = b;
4098
242k
        b = t1;
4099
4100
242k
        i = asize;
4101
242k
        asize = bsize;
4102
242k
        bsize = i;
4103
242k
    }
4104
4105
    /* Use gradeschool math when either number is too small. */
4106
1.37M
    i = a == b ? KARATSUBA_SQUARE_CUTOFF : KARATSUBA_CUTOFF;
4107
1.37M
    if (asize <= i) {
4108
1.11M
        if (asize == 0)
4109
244k
            return (PyLongObject *)PyLong_FromLong(0);
4110
870k
        else
4111
870k
            return x_mul(a, b);
4112
1.11M
    }
4113
4114
    /* If a is small compared to b, splitting on b gives a degenerate
4115
     * case with ah==0, and Karatsuba may be (even much) less efficient
4116
     * than "grade school" then.  However, we can still win, by viewing
4117
     * b as a string of "big digits", each of the same width as a. That
4118
     * leads to a sequence of balanced calls to k_mul.
4119
     */
4120
262k
    if (2 * asize <= bsize)
4121
6.17k
        return k_lopsided_mul(a, b);
4122
4123
    /* Split a & b into hi & lo pieces. */
4124
256k
    shift = bsize >> 1;
4125
256k
    if (kmul_split(a, shift, &ah, &al) < 0) goto fail;
4126
256k
    assert(_PyLong_IsPositive(ah));        /* the split isn't degenerate */
4127
4128
256k
    if (a == b) {
4129
1.75k
        bh = (PyLongObject*)Py_NewRef(ah);
4130
1.75k
        bl = (PyLongObject*)Py_NewRef(al);
4131
1.75k
    }
4132
254k
    else if (kmul_split(b, shift, &bh, &bl) < 0) goto fail;
4133
4134
    /* The plan:
4135
     * 1. Allocate result space (asize + bsize digits:  that's always
4136
     *    enough).
4137
     * 2. Compute ah*bh, and copy into result at 2*shift.
4138
     * 3. Compute al*bl, and copy into result at 0.  Note that this
4139
     *    can't overlap with #2.
4140
     * 4. Subtract al*bl from the result, starting at shift.  This may
4141
     *    underflow (borrow out of the high digit), but we don't care:
4142
     *    we're effectively doing unsigned arithmetic mod
4143
     *    BASE**(sizea + sizeb), and so long as the *final* result fits,
4144
     *    borrows and carries out of the high digit can be ignored.
4145
     * 5. Subtract ah*bh from the result, starting at shift.
4146
     * 6. Compute (ah+al)*(bh+bl), and add it into the result starting
4147
     *    at shift.
4148
     */
4149
4150
    /* 1. Allocate result space. */
4151
256k
    ret = long_alloc(asize + bsize);
4152
256k
    if (ret == NULL) goto fail;
4153
#ifdef Py_DEBUG
4154
    /* Fill with trash, to catch reference to uninitialized digits. */
4155
    memset(ret->long_value.ob_digit, 0xDF, _PyLong_DigitCount(ret) * sizeof(digit));
4156
#endif
4157
4158
    /* 2. t1 <- ah*bh, and copy into high digits of result. */
4159
256k
    if ((t1 = k_mul(ah, bh)) == NULL) goto fail;
4160
256k
    assert(!_PyLong_IsNegative(t1));
4161
256k
    assert(2*shift + _PyLong_DigitCount(t1) <= _PyLong_DigitCount(ret));
4162
256k
    memcpy(ret->long_value.ob_digit + 2*shift, t1->long_value.ob_digit,
4163
256k
           _PyLong_DigitCount(t1) * sizeof(digit));
4164
4165
    /* Zero-out the digits higher than the ah*bh copy. */
4166
256k
    i = _PyLong_DigitCount(ret) - 2*shift - _PyLong_DigitCount(t1);
4167
256k
    if (i)
4168
42.6k
        memset(ret->long_value.ob_digit + 2*shift + _PyLong_DigitCount(t1), 0,
4169
42.6k
               i * sizeof(digit));
4170
4171
    /* 3. t2 <- al*bl, and copy into the low digits. */
4172
256k
    if ((t2 = k_mul(al, bl)) == NULL) {
4173
0
        Py_DECREF(t1);
4174
0
        goto fail;
4175
0
    }
4176
256k
    assert(!_PyLong_IsNegative(t2));
4177
256k
    assert(_PyLong_DigitCount(t2) <= 2*shift); /* no overlap with high digits */
4178
256k
    memcpy(ret->long_value.ob_digit, t2->long_value.ob_digit, _PyLong_DigitCount(t2) * sizeof(digit));
4179
4180
    /* Zero out remaining digits. */
4181
256k
    i = 2*shift - _PyLong_DigitCount(t2);          /* number of uninitialized digits */
4182
256k
    if (i)
4183
29.4k
        memset(ret->long_value.ob_digit + _PyLong_DigitCount(t2), 0, i * sizeof(digit));
4184
4185
    /* 4 & 5. Subtract ah*bh (t1) and al*bl (t2).  We do al*bl first
4186
     * because it's fresher in cache.
4187
     */
4188
256k
    i = _PyLong_DigitCount(ret) - shift;  /* # digits after shift */
4189
256k
    (void)v_isub(ret->long_value.ob_digit + shift, i, t2->long_value.ob_digit, _PyLong_DigitCount(t2));
4190
256k
    _Py_DECREF_INT(t2);
4191
4192
256k
    (void)v_isub(ret->long_value.ob_digit + shift, i, t1->long_value.ob_digit, _PyLong_DigitCount(t1));
4193
256k
    _Py_DECREF_INT(t1);
4194
4195
    /* 6. t3 <- (ah+al)(bh+bl), and add into result. */
4196
256k
    if ((t1 = x_add(ah, al)) == NULL) goto fail;
4197
256k
    _Py_DECREF_INT(ah);
4198
256k
    _Py_DECREF_INT(al);
4199
256k
    ah = al = NULL;
4200
4201
256k
    if (a == b) {
4202
1.75k
        t2 = (PyLongObject*)Py_NewRef(t1);
4203
1.75k
    }
4204
254k
    else if ((t2 = x_add(bh, bl)) == NULL) {
4205
0
        Py_DECREF(t1);
4206
0
        goto fail;
4207
0
    }
4208
256k
    _Py_DECREF_INT(bh);
4209
256k
    _Py_DECREF_INT(bl);
4210
256k
    bh = bl = NULL;
4211
4212
256k
    t3 = k_mul(t1, t2);
4213
256k
    _Py_DECREF_INT(t1);
4214
256k
    _Py_DECREF_INT(t2);
4215
256k
    if (t3 == NULL) goto fail;
4216
256k
    assert(!_PyLong_IsNegative(t3));
4217
4218
    /* Add t3.  It's not obvious why we can't run out of room here.
4219
     * See the (*) comment after this function.
4220
     */
4221
256k
    (void)v_iadd(ret->long_value.ob_digit + shift, i, t3->long_value.ob_digit, _PyLong_DigitCount(t3));
4222
256k
    _Py_DECREF_INT(t3);
4223
4224
256k
    return long_normalize(ret);
4225
4226
0
  fail:
4227
0
    Py_XDECREF(ret);
4228
0
    Py_XDECREF(ah);
4229
0
    Py_XDECREF(al);
4230
0
    Py_XDECREF(bh);
4231
0
    Py_XDECREF(bl);
4232
0
    return NULL;
4233
256k
}
4234
4235
/* (*) Why adding t3 can't "run out of room" above.
4236
4237
Let f(x) mean the floor of x and c(x) mean the ceiling of x.  Some facts
4238
to start with:
4239
4240
1. For any integer i, i = c(i/2) + f(i/2).  In particular,
4241
   bsize = c(bsize/2) + f(bsize/2).
4242
2. shift = f(bsize/2)
4243
3. asize <= bsize
4244
4. Since we call k_lopsided_mul if asize*2 <= bsize, asize*2 > bsize in this
4245
   routine, so asize > bsize/2 >= f(bsize/2) in this routine.
4246
4247
We allocated asize + bsize result digits, and add t3 into them at an offset
4248
of shift.  This leaves asize+bsize-shift allocated digit positions for t3
4249
to fit into, = (by #1 and #2) asize + f(bsize/2) + c(bsize/2) - f(bsize/2) =
4250
asize + c(bsize/2) available digit positions.
4251
4252
bh has c(bsize/2) digits, and bl at most f(size/2) digits.  So bh+hl has
4253
at most c(bsize/2) digits + 1 bit.
4254
4255
If asize == bsize, ah has c(bsize/2) digits, else ah has at most f(bsize/2)
4256
digits, and al has at most f(bsize/2) digits in any case.  So ah+al has at
4257
most (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 1 bit.
4258
4259
The product (ah+al)*(bh+bl) therefore has at most
4260
4261
    c(bsize/2) + (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits
4262
4263
and we have asize + c(bsize/2) available digit positions.  We need to show
4264
this is always enough.  An instance of c(bsize/2) cancels out in both, so
4265
the question reduces to whether asize digits is enough to hold
4266
(asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits.  If asize < bsize,
4267
then we're asking whether asize digits >= f(bsize/2) digits + 2 bits.  By #4,
4268
asize is at least f(bsize/2)+1 digits, so this in turn reduces to whether 1
4269
digit is enough to hold 2 bits.  This is so since PyLong_SHIFT=15 >= 2.  If
4270
asize == bsize, then we're asking whether bsize digits is enough to hold
4271
c(bsize/2) digits + 2 bits, or equivalently (by #1) whether f(bsize/2) digits
4272
is enough to hold 2 bits.  This is so if bsize >= 2, which holds because
4273
bsize >= KARATSUBA_CUTOFF >= 2.
4274
4275
Note that since there's always enough room for (ah+al)*(bh+bl), and that's
4276
clearly >= each of ah*bh and al*bl, there's always enough room to subtract
4277
ah*bh and al*bl too.
4278
*/
4279
4280
/* b has at least twice the digits of a, and a is big enough that Karatsuba
4281
 * would pay off *if* the inputs had balanced sizes.  View b as a sequence
4282
 * of slices, each with the same number of digits as a, and multiply the
4283
 * slices by a, one at a time.  This gives k_mul balanced inputs to work with,
4284
 * and is also cache-friendly (we compute one double-width slice of the result
4285
 * at a time, then move on, never backtracking except for the helpful
4286
 * single-width slice overlap between successive partial sums).
4287
 */
4288
static PyLongObject *
4289
k_lopsided_mul(PyLongObject *a, PyLongObject *b)
4290
6.17k
{
4291
6.17k
    const Py_ssize_t asize = _PyLong_DigitCount(a);
4292
6.17k
    Py_ssize_t bsize = _PyLong_DigitCount(b);
4293
6.17k
    Py_ssize_t nbdone;          /* # of b digits already multiplied */
4294
6.17k
    PyLongObject *ret;
4295
6.17k
    PyLongObject *bslice = NULL;
4296
4297
6.17k
    assert(asize > KARATSUBA_CUTOFF);
4298
6.17k
    assert(2 * asize <= bsize);
4299
4300
    /* Allocate result space, and zero it out. */
4301
6.17k
    ret = long_alloc(asize + bsize);
4302
6.17k
    if (ret == NULL)
4303
0
        return NULL;
4304
6.17k
    memset(ret->long_value.ob_digit, 0, _PyLong_DigitCount(ret) * sizeof(digit));
4305
4306
    /* Successive slices of b are copied into bslice. */
4307
6.17k
    bslice = long_alloc(asize);
4308
6.17k
    if (bslice == NULL)
4309
0
        goto fail;
4310
4311
6.17k
    nbdone = 0;
4312
24.6k
    while (bsize > 0) {
4313
18.5k
        PyLongObject *product;
4314
18.5k
        const Py_ssize_t nbtouse = Py_MIN(bsize, asize);
4315
4316
        /* Multiply the next slice of b by a. */
4317
18.5k
        memcpy(bslice->long_value.ob_digit, b->long_value.ob_digit + nbdone,
4318
18.5k
               nbtouse * sizeof(digit));
4319
18.5k
        assert(nbtouse >= 0);
4320
18.5k
        _PyLong_SetSignAndDigitCount(bslice, 1, nbtouse);
4321
18.5k
        product = k_mul(a, bslice);
4322
18.5k
        if (product == NULL)
4323
0
            goto fail;
4324
4325
        /* Add into result. */
4326
18.5k
        (void)v_iadd(ret->long_value.ob_digit + nbdone, _PyLong_DigitCount(ret) - nbdone,
4327
18.5k
                     product->long_value.ob_digit, _PyLong_DigitCount(product));
4328
18.5k
        _Py_DECREF_INT(product);
4329
4330
18.5k
        bsize -= nbtouse;
4331
18.5k
        nbdone += nbtouse;
4332
18.5k
    }
4333
4334
6.17k
    _Py_DECREF_INT(bslice);
4335
6.17k
    return long_normalize(ret);
4336
4337
0
  fail:
4338
0
    Py_DECREF(ret);
4339
0
    Py_XDECREF(bslice);
4340
0
    return NULL;
4341
6.17k
}
4342
4343
4344
static PyLongObject*
4345
long_mul(PyLongObject *a, PyLongObject *b)
4346
3.91M
{
4347
    /* fast path for single-digit multiplication */
4348
3.91M
    if (_PyLong_BothAreCompact(a, b)) {
4349
3.32M
        stwodigits v = medium_value(a) * medium_value(b);
4350
3.32M
        return _PyLong_FromSTwoDigits(v);
4351
3.32M
    }
4352
4353
589k
    PyLongObject *z = k_mul(a, b);
4354
    /* Negate if exactly one of the inputs is negative. */
4355
589k
    if (!_PyLong_SameSign(a, b) && z) {
4356
218k
        _PyLong_Negate(&z);
4357
218k
    }
4358
589k
    return z;
4359
3.91M
}
4360
4361
/* This function returns NULL if the result is not compact,
4362
 * or if it fails to allocate, but never raises */
4363
_PyStackRef
4364
_PyCompactLong_Multiply(PyLongObject *a, PyLongObject *b)
4365
3.39M
{
4366
3.39M
    assert(_PyLong_BothAreCompact(a, b));
4367
3.39M
    stwodigits v = medium_value(a) * medium_value(b);
4368
3.39M
    return medium_from_stwodigits(v);
4369
3.39M
}
4370
4371
static PyObject *
4372
long_mul_method(PyObject *a, PyObject *b)
4373
2.90M
{
4374
2.90M
    CHECK_BINOP(a, b);
4375
2.84M
    return (PyObject*)long_mul((PyLongObject*)a, (PyLongObject*)b);
4376
2.90M
}
4377
4378
/* Fast modulo division for single-digit longs. */
4379
static PyObject *
4380
fast_mod(PyLongObject *a, PyLongObject *b)
4381
202k
{
4382
202k
    sdigit left = a->long_value.ob_digit[0];
4383
202k
    sdigit right = b->long_value.ob_digit[0];
4384
202k
    sdigit mod;
4385
4386
202k
    assert(_PyLong_DigitCount(a) == 1);
4387
202k
    assert(_PyLong_DigitCount(b) == 1);
4388
202k
    sdigit sign = _PyLong_CompactSign(b);
4389
202k
    if (_PyLong_SameSign(a, b)) {
4390
200k
        mod = left % right;
4391
200k
    }
4392
2.25k
    else {
4393
        /* Either 'a' or 'b' is negative. */
4394
2.25k
        mod = right - 1 - (left - 1) % right;
4395
2.25k
    }
4396
4397
202k
    return PyLong_FromLong(mod * sign);
4398
202k
}
4399
4400
/* Fast floor division for single-digit longs. */
4401
static PyObject *
4402
fast_floor_div(PyLongObject *a, PyLongObject *b)
4403
1.03M
{
4404
1.03M
    sdigit left = a->long_value.ob_digit[0];
4405
1.03M
    sdigit right = b->long_value.ob_digit[0];
4406
1.03M
    sdigit div;
4407
4408
1.03M
    assert(_PyLong_DigitCount(a) == 1);
4409
1.03M
    assert(_PyLong_DigitCount(b) == 1);
4410
4411
1.03M
    if (_PyLong_SameSign(a, b)) {
4412
1.03M
        div = left / right;
4413
1.03M
    }
4414
1.48k
    else {
4415
        /* Either 'a' or 'b' is negative. */
4416
1.48k
        div = -1 - (left - 1) / right;
4417
1.48k
    }
4418
4419
1.03M
    return PyLong_FromLong(div);
4420
1.03M
}
4421
4422
#ifdef WITH_PYLONG_MODULE
4423
/* asymptotically faster divmod, using _pylong.py */
4424
static int
4425
pylong_int_divmod(PyLongObject *v, PyLongObject *w,
4426
                  PyLongObject **pdiv, PyLongObject **pmod)
4427
67
{
4428
67
    PyObject *mod = PyImport_ImportModule("_pylong");
4429
67
    if (mod == NULL) {
4430
0
        return -1;
4431
0
    }
4432
67
    PyObject *result = PyObject_CallMethod(mod, "int_divmod", "OO", v, w);
4433
67
    Py_DECREF(mod);
4434
67
    if (result == NULL) {
4435
0
        return -1;
4436
0
    }
4437
67
    if (!PyTuple_Check(result)) {
4438
0
        Py_DECREF(result);
4439
0
        PyErr_SetString(PyExc_ValueError,
4440
0
                        "tuple is required from int_divmod()");
4441
0
        return -1;
4442
0
    }
4443
67
    PyObject *q = PyTuple_GET_ITEM(result, 0);
4444
67
    PyObject *r = PyTuple_GET_ITEM(result, 1);
4445
67
    if (!PyLong_Check(q) || !PyLong_Check(r)) {
4446
0
        Py_DECREF(result);
4447
0
        PyErr_SetString(PyExc_ValueError,
4448
0
                        "tuple of int is required from int_divmod()");
4449
0
        return -1;
4450
0
    }
4451
67
    if (pdiv != NULL) {
4452
67
        *pdiv = (PyLongObject *)Py_NewRef(q);
4453
67
    }
4454
67
    if (pmod != NULL) {
4455
0
        *pmod = (PyLongObject *)Py_NewRef(r);
4456
0
    }
4457
67
    Py_DECREF(result);
4458
67
    return 0;
4459
67
}
4460
#endif /* WITH_PYLONG_MODULE */
4461
4462
/* The / and % operators are now defined in terms of divmod().
