/rust/registry/src/index.crates.io-6f17d22bba15001f/openssl-0.10.62/src/cipher_ctx.rs
Line | Count | Source (jump to first uncovered line) |
1 | | //! The symmetric encryption context. |
2 | | //! |
3 | | //! # Examples |
4 | | //! |
5 | | //! Encrypt data with AES128 CBC |
6 | | //! |
7 | | //! ``` |
8 | | //! use openssl::cipher::Cipher; |
9 | | //! use openssl::cipher_ctx::CipherCtx; |
10 | | //! |
11 | | //! let cipher = Cipher::aes_128_cbc(); |
12 | | //! let data = b"Some Crypto Text"; |
13 | | //! let key = b"\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F"; |
14 | | //! let iv = b"\x00\x01\x02\x03\x04\x05\x06\x07\x00\x01\x02\x03\x04\x05\x06\x07"; |
15 | | //! |
16 | | //! let mut ctx = CipherCtx::new().unwrap(); |
17 | | //! ctx.encrypt_init(Some(cipher), Some(key), Some(iv)).unwrap(); |
18 | | //! |
19 | | //! let mut ciphertext = vec![]; |
20 | | //! ctx.cipher_update_vec(data, &mut ciphertext).unwrap(); |
21 | | //! ctx.cipher_final_vec(&mut ciphertext).unwrap(); |
22 | | //! |
23 | | //! assert_eq!( |
24 | | //! b"\xB4\xB9\xE7\x30\xD6\xD6\xF7\xDE\x77\x3F\x1C\xFF\xB3\x3E\x44\x5A\x91\xD7\x27\x62\x87\x4D\ |
25 | | //! \xFB\x3C\x5E\xC4\x59\x72\x4A\xF4\x7C\xA1", |
26 | | //! &ciphertext[..], |
27 | | //! ); |
28 | | //! ``` |
29 | | //! |
30 | | //! Decrypt data with AES128 CBC |
31 | | //! |
32 | | //! ``` |
33 | | //! use openssl::cipher::Cipher; |
34 | | //! use openssl::cipher_ctx::CipherCtx; |
35 | | //! |
36 | | //! let cipher = Cipher::aes_128_cbc(); |
37 | | //! let data = b"\xB4\xB9\xE7\x30\xD6\xD6\xF7\xDE\x77\x3F\x1C\xFF\xB3\x3E\x44\x5A\x91\xD7\x27\x62\ |
38 | | //! \x87\x4D\xFB\x3C\x5E\xC4\x59\x72\x4A\xF4\x7C\xA1"; |
39 | | //! let key = b"\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F"; |
40 | | //! let iv = b"\x00\x01\x02\x03\x04\x05\x06\x07\x00\x01\x02\x03\x04\x05\x06\x07"; |
41 | | //! |
42 | | //! let mut ctx = CipherCtx::new().unwrap(); |
43 | | //! ctx.decrypt_init(Some(cipher), Some(key), Some(iv)).unwrap(); |
44 | | //! |
45 | | //! let mut plaintext = vec![]; |
46 | | //! ctx.cipher_update_vec(data, &mut plaintext).unwrap(); |
47 | | //! ctx.cipher_final_vec(&mut plaintext).unwrap(); |
48 | | //! |
49 | | //! assert_eq!(b"Some Crypto Text", &plaintext[..]); |
50 | | //! ``` |
51 | | #![warn(missing_docs)] |
52 | | |
53 | | use crate::cipher::CipherRef; |
54 | | use crate::error::ErrorStack; |
55 | | #[cfg(not(boringssl))] |
56 | | use crate::pkey::{HasPrivate, HasPublic, PKey, PKeyRef}; |
57 | | use crate::{cvt, cvt_p}; |
58 | | #[cfg(ossl102)] |
59 | | use bitflags::bitflags; |
60 | | use cfg_if::cfg_if; |
61 | | use foreign_types::{ForeignType, ForeignTypeRef}; |
62 | | use libc::{c_int, c_uchar}; |
63 | | use openssl_macros::corresponds; |
64 | | use std::convert::{TryFrom, TryInto}; |
65 | | use std::ptr; |
66 | | |
67 | | cfg_if! { |
68 | | if #[cfg(ossl300)] { |
69 | | use ffi::EVP_CIPHER_CTX_get0_cipher; |
70 | | } else { |
71 | | use ffi::EVP_CIPHER_CTX_cipher as EVP_CIPHER_CTX_get0_cipher; |
72 | | } |
73 | | } |
74 | | |
75 | | foreign_type_and_impl_send_sync! { |
76 | | type CType = ffi::EVP_CIPHER_CTX; |
77 | | fn drop = ffi::EVP_CIPHER_CTX_free; |
78 | | |
79 | | /// A context object used to perform symmetric encryption operations. |
80 | | pub struct CipherCtx; |
81 | | /// A reference to a [`CipherCtx`]. |
82 | | pub struct CipherCtxRef; |
83 | | } |
84 | | |
85 | | #[cfg(ossl102)] |
86 | 0 | bitflags! { |
87 | 0 | /// Flags for `EVP_CIPHER_CTX`. |
88 | 0 | pub struct CipherCtxFlags : c_int { |
89 | 0 | /// The flag used to opt into AES key wrap ciphers. |
90 | 0 | const FLAG_WRAP_ALLOW = ffi::EVP_CIPHER_CTX_FLAG_WRAP_ALLOW; |
91 | 0 | } |
92 | 0 | } |
93 | | |
94 | | impl CipherCtx { |
95 | | /// Creates a new context. |
96 | | #[corresponds(EVP_CIPHER_CTX_new)] |
97 | 0 | pub fn new() -> Result<Self, ErrorStack> { |
98 | 0 | ffi::init(); |
99 | | |
100 | | unsafe { |
101 | 0 | let ptr = cvt_p(ffi::EVP_CIPHER_CTX_new())?; |
102 | 0 | Ok(CipherCtx::from_ptr(ptr)) |
103 | | } |
104 | 0 | } |
105 | | } |
106 | | |
107 | | impl CipherCtxRef { |
108 | | #[corresponds(EVP_CIPHER_CTX_copy)] |
109 | 0 | pub fn copy(&mut self, src: &CipherCtxRef) -> Result<(), ErrorStack> { |
110 | 0 | unsafe { |
111 | 0 | cvt(ffi::EVP_CIPHER_CTX_copy(self.as_ptr(), src.as_ptr()))?; |
112 | 0 | Ok(()) |
113 | | } |
114 | 0 | } |
115 | | |
116 | | /// Initializes the context for encryption. |
117 | | /// |
118 | | /// Normally this is called once to set all of the cipher, key, and IV. However, this process can be split up |
119 | | /// by first setting the cipher with no key or IV and then setting the key and IV with no cipher. This can be used |
120 | | /// to, for example, use a nonstandard IV size. |
121 | | /// |
122 | | /// # Panics |
123 | | /// |
124 | | /// Panics if the key buffer is smaller than the key size of the cipher, the IV buffer is smaller than the IV size |
125 | | /// of the cipher, or if a key or IV is provided before a cipher. |
126 | | #[corresponds(EVP_EncryptInit_ex)] |
127 | 0 | pub fn encrypt_init( |
128 | 0 | &mut self, |
129 | 0 | type_: Option<&CipherRef>, |
130 | 0 | key: Option<&[u8]>, |
131 | 0 | iv: Option<&[u8]>, |
132 | 0 | ) -> Result<(), ErrorStack> { |