4463
   The expression a mod b has the value a - b*floor(a/b).
4464
   The long_divrem function gives the remainder after division of
4465
   |a| by |b|, with the sign of a.  This is also expressed
4466
   as a - b*trunc(a/b), if trunc truncates towards zero.
4467
   Some examples:
4468
     a           b      a rem b         a mod b
4469
     13          10      3               3
4470
    -13          10     -3               7
4471
     13         -10      3              -7
4472
    -13         -10     -3              -3
4473
   So, to get from rem to mod, we have to add b if a and b
4474
   have different signs.  We then subtract one from the 'div'
4475
   part of the outcome to keep the invariant intact. */
4476
4477
/* Compute
4478
 *     *pdiv, *pmod = divmod(v, w)
4479
 * NULL can be passed for pdiv or pmod, in which case that part of
4480
 * the result is simply thrown away.  The caller owns a reference to
4481
 * each of these it requests (does not pass NULL for).
4482
 */
4483
static int
4484
l_divmod(PyLongObject *v, PyLongObject *w,
4485
         PyLongObject **pdiv, PyLongObject **pmod)
4486
65.4k
{
4487
65.4k
    PyLongObject *div, *mod;
4488
4489
65.4k
    if (_PyLong_DigitCount(v) == 1 && _PyLong_DigitCount(w) == 1) {
4490
        /* Fast path for single-digit longs */
4491
0
        div = NULL;
4492
0
        if (pdiv != NULL) {
4493
0
            div = (PyLongObject *)fast_floor_div(v, w);
4494
0
            if (div == NULL) {
4495
0
                return -1;
4496
0
            }
4497
0
        }
4498
0
        if (pmod != NULL) {
4499
0
            mod = (PyLongObject *)fast_mod(v, w);
4500
0
            if (mod == NULL) {
4501
0
                Py_XDECREF(div);
4502
0
                return -1;
4503
0
            }
4504
0
            *pmod = mod;
4505
0
        }
4506
0
        if (pdiv != NULL) {
4507
            /* We only want to set `*pdiv` when `*pmod` is
4508
               set successfully. */
4509
0
            *pdiv = div;
4510
0
        }
4511
0
        return 0;
4512
0
    }
4513
65.4k
#if WITH_PYLONG_MODULE
4514
65.4k
    Py_ssize_t size_v = _PyLong_DigitCount(v); /* digits in numerator */
4515
65.4k
    Py_ssize_t size_w = _PyLong_DigitCount(w); /* digits in denominator */
4516
65.4k
    if (size_w > 300 && (size_v - size_w) > 150) {
4517
        /* Switch to _pylong.int_divmod().  If the quotient is small then
4518
          "schoolbook" division is linear-time so don't use in that case.
4519
          These limits are empirically determined and should be slightly
4520
          conservative so that _pylong is used in cases it is likely
4521
          to be faster. See Tools/scripts/divmod_threshold.py. */
4522
67
        return pylong_int_divmod(v, w, pdiv, pmod);
4523
67
    }
4524
65.4k
#endif
4525
65.4k
    if (long_divrem(v, w, &div, &mod) < 0)
4526
407
        return -1;
4527
64.9k
    if ((_PyLong_IsNegative(mod) && _PyLong_IsPositive(w)) ||
4528
59.9k
        (_PyLong_IsPositive(mod) && _PyLong_IsNegative(w))) {
4529
6.20k
        PyLongObject *temp;
4530
6.20k
        temp = long_add(mod, w);
4531
6.20k
        Py_SETREF(mod, temp);
4532
6.20k
        if (mod == NULL) {
4533
0
            Py_DECREF(div);
4534
0
            return -1;
4535
0
        }
4536
6.20k
        temp = long_sub(div, (PyLongObject *)_PyLong_GetOne());
4537
6.20k
        if (temp == NULL) {
4538
0
            Py_DECREF(mod);
4539
0
            Py_DECREF(div);
4540
0
            return -1;
4541
0
        }
4542
6.20k
        Py_SETREF(div, temp);
4543
6.20k
    }
4544
64.9k
    if (pdiv != NULL)
4545
64.9k
        *pdiv = div;
4546
0
    else
4547
0
        Py_DECREF(div);
4548
4549
64.9k
    if (pmod != NULL)
4550
455
        *pmod = mod;
4551
64.5k
    else
4552
64.5k
        Py_DECREF(mod);
4553
4554
64.9k
    return 0;
4555
64.9k
}
4556
4557
/* Compute
4558
 *     *pmod = v % w
4559
 * pmod cannot be NULL. The caller owns a reference to pmod.
4560
 */
4561
static int
4562
l_mod(PyLongObject *v, PyLongObject *w, PyLongObject **pmod)
4563
218k
{
4564
218k
    PyLongObject *mod;
4565
4566
218k
    assert(pmod);
4567
218k
    if (_PyLong_DigitCount(v) == 1 && _PyLong_DigitCount(w) == 1) {
4568
        /* Fast path for single-digit longs */
4569
202k
        *pmod = (PyLongObject *)fast_mod(v, w);
4570
202k
        return -(*pmod == NULL);
4571
202k
    }
4572
16.1k
    if (long_rem(v, w, &mod) < 0)
4573
214
        return -1;
4574
15.9k
    if ((_PyLong_IsNegative(mod) && _PyLong_IsPositive(w)) ||
4575
12.9k
        (_PyLong_IsPositive(mod) && _PyLong_IsNegative(w))) {
4576
7.61k
        PyLongObject *temp;
4577
7.61k
        temp = long_add(mod, w);
4578
7.61k
        Py_SETREF(mod, temp);
4579
7.61k
        if (mod == NULL)
4580
0
            return -1;
4581
7.61k
    }
4582
15.9k
    *pmod = mod;
4583
4584
15.9k
    return 0;
4585
15.9k
}
4586
4587
static PyObject *
4588
long_div(PyObject *a, PyObject *b)
4589
1.10M
{
4590
1.10M
    PyLongObject *div;
4591
4592
1.10M
    CHECK_BINOP(a, b);
4593
4594
1.10M
    if (_PyLong_DigitCount((PyLongObject*)a) == 1 && _PyLong_DigitCount((PyLongObject*)b) == 1) {
4595
1.03M
        return fast_floor_div((PyLongObject*)a, (PyLongObject*)b);
4596
1.03M
    }
4597
4598
65.0k
    if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, NULL) < 0)
4599
407
        div = NULL;
4600
65.0k
    return (PyObject *)div;
4601
1.10M
}
4602
4603
/* PyLong/PyLong -> float, with correctly rounded result. */
4604
4605
187k
#define MANT_DIG_DIGITS (DBL_MANT_DIG / PyLong_SHIFT)
4606
10.3k
#define MANT_DIG_BITS (DBL_MANT_DIG % PyLong_SHIFT)
4607
4608
static PyObject *
4609
long_true_divide(PyObject *v, PyObject *w)
4610
45.5k
{
4611
45.5k
    PyLongObject *a, *b, *x;
4612
45.5k
    Py_ssize_t a_size, b_size, shift, extra_bits, diff, x_size, x_bits;
4613
45.5k
    digit mask, low;
4614
45.5k
    int inexact, negate, a_is_small, b_is_small;
4615
45.5k
    double dx, result;
4616
4617
45.5k
    CHECK_BINOP(v, w);
4618
40.4k
    a = (PyLongObject *)v;
4619
40.4k
    b = (PyLongObject *)w;
4620
4621
    /*
4622
       Method in a nutshell:
4623
4624
         0. reduce to case a, b > 0; filter out obvious underflow/overflow
4625
         1. choose a suitable integer 'shift'
4626
         2. use integer arithmetic to compute x = floor(2**-shift*a/b)
4627
         3. adjust x for correct rounding
4628
         4. convert x to a double dx with the same value
4629
         5. return ldexp(dx, shift).
4630
4631
       In more detail:
4632
4633
       0. For any a, a/0 raises ZeroDivisionError; for nonzero b, 0/b
4634
       returns either 0.0 or -0.0, depending on the sign of b.  For a and
4635
       b both nonzero, ignore signs of a and b, and add the sign back in
4636
       at the end.  Now write a_bits and b_bits for the bit lengths of a
4637
       and b respectively (that is, a_bits = 1 + floor(log_2(a)); likewise
4638
       for b).  Then
4639
4640
          2**(a_bits - b_bits - 1) < a/b < 2**(a_bits - b_bits + 1).
4641
4642
       So if a_bits - b_bits > DBL_MAX_EXP then a/b > 2**DBL_MAX_EXP and
4643
       so overflows.  Similarly, if a_bits - b_bits < DBL_MIN_EXP -
4644
       DBL_MANT_DIG - 1 then a/b underflows to 0.  With these cases out of
4645
       the way, we can assume that
4646
4647
          DBL_MIN_EXP - DBL_MANT_DIG - 1 <= a_bits - b_bits <= DBL_MAX_EXP.
4648
4649
       1. The integer 'shift' is chosen so that x has the right number of
4650
       bits for a double, plus two or three extra bits that will be used
4651
       in the rounding decisions.  Writing a_bits and b_bits for the
4652
       number of significant bits in a and b respectively, a
4653
       straightforward formula for shift is:
4654
4655
          shift = a_bits - b_bits - DBL_MANT_DIG - 2
4656
4657
       This is fine in the usual case, but if a/b is smaller than the
4658
       smallest normal float then it can lead to double rounding on an
4659
       IEEE 754 platform, giving incorrectly rounded results.  So we
4660
       adjust the formula slightly.  The actual formula used is:
4661
4662
           shift = MAX(a_bits - b_bits, DBL_MIN_EXP) - DBL_MANT_DIG - 2
4663
4664
       2. The quantity x is computed by first shifting a (left -shift bits
4665
       if shift <= 0, right shift bits if shift > 0) and then dividing by
4666
       b.  For both the shift and the division, we keep track of whether
4667
       the result is inexact, in a flag 'inexact'; this information is
4668
       needed at the rounding stage.
4669
4670
       With the choice of shift above, together with our assumption that
4671
       a_bits - b_bits >= DBL_MIN_EXP - DBL_MANT_DIG - 1, it follows
4672
       that x >= 1.
4673
4674
       3. Now x * 2**shift <= a/b < (x+1) * 2**shift.  We want to replace
4675
       this with an exactly representable float of the form
4676
4677
          round(x/2**extra_bits) * 2**(extra_bits+shift).
4678
4679
       For float representability, we need x/2**extra_bits <
4680
       2**DBL_MANT_DIG and extra_bits + shift >= DBL_MIN_EXP -
4681
       DBL_MANT_DIG.  This translates to the condition:
4682
4683
          extra_bits >= MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG
4684
4685
       To round, we just modify the bottom digit of x in-place; this can
4686
       end up giving a digit with value > PyLONG_MASK, but that's not a
4687
       problem since digits can hold values up to 2*PyLONG_MASK+1.
4688
4689
       With the original choices for shift above, extra_bits will always
4690
       be 2 or 3.  Then rounding under the round-half-to-even rule, we
4691
       round up iff the most significant of the extra bits is 1, and
4692
       either: (a) the computation of x in step 2 had an inexact result,
4693
       or (b) at least one other of the extra bits is 1, or (c) the least
4694
       significant bit of x (above those to be rounded) is 1.
4695
4696
       4. Conversion to a double is straightforward; all floating-point
4697
       operations involved in the conversion are exact, so there's no
4698
       danger of rounding errors.
4699
4700
       5. Use ldexp(x, shift) to compute x*2**shift, the final result.
4701
       The result will always be exactly representable as a double, except
4702
       in the case that it overflows.  To avoid dependence on the exact
4703
       behaviour of ldexp on overflow, we check for overflow before
4704
       applying ldexp.  The result of ldexp is adjusted for sign before
4705
       returning.
4706
    */
4707
4708
    /* Reduce to case where a and b are both positive. */
4709
40.4k
    a_size = _PyLong_DigitCount(a);
4710
40.4k
    b_size = _PyLong_DigitCount(b);
4711
40.4k
    negate = (_PyLong_IsNegative(a)) != (_PyLong_IsNegative(b));
4712
40.4k
    if (b_size == 0) {
4713
660
        PyErr_SetString(PyExc_ZeroDivisionError,
4714
660
                        "division by zero");
4715
660
        goto error;
4716
660
    }
4717
39.7k
    if (a_size == 0)
4718
2.10k
        goto underflow_or_zero;
4719
4720
    /* Fast path for a and b small (exactly representable in a double).
4721
       Relies on floating-point division being correctly rounded; results
4722
       may be subject to double rounding on x86 machines that operate with
4723
       the x87 FPU set to 64-bit precision. */
4724
37.6k
    a_is_small = a_size <= MANT_DIG_DIGITS ||
4725
8.79k
        (a_size == MANT_DIG_DIGITS+1 &&
4726
2.49k
         a->long_value.ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0);
4727
37.6k
    b_is_small = b_size <= MANT_DIG_DIGITS ||
4728
17.9k
        (b_size == MANT_DIG_DIGITS+1 &&
4729
7.89k
         b->long_value.ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0);
4730
37.6k
    if (a_is_small && b_is_small) {
4731
15.6k
        double da, db;
4732
15.6k
        da = a->long_value.ob_digit[--a_size];
4733
17.2k
        while (a_size > 0)
4734
1.57k
            da = da * PyLong_BASE + a->long_value.ob_digit[--a_size];
4735
15.6k
        db = b->long_value.ob_digit[--b_size];
4736
17.3k
        while (b_size > 0)
4737
1.66k
            db = db * PyLong_BASE + b->long_value.ob_digit[--b_size];
4738
15.6k
        result = da / db;
4739
15.6k
        goto success;
4740
15.6k
    }
4741
4742
    /* Catch obvious cases of underflow and overflow */
4743
22.0k
    diff = a_size - b_size;
4744
22.0k
    if (diff > PY_SSIZE_T_MAX/PyLong_SHIFT - 1)
4745
        /* Extreme overflow */
4746
0
        goto overflow;
4747
22.0k
    else if (diff < 1 - PY_SSIZE_T_MAX/PyLong_SHIFT)
4748
        /* Extreme underflow */
4749
0
        goto underflow_or_zero;
4750
    /* Next line is now safe from overflowing a Py_ssize_t */
4751
22.0k
    diff = diff * PyLong_SHIFT + bit_length_digit(a->long_value.ob_digit[a_size - 1]) -
4752
22.0k
        bit_length_digit(b->long_value.ob_digit[b_size - 1]);
4753
    /* Now diff = a_bits - b_bits. */
4754
22.0k
    if (diff > DBL_MAX_EXP)
4755
56
        goto overflow;
4756
21.9k
    else if (diff < DBL_MIN_EXP - DBL_MANT_DIG - 1)
4757
21
        goto underflow_or_zero;
4758
4759
    /* Choose value for shift; see comments for step 1 above. */
4760
21.9k
    shift = Py_MAX(diff, DBL_MIN_EXP) - DBL_MANT_DIG - 2;
4761
4762
21.9k
    inexact = 0;
4763
4764
    /* x = abs(a * 2**-shift) */
4765
21.9k
    if (shift <= 0) {
4766
16.9k
        Py_ssize_t i, shift_digits = -shift / PyLong_SHIFT;
4767
16.9k
        digit rem;
4768
        /* x = a << -shift */
4769
16.9k
        if (a_size >= PY_SSIZE_T_MAX - 1 - shift_digits) {
4770
            /* In practice, it's probably impossible to end up
4771
               here.  Both a and b would have to be enormous,
4772
               using close to SIZE_T_MAX bytes of memory each. */
4773
0
            PyErr_SetString(PyExc_OverflowError,
4774
0
                            "intermediate overflow during division");
4775
0
            goto error;
4776
0
        }
4777
16.9k
        x = long_alloc(a_size + shift_digits + 1);
4778
16.9k
        if (x == NULL)
4779
0
            goto error;
4780
72.8k
        for (i = 0; i < shift_digits; i++)
4781
55.9k
            x->long_value.ob_digit[i] = 0;
4782
16.9k
        rem = v_lshift(x->long_value.ob_digit + shift_digits, a->long_value.ob_digit,
4783
16.9k
                       a_size, -shift % PyLong_SHIFT);
4784
16.9k
        x->long_value.ob_digit[a_size + shift_digits] = rem;
4785
16.9k
    }
4786
5.05k
    else {
4787
5.05k
        Py_ssize_t shift_digits = shift / PyLong_SHIFT;
4788
5.05k
        digit rem;
4789
        /* x = a >> shift */
4790
5.05k
        assert(a_size >= shift_digits);
4791
5.05k
        x = long_alloc(a_size - shift_digits);
4792
5.05k
        if (x == NULL)
4793
0
            goto error;
4794
5.05k
        rem = v_rshift(x->long_value.ob_digit, a->long_value.ob_digit + shift_digits,
4795
5.05k
                       a_size - shift_digits, shift % PyLong_SHIFT);
4796
        /* set inexact if any of the bits shifted out is nonzero */
4797
5.05k
        if (rem)
4798
1.89k
            inexact = 1;
4799
7.46k
        while (!inexact && shift_digits > 0)
4800
2.41k
            if (a->long_value.ob_digit[--shift_digits])
4801
1.60k
                inexact = 1;
4802
5.05k
    }
4803
21.9k
    long_normalize(x);
4804
21.9k
    x_size = _PyLong_SignedDigitCount(x);
4805
4806
    /* x //= b. If the remainder is nonzero, set inexact.  We own the only
4807
       reference to x, so it's safe to modify it in-place. */
4808
21.9k
    if (b_size == 1) {
4809
5.75k
        digit rem = inplace_divrem1(x->long_value.ob_digit, x->long_value.ob_digit, x_size,
4810
5.75k
                              b->long_value.ob_digit[0]);
4811
5.75k
        long_normalize(x);
4812
5.75k
        if (rem)
4813
5.05k
            inexact = 1;
4814
5.75k
    }
4815
16.2k
    else {
4816
16.2k
        PyLongObject *div, *rem;
4817
16.2k
        div = x_divrem(x, b, &rem);
4818
16.2k
        Py_SETREF(x, div);
4819
16.2k
        if (x == NULL)
4820
0
            goto error;
4821
16.2k
        if (!_PyLong_IsZero(rem))
4822
15.5k
            inexact = 1;
4823
16.2k
        Py_DECREF(rem);
4824
16.2k
    }
4825
21.9k
    x_size = _PyLong_DigitCount(x);
4826
21.9k
    assert(x_size > 0); /* result of division is never zero */
4827
21.9k
    x_bits = (x_size-1)*PyLong_SHIFT+bit_length_digit(x->long_value.ob_digit[x_size-1]);
4828
4829
    /* The number of extra bits that have to be rounded away. */
4830
21.9k
    extra_bits = Py_MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG;
4831
21.9k
    assert(extra_bits == 2 || extra_bits == 3);
4832
4833
    /* Round by directly modifying the low digit of x. */
4834
21.9k
    mask = (digit)1 << (extra_bits - 1);
4835
21.9k
    low = x->long_value.ob_digit[0] | inexact;
4836
21.9k
    if ((low & mask) && (low & (3U*mask-1U)))
4837
9.49k
        low += mask;
4838
21.9k
    x->long_value.ob_digit[0] = low & ~(2U*mask-1U);
4839
4840
    /* Convert x to a double dx; the conversion is exact. */
4841
21.9k
    dx = x->long_value.ob_digit[--x_size];
4842
43.8k
    while (x_size > 0)
4843
21.9k
        dx = dx * PyLong_BASE + x->long_value.ob_digit[--x_size];
4844
21.9k
    Py_DECREF(x);
4845
4846
    /* Check whether ldexp result will overflow a double. */
4847
21.9k
    if (shift + x_bits >= DBL_MAX_EXP &&
4848
131
        (shift + x_bits > DBL_MAX_EXP || dx == ldexp(1.0, (int)x_bits)))
4849
68
        goto overflow;
4850
21.8k
    result = ldexp(dx, (int)shift);
4851
4852
37.5k
  success:
4853
37.5k
    return PyFloat_FromDouble(negate ? -result : result);
4854
4855
2.13k
  underflow_or_zero:
4856
2.13k
    return PyFloat_FromDouble(negate ? -0.0 : 0.0);
4857
4858
124
  overflow:
4859
124
    PyErr_SetString(PyExc_OverflowError,
4860
124
                    "integer division result too large for a float");
4861
784
  error:
4862
784
    return NULL;
4863
124
}
4864
4865
static PyObject *
4866
long_mod(PyObject *a, PyObject *b)
4867
221k
{
4868
221k
    PyLongObject *mod;
4869
4870
221k
    CHECK_BINOP(a, b);
4871
4872
218k
    if (l_mod((PyLongObject*)a, (PyLongObject*)b, &mod) < 0)
4873
214
        mod = NULL;
4874
218k
    return (PyObject *)mod;
4875
221k
}
4876
4877
static PyObject *
4878
long_divmod(PyObject *a, PyObject *b)
4879
455
{
4880
455
    PyLongObject *div, *mod;
4881
455
    PyObject *z;
4882
4883
455
    CHECK_BINOP(a, b);
4884
4885
455
    if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, &mod) < 0) {
4886
0
        return NULL;
4887
0
    }
4888
455
    z = PyTuple_New(2);
4889
455
    if (z != NULL) {
4890
455
        PyTuple_SET_ITEM(z, 0, (PyObject *) div);
4891
455
        PyTuple_SET_ITEM(z, 1, (PyObject *) mod);
4892
455
    }
4893
0
    else {
4894
0
        Py_DECREF(div);
4895
0
        Py_DECREF(mod);
4896
0
    }
4897
455
    return z;
4898
455
}
4899
4900
4901
/* Compute an inverse to a modulo n, or raise ValueError if a is not
4902
   invertible modulo n. Assumes n is positive. The inverse returned
4903
   is whatever falls out of the extended Euclidean algorithm: it may
4904
   be either positive or negative, but will be smaller than n in
4905
   absolute value.
4906
4907
   Pure Python equivalent for long_invmod:
4908
4909
        def invmod(a, n):
4910
            b, c = 1, 0
4911
            while n:
4912
                q, r = divmod(a, n)
4913
                a, b, c, n = n, c, b - q*c, r
4914
4915
            # at this point a is the gcd of the original inputs
4916
            if a == 1:
4917
                return b
4918
            raise ValueError("Not invertible")
4919
*/
4920
4921
static PyLongObject *
4922
long_invmod(PyLongObject *a, PyLongObject *n)
4923
0
{
4924
    /* Should only ever be called for positive n */
4925
0
    assert(_PyLong_IsPositive(n));
4926
4927
0
    Py_INCREF(a);
4928
0
    PyLongObject *b = (PyLongObject *)Py_NewRef(_PyLong_GetOne());
4929
0
    PyLongObject *c = (PyLongObject *)Py_NewRef(_PyLong_GetZero());
4930
0
    Py_INCREF(n);
4931
4932
    /* references now owned: a, b, c, n */
4933
0
    while (!_PyLong_IsZero(n)) {
4934
0
        PyLongObject *q, *r, *s, *t;
4935
4936
0
        if (l_divmod(a, n, &q, &r) == -1) {
4937
0
            goto Error;
4938
0
        }
4939
0
        Py_SETREF(a, n);
4940
0
        n = r;
4941
0
        t = (PyLongObject *)long_mul(q, c);
4942
0
        Py_DECREF(q);
4943
0
        if (t == NULL) {
4944
0
            goto Error;
4945
0
        }
4946
0
        s = long_sub(b, t);
4947
0
        Py_DECREF(t);
4948
0
        if (s == NULL) {
4949
0
            goto Error;
4950
0
        }
4951
0
        Py_SETREF(b, c);
4952
0
        c = s;
4953
0
    }
4954
    /* references now owned: a, b, c, n */
4955
4956
0
    Py_DECREF(c);
4957
0
    Py_DECREF(n);
4958
0
    if (long_compare(a, (PyLongObject *)_PyLong_GetOne())) {
4959
        /* a != 1; we don't have an inverse. */
4960
0
        Py_DECREF(a);
4961
0
        Py_DECREF(b);
4962
0
        PyErr_SetString(PyExc_ValueError,
4963
0
                        "base is not invertible for the given modulus");
4964
0
        return NULL;
4965
0
    }
4966
0
    else {
4967
        /* a == 1; b gives an inverse modulo n */
4968
0
        Py_DECREF(a);
4969
0
        return b;
4970
0
    }
4971
4972
0
  Error:
4973
0
    Py_DECREF(a);
4974
0
    Py_DECREF(b);
4975
0
    Py_DECREF(c);
4976
0
    Py_DECREF(n);
4977
0
    return NULL;
4978
0
}
4979
4980
4981
/* pow(v, w, x) */
4982
static PyObject *
4983
long_pow(PyObject *v, PyObject *w, PyObject *x)
4984
68.1k
{
4985
68.1k
    PyLongObject *a, *b, *c; /* a,b,c = v,w,x */
4986
68.1k
    int negativeOutput = 0;  /* if x<0 return negative output */
4987
4988
68.1k
    PyLongObject *z = NULL;  /* accumulated result */
4989
68.1k
    Py_ssize_t i, j;             /* counters */
4990
68.1k
    PyLongObject *temp = NULL;
4991
68.1k
    PyLongObject *a2 = NULL; /* may temporarily hold a**2 % c */
4992
4993
    /* k-ary values.  If the exponent is large enough, table is
4994
     * precomputed so that table[i] == a**(2*i+1) % c for i in
4995
     * range(EXP_TABLE_LEN).
4996
     * Note: this is uninitialized stack trash: don't pay to set it to known
4997
     * values unless it's needed. Instead ensure that num_table_entries is
4998
     * set to the number of entries actually filled whenever a branch to the
4999
     * Error or Done labels is possible.
5000
     */
5001
68.1k
    PyLongObject *table[EXP_TABLE_LEN];
5002
68.1k
    Py_ssize_t num_table_entries = 0;
5003
5004
    /* a, b, c = v, w, x */
5005
68.1k
    CHECK_BINOP(v, w);
5006
60.5k
    a = (PyLongObject*)Py_NewRef(v);
5007
60.5k
    b = (PyLongObject*)Py_NewRef(w);
5008
60.5k
    if (PyLong_Check(x)) {
5009
4
        c = (PyLongObject *)Py_NewRef(x);
5010
4
    }
5011
60.5k
    else if (x == Py_None)
5012
60.5k
        c = NULL;
5013
0
    else {
5014
0
        Py_DECREF(a);
5015
0
        Py_DECREF(b);
5016
0
        Py_RETURN_NOTIMPLEMENTED;
5017
0
    }
5018
5019
60.5k
    if (_PyLong_IsNegative(b) && c == NULL) {
5020
        /* if exponent is negative and there's no modulus:
5021
               return a float.  This works because we know
5022
               that this calls float_pow() which converts its
5023
               arguments to double. */
5024
4.70k
        Py_DECREF(a);
5025
4.70k
        Py_DECREF(b);
5026
4.70k
        return PyFloat_Type.tp_as_number->nb_power(v, w, x);
5027
4.70k
    }
5028
5029
55.8k
    if (c) {
5030
        /* if modulus == 0:
5031
               raise ValueError() */
5032
4
        if (_PyLong_IsZero(c)) {
5033
0
            PyErr_SetString(PyExc_ValueError,
5034
0
                            "pow() 3rd argument cannot be 0");
5035
0
            goto Error;
5036
0
        }
5037
5038
        /* if modulus < 0:
5039
               negativeOutput = True
5040
               modulus = -modulus */
5041
4
        if (_PyLong_IsNegative(c)) {
5042
0
            negativeOutput = 1;
5043
0
            temp = (PyLongObject *)_PyLong_Copy(c);
5044
0
            if (temp == NULL)
5045
0
                goto Error;
5046
0
            Py_SETREF(c, temp);
5047
0
            temp = NULL;
5048
0
            _PyLong_Negate(&c);
5049
0
            if (c == NULL)
5050
0
                goto Error;
5051
0
        }
5052
5053
        /* if modulus == 1:
5054
               return 0 */
5055
4
        if (_PyLong_IsNonNegativeCompact(c) && (c->long_value.ob_digit[0] == 1)) {
5056
0
            z = (PyLongObject *)PyLong_FromLong(0L);
5057
0
            goto Done;
5058
0
        }
5059
5060
        /* if exponent is negative, negate the exponent and
5061
           replace the base with a modular inverse */
5062
4
        if (_PyLong_IsNegative(b)) {
5063
0
            temp = (PyLongObject *)_PyLong_Copy(b);
5064
0
            if (temp == NULL)
5065
0
                goto Error;
5066
0
            Py_SETREF(b, temp);
5067
0
            temp = NULL;
5068
0
            _PyLong_Negate(&b);
5069
0
            if (b == NULL)
5070
0
                goto Error;
5071
5072
0
            temp = long_invmod(a, c);
5073
0
            if (temp == NULL)
5074
0
                goto Error;
5075
0
            Py_SETREF(a, temp);
5076
0
            temp = NULL;
5077
0
        }
5078
5079
        /* Reduce base by modulus in some cases:
5080
           1. If base < 0.  Forcing the base non-negative makes things easier.
5081
           2. If base is obviously larger than the modulus.  The "small
5082
              exponent" case later can multiply directly by base repeatedly,
5083
              while the "large exponent" case multiplies directly by base 31
5084
              times.  It can be unboundedly faster to multiply by
5085
              base % modulus instead.
5086
           We could _always_ do this reduction, but l_mod() isn't cheap,
5087
           so we only do it when it buys something. */
5088
4
        if (_PyLong_IsNegative(a) || _PyLong_DigitCount(a) > _PyLong_DigitCount(c)) {
5089
0
            if (l_mod(a, c, &temp) < 0)
5090
0
                goto Error;
5091
0
            Py_SETREF(a, temp);
5092
0
            temp = NULL;
5093
0
        }
5094
4
    }
5095
5096
    /* At this point a, b, and c are guaranteed non-negative UNLESS
5097
       c is NULL, in which case a may be negative. */
5098
5099
55.8k
    z = (PyLongObject *)PyLong_FromLong(1L);
5100
55.8k
    if (z == NULL)
5101
0
        goto Error;
5102
5103
    /* Perform a modular reduction, X = X % c, but leave X alone if c
5104
     * is NULL.