133 | 0 | self.cipher_init(type_, key, iv, ffi::EVP_EncryptInit_ex) |
134 | 0 | } |
135 | | |
136 | | /// Initializes the context for decryption. |
137 | | /// |
138 | | /// Normally this is called once to set all of the cipher, key, and IV. However, this process can be split up |
139 | | /// by first setting the cipher with no key or IV and then setting the key and IV with no cipher. This can be used |
140 | | /// to, for example, use a nonstandard IV size. |
141 | | /// |
142 | | /// # Panics |
143 | | /// |
144 | | /// Panics if the key buffer is smaller than the key size of the cipher, the IV buffer is smaller than the IV size |
145 | | /// of the cipher, or if a key or IV is provided before a cipher. |
146 | | #[corresponds(EVP_DecryptInit_ex)] |
147 | 0 | pub fn decrypt_init( |
148 | 0 | &mut self, |
149 | 0 | type_: Option<&CipherRef>, |
150 | 0 | key: Option<&[u8]>, |
151 | 0 | iv: Option<&[u8]>, |
152 | 0 | ) -> Result<(), ErrorStack> { |
153 | 0 | self.cipher_init(type_, key, iv, ffi::EVP_DecryptInit_ex) |
154 | 0 | } |
155 | | |
156 | 0 | fn cipher_init( |
157 | 0 | &mut self, |
158 | 0 | type_: Option<&CipherRef>, |
159 | 0 | key: Option<&[u8]>, |
160 | 0 | iv: Option<&[u8]>, |
161 | 0 | f: unsafe extern "C" fn( |
162 | 0 | *mut ffi::EVP_CIPHER_CTX, |
163 | 0 | *const ffi::EVP_CIPHER, |
164 | 0 | *mut ffi::ENGINE, |
165 | 0 | *const c_uchar, |
166 | 0 | *const c_uchar, |
167 | 0 | ) -> c_int, |
168 | 0 | ) -> Result<(), ErrorStack> { |
169 | 0 | if let Some(key) = key { |
170 | 0 | let key_len = type_.map_or_else(|| self.key_length(), |c| c.key_length()); |
171 | 0 | assert!(key_len <= key.len()); |
172 | 0 | } |
173 | | |
174 | 0 | if let Some(iv) = iv { |
175 | 0 | let iv_len = type_.map_or_else(|| self.iv_length(), |c| c.iv_length()); |
176 | 0 | assert!(iv_len <= iv.len()); |
177 | 0 | } |
178 | | |
179 | | unsafe { |
180 | 0 | cvt(f( |
181 | 0 | self.as_ptr(), |
182 | 0 | type_.map_or(ptr::null(), |p| p.as_ptr()), |
183 | 0 | ptr::null_mut(), |
184 | 0 | key.map_or(ptr::null(), |k| k.as_ptr()), |
185 | 0 | iv.map_or(ptr::null(), |iv| iv.as_ptr()), |
186 | 0 | ))?; |
187 | | } |
188 | | |
189 | 0 | Ok(()) |
190 | 0 | } |
191 | | |
192 | | /// Initializes the context to perform envelope encryption. |
193 | | /// |
194 | | /// Normally this is called once to set both the cipher and public keys. However, this process may be split up by |
195 | | /// first providing the cipher with no public keys and then setting the public keys with no cipher. |
196 | | /// |
197 | | /// `encrypted_keys` will contain the generated symmetric key encrypted with each corresponding asymmetric private |
198 | | /// key. The generated IV will be written to `iv`. |
199 | | /// |
200 | | /// # Panics |
201 | | /// |
202 | | /// Panics if `pub_keys` is not the same size as `encrypted_keys`, the IV buffer is smaller than the cipher's IV |
203 | | /// size, or if an IV is provided before the cipher. |
204 | | #[corresponds(EVP_SealInit)] |
205 | | #[cfg(not(boringssl))] |
206 | 0 | pub fn seal_init<T>( |
207 | 0 | &mut self, |
208 | 0 | type_: Option<&CipherRef>, |
209 | 0 | pub_keys: &[PKey<T>], |
210 | 0 | encrypted_keys: &mut [Vec<u8>], |
211 | 0 | iv: Option<&mut [u8]>, |
212 | 0 | ) -> Result<(), ErrorStack> |
213 | 0 | where |
214 | 0 | T: HasPublic, |
215 | 0 | { |
216 | 0 | assert_eq!(pub_keys.len(), encrypted_keys.len()); |
217 | 0 | if !pub_keys.is_empty() { |
218 | 0 | let iv_len = type_.map_or_else(|| self.iv_length(), |c| c.iv_length()); |
219 | 0 | assert!(iv.as_ref().map_or(0, |b| b.len()) >= iv_len); |
220 | 0 | } |
221 | | |
222 | 0 | for (pub_key, buf) in pub_keys.iter().zip(&mut *encrypted_keys) { |
223 | 0 | buf.resize(pub_key.size(), 0); |
224 | 0 | } |
225 | | |
226 | 0 | let mut keys = encrypted_keys |
227 | 0 | .iter_mut() |
228 | 0 | .map(|b| b.as_mut_ptr()) |
229 | 0 | .collect::<Vec<_>>(); |
230 | 0 | let mut key_lengths = vec![0; pub_keys.len()]; |
231 | 0 | let pub_keys_len = i32::try_from(pub_keys.len()).unwrap(); |
232 | 0 |
|
233 | 0 | unsafe { |
234 | 0 | cvt(ffi::EVP_SealInit( |
235 | 0 | self.as_ptr(), |
236 | 0 | type_.map_or(ptr::null(), |p| p.as_ptr()), |
237 | 0 | keys.as_mut_ptr(), |
238 | 0 | key_lengths.as_mut_ptr(), |
239 | 0 | iv.map_or(ptr::null_mut(), |b| b.as_mut_ptr()), |
240 | 0 | pub_keys.as_ptr() as *mut _, |
241 | 0 | pub_keys_len, |
242 | 0 | ))?; |
243 | | } |
244 | | |
245 | 0 | for (buf, len) in encrypted_keys.iter_mut().zip(key_lengths) { |
246 | 0 | buf.truncate(len as usize); |
247 | 0 | } |
248 | | |
249 | 0 | Ok(()) |
250 | 0 | } |
251 | | |
252 | | /// Initializes the context to perform envelope decryption. |
253 | | /// |
254 | | /// Normally this is called once with all of the arguments present. However, this process may be split up by first |
255 | | /// providing the cipher alone and then after providing the rest of the arguments in a second call. |
256 | | /// |
257 | | /// # Panics |
258 | | /// |
259 | | /// Panics if the IV buffer is smaller than the cipher's required IV size or if the IV is provided before the |
260 | | /// cipher. |
261 | | #[corresponds(EVP_OpenInit)] |
262 | | #[cfg(not(boringssl))] |
263 | 0 | pub fn open_init<T>( |
264 | 0 | &mut self, |
265 | 0 | type_: Option<&CipherRef>, |