5105
     */
5106
55.8k
#define REDUCE(X)                                       \
5107
1.06M
    do {                                                \
5108
1.06M
        if (c != NULL) {                                \
5109
476
            if (l_mod(X, c, &temp) < 0)                 \
5110
476
                goto Error;                             \
5111
476
            Py_XDECREF(X);                              \
5112
476
            X = temp;                                   \
5113
476
            temp = NULL;                                \
5114
476
        }                                               \
5115
1.06M
    } while(0)
5116
5117
    /* Multiply two values, then reduce the result:
5118
       result = X*Y % c.  If c is NULL, skip the mod. */
5119
55.8k
#define MULT(X, Y, result)                      \
5120
1.11M
    do {                                        \
5121
1.06M
        temp = (PyLongObject *)long_mul(X, Y);  \
5122
1.06M
        if (temp == NULL)                       \
5123
1.06M
            goto Error;                         \
5124
1.06M
        Py_XDECREF(result);                     \
5125
1.06M
        result = temp;                          \
5126
1.06M
        temp = NULL;                            \
5127
1.06M
        REDUCE(result);                         \
5128
1.06M
    } while(0)
5129
5130
55.8k
    i = _PyLong_SignedDigitCount(b);
5131
55.8k
    digit bi = i ? b->long_value.ob_digit[i-1] : 0;
5132
55.8k
    digit bit;
5133
55.8k
    if (i <= 1 && bi <= 3) {
5134
        /* aim for minimal overhead */
5135
7.56k
        if (bi >= 2) {
5136
3.00k
            MULT(a, a, z);
5137
3.00k
            if (bi == 3) {
5138
1.26k
                MULT(z, a, z);
5139
1.26k
            }
5140
3.00k
        }
5141
4.56k
        else if (bi == 1) {
5142
            /* Multiplying by 1 serves two purposes: if `a` is of an int
5143
             * subclass, makes the result an int (e.g., pow(False, 1) returns
5144
             * 0 instead of False), and potentially reduces `a` by the modulus.
5145
             */
5146
3.17k
            MULT(a, z, z);
5147
3.17k
        }
5148
        /* else bi is 0, and z==1 is correct */
5149
7.56k
    }
5150
48.2k
    else if (i <= HUGE_EXP_CUTOFF / PyLong_SHIFT ) {
5151
        /* Left-to-right binary exponentiation (HAC Algorithm 14.79) */
5152
        /* https://cacr.uwaterloo.ca/hac/about/chap14.pdf            */
5153
5154
        /* Find the first significant exponent bit. Search right to left
5155
         * because we're primarily trying to cut overhead for small powers.
5156
         */
5157
44.5k
        assert(bi);  /* else there is no significant bit */
5158
44.5k
        Py_SETREF(z, (PyLongObject*)Py_NewRef(a));
5159
357k
        for (bit = 2; ; bit <<= 1) {
5160
357k
            if (bit > bi) { /* found the first bit */
5161
44.5k
                assert((bi & bit) == 0);
5162
44.5k
                bit >>= 1;
5163
44.5k
                assert(bi & bit);
5164
44.5k
                break;
5165
44.5k
            }
5166
357k
        }
5167
46.5k
        for (--i, bit >>= 1;;) {
5168
418k
            for (; bit != 0; bit >>= 1) {
5169
371k
                MULT(z, z, z);
5170
371k
                if (bi & bit) {
5171
194k
                    MULT(z, a, z);
5172
194k
                }
5173
371k
            }
5174
46.5k
            if (--i < 0) {
5175
44.5k
                break;
5176
44.5k
            }
5177
1.97k
            bi = b->long_value.ob_digit[i];
5178
1.97k
            bit = (digit)1 << (PyLong_SHIFT-1);
5179
1.97k
        }
5180
44.5k
    }
5181
3.67k
    else {
5182
        /* Left-to-right k-ary sliding window exponentiation
5183
         * (Handbook of Applied Cryptography (HAC) Algorithm 14.85)
5184
         */
5185
3.67k
        table[0] = (PyLongObject*)Py_NewRef(a);
5186
3.67k
        num_table_entries = 1;
5187
3.67k
        MULT(a, a, a2);
5188
        /* table[i] == a**(2*i + 1) % c */
5189
58.7k
        for (i = 1; i < EXP_TABLE_LEN; ++i) {
5190
55.0k
            table[i] = NULL; /* must set to known value for MULT */
5191
55.0k
            MULT(table[i-1], a2, table[i]);
5192
55.0k
            ++num_table_entries; /* incremented iff MULT succeeded */
5193
55.0k
        }
5194
3.67k
        Py_CLEAR(a2);
5195
5196
        /* Repeatedly extract the next (no more than) EXP_WINDOW_SIZE bits
5197
         * into `pending`, starting with the next 1 bit.  The current bit
5198
         * length of `pending` is `blen`.
5199
         */
5200
3.67k
        int pending = 0, blen = 0;
5201
48.8k
#define ABSORB_PENDING  do { \
5202
48.8k
            int ntz = 0; /* number of trailing zeroes in `pending` */ \
5203
48.8k
            assert(pending && blen); \
5204
48.8k
            assert(pending >> (blen - 1)); \
5205
48.8k
            assert(pending >> blen == 0); \
5206
98.9k
            while ((pending & 1) == 0) { \
5207
50.0k
                ++ntz; \
5208
50.0k
                pending >>= 1; \
5209
50.0k
            } \
5210
48.8k
            assert(ntz < blen); \
5211
48.8k
            blen -= ntz; \
5212
189k
            do { \
5213
189k
                MULT(z, z, z); \
5214
189k
            } while (--blen); \
5215
48.8k
            MULT(z, table[pending >> 1], z); \
5216
98.9k
            while (ntz-- > 0) \
5217
50.0k
                MULT(z, z, z); \
5218
48.8k
            assert(blen == 0); \
5219
48.8k
            pending = 0; \
5220
48.8k
        } while(0)
5221
5222
16.3k
        for (i = _PyLong_SignedDigitCount(b) - 1; i >= 0; --i) {
5223
12.7k
            const digit bi = b->long_value.ob_digit[i];
5224
393k
            for (j = PyLong_SHIFT - 1; j >= 0; --j) {
5225
381k
                const int bit = (bi >> j) & 1;
5226
381k
                pending = (pending << 1) | bit;
5227
381k
                if (pending) {
5228
239k
                    ++blen;
5229
239k
                    if (blen == EXP_WINDOW_SIZE)
5230
45.9k
                        ABSORB_PENDING;
5231
239k
                }
5232
142k
                else /* absorb strings of 0 bits */
5233
142k
                    MULT(z, z, z);
5234
381k
            }
5235
12.7k
        }
5236
3.67k
        if (pending)
5237
2.89k
            ABSORB_PENDING;
5238
3.67k
    }
5239
5240
55.8k
    if (negativeOutput && !_PyLong_IsZero(z)) {
5241
0
        temp = long_sub(z, c);
5242
0
        if (temp == NULL)
5243
0
            goto Error;
5244
0
        Py_SETREF(z, temp);
5245
0
        temp = NULL;
5246
0
    }
5247
55.8k
    goto Done;
5248
5249
55.8k
  Error:
5250
0
    Py_CLEAR(z);
5251
    /* fall through */
5252
55.8k
  Done:
5253
114k
    for (i = 0; i < num_table_entries; ++i)
5254
58.7k
        Py_DECREF(table[i]);
5255
55.8k
    Py_DECREF(a);
5256
55.8k
    Py_DECREF(b);
5257
55.8k
    Py_XDECREF(c);
5258
55.8k
    Py_XDECREF(a2);
5259
55.8k
    Py_XDECREF(temp);
5260
55.8k
    return (PyObject *)z;
5261
0
}
5262
5263
static PyObject *
5264
long_invert(PyObject *self)
5265
428k
{
5266
428k
    PyLongObject *v = _PyLong_CAST(self);
5267
5268
    /* Implement ~x as -(x+1) */
5269
428k
    if (_PyLong_IsCompact(v))
5270
419k
        return (PyObject*)_PyLong_FromSTwoDigits(~medium_value(v));
5271
5272
8.76k
    PyLongObject *x = long_add(v, (PyLongObject *)_PyLong_GetOne());
5273
8.76k
    if (x == NULL)
5274
0
        return NULL;
5275
8.76k
    _PyLong_Negate(&x);
5276
    /* No need for maybe_small_long here, since any small longs
5277
       will have been caught in the _PyLong_IsCompact() fast path. */
5278
8.76k
    return (PyObject *)x;
5279
8.76k
}
5280
5281
static PyLongObject *
5282
long_neg(PyLongObject *v)
5283
139k
{
5284
139k
    if (_PyLong_IsCompact(v)) {
5285
121k
        return _PyLong_FromSTwoDigits(-medium_value(v));
5286
121k
    }
5287
5288
18.1k
    PyLongObject *z = (PyLongObject *)_PyLong_Copy(v);
5289
18.1k
    if (z != NULL) {
5290
18.1k
        _PyLong_FlipSign(z);
5291
18.1k
    }
5292
18.1k
    return z;
5293
139k
}
5294
5295
static PyObject *
5296
long_neg_method(PyObject *v)
5297
139k
{
5298
139k
    return (PyObject*)long_neg(_PyLong_CAST(v));
5299
139k
}
5300
5301
static PyLongObject*
5302
long_abs(PyLongObject *v)
5303
12
{
5304
12
    if (_PyLong_IsNegative(v))
5305
4
        return long_neg(v);
5306
8
    else
5307
8
        return (PyLongObject*)long_long((PyObject *)v);
5308
12
}
5309
5310
static PyObject *
5311
long_abs_method(PyObject *v)
5312
12
{
5313
12
    return (PyObject*)long_abs(_PyLong_CAST(v));
5314
12
}
5315
5316
static int
5317
long_bool(PyObject *v)
5318
62.7k
{
5319
62.7k
    return !_PyLong_IsZero(_PyLong_CAST(v));
5320
62.7k
}
5321
5322
/* Inner function for both long_rshift and _PyLong_Rshift, shifting an
5323
   integer right by PyLong_SHIFT*wordshift + remshift bits.
5324
   wordshift should be nonnegative. */
5325
5326
static PyObject *
5327
long_rshift1(PyLongObject *a, Py_ssize_t wordshift, digit remshift)
5328
229k
{
5329
229k
    PyLongObject *z = NULL;
5330
229k
    Py_ssize_t newsize, hishift, size_a;
5331
229k
    twodigits accum;
5332
229k
    int a_negative;
5333
5334
    /* Total number of bits shifted must be nonnegative. */
5335
229k
    assert(wordshift >= 0);
5336
229k
    assert(remshift < PyLong_SHIFT);
5337
5338
    /* Fast path for small a. */
5339
229k
    if (_PyLong_IsCompact(a)) {
5340
224k
        stwodigits m, x;
5341
224k
        digit shift;
5342
224k
        m = medium_value(a);
5343
224k
        shift = wordshift == 0 ? remshift : PyLong_SHIFT;
5344
224k
        x = m < 0 ? ~(~m >> shift) : m >> shift;
5345
224k
        return (PyObject*)_PyLong_FromSTwoDigits(x);
5346
224k
    }
5347
5348
5.63k
    a_negative = _PyLong_IsNegative(a);
5349
5.63k
    size_a = _PyLong_DigitCount(a);
5350
5351
5.63k
    if (a_negative) {
5352
        /* For negative 'a', adjust so that 0 < remshift <= PyLong_SHIFT,
5353
           while keeping PyLong_SHIFT*wordshift + remshift the same. This
5354
           ensures that 'newsize' is computed correctly below. */
5355
1.84k
        if (remshift == 0) {
5356
349
            if (wordshift == 0) {
5357
                /* Can only happen if the original shift was 0. */
5358
69
                return long_long((PyObject *)a);
5359
69
            }
5360
280
            remshift = PyLong_SHIFT;
5361
280
            --wordshift;
5362
280
        }
5363
1.84k
    }
5364
5365
5.63k
    assert(wordshift >= 0);
5366
5.56k
    newsize = size_a - wordshift;
5367
5.56k
    if (newsize <= 0) {
5368
        /* Shifting all the bits of 'a' out gives either -1 or 0. */
5369
825
        return PyLong_FromLong(-a_negative);
5370
825
    }
5371
4.74k
    z = long_alloc(newsize);
5372
4.74k
    if (z == NULL) {
5373
0
        return NULL;
5374
0
    }
5375
4.74k
    hishift = PyLong_SHIFT - remshift;
5376
5377
4.74k
    accum = a->long_value.ob_digit[wordshift];
5378
4.74k
    if (a_negative) {
5379
        /*
5380
            For a positive integer a and nonnegative shift, we have:
5381
5382
                (-a) >> shift == -((a + 2**shift - 1) >> shift).
5383
5384
            In the addition `a + (2**shift - 1)`, the low `wordshift` digits of
5385
            `2**shift - 1` all have value `PyLong_MASK`, so we get a carry out
5386
            from the bottom `wordshift` digits when at least one of the least
5387
            significant `wordshift` digits of `a` is nonzero. Digit `wordshift`
5388
            of `2**shift - 1` has value `PyLong_MASK >> hishift`.