266 | 0 | encrypted_key: &[u8], |
267 | 0 | iv: Option<&[u8]>, |
268 | 0 | priv_key: Option<&PKeyRef<T>>, |
269 | 0 | ) -> Result<(), ErrorStack> |
270 | 0 | where |
271 | 0 | T: HasPrivate, |
272 | 0 | { |
273 | 0 | if priv_key.is_some() { |
274 | 0 | let iv_len = type_.map_or_else(|| self.iv_length(), |c| c.iv_length()); |
275 | 0 | assert!(iv.map_or(0, |b| b.len()) >= iv_len); |
276 | 0 | } |
277 | | |
278 | 0 | let len = c_int::try_from(encrypted_key.len()).unwrap(); |
279 | 0 | unsafe { |
280 | 0 | cvt(ffi::EVP_OpenInit( |
281 | 0 | self.as_ptr(), |
282 | 0 | type_.map_or(ptr::null(), |p| p.as_ptr()), |
283 | 0 | encrypted_key.as_ptr(), |
284 | 0 | len, |
285 | 0 | iv.map_or(ptr::null(), |b| b.as_ptr()), |
286 | 0 | priv_key.map_or(ptr::null_mut(), ForeignTypeRef::as_ptr), |
287 | 0 | ))?; |
288 | | } |
289 | | |
290 | 0 | Ok(()) |
291 | 0 | } |
292 | | |
293 | 0 | fn assert_cipher(&self) { |
294 | 0 | unsafe { |
295 | 0 | assert!(!EVP_CIPHER_CTX_get0_cipher(self.as_ptr()).is_null()); |
296 | | } |
297 | 0 | } |
298 | | |
299 | | /// Returns the block size of the context's cipher. |
300 | | /// |
301 | | /// Stream ciphers will report a block size of 1. |
302 | | /// |
303 | | /// # Panics |
304 | | /// |
305 | | /// Panics if the context has not been initialized with a cipher. |
306 | | #[corresponds(EVP_CIPHER_CTX_block_size)] |
307 | 0 | pub fn block_size(&self) -> usize { |
308 | 0 | self.assert_cipher(); |
309 | 0 |
|
310 | 0 | unsafe { ffi::EVP_CIPHER_CTX_block_size(self.as_ptr()) as usize } |
311 | 0 | } |
312 | | |
313 | | /// Returns the key length of the context's cipher. |
314 | | /// |
315 | | /// # Panics |
316 | | /// |
317 | | /// Panics if the context has not been initialized with a cipher. |
318 | | #[corresponds(EVP_CIPHER_CTX_key_length)] |
319 | 0 | pub fn key_length(&self) -> usize { |
320 | 0 | self.assert_cipher(); |
321 | 0 |
|
322 | 0 | unsafe { ffi::EVP_CIPHER_CTX_key_length(self.as_ptr()) as usize } |
323 | 0 | } |
324 | | |
325 | | /// Generates a random key based on the configured cipher. |
326 | | /// |
327 | | /// # Panics |
328 | | /// |
329 | | /// Panics if the context has not been initialized with a cipher or if the buffer is smaller than the cipher's key |
330 | | /// length. |
331 | | /// |
332 | | /// This corresponds to [`EVP_CIPHER_CTX_rand_key`]. |
333 | | /// |
334 | | /// [`EVP_CIPHER_CTX_rand_key`]: https://www.openssl.org/docs/manmaster/man3/EVP_CIPHER_CTX_rand_key.html |
335 | | #[corresponds(EVP_CIPHER_CTX_rand_key)] |
336 | | #[cfg(not(boringssl))] |
337 | 0 | pub fn rand_key(&self, buf: &mut [u8]) -> Result<(), ErrorStack> { |
338 | 0 | assert!(buf.len() >= self.key_length()); |
339 | | |
340 | | unsafe { |
341 | 0 | cvt(ffi::EVP_CIPHER_CTX_rand_key( |
342 | 0 | self.as_ptr(), |
343 | 0 | buf.as_mut_ptr(), |
344 | 0 | ))?; |
345 | | } |
346 | | |
347 | 0 | Ok(()) |
348 | 0 | } |
349 | | |
350 | | /// Sets the length of the key expected by the context. |
351 | | /// |
352 | | /// Only some ciphers support configurable key lengths. |
353 | | /// |
354 | | /// # Panics |
355 | | /// |
356 | | /// Panics if the context has not been initialized with a cipher. |
357 | | #[corresponds(EVP_CIPHER_CTX_set_key_length)] |
358 | 0 | pub fn set_key_length(&mut self, len: usize) -> Result<(), ErrorStack> { |
359 | 0 | self.assert_cipher(); |
360 | 0 |
|
361 | 0 | unsafe { |
362 | 0 | cvt(ffi::EVP_CIPHER_CTX_set_key_length( |
363 | 0 | self.as_ptr(), |
364 | 0 | len.try_into().unwrap(), |
365 | 0 | ))?; |
366 | | } |
367 | | |
368 | 0 | Ok(()) |
369 | 0 | } |
370 | | |
371 | | /// Returns the length of the IV expected by this context. |
372 | | /// |
373 | | /// Returns 0 if the cipher does not use an IV. |
374 | | /// |
375 | | /// # Panics |
376 | | /// |
377 | | /// Panics if the context has not been initialized with a cipher. |
378 | | #[corresponds(EVP_CIPHER_CTX_iv_length)] |
379 | 0 | pub fn iv_length(&self) -> usize { |
380 | 0 | self.assert_cipher(); |
381 | 0 |
|
382 | 0 | unsafe { ffi::EVP_CIPHER_CTX_iv_length(self.as_ptr()) as usize } |
383 | 0 | } |
384 | | |
385 | | /// Returns the `num` parameter of the cipher. |
386 | | /// |
387 | | /// Built-in ciphers typically use this to track how much of the |
388 | | /// current underlying block has been "used" already. |
389 | | /// |
390 | | /// # Panics |
391 | | /// |
392 | | /// Panics if the context has not been initialized with a cipher. |
393 | | #[corresponds(EVP_CIPHER_CTX_num)] |
394 | | #[cfg(ossl110)] |
395 | 0 | pub fn num(&self) -> usize { |
396 | 0 | self.assert_cipher(); |
397 | 0 |
|
398 | 0 | unsafe { ffi::EVP_CIPHER_CTX_num(self.as_ptr()) as usize } |
399 | 0 | } |
400 | | |
401 | | /// Sets the length of the IV expected by this context. |
402 | | /// |
403 | | /// Only some ciphers support configurable IV lengths. |
404 | | /// |
405 | | /// # Panics |
406 | | /// |
407 | | /// Panics if the context has not been initialized with a cipher. |
408 | | #[corresponds(EVP_CIPHER_CTX_ctrl)] |
409 | 0 | pub fn set_iv_length(&mut self, len: usize) -> Result<(), ErrorStack> { |
410 | 0 | self.assert_cipher(); |
411 | 0 |
|
412 | 0 | let len = c_int::try_from(len).unwrap(); |
413 | 0 |
|
414 | 0 | unsafe { |
415 | 0 | cvt(ffi::EVP_CIPHER_CTX_ctrl( |
416 | 0 | self.as_ptr(), |
417 | 0 | ffi::EVP_CTRL_GCM_SET_IVLEN, |
418 | 0 | len, |
419 | 0 | ptr::null_mut(), |
420 | 0 | ))?; |
421 | | } |
422 | | |
423 | 0 | Ok(()) |
424 | 0 | } |
425 | | |
426 | | /// Returns the length of the authentication tag expected by this context. |
427 | | /// |
428 | | /// Returns 0 if the cipher is not authenticated. |
429 | | /// |
430 | | /// # Panics |
431 | | /// |
432 | | /// Panics if the context has not been initialized with a cipher. |
433 | | /// |
434 | | /// Requires OpenSSL 3.0.0 or newer. |
435 | | #[corresponds(EVP_CIPHER_CTX_get_tag_length)] |
436 | | #[cfg(ossl300)] |
437 | | pub fn tag_length(&self) -> usize { |
438 | | self.assert_cipher(); |
439 | | |
440 | | unsafe { ffi::EVP_CIPHER_CTX_get_tag_length(self.as_ptr()) as usize } |
441 | | } |
442 | | |
443 | | /// Retrieves the calculated authentication tag from the context. |
444 | | /// |
445 | | /// This should be called after [`Self::cipher_final`], and is only supported by authenticated ciphers. |
446 | | /// |
447 | | /// The size of the buffer indicates the size of the tag. While some ciphers support a range of tag sizes, it is |
448 | | /// recommended to pick the maximum size. |
449 | | #[corresponds(EVP_CIPHER_CTX_ctrl)] |
450 | 0 | pub fn tag(&self, tag: &mut [u8]) -> Result<(), ErrorStack> { |
451 | 0 | let len = c_int::try_from(tag.len()).unwrap(); |
452 | 0 |
|
453 | 0 | unsafe { |
454 | 0 | cvt(ffi::EVP_CIPHER_CTX_ctrl( |
455 | 0 | self.as_ptr(), |
456 | 0 | ffi::EVP_CTRL_GCM_GET_TAG, |
457 | 0 | len, |
458 | 0 | tag.as_mut_ptr() as *mut _, |
459 | 0 | ))?; |
460 | | } |
461 | | |
462 | 0 | Ok(()) |
463 | 0 | } |
464 | | |
465 | | /// Sets the length of the generated authentication tag. |
466 | | /// |
467 | | /// This must be called when encrypting with a cipher in CCM mode to use a tag size other than the default. |
468 | | #[corresponds(EVP_CIPHER_CTX_ctrl)] |
469 | 0 | pub fn set_tag_length(&mut self, len: usize) -> Result<(), ErrorStack> { |
470 | 0 | let len = c_int::try_from(len).unwrap(); |
471 | 0 |
|
472 | 0 | unsafe { |
473 | 0 | cvt(ffi::EVP_CIPHER_CTX_ctrl( |
474 | 0 | self.as_ptr(), |
475 | 0 | ffi::EVP_CTRL_GCM_SET_TAG, |
476 | 0 | len, |
477 | 0 | ptr::null_mut(), |
478 | 0 | ))?; |
479 | | } |
480 | | |
481 | 0 | Ok(()) |
482 | 0 | } |
483 | | |
484 | | /// Sets the authentication tag for verification during decryption. |
485 | | #[corresponds(EVP_CIPHER_CTX_ctrl)] |
486 | 0 | pub fn set_tag(&mut self, tag: &[u8]) -> Result<(), ErrorStack> { |
487 | 0 | let len = c_int::try_from(tag.len()).unwrap(); |
488 | 0 |
|
489 | 0 | unsafe { |
490 | 0 | cvt(ffi::EVP_CIPHER_CTX_ctrl( |
491 | 0 | self.as_ptr(), |
492 | 0 | ffi::EVP_CTRL_GCM_SET_TAG, |
493 | 0 | len, |
494 | 0 | tag.as_ptr() as *mut _, |
495 | 0 | ))?; |
496 | | } |
497 | | |
498 | 0 | Ok(()) |
499 | 0 | } |
500 | | |
501 | | /// Enables or disables padding. |
502 | | /// |
503 | | /// If padding is disabled, the plaintext must be an exact multiple of the cipher's block size. |
504 | | #[corresponds(EVP_CIPHER_CTX_set_padding)] |
505 | 0 | pub fn set_padding(&mut self, padding: bool) { |
506 | 0 | unsafe { |
507 | 0 | ffi::EVP_CIPHER_CTX_set_padding(self.as_ptr(), padding as c_int); |
508 | 0 | } |
509 | 0 | } |
510 | | |
511 | | /// Sets the total length of plaintext data. |
512 | | /// |
513 | | /// This is required for ciphers operating in CCM mode. |
514 | | #[corresponds(EVP_CipherUpdate)] |
515 | 0 | pub fn set_data_len(&mut self, len: usize) -> Result<(), ErrorStack> { |
516 | 0 | let len = c_int::try_from(len).unwrap(); |
517 | 0 |
|
518 | 0 | unsafe { |
519 | 0 | cvt(ffi::EVP_CipherUpdate( |
520 | 0 | self.as_ptr(), |
521 | 0 | ptr::null_mut(), |
522 | 0 | &mut 0, |
523 | 0 | ptr::null(), |
524 | 0 | len, |
525 | 0 | ))?; |
526 | | } |
527 | | |
528 | 0 | Ok(()) |
529 | 0 | } |
530 | | |
531 | | /// Set ctx flags. |
532 | | /// |
533 | | /// This function is currently used to enable AES key wrap feature supported by OpenSSL 1.0.2 or newer. |
534 | | #[corresponds(EVP_CIPHER_CTX_set_flags)] |
535 | | #[cfg(ossl102)] |
536 | 0 | pub fn set_flags(&mut self, flags: CipherCtxFlags) { |
537 | 0 | unsafe { |
538 | 0 | ffi::EVP_CIPHER_CTX_set_flags(self.as_ptr(), flags.bits()); |
539 | 0 | } |
540 | 0 | } |
541 | | |
542 | | /// Writes data into the context. |
543 | | /// |
544 | | /// Providing no output buffer will cause the input to be considered additional authenticated data (AAD). |
545 | | /// |
546 | | /// Returns the number of bytes written to `output`. |
547 | | /// |
548 | | /// # Panics |
549 | | /// |
550 | | /// Panics if `output` doesn't contain enough space for data to be |
551 | | /// written. |
552 | | #[corresponds(EVP_CipherUpdate)] |
553 | 0 | pub fn cipher_update( |
554 | 0 | &mut self, |
555 | 0 | input: &[u8], |
556 | 0 | output: Option<&mut [u8]>, |
557 | 0 | ) -> Result<usize, ErrorStack> { |
558 | 0 | if let Some(output) = &output { |
559 | 0 | let mut block_size = self.block_size(); |
560 | 0 | if block_size == 1 { |
561 | 0 | block_size = 0; |
562 | 0 | } |
563 | 0 | let min_output_size = input.len() + block_size; |
564 | 0 | assert!( |
565 | 0 | output.len() >= min_output_size, |