5389
        */
5390
1.42k
        _PyLong_SetSignAndDigitCount(z, -1, newsize);
5391
5392
1.42k
        digit sticky = 0;
5393
1.84k
        for (Py_ssize_t j = 0; j < wordshift; j++) {
5394
418
            sticky |= a->long_value.ob_digit[j];
5395
418
        }
5396
1.42k
        accum += (PyLong_MASK >> hishift) + (digit)(sticky != 0);
5397
1.42k
    }
5398
5399
4.74k
    accum >>= remshift;
5400
275k
    for (Py_ssize_t i = 0, j = wordshift + 1; j < size_a; i++, j++) {
5401
270k
        accum += (twodigits)a->long_value.ob_digit[j] << hishift;
5402
270k
        z->long_value.ob_digit[i] = (digit)(accum & PyLong_MASK);
5403
270k
        accum >>= PyLong_SHIFT;
5404
270k
    }
5405
4.74k
    assert(accum <= PyLong_MASK);
5406
4.74k
    z->long_value.ob_digit[newsize - 1] = (digit)accum;
5407
5408
4.74k
    z = maybe_small_long(long_normalize(z));
5409
4.74k
    return (PyObject *)z;
5410
4.74k
}
5411
5412
static PyObject *
5413
long_rshift(PyObject *a, PyObject *b)
5414
233k
{
5415
233k
    int64_t shiftby;
5416
5417
233k
    CHECK_BINOP(a, b);
5418
5419
233k
    if (_PyLong_IsNegative((PyLongObject *)b)) {
5420
324
        PyErr_SetString(PyExc_ValueError, "negative shift count");
5421
324
        return NULL;
5422
324
    }
5423
232k
    if (_PyLong_IsZero((PyLongObject *)a)) {
5424
1.21k
        return PyLong_FromLong(0);
5425
1.21k
    }
5426
231k
    if (PyLong_AsInt64(b, &shiftby) < 0) {
5427
1.93k
        if (!PyErr_ExceptionMatches(PyExc_OverflowError)) {
5428
0
            return NULL;
5429
0
        }
5430
1.93k
        PyErr_Clear();
5431
1.93k
        if (_PyLong_IsNegative((PyLongObject *)a)) {
5432
1.36k
            return PyLong_FromLong(-1);
5433
1.36k
        }
5434
577
        else {
5435
577
            return PyLong_FromLong(0);
5436
577
        }
5437
1.93k
    }
5438
229k
    return _PyLong_Rshift(a, shiftby);
5439
231k
}
5440
5441
/* Return a >> shiftby. */
5442
PyObject *
5443
_PyLong_Rshift(PyObject *a, int64_t shiftby)
5444
229k
{
5445
229k
    Py_ssize_t wordshift;
5446
229k
    digit remshift;
5447
5448
229k
    assert(PyLong_Check(a));
5449
229k
    assert(shiftby >= 0);
5450
229k
    if (_PyLong_IsZero((PyLongObject *)a)) {
5451
0
        return PyLong_FromLong(0);
5452
0
    }
5453
#if PY_SSIZE_T_MAX <= INT64_MAX / PyLong_SHIFT
5454
    if (shiftby > (int64_t)PY_SSIZE_T_MAX * PyLong_SHIFT) {
5455
        if (_PyLong_IsNegative((PyLongObject *)a)) {
5456
            return PyLong_FromLong(-1);
5457
        }
5458
        else {
5459
            return PyLong_FromLong(0);
5460
        }
5461
    }
5462
#endif
5463
229k
    wordshift = (Py_ssize_t)(shiftby / PyLong_SHIFT);
5464
229k
    remshift = (digit)(shiftby % PyLong_SHIFT);
5465
229k
    return long_rshift1((PyLongObject *)a, wordshift, remshift);
5466
229k
}
5467
5468
static PyObject *
5469
long_lshift1(PyLongObject *a, Py_ssize_t wordshift, digit remshift)
5470
53.6k
{
5471
53.6k
    PyLongObject *z = NULL;
5472
53.6k
    Py_ssize_t oldsize, newsize, i, j;
5473
53.6k
    twodigits accum;
5474
5475
53.6k
    if (wordshift == 0 && _PyLong_IsCompact(a)) {
5476
1.15k
        stwodigits m = medium_value(a);
5477
        // bypass undefined shift operator behavior
5478
1.15k
        stwodigits x = m < 0 ? -(-m << remshift) : m << remshift;
5479
1.15k
        return (PyObject*)_PyLong_FromSTwoDigits(x);
5480
1.15k
    }
5481
5482
52.5k
    oldsize = _PyLong_DigitCount(a);
5483
52.5k
    newsize = oldsize + wordshift;
5484
52.5k
    if (remshift)
5485
48.8k
        ++newsize;
5486
52.5k
    z = long_alloc(newsize);
5487
52.5k
    if (z == NULL)
5488
0
        return NULL;
5489
52.5k
    if (_PyLong_IsNegative(a)) {
5490
54
        assert(Py_REFCNT(z) == 1);
5491
54
        _PyLong_FlipSign(z);
5492
54
    }
5493
3.77M
    for (i = 0; i < wordshift; i++)
5494
3.72M
        z->long_value.ob_digit[i] = 0;
5495
52.5k
    accum = 0;
5496
19.7M
    for (j = 0; j < oldsize; i++, j++) {
5497
19.7M
        accum |= (twodigits)a->long_value.ob_digit[j] << remshift;
5498
19.7M
        z->long_value.ob_digit[i] = (digit)(accum & PyLong_MASK);
5499
19.7M
        accum >>= PyLong_SHIFT;
5500
19.7M
    }
5501
52.5k
    if (remshift)
5502
48.8k
        z->long_value.ob_digit[newsize-1] = (digit)accum;
5503
3.71k
    else
5504
52.5k
        assert(!accum);
5505
52.5k
    z = long_normalize(z);
5506
52.5k
    return (PyObject *) maybe_small_long(z);
5507
52.5k
}
5508
5509
5510
static PyObject *
5511
long_lshift_method(PyObject *aa, PyObject *bb)
5512
70.4k
{
5513
70.4k
    CHECK_BINOP(aa, bb);
5514
69.9k
    PyLongObject *a = (PyLongObject*)aa;
5515
69.9k
    PyLongObject *b = (PyLongObject*)bb;
5516
5517
69.9k
    if (_PyLong_IsNegative(b)) {
5518
528
        PyErr_SetString(PyExc_ValueError, "negative shift count");
5519
528
        return NULL;
5520
528
    }
5521
69.4k
    if (_PyLong_IsZero(a)) {
5522
15.7k
        return PyLong_FromLong(0);
5523
15.7k
    }
5524
5525
53.6k
    int64_t shiftby;
5526
53.6k
    if (PyLong_AsInt64(bb, &shiftby) < 0) {
5527
0
        if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
5528
0
            PyErr_SetString(PyExc_OverflowError,
5529
0
                            "too many digits in integer");
5530
0
        }
5531
0
        return NULL;
5532
0
    }
5533
53.6k
    return long_lshift_int64(a, shiftby);
5534
53.6k
}
5535
5536
/* Return a << shiftby. */
5537
static PyObject *
5538
long_lshift_int64(PyLongObject *a, int64_t shiftby)
5539
53.6k
{
5540
53.6k
    assert(shiftby >= 0);
5541
5542
53.6k
    if (_PyLong_IsZero(a)) {
5543
0
        return PyLong_FromLong(0);
5544
0
    }
5545
#if PY_SSIZE_T_MAX <= INT64_MAX / PyLong_SHIFT
5546
    if (shiftby > (int64_t)PY_SSIZE_T_MAX * PyLong_SHIFT) {
5547
        PyErr_SetString(PyExc_OverflowError,
5548
                        "too many digits in integer");
5549
        return NULL;
5550
    }
5551
#endif
5552
53.6k
    Py_ssize_t wordshift = (Py_ssize_t)(shiftby / PyLong_SHIFT);
5553
53.6k
    digit remshift = (digit)(shiftby % PyLong_SHIFT);
5554
53.6k
    return long_lshift1(a, wordshift, remshift);
5555
53.6k
}
5556
5557
PyObject *
5558
_PyLong_Lshift(PyObject *a, int64_t shiftby)
5559
0
{
5560
0
    return long_lshift_int64(_PyLong_CAST(a), shiftby);
5561
0
}
5562
5563
5564
/* Compute two's complement of digit vector a[0:m], writing result to
5565
   z[0:m].  The digit vector a need not be normalized, but should not
5566
   be entirely zero.  a and z may point to the same digit vector. */
5567
5568
static void
5569
v_complement(digit *z, digit *a, Py_ssize_t m)
5570
8.08k
{
5571
8.08k
    Py_ssize_t i;
5572
8.08k
    digit carry = 1;
5573
30.1k
    for (i = 0; i < m; ++i) {
5574
22.0k
        carry += a[i] ^ PyLong_MASK;
5575
22.0k
        z[i] = carry & PyLong_MASK;
5576
22.0k
        carry >>= PyLong_SHIFT;
5577
22.0k
    }
5578
8.08k
    assert(carry == 0);
5579
8.08k
}
5580
5581
/* Bitwise and/xor/or operations */
5582
5583
static PyObject *
5584
long_bitwise(PyLongObject *a,
5585
             char op,  /* '&', '|', '^' */
5586
             PyLongObject *b)
5587
11.6k
{
5588
11.6k
    int nega, negb, negz;
5589
11.6k
    Py_ssize_t size_a, size_b, size_z, i;
5590
11.6k
    PyLongObject *z;
5591
5592
    /* Bitwise operations for negative numbers operate as though
5593
       on a two's complement representation.  So convert arguments
5594
       from sign-magnitude to two's complement, and convert the
5595
       result back to sign-magnitude at the end. */
5596
5597
    /* If a is negative, replace it by its two's complement. */
5598
11.6k
    size_a = _PyLong_DigitCount(a);
5599
11.6k
    nega = _PyLong_IsNegative(a);
5600
11.6k
    if (nega) {
5601
2.61k
        z = long_alloc(size_a);
5602
2.61k
        if (z == NULL)
5603
0
            return NULL;
5604
2.61k
        v_complement(z->long_value.ob_digit, a->long_value.ob_digit, size_a);
5605
2.61k
        a = z;
5606
2.61k
    }
5607
9.04k
    else
5608
        /* Keep reference count consistent. */
5609
9.04k
        Py_INCREF(a);
5610
5611
    /* Same for b. */
5612
11.6k
    size_b = _PyLong_DigitCount(b);
5613
11.6k
    negb = _PyLong_IsNegative(b);
5614
11.6k
    if (negb) {
5615
2.63k
        z = long_alloc(size_b);
5616
2.63k
        if (z == NULL) {
5617
0
            Py_DECREF(a);
5618
0
            return NULL;
5619
0
        }
5620
2.63k
        v_complement(z->long_value.ob_digit, b->long_value.ob_digit, size_b);
5621
2.63k
        b = z;
5622
2.63k
    }
5623
9.01k
    else
5624
9.01k
        Py_INCREF(b);
5625
5626
    /* Swap a and b if necessary to ensure size_a >= size_b. */
5627
11.6k
    if (size_a < size_b) {
5628
2.79k
        z = a; a = b; b = z;
5629
2.79k
        size_z = size_a; size_a = size_b; size_b = size_z;
5630
2.79k
        negz = nega; nega = negb; negb = negz;
5631
2.79k
    }
5632
5633
    /* JRH: The original logic here was to allocate the result value (z)
5634
       as the longer of the two operands.  However, there are some cases
5635
       where the result is guaranteed to be shorter than that: AND of two
5636
       positives, OR of two negatives: use the shorter number.  AND with
5637
       mixed signs: use the positive number.  OR with mixed signs: use the
5638
       negative number.
5639
    */
5640
11.6k
    switch (op) {
5641
3.50k
    case '^':
5642
3.50k
        negz = nega ^ negb;
5643
3.50k
        size_z = size_a;
5644
3.50k
        break;
5645
4.48k
    case '&':
5646
4.48k
        negz = nega & negb;
5647
4.48k
        size_z = negb ? size_a : size_b;
5648
4.48k
        break;
5649
3.67k
    case '|':
5650
3.67k
        negz = nega | negb;
5651
3.67k
        size_z = negb ? size_b : size_a;
5652
3.67k
        break;
5653
0
    default:
5654
0
        Py_UNREACHABLE();
5655
11.6k
    }
5656
5657
    /* We allow an extra digit if z is negative, to make sure that
5658
       the final two's complement of z doesn't overflow. */
5659
11.6k
    z = long_alloc(size_z + negz);
5660
11.6k
    if (z == NULL) {
5661
0
        Py_DECREF(a);
5662
0
        Py_DECREF(b);
5663
0
        return NULL;
5664
0
    }
5665
5666
    /* Compute digits for overlap of a and b. */
5667
11.6k
    switch(op) {
5668
4.48k
    case '&':
5669
96.0k
        for (i = 0; i < size_b; ++i)
5670
91.5k
            z->long_value.ob_digit[i] = a->long_value.ob_digit[i] & b->long_value.ob_digit[i];
5671
4.48k
        break;
5672
3.67k
    case '|':
5673
72.4k
        for (i = 0; i < size_b; ++i)
5674
68.7k
            z->long_value.ob_digit[i] = a->long_value.ob_digit[i] | b->long_value.ob_digit[i];
5675
3.67k
        break;
5676
3.50k
    case '^':
5677
72.7k
        for (i = 0; i < size_b; ++i)
5678
69.2k
            z->long_value.ob_digit[i] = a->long_value.ob_digit[i] ^ b->long_value.ob_digit[i];
5679
3.50k
        break;
5680
0
    default:
5681
0
        Py_UNREACHABLE();
5682
11.6k
    }
5683
5684
    /* Copy any remaining digits of a, inverting if necessary. */
5685
11.6k
    if (op == '^' && negb)
5686
3.02k
        for (; i < size_z; ++i)
5687
2.07k
            z->long_value.ob_digit[i] = a->long_value.ob_digit[i] ^ PyLong_MASK;
5688
10.7k
    else if (i < size_z)
5689
5.46k
        memcpy(&z->long_value.ob_digit[i], &a->long_value.ob_digit[i],
5690
5.46k
               (size_z-i)*sizeof(digit));
5691
5692
    /* Complement result if negative. */
5693
11.6k
    if (negz) {
5694
2.83k
        _PyLong_FlipSign(z);
5695
2.83k
        z->long_value.ob_digit[size_z] = PyLong_MASK;
5696
2.83k
        v_complement(z->long_value.ob_digit, z->long_value.ob_digit, size_z+1);
5697
2.83k
    }
5698
5699
11.6k
    Py_DECREF(a);
5700
11.6k
    Py_DECREF(b);
5701
11.6k
    return (PyObject *)maybe_small_long(long_normalize(z));
5702
11.6k
}
5703
5704
static PyObject *
5705
long_and(PyObject *a, PyObject *b)
5706
9.20k
{
5707
9.20k
    CHECK_BINOP(a, b);
5708
8.18k
    PyLongObject *x = (PyLongObject*)a;
5709
8.18k
    PyLongObject *y = (PyLongObject*)b;
5710
8.18k
    if (_PyLong_IsCompact(x) && _PyLong_IsCompact(y)) {
5711
3.70k
        return (PyObject*)_PyLong_FromSTwoDigits(medium_value(x) & medium_value(y));
5712
3.70k
    }
5713
4.48k
    return long_bitwise(x, '&', y);
5714
8.18k
}
5715
5716
static PyObject *
5717
long_xor(PyObject *a, PyObject *b)
5718
6.27k
{
5719
6.27k
    CHECK_BINOP(a, b);
5720
4.86k
    PyLongObject *x = (PyLongObject*)a;
5721
4.86k
    PyLongObject *y = (PyLongObject*)b;
5722
4.86k
    if (_PyLong_IsCompact(x) && _PyLong_IsCompact(y)) {
5723
1.36k
        return (PyObject*)_PyLong_FromSTwoDigits(medium_value(x) ^ medium_value(y));
5724
1.36k
    }
5725
3.50k
    return long_bitwise(x, '^', y);
5726
4.86k
}
5727
5728
static PyObject *
5729
long_or(PyObject *a, PyObject *b)
5730
6.11k
{
5731
6.11k
    CHECK_BINOP(a, b);
5732
5.44k
    PyLongObject *x = (PyLongObject*)a;
5733
5.44k
    PyLongObject *y = (PyLongObject*)b;
5734
5.44k
    if (_PyLong_IsCompact(x) && _PyLong_IsCompact(y)) {
5735
1.77k
        return (PyObject*)_PyLong_FromSTwoDigits(medium_value(x) | medium_value(y));
5736
1.77k
    }
5737
3.67k
    return long_bitwise(x, '|', y);
5738
5.44k
}
5739
5740
static PyObject *
5741
long_long(PyObject *v)
5742
85.9k
{
5743
85.9k
    if (PyLong_CheckExact(v)) {
5744
84.8k
        return Py_NewRef(v);
5745
84.8k
    }
5746
1.10k
    else {
5747
1.10k
        return _PyLong_Copy((PyLongObject *)v);
5748
1.10k
    }
5749
85.9k
}
5750
5751
PyObject *
5752
_PyLong_GCD(PyObject *aarg, PyObject *barg)
5753
0
{
5754
0
    PyLongObject *a, *b, *c = NULL, *d = NULL, *r;
5755
0
    stwodigits x, y, q, s, t, c_carry, d_carry;
5756
0
    stwodigits A, B, C, D, T;
5757
0
    int nbits, k;
5758
0
    digit *a_digit, *b_digit, *c_digit, *d_digit, *a_end, *b_end;
5759
5760
0
    a = (PyLongObject *)aarg;
5761
0
    b = (PyLongObject *)barg;
5762
0
    if (_PyLong_DigitCount(a) <= 2 && _PyLong_DigitCount(b) <= 2) {
5763
0
        Py_INCREF(a);
5764
0
        Py_INCREF(b);
5765
0
        goto simple;
5766
0
    }
5767
5768
    /* Initial reduction: make sure that 0 <= b <= a. */
5769
0
    a = long_abs(a);
5770
0
    if (a == NULL)
5771
0
        return NULL;
5772
0
    b = long_abs(b);
5773
0
    if (b == NULL) {
5774
0
        Py_DECREF(a);
5775
0
        return NULL;
5776
0
    }
5777
0
    if (long_compare(a, b) < 0) {
5778
0
        r = a;
5779
0
        a = b;
5780
0
        b = r;
5781
0
    }
5782
    /* We now own references to a and b */
5783
5784
0
    Py_ssize_t size_a, size_b, alloc_a, alloc_b;
5785
0
    alloc_a = _PyLong_DigitCount(a);
5786
0
    alloc_b = _PyLong_DigitCount(b);
5787
    /* reduce until a fits into 2 digits */
5788
0
    while ((size_a = _PyLong_DigitCount(a)) > 2) {
5789
0
        nbits = bit_length_digit(a->long_value.ob_digit[size_a-1]);
5790
        /* extract top 2*PyLong_SHIFT bits of a into x, along with
5791
           corresponding bits of b into y */
5792
0
        size_b = _PyLong_DigitCount(b);
5793
0
        assert(size_b <= size_a);
5794
0
        if (size_b == 0) {
5795
0
            if (size_a < alloc_a) {
5796
0
                r = (PyLongObject *)_PyLong_Copy(a);
5797
0