566 | 0 | "Output buffer size should be at least {} bytes.", |
567 | | min_output_size |
568 | | ); |
569 | 0 | } |
570 | | |
571 | 0 | unsafe { self.cipher_update_unchecked(input, output) } |
572 | 0 | } |
573 | | |
574 | | /// Writes data into the context. |
575 | | /// |
576 | | /// Providing no output buffer will cause the input to be considered additional authenticated data (AAD). |
577 | | /// |
578 | | /// Returns the number of bytes written to `output`. |
579 | | /// |
580 | | /// This function is the same as [`Self::cipher_update`] but with the |
581 | | /// output size check removed. It can be used when the exact |
582 | | /// buffer size control is maintained by the caller. |
583 | | /// |
584 | | /// # Safety |
585 | | /// |
586 | | /// The caller is expected to provide `output` buffer |
587 | | /// large enough to contain correct number of bytes. For streaming |
588 | | /// ciphers the output buffer size should be at least as big as |
589 | | /// the input buffer. For block ciphers the size of the output |
590 | | /// buffer depends on the state of partially updated blocks. |
591 | | #[corresponds(EVP_CipherUpdate)] |
592 | 0 | pub unsafe fn cipher_update_unchecked( |
593 | 0 | &mut self, |
594 | 0 | input: &[u8], |
595 | 0 | output: Option<&mut [u8]>, |
596 | 0 | ) -> Result<usize, ErrorStack> { |
597 | 0 | let inlen = c_int::try_from(input.len()).unwrap(); |
598 | 0 |
|
599 | 0 | let mut outlen = 0; |
600 | 0 |
|
601 | 0 | cvt(ffi::EVP_CipherUpdate( |
602 | 0 | self.as_ptr(), |
603 | 0 | output.map_or(ptr::null_mut(), |b| b.as_mut_ptr()), |
604 | 0 | &mut outlen, |
605 | 0 | input.as_ptr(), |
606 | 0 | inlen, |
607 | 0 | ))?; |
608 | | |
609 | 0 | Ok(outlen as usize) |
610 | 0 | } |
611 | | |
612 | | /// Like [`Self::cipher_update`] except that it appends output to a [`Vec`]. |
613 | 0 | pub fn cipher_update_vec( |
614 | 0 | &mut self, |
615 | 0 | input: &[u8], |
616 | 0 | output: &mut Vec<u8>, |
617 | 0 | ) -> Result<usize, ErrorStack> { |
618 | 0 | let base = output.len(); |
619 | 0 | output.resize(base + input.len() + self.block_size(), 0); |
620 | 0 | let len = self.cipher_update(input, Some(&mut output[base..]))?; |
621 | 0 | output.truncate(base + len); |
622 | 0 |
|
623 | 0 | Ok(len) |
624 | 0 | } |
625 | | |
626 | | /// Like [`Self::cipher_update`] except that it writes output into the |
627 | | /// `data` buffer. The `inlen` parameter specifies the number of bytes in |
628 | | /// `data` that are considered the input. For streaming ciphers, the size of |
629 | | /// `data` must be at least the input size. Otherwise, it must be at least |
630 | | /// an additional block size larger. |
631 | | /// |
632 | | /// Note: Use [`Self::cipher_update`] with no output argument to write AAD. |
633 | | /// |
634 | | /// # Panics |
635 | | /// |
636 | | /// This function panics if the input size cannot be represented as `int` or |
637 | | /// exceeds the buffer size, or if the output buffer does not contain enough |
638 | | /// additional space. |
639 | | #[corresponds(EVP_CipherUpdate)] |
640 | 0 | pub fn cipher_update_inplace( |
641 | 0 | &mut self, |
642 | 0 | data: &mut [u8], |
643 | 0 | inlen: usize, |
644 | 0 | ) -> Result<usize, ErrorStack> { |
645 | 0 | assert!(inlen <= data.len(), "Input size may not exceed buffer size"); |
646 | 0 | let block_size = self.block_size(); |
647 | 0 | if block_size != 1 { |
648 | 0 | assert!( |
649 | 0 | data.len() >= inlen + block_size, |
650 | 0 | "Output buffer size must be at least {} bytes.", |
651 | 0 | inlen + block_size |
652 | | ); |
653 | 0 | } |
654 | | |
655 | 0 | let inlen = c_int::try_from(inlen).unwrap(); |
656 | 0 | let mut outlen = 0; |
657 | 0 | unsafe { |
658 | 0 | cvt(ffi::EVP_CipherUpdate( |
659 | 0 | self.as_ptr(), |
660 | 0 | data.as_mut_ptr(), |
661 | 0 | &mut outlen, |
662 | 0 | data.as_ptr(), |
663 | 0 | inlen, |
664 | 0 | )) |
665 | 0 | }?; |
666 | | |
667 | 0 | Ok(outlen as usize) |
668 | 0 | } |
669 | | |
670 | | /// Finalizes the encryption or decryption process. |
671 | | /// |
672 | | /// Any remaining data will be written to the output buffer. |
673 | | /// |
674 | | /// Returns the number of bytes written to `output`. |
675 | | /// |
676 | | /// # Panics |
677 | | /// |
678 | | /// Panics if `output` is smaller than the cipher's block size. |
679 | | #[corresponds(EVP_CipherFinal)] |
680 | 0 | pub fn cipher_final(&mut self, output: &mut [u8]) -> Result<usize, ErrorStack> { |
681 | 0 | let block_size = self.block_size(); |
682 | 0 | if block_size > 1 { |
683 | 0 | assert!(output.len() >= block_size); |
684 | 0 | } |
685 | | |
686 | 0 | unsafe { self.cipher_final_unchecked(output) } |
687 | 0 | } |
688 | | |
689 | | /// Finalizes the encryption or decryption process. |
690 | | /// |
691 | | /// Any remaining data will be written to the output buffer. |
692 | | /// |
693 | | /// Returns the number of bytes written to `output`. |
694 | | /// |
695 | | /// This function is the same as [`Self::cipher_final`] but with |
696 | | /// the output buffer size check removed. |
697 | | /// |
698 | | /// # Safety |
699 | | /// |
700 | | /// The caller is expected to provide `output` buffer |
701 | | /// large enough to contain correct number of bytes. For streaming |
702 | | /// ciphers the output buffer can be empty, for block ciphers the |
703 | | /// output buffer should be at least as big as the block. |
704 | | #[corresponds(EVP_CipherFinal)] |
705 | 0 | pub unsafe fn cipher_final_unchecked( |
706 | 0 | &mut self, |
707 | 0 | output: &mut [u8], |
708 | 0 | ) -> Result<usize, ErrorStack> { |
709 | 0 | let mut outl = 0; |
710 | 0 |
|
711 | 0 | cvt(ffi::EVP_CipherFinal( |
712 | 0 | self.as_ptr(), |
713 | 0 | output.as_mut_ptr(), |
714 | 0 | &mut outl, |
715 | 0 | ))?; |
716 | | |
717 | 0 | Ok(outl as usize) |
718 | 0 | } |
719 | | |
720 | | /// Like [`Self::cipher_final`] except that it appends output to a [`Vec`]. |
721 | 0 | pub fn cipher_final_vec(&mut self, output: &mut Vec<u8>) -> Result<usize, ErrorStack> { |
722 | 0 | let base = output.len(); |
723 | 0 | output.resize(base + self.block_size(), 0); |
724 | 0 | let len = self.cipher_final(&mut output[base..])?; |
725 | 0 | output.truncate(base + len); |
726 | 0 |
|
727 | 0 | Ok(len) |
728 | 0 | } |
729 | | } |
730 | | |
731 | | #[cfg(test)] |
732 | | mod test { |
733 | | use super::*; |
734 | | use crate::{cipher::Cipher, rand::rand_bytes}; |
735 | | #[cfg(not(boringssl))] |
736 | | use std::slice; |
737 | | |
738 | | #[test] |
739 | | #[cfg(not(boringssl))] |
740 | | fn seal_open() { |
741 | | let private_pem = include_bytes!("../test/rsa.pem"); |
742 | | let public_pem = include_bytes!("../test/rsa.pem.pub"); |
743 | | let private_key = PKey::private_key_from_pem(private_pem).unwrap(); |
744 | | let public_key = PKey::public_key_from_pem(public_pem).unwrap(); |
745 | | let cipher = Cipher::aes_256_cbc(); |
746 | | let secret = b"My secret message"; |
747 | | |
748 | | let mut ctx = CipherCtx::new().unwrap(); |
749 | | let mut encrypted_key = vec![]; |
750 | | let mut iv = vec![0; cipher.iv_length()]; |
751 | | let mut encrypted = vec![]; |
752 | | ctx.seal_init( |
753 | | Some(cipher), |
754 | | &[public_key], |
755 | | slice::from_mut(&mut encrypted_key), |
756 | | Some(&mut iv), |
757 | | ) |
758 | | .unwrap(); |
759 | | ctx.cipher_update_vec(secret, &mut encrypted).unwrap(); |
760 | | ctx.cipher_final_vec(&mut encrypted).unwrap(); |
761 | | |
762 | | let mut decrypted = vec![]; |
763 | | ctx.open_init(Some(cipher), &encrypted_key, Some(&iv), Some(&private_key)) |
764 | | .unwrap(); |
765 | | ctx.cipher_update_vec(&encrypted, &mut decrypted).unwrap(); |
766 | | ctx.cipher_final_vec(&mut decrypted).unwrap(); |
767 | | |
768 | | assert_eq!(secret, &decrypted[..]); |
769 | | } |
770 | | |
771 | | fn aes_128_cbc(cipher: &CipherRef) { |
772 | | // from https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf |
773 | | let key = hex::decode("2b7e151628aed2a6abf7158809cf4f3c").unwrap(); |
774 | | let iv = hex::decode("000102030405060708090a0b0c0d0e0f").unwrap(); |
775 | | let pt = hex::decode("6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e51") |
776 | | .unwrap(); |
777 | | let ct = hex::decode("7649abac8119b246cee98e9b12e9197d5086cb9b507219ee95db113a917678b2") |
778 | | .unwrap(); |
779 | | |
780 | | let mut ctx = CipherCtx::new().unwrap(); |
781 | | |
782 | | ctx.encrypt_init(Some(cipher), Some(&key), Some(&iv)) |
783 | | .unwrap(); |
784 | | ctx.set_padding(false); |
785 | | |
786 | | let mut buf = vec![]; |
787 | | ctx.cipher_update_vec(&pt, &mut buf).unwrap(); |
788 | | ctx.cipher_final_vec(&mut buf).unwrap(); |
789 | | |
790 | | assert_eq!(buf, ct); |
791 | | |
792 | | ctx.decrypt_init(Some(cipher), Some(&key), Some(&iv)) |
793 | | .unwrap(); |
794 | | ctx.set_padding(false); |
795 | | |
796 | | let mut buf = vec![]; |
797 | | ctx.cipher_update_vec(&ct, &mut buf).unwrap(); |
798 | | ctx.cipher_final_vec(&mut buf).unwrap(); |
799 | | |
800 | | assert_eq!(buf, pt); |
801 | | } |
802 | | |
803 | | #[test] |
804 | | #[cfg(ossl300)] |
805 | | fn fetched_aes_128_cbc() { |
806 | | let cipher = Cipher::fetch(None, "AES-128-CBC", None).unwrap(); |
807 | | aes_128_cbc(&cipher); |
808 | | } |
809 | | |
810 | | #[test] |
811 | | fn default_aes_128_cbc() { |
812 | | let cipher = Cipher::aes_128_cbc(); |
813 | | aes_128_cbc(cipher); |
814 | | } |
815 | | |
816 | | #[test] |
817 | | fn test_stream_ciphers() { |
818 | | test_stream_cipher(Cipher::aes_192_ctr()); |
819 | | test_stream_cipher(Cipher::aes_256_ctr()); |
820 | | } |
821 | | |
822 | | fn test_stream_cipher(cipher: &'static CipherRef) { |
823 | | let mut key = vec![0; cipher.key_length()]; |
824 | | rand_bytes(&mut key).unwrap(); |
825 | | let mut iv = vec![0; cipher.iv_length()]; |
826 | | rand_bytes(&mut iv).unwrap(); |
827 | | |
828 | | let mut ctx = CipherCtx::new().unwrap(); |
829 | | |
830 | | ctx.encrypt_init(Some(cipher), Some(&key), Some(&iv)) |
831 | | .unwrap(); |
832 | | ctx.set_padding(false); |
833 | | |
834 | | assert_eq!( |
835 | | 1, |
836 | | cipher.block_size(), |
837 | | "Need a stream cipher, not a block cipher" |
838 | | ); |
839 | | |
840 | | // update cipher with non-full block |
841 | | // this is a streaming cipher so the number of output bytes |
842 | | // will be the same as the number of input bytes |
843 | | let mut output = vec![0; 32]; |
844 | | let outlen = ctx |
845 | | .cipher_update(&[1; 15], Some(&mut output[0..15])) |
846 | | .unwrap(); |
847 | | assert_eq!(15, outlen); |