                Py_DECREF(a);
5798
0
            }
5799
0
            else
5800
0
                r = a;
5801
0
            Py_DECREF(b);
5802
0
            Py_XDECREF(c);
5803
0
            Py_XDECREF(d);
5804
0
            return (PyObject *)r;
5805
0
        }
5806
0
        x = (((twodigits)a->long_value.ob_digit[size_a-1] << (2*PyLong_SHIFT-nbits)) |
5807
0
             ((twodigits)a->long_value.ob_digit[size_a-2] << (PyLong_SHIFT-nbits)) |
5808
0
             (a->long_value.ob_digit[size_a-3] >> nbits));
5809
5810
0
        y = ((size_b >= size_a - 2 ? b->long_value.ob_digit[size_a-3] >> nbits : 0) |
5811
0
             (size_b >= size_a - 1 ? (twodigits)b->long_value.ob_digit[size_a-2] << (PyLong_SHIFT-nbits) : 0) |
5812
0
             (size_b >= size_a ? (twodigits)b->long_value.ob_digit[size_a-1] << (2*PyLong_SHIFT-nbits) : 0));
5813
5814
        /* inner loop of Lehmer's algorithm; A, B, C, D never grow
5815
           larger than PyLong_MASK during the algorithm. */
5816
0
        A = 1; B = 0; C = 0; D = 1;
5817
0
        for (k=0;; k++) {
5818
0
            if (y-C == 0)
5819
0
                break;
5820
0
            q = (x+(A-1))/(y-C);
5821
0
            s = B+q*D;
5822
0
            t = x-q*y;
5823
0
            if (s > t)
5824
0
                break;
5825
0
            x = y; y = t;
5826
0
            t = A+q*C; A = D; B = C; C = s; D = t;
5827
0
        }
5828
5829
0
        if (k == 0) {
5830
            /* no progress; do a Euclidean step */
5831
0
            if (l_mod(a, b, &r) < 0)
5832
0
                goto error;
5833
0
            Py_SETREF(a, b);
5834
0
            b = r;
5835
0
            alloc_a = alloc_b;
5836
0
            alloc_b = _PyLong_DigitCount(b);
5837
0
            continue;
5838
0
        }
5839
5840
        /*
5841
          a, b = A*b-B*a, D*a-C*b if k is odd
5842
          a, b = A*a-B*b, D*b-C*a if k is even
5843
        */
5844
0
        if (k&1) {
5845
0
            T = -A; A = -B; B = T;
5846
0
            T = -C; C = -D; D = T;
5847
0
        }
5848
0
        if (c != NULL) {
5849
0
            assert(size_a >= 0);
5850
0
            _PyLong_SetSignAndDigitCount(c, 1, size_a);
5851
0
        }
5852
0
        else if (_PyObject_IsUniquelyReferenced((PyObject *)a)) {
5853
0
            c = (PyLongObject*)Py_NewRef(a);
5854
0
        }
5855
0
        else {
5856
0
            alloc_a = size_a;
5857
0
            c = long_alloc(size_a);
5858
0
            if (c == NULL)
5859
0
                goto error;
5860
0
        }
5861
5862
0
        if (d != NULL) {
5863
0
            assert(size_a >= 0);
5864
0
            _PyLong_SetSignAndDigitCount(d, 1, size_a);
5865
0
        }
5866
0
        else if (_PyObject_IsUniquelyReferenced((PyObject *)b)
5867
0
                 && size_a <= alloc_b) {
5868
0
            d = (PyLongObject*)Py_NewRef(b);
5869
0
            assert(size_a >= 0);
5870
0
            _PyLong_SetSignAndDigitCount(d, 1, size_a);
5871
0
        }
5872
0
        else {
5873
0
            alloc_b = size_a;
5874
0
            d = long_alloc(size_a);
5875
0
            if (d == NULL)
5876
0
                goto error;
5877
0
        }
5878
0
        a_end = a->long_value.ob_digit + size_a;
5879
0
        b_end = b->long_value.ob_digit + size_b;
5880
5881
        /* compute new a and new b in parallel */
5882
0
        a_digit = a->long_value.ob_digit;
5883
0
        b_digit = b->long_value.ob_digit;
5884
0
        c_digit = c->long_value.ob_digit;
5885
0
        d_digit = d->long_value.ob_digit;
5886
0
        c_carry = 0;
5887
0
        d_carry = 0;
5888
0
        while (b_digit < b_end) {
5889
0
            c_carry += (A * *a_digit) - (B * *b_digit);
5890
0
            d_carry += (D * *b_digit++) - (C * *a_digit++);
5891
0
            *c_digit++ = (digit)(c_carry & PyLong_MASK);
5892
0
            *d_digit++ = (digit)(d_carry & PyLong_MASK);
5893
0
            c_carry >>= PyLong_SHIFT;
5894
0
            d_carry >>= PyLong_SHIFT;
5895
0
        }
5896
0
        while (a_digit < a_end) {
5897
0
            c_carry += A * *a_digit;
5898
0
            d_carry -= C * *a_digit++;
5899
0
            *c_digit++ = (digit)(c_carry & PyLong_MASK);
5900
0
            *d_digit++ = (digit)(d_carry & PyLong_MASK);
5901
0
            c_carry >>= PyLong_SHIFT;
5902
0
            d_carry >>= PyLong_SHIFT;
5903
0
        }
5904
0
        assert(c_carry == 0);
5905
0
        assert(d_carry == 0);
5906
5907
0
        Py_INCREF(c);
5908
0
        Py_INCREF(d);
5909
0
        Py_DECREF(a);
5910
0
        Py_DECREF(b);
5911
0
        a = long_normalize(c);
5912
0
        b = long_normalize(d);
5913
0
    }
5914
0
    Py_XDECREF(c);
5915
0
    Py_XDECREF(d);
5916
5917
0
simple:
5918
0
    assert(Py_REFCNT(a) > 0);
5919
0
    assert(Py_REFCNT(b) > 0);
5920
/* Issue #24999: use two shifts instead of ">> 2*PyLong_SHIFT" to avoid
5921
   undefined behaviour when LONG_MAX type is smaller than 60 bits */
5922
0
#if LONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
5923
    /* a fits into a long, so b must too */
5924
0
    x = PyLong_AsLong((PyObject *)a);
5925
0
    y = PyLong_AsLong((PyObject *)b);
5926
#elif LLONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
5927
    x = PyLong_AsLongLong((PyObject *)a);
5928
    y = PyLong_AsLongLong((PyObject *)b);
5929
#else
5930
# error "_PyLong_GCD"
5931
#endif
5932
0
    x = Py_ABS(x);
5933
0
    y = Py_ABS(y);
5934
0
    Py_DECREF(a);
5935
0
    Py_DECREF(b);
5936
5937
    /* usual Euclidean algorithm for longs */
5938
0
    while (y != 0) {
5939
0
        t = y;
5940
0
        y = x % y;
5941
0
        x = t;
5942
0
    }
5943
0
#if LONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
5944
0
    return PyLong_FromLong(x);
5945
#elif LLONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
5946
    return PyLong_FromLongLong(x);
5947
#else
5948
# error "_PyLong_GCD"
5949
#endif
5950
5951
0
error:
5952
0
    Py_DECREF(a);
5953
0
    Py_DECREF(b);
5954
0
    Py_XDECREF(c);
5955
0
    Py_XDECREF(d);
5956
0
    return NULL;
5957
0
}
5958
5959
static PyObject *
5960
long_float(PyObject *v)
5961
0
{
5962
0
    double result;
5963
0
    result = PyLong_AsDouble(v);
5964
0
    if (result == -1.0 && PyErr_Occurred())
5965
0
        return NULL;
5966
0
    return PyFloat_FromDouble(result);
5967
0
}
5968
5969
static PyObject *
5970
long_subtype_new(PyTypeObject *type, PyObject *x, PyObject *obase);
5971
5972
/*[clinic input]
5973
@classmethod
5974
int.__new__ as long_new
5975
    x: object(c_default="NULL") = 0
5976
    /
5977
    base as obase: object(c_default="NULL") = 10
5978
[clinic start generated code]*/
5979
5980
static PyObject *
5981
long_new_impl(PyTypeObject *type, PyObject *x, PyObject *obase)
5982
/*[clinic end generated code: output=e47cfe777ab0f24c input=81c98f418af9eb6f]*/
5983
462k
{
5984
462k
    Py_ssize_t base;
5985
5986
462k
    if (type != &PyLong_Type)
5987
661
        return long_subtype_new(type, x, obase); /* Wimp out */
5988
461k
    if (x == NULL) {
5989
7
        if (obase != NULL) {
5990
0
            PyErr_SetString(PyExc_TypeError,
5991
0
                            "int() missing string argument");
5992
0
            return NULL;
5993
0
        }
5994
7
        return PyLong_FromLong(0L);
5995
7
    }
5996
    /* default base and limit, forward to standard implementation */
5997
461k
    if (obase == NULL)
5998
654
        return PyNumber_Long(x);
5999
6000
461k
    base = PyNumber_AsSsize_t(obase, NULL);
6001
461k
    if (base == -1 && PyErr_Occurred())
6002
0
        return NULL;
6003
461k
    if ((base != 0 && base < 2) || base > 36) {
6004
0
        PyErr_SetString(PyExc_ValueError,
6005
0
                        "int() base must be >= 2 and <= 36, or 0");
6006
0
        return NULL;
6007
0
    }
6008
6009
461k
    if (PyUnicode_Check(x))
6010
3.44k
        return PyLong_FromUnicodeObject(x, (int)base);
6011
457k
    else if (PyByteArray_Check(x) || PyBytes_Check(x)) {
6012
457k
        const char *string;
6013
457k
        if (PyByteArray_Check(x))
6014
457k
            string = PyByteArray_AS_STRING(x);
6015
0
        else
6016
0
            string = PyBytes_AS_STRING(x);
6017
457k
        return _PyLong_FromBytes(string, Py_SIZE(x), (int)base);
6018
457k
    }
6019
0
    else {
6020
0
        PyErr_SetString(PyExc_TypeError,
6021
0
                        "int() can't convert non-string with explicit base");
6022
0
        return NULL;
6023
0
    }
6024
461k
}
6025
6026
/* Wimpy, slow approach to tp_new calls for subtypes of int:
6027
   first create a regular int from whatever arguments we got,
6028
   then allocate a subtype instance and initialize it from
6029
   the regular int.  The regular int is then thrown away.
6030
*/
6031
static PyObject *
6032
long_subtype_new(PyTypeObject *type, PyObject *x, PyObject *obase)
6033
661
{
6034
661
    PyLongObject *tmp, *newobj;
6035
661
    Py_ssize_t i, n;
6036
6037
661
    assert(PyType_IsSubtype(type, &PyLong_Type));
6038
661
    tmp = (PyLongObject *)long_new_impl(&PyLong_Type, x, obase);
6039
661
    if (tmp == NULL)
6040
0
        return NULL;
6041
661
    assert(PyLong_Check(tmp));
6042
661
    n = _PyLong_DigitCount(tmp);
6043
    /* Fast operations for single digit integers (including zero)
6044
     * assume that there is always at least one digit present. */
6045
661
    if (n == 0) {
6046
35
        n = 1;
6047
35
    }
6048
661
    newobj = (PyLongObject *)type->tp_alloc(type, n);
6049
661
    if (newobj == NULL) {
6050
0
        Py_DECREF(tmp);
6051
0
        return NULL;
6052
0
    }
6053
661
    assert(PyLong_Check(newobj));
6054
661
    newobj->long_value.lv_tag = tmp->long_value.lv_tag & ~IMMORTALITY_BIT_MASK;
6055
1.32k
    for (i = 0; i < n; i++) {
6056
668
        newobj->long_value.ob_digit[i] = tmp->long_value.ob_digit[i];
6057
668
    }
6058
661
    Py_DECREF(tmp);
6059
661
    return (PyObject *)newobj;
6060
661
}
6061
6062
/*[clinic input]
6063
int.__getnewargs__
6064
[clinic start generated code]*/
6065
6066
static PyObject *
6067
int___getnewargs___impl(PyObject *self)
6068
/*[clinic end generated code: output=839a49de3f00b61b input=5904770ab1fb8c75]*/
6069
0
{
6070
0
    return Py_BuildValue("(N)", _PyLong_Copy((PyLongObject *)self));
6071
0
}
6072
6073
static PyObject *
6074
long_get0(PyObject *Py_UNUSED(self), void *Py_UNUSED(context))
6075
0
{
6076
0
    return PyLong_FromLong(0L);
6077
0
}
6078
6079
static PyObject *
6080
long_get1(PyObject *Py_UNUSED(self), void *Py_UNUSED(ignored))
6081
0
{
6082
0
    return PyLong_FromLong(1L);
6083
0
}
6084
6085
/*[clinic input]
6086
int.__format__
6087
6088
    format_spec: unicode
6089
    /
6090
6091
Convert to a string according to format_spec.
6092
[clinic start generated code]*/
6093
6094
static PyObject *
6095
int___format___impl(PyObject *self, PyObject *format_spec)
6096
/*[clinic end generated code: output=b4929dee9ae18689 input=d5e1254a47e8d1dc]*/
6097
67
{
6098
67
    _PyUnicodeWriter writer;
6099
67
    int ret;
6100
6101
67
    _PyUnicodeWriter_Init(&writer);
6102
67
    ret = _PyLong_FormatAdvancedWriter(
6103
67
        &writer,
6104
67
        self,
6105
67
        format_spec, 0, PyUnicode_GET_LENGTH(format_spec));
6106
67
    if (ret == -1) {
6107
0
        _PyUnicodeWriter_Dealloc(&writer);
6108
0
        return NULL;
6109
0
    }
6110
67
    return _PyUnicodeWriter_Finish(&writer);
6111
67
}
6112
6113
/* Return a pair (q, r) such that a = b * q + r, and
6114
   abs(r) <= abs(b)/2, with equality possible only if q is even.
6115
   In other words, q == a / b, rounded to the nearest integer using
6116
   round-half-to-even. */
6117
6118
PyObject *
6119
_PyLong_DivmodNear(PyObject *a, PyObject *b)
6120
0
{
6121
0
    PyLongObject *quo = NULL, *rem = NULL;
6122
0
    PyObject *twice_rem, *result, *temp;
6123
0
    int quo_is_odd, quo_is_neg;
6124
0
    Py_ssize_t cmp;
6125
6126
    /* Equivalent Python code:
6127
6128
       def divmod_near(a, b):
6129
           q, r = divmod(a, b)
6130
           # round up if either r / b > 0.5, or r / b == 0.5 and q is odd.
6131
           # The expression r / b > 0.5 is equivalent to 2 * r > b if b is
6132
           # positive, 2 * r < b if b negative.
6133
           greater_than_half = 2*r > b if b > 0 else 2*r < b
6134
           exactly_half = 2*r == b
6135
           if greater_than_half or exactly_half and q % 2 == 1:
6136
               q += 1
6137
               r -= b
6138
           return q, r
6139
6140
    */
6141
0
    if (!PyLong_Check(a) || !PyLong_Check(b)) {
6142
0
        PyErr_SetString(PyExc_TypeError,
6143
0
                        "non-integer arguments in division");
6144
0
        return NULL;
6145
0
    }
6146
6147
    /* Do a and b have different signs?  If so, quotient is negative. */
6148
0
    quo_is_neg = (_PyLong_IsNegative((PyLongObject *)a)) != (_PyLong_IsNegative((PyLongObject *)b));
6149
6150
0
    if (long_divrem((PyLongObject*)a, (PyLongObject*)b, &quo, &rem) < 0)
6151
0
        goto error;
6152
6153
    /* compare twice the remainder with the divisor, to see
6154
       if we need to adjust the quotient and remainder */
6155
0
    twice_rem = long_lshift_int64(rem, 1);
6156
0
    if (twice_rem == NULL)
6157
0
        goto error;
6158
0
    if (quo_is_neg) {
6159
0
        temp = (PyObject*)long_neg((PyLongObject*)twice_rem);
6160
0
        Py_SETREF(twice_rem, temp);
6161
0
        if (twice_rem == NULL)
6162
0
            goto error;
6163
0
    }
6164
0
    cmp = long_compare((PyLongObject *)twice_rem, (PyLongObject *)b);
6165
0
    Py_DECREF(twice_rem);
6166
6167
0
    quo_is_odd = (quo->long_value.ob_digit[0] & 1) != 0;
6168
0
    if ((_PyLong_IsNegative((PyLongObject *)b) ? cmp < 0 : cmp > 0) || (cmp == 0 && quo_is_odd)) {
6169
        /* fix up quotient */
6170
0
        PyObject *one = _PyLong_GetOne();  // borrowed reference
6171
0
        if (quo_is_neg)
6172
0
            temp = (PyObject*)long_sub(quo, (PyLongObject *)one);
6173
0
        else
6174
0
            temp = (PyObject*)long_add(quo, (PyLongObject *)one);
6175
0
        Py_SETREF(quo, (PyLongObject *)temp);
6176
0
        if (quo == NULL)
6177
0
            goto error;
6178
        /* and remainder */
6179
0
        if (quo_is_neg)
6180
0
            temp = (PyObject*)long_add(rem, (PyLongObject *)b);
6181
0
        else
6182
0
            temp = (PyObject*)long_sub(rem, (PyLongObject *)b);
6183
0
        Py_SETREF(rem, (PyLongObject *)temp);
6184
0
        if (rem == NULL)
6185
0
            goto error;
6186
0
    }
6187
6188
0
    result = PyTuple_New(2);
6189
0
    if (result == NULL)
6190
0
        goto error;
6191
6192
    /* PyTuple_SET_ITEM steals references */
6193
0
    PyTuple_SET_ITEM(result, 0, (PyObject *)quo);
6194
0
    PyTuple_SET_ITEM(result, 1, (PyObject *)rem);
6195
0
    return result;
6196
6197
0
  error:
6198
0
    Py_XDECREF(quo);
6199
0
    Py_XDECREF(rem);
6200
0
    return NULL;
6201
0
}
6202
6203
/*[clinic input]
6204
int.__round__
6205
6206
    ndigits as o_ndigits: object = None
6207
    /
6208
6209
Rounding an Integral returns itself.