848 | | |
849 | | // update cipher with missing bytes from the previous block |
850 | | // as previously it will output the same number of bytes as |
851 | | // the input |
852 | | let outlen = ctx |
853 | | .cipher_update(&[1; 17], Some(&mut output[15..])) |
854 | | .unwrap(); |
855 | | assert_eq!(17, outlen); |
856 | | |
857 | | ctx.cipher_final_vec(&mut vec![0; 0]).unwrap(); |
858 | | |
859 | | // encrypt again, but use in-place encryption this time |
860 | | // First reset the IV |
861 | | ctx.encrypt_init(None, None, Some(&iv)).unwrap(); |
862 | | ctx.set_padding(false); |
863 | | let mut data_inplace: [u8; 32] = [1; 32]; |
864 | | let outlen = ctx |
865 | | .cipher_update_inplace(&mut data_inplace[0..15], 15) |
866 | | .unwrap(); |
867 | | assert_eq!(15, outlen); |
868 | | |
869 | | let outlen = ctx |
870 | | .cipher_update_inplace(&mut data_inplace[15..32], 17) |
871 | | .unwrap(); |
872 | | assert_eq!(17, outlen); |
873 | | |
874 | | ctx.cipher_final(&mut [0u8; 0]).unwrap(); |
875 | | |
876 | | // Check that the resulting data is encrypted in the same manner |
877 | | assert_eq!(data_inplace.as_slice(), output.as_slice()); |
878 | | |
879 | | // try to decrypt |
880 | | ctx.decrypt_init(Some(cipher), Some(&key), Some(&iv)) |
881 | | .unwrap(); |
882 | | ctx.set_padding(false); |
883 | | |
884 | | // update cipher with non-full block |
885 | | // expect that the output for stream cipher will contain |
886 | | // the same number of bytes as the input |
887 | | let mut output_decrypted = vec![0; 32]; |
888 | | let outlen = ctx |
889 | | .cipher_update(&output[0..15], Some(&mut output_decrypted[0..15])) |
890 | | .unwrap(); |
891 | | assert_eq!(15, outlen); |
892 | | |
893 | | let outlen = ctx |
894 | | .cipher_update(&output[15..], Some(&mut output_decrypted[15..])) |
895 | | .unwrap(); |
896 | | assert_eq!(17, outlen); |
897 | | |
898 | | ctx.cipher_final_vec(&mut vec![0; 0]).unwrap(); |
899 | | // check if the decrypted blocks are the same as input (all ones) |
900 | | assert_eq!(output_decrypted, vec![1; 32]); |
901 | | |
902 | | // decrypt again, but now the output in-place |
903 | | ctx.decrypt_init(None, None, Some(&iv)).unwrap(); |
904 | | ctx.set_padding(false); |
905 | | |
906 | | let outlen = ctx.cipher_update_inplace(&mut output[0..15], 15).unwrap(); |
907 | | assert_eq!(15, outlen); |
908 | | |
909 | | let outlen = ctx.cipher_update_inplace(&mut output[15..], 17).unwrap(); |
910 | | assert_eq!(17, outlen); |
911 | | |
912 | | ctx.cipher_final_vec(&mut vec![0; 0]).unwrap(); |
913 | | assert_eq!(output_decrypted, output); |
914 | | } |
915 | | |
916 | | #[test] |
917 | | #[should_panic(expected = "Output buffer size should be at least 33 bytes.")] |
918 | | fn full_block_updates_aes_128() { |
919 | | output_buffer_too_small(Cipher::aes_128_cbc()); |
920 | | } |
921 | | |
922 | | #[test] |
923 | | #[should_panic(expected = "Output buffer size should be at least 33 bytes.")] |
924 | | fn full_block_updates_aes_256() { |
925 | | output_buffer_too_small(Cipher::aes_256_cbc()); |
926 | | } |
927 | | |
928 | | #[test] |
929 | | #[should_panic(expected = "Output buffer size should be at least 17 bytes.")] |
930 | | fn full_block_updates_3des() { |
931 | | output_buffer_too_small(Cipher::des_ede3_cbc()); |
932 | | } |
933 | | |
934 | | fn output_buffer_too_small(cipher: &'static CipherRef) { |
935 | | let mut key = vec![0; cipher.key_length()]; |
936 | | rand_bytes(&mut key).unwrap(); |
937 | | let mut iv = vec![0; cipher.iv_length()]; |
938 | | rand_bytes(&mut iv).unwrap(); |
939 | | |
940 | | let mut ctx = CipherCtx::new().unwrap(); |
941 | | |
942 | | ctx.encrypt_init(Some(cipher), Some(&key), Some(&iv)) |
943 | | .unwrap(); |
944 | | ctx.set_padding(false); |
945 | | |
946 | | let block_size = cipher.block_size(); |
947 | | assert!(block_size > 1, "Need a block cipher, not a stream cipher"); |
948 | | |
949 | | ctx.cipher_update(&vec![0; block_size + 1], Some(&mut vec![0; block_size - 1])) |
950 | | .unwrap(); |
951 | | } |
952 | | |
953 | | #[cfg(ossl102)] |
954 | | fn cipher_wrap_test(cipher: &CipherRef, pt: &str, ct: &str, key: &str, iv: Option<&str>) { |
955 | | let pt = hex::decode(pt).unwrap(); |
956 | | let key = hex::decode(key).unwrap(); |
957 | | let expected = hex::decode(ct).unwrap(); |
958 | | let iv = iv.map(|v| hex::decode(v).unwrap()); |
959 | | let padding = 8 - pt.len() % 8; |
960 | | let mut computed = vec![0; pt.len() + padding + cipher.block_size() * 2]; |
961 | | let mut ctx = CipherCtx::new().unwrap(); |
962 | | |
963 | | ctx.set_flags(CipherCtxFlags::FLAG_WRAP_ALLOW); |
964 | | ctx.encrypt_init(Some(cipher), Some(&key), iv.as_deref()) |
965 | | .unwrap(); |
966 | | |
967 | | let count = ctx.cipher_update(&pt, Some(&mut computed)).unwrap(); |
968 | | let rest = ctx.cipher_final(&mut computed[count..]).unwrap(); |
969 | | computed.truncate(count + rest); |
970 | | |
971 | | if computed != expected { |
972 | | println!("Computed: {}", hex::encode(&computed)); |
973 | | println!("Expected: {}", hex::encode(&expected)); |
974 | | if computed.len() != expected.len() { |
975 | | println!( |
976 | | "Lengths differ: {} in computed vs {} expected", |
977 | | computed.len(), |
978 | | expected.len() |
979 | | ); |
980 | | } |
981 | | panic!("test failure"); |
982 | | } |
983 | | } |
984 | | |
985 | | #[test] |
986 | | #[cfg(ossl102)] |
987 | | fn test_aes128_wrap() { |
988 | | let pt = "00112233445566778899aabbccddeeff"; |
989 | | let ct = "7940ff694448b5bb5139c959a4896832e55d69aa04daa27e"; |
990 | | let key = "2b7e151628aed2a6abf7158809cf4f3c"; |
991 | | let iv = "0001020304050607"; |
992 | | |
993 | | cipher_wrap_test(Cipher::aes_128_wrap(), pt, ct, key, Some(iv)); |
994 | | } |
995 | | |
996 | | #[test] |
997 | | #[cfg(ossl102)] |
998 | | fn test_aes128_wrap_default_iv() { |
999 | | let pt = "00112233445566778899aabbccddeeff"; |
1000 | | let ct = "38f1215f0212526f8a70b51955b9fbdc9fe3041d9832306e"; |
1001 | | let key = "2b7e151628aed2a6abf7158809cf4f3c"; |
1002 | | |
1003 | | cipher_wrap_test(Cipher::aes_128_wrap(), pt, ct, key, None); |
1004 | | } |
1005 | | |
1006 | | #[test] |
1007 | | #[cfg(ossl110)] |
1008 | | fn test_aes128_wrap_pad() { |
1009 | | let pt = "00112233445566778899aabbccddee"; |
1010 | | let ct = "f13998f5ab32ef82a1bdbcbe585e1d837385b529572a1e1b"; |
1011 | | let key = "2b7e151628aed2a6abf7158809cf4f3c"; |
1012 | | let iv = "00010203"; |
1013 | | |
1014 | | cipher_wrap_test(Cipher::aes_128_wrap_pad(), pt, ct, key, Some(iv)); |
1015 | | } |
1016 | | |
1017 | | #[test] |
1018 | | #[cfg(ossl110)] |
1019 | | fn test_aes128_wrap_pad_default_iv() { |
1020 | | let pt = "00112233445566778899aabbccddee"; |
1021 | | let ct = "3a501085fb8cf66f4186b7df851914d471ed823411598add"; |
1022 | | let key = "2b7e151628aed2a6abf7158809cf4f3c"; |
1023 | | |
1024 | | cipher_wrap_test(Cipher::aes_128_wrap_pad(), pt, ct, key, None); |
1025 | | } |
1026 | | |
1027 | | #[test] |
1028 | | #[cfg(ossl102)] |
1029 | | fn test_aes192_wrap() { |
1030 | | let pt = "9f6dee187d35302116aecbfd059657efd9f7589c4b5e7f5b"; |
1031 | | let ct = "83b89142dfeeb4871e078bfb81134d33e23fedc19b03a1cf689973d3831b6813"; |
1032 | | let key = "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b"; |
1033 | | let iv = "0001020304050607"; |
1034 | | |
1035 | | cipher_wrap_test(Cipher::aes_192_wrap(), pt, ct, key, Some(iv)); |
1036 | | } |
1037 | | |
1038 | | #[test] |
1039 | | #[cfg(ossl102)] |
1040 | | fn test_aes192_wrap_default_iv() { |
1041 | | let pt = "9f6dee187d35302116aecbfd059657efd9f7589c4b5e7f5b"; |
1042 | | let ct = "c02c2cf11505d3e4851030d5534cbf5a1d7eca7ba8839adbf239756daf1b43e6"; |
1043 | | let key = "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b"; |
1044 | | |
1045 | | cipher_wrap_test(Cipher::aes_192_wrap(), pt, ct, key, None); |
1046 | | } |
1047 | | |
1048 | | #[test] |
1049 | | #[cfg(ossl110)] |
1050 | | fn test_aes192_wrap_pad() { |
1051 | | let pt = "00112233445566778899aabbccddee"; |
1052 | | let ct = "b4f6bb167ef7caf061a74da82b36ad038ca057ab51e98d3a"; |
1053 | | let key = "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b"; |
1054 | | let iv = "00010203"; |
1055 | | |
1056 | | cipher_wrap_test(Cipher::aes_192_wrap_pad(), pt, ct, key, Some(iv)); |
1057 | | } |
1058 | | |
1059 | | #[test] |
1060 | | #[cfg(ossl110)] |
1061 | | fn test_aes192_wrap_pad_default_iv() { |
1062 | | let pt = "00112233445566778899aabbccddee"; |
1063 | | let ct = "b2c37a28cc602753a7c944a4c2555a2df9c98b2eded5312e"; |
1064 | | let key = "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b"; |
1065 | | |
1066 | | cipher_wrap_test(Cipher::aes_192_wrap_pad(), pt, ct, key, None); |
1067 | | } |
1068 | | |
1069 | | #[test] |
1070 | | #[cfg(ossl102)] |
1071 | | fn test_aes256_wrap() { |
1072 | | let pt = "6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e51"; |
1073 | | let ct = "cc05da2a7f56f7dd0c144231f90bce58648fa20a8278f5a6b7d13bba6aa57a33229d4333866b7fd6"; |
1074 | | let key = "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4"; |
1075 | | let iv = "0001020304050607"; |
1076 | | |
1077 | | cipher_wrap_test(Cipher::aes_256_wrap(), pt, ct, key, Some(iv)); |
1078 | | } |
1079 | | |
1080 | | #[test] |
1081 | | #[cfg(ossl102)] |
1082 | | fn test_aes256_wrap_default_iv() { |
1083 | | let pt = "6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e51"; |
1084 | | let ct = "0b24f068b50e52bc6987868411c36e1b03900866ed12af81eb87cef70a8d1911731c1d7abf789d88"; |
1085 | | let key = "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4"; |
1086 | | |
1087 | | cipher_wrap_test(Cipher::aes_256_wrap(), pt, ct, key, None); |
1088 | | } |
1089 | | |
1090 | | #[test] |
1091 | | #[cfg(ossl110)] |
1092 | | fn test_aes256_wrap_pad() { |
1093 | | let pt = "00112233445566778899aabbccddee"; |
1094 | | let ct = "91594e044ccc06130d60e6c84a996aa4f96a9faff8c5f6e7"; |
1095 | | let key = "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4"; |
1096 | | let iv = "00010203"; |
1097 | | |
1098 | | cipher_wrap_test(Cipher::aes_256_wrap_pad(), pt, ct, key, Some(iv)); |
1099 | | } |
1100 | | |
1101 | | #[test] |
1102 | | #[cfg(ossl110)] |
1103 | | fn test_aes256_wrap_pad_default_iv() { |
1104 | | let pt = "00112233445566778899aabbccddee"; |
1105 | | let ct = "dc3c166a854afd68aea624a4272693554bf2e4fcbae602cd"; |
1106 | | let key = "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4"; |
1107 | | |
1108 | | cipher_wrap_test(Cipher::aes_256_wrap_pad(), pt, ct, key, None); |
1109 | | } |
1110 | | } |