6210
6211
Rounding with an ndigits argument also returns an integer.
6212
[clinic start generated code]*/
6213
6214
static PyObject *
6215
int___round___impl(PyObject *self, PyObject *o_ndigits)
6216
/*[clinic end generated code: output=954fda6b18875998 input=30c2aec788263144]*/
6217
0
{
6218
    /* To round an integer m to the nearest 10**n (n positive), we make use of
6219
     * the divmod_near operation, defined by:
6220
     *
6221
     *   divmod_near(a, b) = (q, r)
6222
     *
6223
     * where q is the nearest integer to the quotient a / b (the
6224
     * nearest even integer in the case of a tie) and r == a - q * b.
6225
     * Hence q * b = a - r is the nearest multiple of b to a,
6226
     * preferring even multiples in the case of a tie.
6227
     *
6228
     * So the nearest multiple of 10**n to m is:
6229
     *
6230
     *   m - divmod_near(m, 10**n)[1].
6231
     */
6232
0
    if (o_ndigits == Py_None)
6233
0
        return long_long(self);
6234
6235
0
    PyObject *ndigits = _PyNumber_Index(o_ndigits);
6236
0
    if (ndigits == NULL)
6237
0
        return NULL;
6238
6239
    /* if ndigits >= 0 then no rounding is necessary; return self unchanged */
6240
0
    if (!_PyLong_IsNegative((PyLongObject *)ndigits)) {
6241
0
        Py_DECREF(ndigits);
6242
0
        return long_long(self);
6243
0
    }
6244
6245
    /* result = self - divmod_near(self, 10 ** -ndigits)[1] */
6246
0
    PyObject *temp = (PyObject*)long_neg((PyLongObject*)ndigits);
6247
0
    Py_SETREF(ndigits, temp);
6248
0
    if (ndigits == NULL)
6249
0
        return NULL;
6250
6251
0
    PyObject *result = PyLong_FromLong(10);
6252
0
    if (result == NULL) {
6253
0
        Py_DECREF(ndigits);
6254
0
        return NULL;
6255
0
    }
6256
6257
0
    temp = long_pow(result, ndigits, Py_None);
6258
0
    Py_DECREF(ndigits);
6259
0
    Py_SETREF(result, temp);
6260
0
    if (result == NULL)
6261
0
        return NULL;
6262
6263
0
    temp = _PyLong_DivmodNear(self, result);
6264
0
    Py_SETREF(result, temp);
6265
0
    if (result == NULL)
6266
0
        return NULL;
6267
6268
0
    temp = (PyObject*)long_sub((PyLongObject*)self,
6269
0
                               (PyLongObject*)PyTuple_GET_ITEM(result, 1));
6270
0
    Py_SETREF(result, temp);
6271
6272
0
    return result;
6273
0
}
6274
6275
/*[clinic input]
6276
int.__sizeof__ -> Py_ssize_t
6277
6278
Returns size in memory, in bytes.
6279
[clinic start generated code]*/
6280
6281
static Py_ssize_t
6282
int___sizeof___impl(PyObject *self)
6283
/*[clinic end generated code: output=3303f008eaa6a0a5 input=9b51620c76fc4507]*/
6284
0
{
6285
    /* using Py_MAX(..., 1) because we always allocate space for at least
6286
       one digit, even though the integer zero has a digit count of 0 */
6287
0
    Py_ssize_t ndigits = Py_MAX(_PyLong_DigitCount((PyLongObject *)self), 1);
6288
0
    return Py_TYPE(self)->tp_basicsize + Py_TYPE(self)->tp_itemsize * ndigits;
6289
0
}
6290
6291
/*[clinic input]
6292
int.bit_length
6293
6294
Number of bits necessary to represent self in binary.
6295
6296
>>> bin(37)
6297
'0b100101'
6298
>>> (37).bit_length()
6299
6
6300
[clinic start generated code]*/
6301
6302
static PyObject *
6303
int_bit_length_impl(PyObject *self)
6304
/*[clinic end generated code: output=fc1977c9353d6a59 input=e4eb7a587e849a32]*/
6305
863
{
6306
863
    int64_t nbits = _PyLong_NumBits(self);
6307
863
    assert(nbits >= 0);
6308
863
    assert(!PyErr_Occurred());
6309
863
    return PyLong_FromInt64(nbits);
6310
863
}
6311
6312
static int
6313
popcount_digit(digit d)
6314
0
{
6315
    // digit can be larger than uint32_t, but only PyLong_SHIFT bits
6316
    // of it will be ever used.
6317
0
    static_assert(PyLong_SHIFT <= 32, "digit is larger than uint32_t");
6318
0
    return _Py_popcount32((uint32_t)d);
6319
0
}
6320
6321
/*[clinic input]
6322
@permit_long_summary
6323
int.bit_count
6324
6325
Number of ones in the binary representation of the absolute value of self.
6326
6327
Also known as the population count.
6328
6329
>>> bin(13)
6330
'0b1101'
6331
>>> (13).bit_count()
6332
3
6333
[clinic start generated code]*/
6334
6335
static PyObject *
6336
int_bit_count_impl(PyObject *self)
6337
/*[clinic end generated code: output=2e571970daf1e5c3 input=f2510a306761db15]*/
6338
0
{
6339
0
    assert(self != NULL);
6340
0
    assert(PyLong_Check(self));
6341
6342
0
    PyLongObject *z = (PyLongObject *)self;
6343
0
    Py_ssize_t ndigits = _PyLong_DigitCount(z);
6344
0
    int64_t bit_count = 0;
6345
6346
0
    for (Py_ssize_t i = 0; i < ndigits; i++) {
6347
0
        bit_count += popcount_digit(z->long_value.ob_digit[i]);
6348
0
    }
6349
6350
0
    return PyLong_FromInt64(bit_count);
6351
0
}
6352
6353
/*[clinic input]
6354
int.as_integer_ratio
6355
6356
Return a pair of integers, whose ratio is equal to the original int.
6357
6358
The ratio is in lowest terms and has a positive denominator.
6359
6360
>>> (10).as_integer_ratio()
6361
(10, 1)
6362
>>> (-10).as_integer_ratio()
6363
(-10, 1)
6364
>>> (0).as_integer_ratio()
6365
(0, 1)
6366
[clinic start generated code]*/
6367
6368
static PyObject *
6369
int_as_integer_ratio_impl(PyObject *self)
6370
/*[clinic end generated code: output=e60803ae1cc8621a input=384ff1766634bec2]*/
6371
0
{
6372
0
    PyObject *ratio_tuple;
6373
0
    PyObject *numerator = long_long(self);
6374
0
    if (numerator == NULL) {
6375
0
        return NULL;
6376
0
    }
6377
0
    ratio_tuple = PyTuple_Pack(2, numerator, _PyLong_GetOne());
6378
0
    Py_DECREF(numerator);
6379
0
    return ratio_tuple;
6380
0
}
6381
6382
/*[clinic input]
6383
int.to_bytes
6384
6385
    length: Py_ssize_t(allow_negative=False) = 1
6386
        Length of bytes object to use.  An OverflowError is raised if the
6387
        integer is not representable with the given number of bytes.  Default
6388
        is length 1.
6389
    byteorder: unicode(c_default="NULL") = "big"
6390
        The byte order used to represent the integer.  If byteorder is 'big',
6391
        the most significant byte is at the beginning of the byte array.  If
6392
        byteorder is 'little', the most significant byte is at the end of the
6393
        byte array.  To request the native byte order of the host system, use
6394
        sys.byteorder as the byte order value.  Default is to use 'big'.
6395
    *
6396
    signed as is_signed: bool = False
6397
        Determines whether two's complement is used to represent the integer.
6398
        If signed is False and a negative integer is given, an OverflowError
6399
        is raised.
6400
6401
Return an array of bytes representing an integer.
6402
[clinic start generated code]*/
6403
6404
static PyObject *
6405
int_to_bytes_impl(PyObject *self, Py_ssize_t length, PyObject *byteorder,
6406
                  int is_signed)
6407
/*[clinic end generated code: output=89c801df114050a3 input=66f9d0c20529b44f]*/
6408
22
{
6409
22
    int little_endian;
6410
22
    if (byteorder == NULL)
6411
0
        little_endian = 0;
6412
22
    else if (_PyUnicode_Equal(byteorder, &_Py_ID(little)))
6413
22
        little_endian = 1;
6414
0
    else if (_PyUnicode_Equal(byteorder, &_Py_ID(big)))
6415
0
        little_endian = 0;
6416
0
    else {
6417
0
        PyErr_SetString(PyExc_ValueError,
6418
0
            "byteorder must be either 'little' or 'big'");
6419
0
        return NULL;
6420
0
    }
6421
6422
22
    PyBytesWriter *writer = PyBytesWriter_Create(length);
6423
22
    if (writer == NULL) {
6424
0
        return NULL;
6425
0
    }
6426
6427
22
    if (_PyLong_AsByteArray((PyLongObject *)self,
6428
22
                            PyBytesWriter_GetData(writer),
6429
22
                            length, little_endian, is_signed, 1) < 0) {
6430
0
        PyBytesWriter_Discard(writer);
6431
0
        return NULL;
6432
0
    }
6433
6434
22
    return PyBytesWriter_Finish(writer);
6435
22
}
6436
6437
/*[clinic input]
6438
@classmethod
6439
int.from_bytes
6440
6441
    bytes as bytes_obj: object
6442
        Holds the array of bytes to convert.  The argument must either
6443
        support the buffer protocol or be an iterable object producing bytes.
6444
        Bytes and bytearray are examples of built-in objects that support the
6445
        buffer protocol.
6446
    byteorder: unicode(c_default="NULL") = "big"
6447
        The byte order used to represent the integer.  If byteorder is 'big',
6448
        the most significant byte is at the beginning of the byte array.  If
6449
        byteorder is 'little', the most significant byte is at the end of the
6450
        byte array.  To request the native byte order of the host system, use
6451
        sys.byteorder as the byte order value.  Default is to use 'big'.
6452
    *
6453
    signed as is_signed: bool = False
6454
        Indicates whether two's complement is used to represent the integer.
6455
6456
Return the integer represented by the given array of bytes.
6457
[clinic start generated code]*/
6458
6459
static PyObject *
6460
int_from_bytes_impl(PyTypeObject *type, PyObject *bytes_obj,
6461
                    PyObject *byteorder, int is_signed)
6462
/*[clinic end generated code: output=efc5d68e31f9314f input=2ff527997fe7b0c5]*/
6463
1.02k
{
6464
1.02k
    int little_endian;
6465
1.02k
    PyObject *long_obj, *bytes;
6466
6467
1.02k
    if (byteorder == NULL)
6468
0
        little_endian = 0;
6469
1.02k
    else if (_PyUnicode_Equal(byteorder, &_Py_ID(little)))
6470
1.02k
        little_endian = 1;
6471
0
    else if (_PyUnicode_Equal(byteorder, &_Py_ID(big)))
6472
0
        little_endian = 0;
6473
0
    else {
6474
0
        PyErr_SetString(PyExc_ValueError,
6475
0
            "byteorder must be either 'little' or 'big'");
6476
0
        return NULL;
6477
0
    }
6478
6479
1.02k
    bytes = PyObject_Bytes(bytes_obj);
6480
1.02k
    if (bytes == NULL)
6481
0
        return NULL;
6482
6483
1.02k
    long_obj = _PyLong_FromByteArray(
6484
1.02k
        (unsigned char *)PyBytes_AS_STRING(bytes), Py_SIZE(bytes),
6485
1.02k
        little_endian, is_signed);
6486
1.02k
    Py_DECREF(bytes);
6487
6488
1.02k
    if (long_obj != NULL && type != &PyLong_Type) {
6489
0
        Py_SETREF(long_obj, PyObject_CallOneArg((PyObject *)type, long_obj));
6490
0
    }
6491
6492
1.02k
    return long_obj;
6493
1.02k
}
6494
6495
static PyObject *
6496
long_long_meth(PyObject *self, PyObject *Py_UNUSED(ignored))
6497
0
{
6498
0
    return long_long(self);
6499
0
}
6500
6501
static PyObject *
6502
long_long_getter(PyObject *self, void *Py_UNUSED(ignored))
6503
0
{
6504
0
    return long_long(self);
6505
0
}
6506
6507
/*[clinic input]
6508
int.is_integer
6509
6510
Returns True. Exists for duck type compatibility with float.is_integer.
6511
[clinic start generated code]*/
6512
6513
static PyObject *
6514
int_is_integer_impl(PyObject *self)
6515
/*[clinic end generated code: output=90f8e794ce5430ef input=7e41c4d4416e05f2]*/
6516
0
{
6517
0
    Py_RETURN_TRUE;
6518
0
}
6519
6520
static PyObject *
6521
long_vectorcall(PyObject *type, PyObject * const*args,
6522
                 size_t nargsf, PyObject *kwnames)
6523
608k
{
6524
608k
    Py_ssize_t nargs = PyVectorcall_NARGS(nargsf);
6525
608k
    if (kwnames != NULL) {
6526
0
        PyThreadState *tstate = PyThreadState_GET();
6527
0
        return _PyObject_MakeTpCall(tstate, type, args, nargs, kwnames);
6528
0
    }
6529
608k
    switch (nargs) {
6530
0
        case 0:
6531
0
            return _PyLong_GetZero();
6532
146k
        case 1:
6533
146k
            return PyNumber_Long(args[0]);
6534
461k
        case 2:
6535
461k
            return long_new_impl(_PyType_CAST(type), args[0], args[1]);
6536
0
        default:
6537
0
            return PyErr_Format(PyExc_TypeError,
6538
0
                                "int expected at most 2 arguments, got %zd",
6539
0
                                nargs);
6540
608k
    }
6541
608k
}
6542
6543
static PyMethodDef long_methods[] = {
6544
    {"conjugate",       long_long_meth, METH_NOARGS,
6545
     "Returns self, the complex conjugate of any int."},
6546
    INT_BIT_LENGTH_METHODDEF
6547
    INT_BIT_COUNT_METHODDEF
6548
    INT_TO_BYTES_METHODDEF
6549
    INT_FROM_BYTES_METHODDEF
6550
    INT_AS_INTEGER_RATIO_METHODDEF
6551
    {"__trunc__",       long_long_meth, METH_NOARGS,
6552
     "Truncating an Integral returns itself."},
6553
    {"__floor__",       long_long_meth, METH_NOARGS,
6554
     "Flooring an Integral returns itself."},
6555
    {"__ceil__",        long_long_meth, METH_NOARGS,
6556
     "Ceiling of an Integral returns itself."},
6557
    INT___ROUND___METHODDEF
6558
    INT___GETNEWARGS___METHODDEF
6559
    INT___FORMAT___METHODDEF
6560
    INT___SIZEOF___METHODDEF
6561
    INT_IS_INTEGER_METHODDEF
6562
    {NULL,              NULL}           /* sentinel */
6563
};
6564
6565
static PyGetSetDef long_getset[] = {
6566
    {"real",
6567
     long_long_getter, NULL,
6568
     "the real part of a complex number",
6569
     NULL},
6570
    {"imag",
6571
     long_get0, NULL,
6572
     "the imaginary part of a complex number",
6573
     NULL},
6574
    {"numerator",
6575
     long_long_getter, NULL,
6576
     "the numerator of a rational number in lowest terms",
6577
     NULL},
6578
    {"denominator",
6579
     long_get1, NULL,
6580
     "the denominator of a rational number in lowest terms",
6581
     NULL},
6582
    {NULL}  /* Sentinel */
6583
};
6584
6585
PyDoc_STRVAR(long_doc,
6586
"int([x]) -> integer\n\
6587
int(x, base=10) -> integer\n\
6588
\n\
6589
Convert a number or string to an integer, or return 0 if no arguments\n\
6590
are given.  If x is a number, return x.__int__().  For floating-point\n\
6591
numbers, this truncates towards zero.\n\
6592
\n\
6593
If x is not a number or if base is given, then x must be a string,\n\
6594
bytes, or bytearray instance representing an integer literal in the\n\
6595
given base.  The literal can be preceded by '+' or '-' and be surrounded\n\
6596
by whitespace.  The base defaults to 10.  Valid bases are 0 and 2-36.\n\
6597
Base 0 means to interpret the base from the string as an integer literal.\n\
6598
>>> int('0b100', base=0)\n\
6599
4");
6600
6601
static PyNumberMethods long_as_number = {
6602
    long_add_method,            /*nb_add*/
6603
    long_sub_method,            /*nb_subtract*/
6604
    long_mul_method,            /*nb_multiply*/
6605
    long_mod,                   /*nb_remainder*/
6606
    long_divmod,                /*nb_divmod*/
6607
    long_pow,                   /*nb_power*/
6608
    long_neg_method,            /*nb_negative*/
6609
    long_long,                  /*tp_positive*/
6610
    long_abs_method,            /*tp_absolute*/
6611
    long_bool,                  /*tp_bool*/
6612
    long_invert,                /*nb_invert*/
6613
    long_lshift_method,         /*nb_lshift*/
6614
    long_rshift,                /*nb_rshift*/
6615
    long_and,                   /*nb_and*/
6616
    long_xor,                   /*nb_xor*/
6617
    long_or,                    /*nb_or*/
6618
    long_long,                  /*nb_int*/
6619
    0,                          /*nb_reserved*/
6620
    long_float,                 /*nb_float*/
6621
    0,                          /* nb_inplace_add */
6622
    0,                          /* nb_inplace_subtract */
6623
    0,                          /* nb_inplace_multiply */
6624
    0,                          /* nb_inplace_remainder */
6625
    0,                          /* nb_inplace_power */
6626
    0,                          /* nb_inplace_lshift */
6627
    0,                          /* nb_inplace_rshift */
6628
    0,                          /* nb_inplace_and */
6629
    0,                          /* nb_inplace_xor */
6630
    0,                          /* nb_inplace_or */
6631
    long_div,                   /* nb_floor_divide */
6632
    long_true_divide,           /* nb_true_divide */
6633
    0,                          /* nb_inplace_floor_divide */
6634
    0,                          /* nb_inplace_true_divide */
6635
    long_long,                  /* nb_index */
6636
};
6637
6638
PyTypeObject PyLong_Type = {
6639
    PyVarObject_HEAD_INIT(&PyType_Type, 0)
6640
    "int",                                      /* tp_name */
6641
    offsetof(PyLongObject, long_value.ob_digit),  /* tp_basicsize */
6642
    sizeof(digit),                              /* tp_itemsize */
6643
    long_dealloc,                               /* tp_dealloc */
6644
    0,                                          /* tp_vectorcall_offset */
6645
    0,                                          /* tp_getattr */
6646
    0,                                          /* tp_setattr */
6647
    0,                                          /* tp_as_async */
6648
    long_to_decimal_string,                     /* tp_repr */
6649
    &long_as_number,                            /* tp_as_number */
6650
    0,                                          /* tp_as_sequence */
6651
    0,                                          /* tp_as_mapping */
6652
    long_hash,                                  /* tp_hash */
6653
    0,                                          /* tp_call */
6654
    0,                                          /* tp_str */
6655
    PyObject_GenericGetAttr,                    /* tp_getattro */
6656
    0,                                          /* tp_setattro */
6657
    0,                                          /* tp_as_buffer */
6658
    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE |
6659
        Py_TPFLAGS_LONG_SUBCLASS |
6660
        _Py_TPFLAGS_MATCH_SELF,               /* tp_flags */
6661
    long_doc,                                   /* tp_doc */
6662
    0,                                          /* tp_traverse */
6663
    0,                                          /* tp_clear */
6664
    long_richcompare,                           /* tp_richcompare */
6665
    0,                                          /* tp_weaklistoffset */
6666
    0,                                          /* tp_iter */
6667
    0,                                          /* tp_iternext */
6668
    long_methods,                               /* tp_methods */
6669
    0,                                          /* tp_members */
6670
    long_getset,                                /* tp_getset */
6671
    0,                                          /* tp_base */
6672
    0,                                          /* tp_dict */
6673
    0,                                          /* tp_descr_get */
6674
    0,                                          /* tp_descr_set */
6675
    0,                                          /* tp_dictoffset */
6676
    0,                                          /* tp_init */
6677
    0,                                          /* tp_alloc */
6678
    long_new,                                   /* tp_new */
6679
    PyObject_Free,                              /* tp_free */
6680
    .tp_vectorcall = long_vectorcall,
6681
    .tp_version_tag = _Py_TYPE_VERSION_INT,
6682
};
6683
6684
static PyTypeObject Int_InfoType;
6685
6686
PyDoc_STRVAR(int_info__doc__,
6687
"sys.int_info\n\
6688
\n\
6689
A named tuple that holds information about Python's\n\
6690
internal representation of integers.  The attributes are read only.");
6691
6692
static PyStructSequence_Field int_info_fields[] = {
6693
    {"bits_per_digit", "size of a digit in bits"},
6694
    {"sizeof_digit", "size in bytes of the C type used to represent a digit"},
6695
    {"default_max_str_digits", "maximum string conversion digits limitation"},
6696
    {"str_digits_check_threshold", "minimum positive value for int_max_str_digits"},
6697
    {NULL, NULL}
6698
};
6699
6700
static PyStructSequence_Desc int_info_desc = {
6701
    "sys.int_info",   /* name */
6702
    int_info__doc__,  /* doc */
6703
    int_info_fields,  /* fields */
6704
    4                 /* number of fields */
6705
};
6706
6707
PyObject *
6708
PyLong_GetInfo(void)
6709
22
{
6710
22
    PyObject* int_info;
6711
22
    int field = 0;
6712
22
    int_info = PyStructSequence_New(&Int_InfoType);
6713
22
    if (int_info == NULL)
6714
0
        return NULL;
6715
22
    PyStructSequence_SET_ITEM(int_info, field++,
6716
22
                              PyLong_FromLong(PyLong_SHIFT));
6717
22
    PyStructSequence_SET_ITEM(int_info, field++,
6718
22
                              PyLong_FromLong(sizeof(digit)));
6719
    /*
6720
     * The following two fields were added after investigating uses of
6721
     * sys.int_info in the wild: Exceedingly rarely used. The ONLY use found was
6722
     * numba using sys.int_info.bits_per_digit as attribute access rather than
6723
     * sequence unpacking. Cython and sympy also refer to sys.int_info but only
6724
     * as info for debugging. No concern about adding these in a backport.
6725
     */
6726
22
    PyStructSequence_SET_ITEM(int_info, field++,
6727
22
                              PyLong_FromLong(_PY_LONG_DEFAULT_MAX_STR_DIGITS));
6728
22
    PyStructSequence_SET_ITEM(int_info, field++,
6729
22
                              PyLong_FromLong(_PY_LONG_MAX_STR_DIGITS_THRESHOLD));
6730
22
    if (PyErr_Occurred()) {
6731
0
        Py_CLEAR(int_info);
6732
0
        return NULL;
6733
0
    }
6734
22
    return int_info;
6735
22
}
6736
6737
6738
/* runtime lifecycle */
6739
6740
PyStatus
6741
_PyLong_InitTypes(PyInterpreterState *interp)
6742
22
{
6743
    /* initialize int_info */
6744
22
    if (_PyStructSequence_InitBuiltin(interp, &Int_InfoType,
6745
22
                                      &int_info_desc) < 0)
6746
0
    {
6747
0
        return _PyStatus_ERR("can't init int info type");
6748
0
    }
6749
6750
22
    return _PyStatus_OK();
6751
22
}
6752
6753
6754
void
6755
_PyLong_FiniTypes(PyInterpreterState *interp)
6756
0
{
6757
0
    _PyStructSequence_FiniBuiltin(interp, &Int_InfoType);
6758
0
}
6759
6760
#undef PyUnstable_Long_IsCompact
6761
6762
int
6763
0
PyUnstable_Long_IsCompact(const PyLongObject* op) {
6764
0
    return _PyLong_IsCompact((PyLongObject*)op);
6765
0
}
6766
6767
#undef PyUnstable_Long_CompactValue
6768
6769
Py_ssize_t
6770
0
PyUnstable_Long_CompactValue(const PyLongObject* op) {
6771
0
    return _PyLong_CompactValue((PyLongObject*)op);
6772
0
}
6773
6774
6775
PyObject* PyLong_FromInt32(int32_t value)
6776
0
{
6777
0
    PYLONG_FROM_INT(uint32_t, int32_t, value);
6778
0
}
6779
6780
PyObject* PyLong_FromUInt32(uint32_t value)
6781
0
{
6782
0
    PYLONG_FROM_UINT(uint32_t, value);
6783
0
}
6784
6785
PyObject* PyLong_FromInt64(int64_t value)
6786
863
{
6787
863
    PYLONG_FROM_INT(uint64_t, int64_t, value);
6788
863
}
6789
6790
PyObject* PyLong_FromUInt64(uint64_t value)
6791
0
{
6792
0
    PYLONG_FROM_UINT(uint64_t, value);
6793
0
}
6794
6795
#define LONG_TO_INT(obj, value, type_name) \
6796
285k
    do { \
6797
285k
        int flags = (Py_ASNATIVEBYTES_NATIVE_ENDIAN \
6798
285k
                     | Py_ASNATIVEBYTES_ALLOW_INDEX); \
6799
285k
        Py_ssize_t bytes = PyLong_AsNativeBytes(obj, value, sizeof(*value), flags); \
6800
285k
        if (bytes < 0) { \
6801
0
            return -1; \
6802
0
        } \
6803
285k
        if ((size_t)bytes > sizeof(*value)) { \
6804
1.93k
            PyErr_SetString(PyExc_OverflowError, \
6805
1.93k
                            "Python int too large to convert to " type_name); \
6806
1.93k
            return -1; \
6807
1.93k
        } \
6808
285k
        return 0; \
6809
285k
    } while (0)
6810
6811
int PyLong_AsInt32(PyObject *obj, int32_t *value)
6812
0
{
6813
0
    LONG_TO_INT(obj, value, "C int32_t");
6814
0
}
6815
6816
int PyLong_AsInt64(PyObject *obj, int64_t *value)
6817
285k
{
6818
285k
    LONG_TO_INT(obj, value, "C int64_t");
6819
285k
}
6820
6821
#define LONG_TO_UINT(obj, value, type_name) \
6822
0
    do { \
6823
0
        int flags = (Py_ASNATIVEBYTES_NATIVE_ENDIAN \
6824
0
                     | Py_ASNATIVEBYTES_UNSIGNED_BUFFER \
6825
0
                     | Py_ASNATIVEBYTES_REJECT_NEGATIVE \
6826
0
                     | Py_ASNATIVEBYTES_ALLOW_INDEX); \
6827
0
        Py_ssize_t bytes = PyLong_AsNativeBytes(obj, value, sizeof(*value), flags); \
6828
0
        if (bytes < 0) { \
6829
0
            return -1; \
6830
0
        } \
6831
0
        if ((size_t)bytes > sizeof(*value)) { \
6832
0
            PyErr_SetString(PyExc_OverflowError, \
6833
0
                            "Python int too large to convert to " type_name); \
6834
0
            return -1; \
6835
0
        } \
6836
0
        return 0; \
6837
0
    } while (0)
6838
6839
int PyLong_AsUInt32(PyObject *obj, uint32_t *value)
6840
0
{
6841
0
    LONG_TO_UINT(obj, value, "C uint32_t");
6842
0
}
6843
6844
int PyLong_AsUInt64(PyObject *obj, uint64_t *value)
6845
0
{
6846
0
    LONG_TO_UINT(obj, value, "C uint64_t");
6847
0
}
6848
6849
6850
static const PyLongLayout PyLong_LAYOUT = {
6851
    .bits_per_digit = PyLong_SHIFT,
6852
    .digits_order = -1,  // least significant first
6853
    .digit_endianness = PY_LITTLE_ENDIAN ? -1 : 1,
6854
    .digit_size = sizeof(digit),
6855
};
6856
6857
6858
const PyLongLayout*
6859
PyLong_GetNativeLayout(void)
6860
107
{
6861
107
    return &PyLong_LAYOUT;
6862
107
}
6863
6864
6865
int
6866
PyLong_Export(PyObject *obj, PyLongExport *export_long)
6867
0
{
6868
0
    if (!PyLong_Check(obj)) {
6869
0
        memset(export_long, 0, sizeof(*export_long));
6870
0
        PyErr_Format(PyExc_TypeError, "expect int, got %T", obj);
6871
0
        return -1;
6872
0
    }
6873
6874
    // Fast-path: try to convert to a int64_t
6875
0
    int overflow;
6876
0
#if SIZEOF_LONG == 8
6877
0
    long value = PyLong_AsLongAndOverflow(obj, &overflow);
6878
#else
6879
    // Windows has 32-bit long, so use 64-bit long long instead
6880
    long long value = PyLong_AsLongLongAndOverflow(obj, &overflow);
6881
#endif
6882
0
    Py_BUILD_ASSERT(sizeof(value) == sizeof(int64_t));
6883
    // the function cannot fail since obj is a PyLongObject
6884
0
    assert(!(value == -1 && PyErr_Occurred()));
6885
6886
0
    if (!overflow) {
6887
0
        export_long->value = value;
6888
0
        export_long->negative = 0;
6889
0
        export_long->ndigits = 0;
6890
0
        export_long->digits = NULL;
6891
0
        export_long->_reserved = 0;
6892
0
    }
6893
0
    else {
6894
0
        PyLongObject *self = (PyLongObject*)obj;
6895
0
        export_long->value = 0;
6896
0
        export_long->negative = _PyLong_IsNegative(self);
6897
0
        export_long->ndigits = _PyLong_DigitCount(self);
6898
0
        if (export_long->ndigits == 0) {
6899
0
            export_long->ndigits = 1;
6900
0
        }
6901
0
        export_long->digits = self->long_value.ob_digit;
6902
0
        export_long->_reserved = (Py_uintptr_t)Py_NewRef(obj);
6903
0
    }
6904
0
    return 0;
6905
0
}
6906
6907
6908
void
6909
PyLong_FreeExport(PyLongExport *export_long)
6910
0
{
6911
0
    PyObject *obj = (PyObject*)export_long->_reserved;
6912
0
    if (obj) {
6913
0
        export_long->_reserved = 0;
6914
0
        Py_DECREF(obj);
6915
0
    }
6916
0
}
6917
6918
6919
/* --- PyLongWriter API --------------------------------------------------- */
6920
6921
PyLongWriter*
6922
PyLongWriter_Create(int negative, Py_ssize_t ndigits, void **digits)
6923
107
{
6924
107
    if (ndigits <= 0) {
6925
0
        PyErr_SetString(PyExc_ValueError, "ndigits must be positive");
6926
0
        goto error;
6927
0
    }
6928
107
    assert(digits != NULL);
6929
6930
107
    PyLongObject *obj = long_alloc(ndigits);
6931
107
    if (obj == NULL) {
6932
0
        goto error;
6933
0
    }
6934
107
    if (negative) {
6935
4
        _PyLong_FlipSign(obj);
6936
4
    }
6937
6938
107
    *digits = obj->long_value.ob_digit;
6939
107
    return (PyLongWriter*)obj;
6940
6941
0
error:
6942
0
    *digits = NULL;
6943
0
    return NULL;
6944
107
}
6945
6946
6947
void
6948
PyLongWriter_Discard(PyLongWriter *writer)
6949
0
{
6950
0
    if (writer == NULL) {
6951
0
        return;
6952
0
    }
6953
6954
0
    PyLongObject *obj = (PyLongObject *)writer;
6955
0
    assert(Py_REFCNT(obj) == 1);
6956
0
    Py_DECREF(obj);
6957
0
}
6958
6959
6960
PyObject*
6961
PyLongWriter_Finish(PyLongWriter *writer)
6962
107
{
6963
107
    PyLongObject *obj = (PyLongObject *)writer;
6964
107
    assert(Py_REFCNT(obj) == 1);
6965
6966
    // Normalize and get singleton if possible
6967
107
    obj = maybe_small_long(long_normalize(obj));
6968
6969
107
    return (PyObject*)obj;
6970
107
}