Coverage Report

Created: 2024-05-20 06:38

/rust/registry/src/index.crates.io-6f17d22bba15001f/ryu-1.0.5/src/f2s.rs
Line
Count
Source (jump to first uncovered line)
1
// Translated from C to Rust. The original C code can be found at
2
// https://github.com/ulfjack/ryu and carries the following license:
3
//
4
// Copyright 2018 Ulf Adams
5
//
6
// The contents of this file may be used under the terms of the Apache License,
7
// Version 2.0.
8
//
9
//    (See accompanying file LICENSE-Apache or copy at
10
//     http://www.apache.org/licenses/LICENSE-2.0)
11
//
12
// Alternatively, the contents of this file may be used under the terms of
13
// the Boost Software License, Version 1.0.
14
//    (See accompanying file LICENSE-Boost or copy at
15
//     https://www.boost.org/LICENSE_1_0.txt)
16
//
17
// Unless required by applicable law or agreed to in writing, this software
18
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
19
// KIND, either express or implied.
20
21
use crate::common::*;
22
use crate::f2s_intrinsics::*;
23
24
pub const FLOAT_MANTISSA_BITS: u32 = 23;
25
pub const FLOAT_EXPONENT_BITS: u32 = 8;
26
const FLOAT_BIAS: i32 = 127;
27
pub use crate::f2s_intrinsics::{FLOAT_POW5_BITCOUNT, FLOAT_POW5_INV_BITCOUNT};
28
29
// A floating decimal representing m * 10^e.
30
pub struct FloatingDecimal32 {
31
    pub mantissa: u32,
32
    // Decimal exponent's range is -45 to 38
33
    // inclusive, and can fit in i16 if needed.
34
    pub exponent: i32,
35
}
36
37
#[cfg_attr(feature = "no-panic", inline)]
38
0
pub fn f2d(ieee_mantissa: u32, ieee_exponent: u32) -> FloatingDecimal32 {
39
0
    let (e2, m2) = if ieee_exponent == 0 {
40
0
        (
41
0
            // We subtract 2 so that the bounds computation has 2 additional bits.
42
0
            1 - FLOAT_BIAS - FLOAT_MANTISSA_BITS as i32 - 2,
43
0
            ieee_mantissa,
44
0
        )
45
    } else {
46
0
        (
47
0
            ieee_exponent as i32 - FLOAT_BIAS - FLOAT_MANTISSA_BITS as i32 - 2,
48
0
            (1u32 << FLOAT_MANTISSA_BITS) | ieee_mantissa,
49
0
        )
50
    };
51
0
    let even = (m2 & 1) == 0;
52
0
    let accept_bounds = even;
53
0
54
0
    // Step 2: Determine the interval of valid decimal representations.
55
0
    let mv = 4 * m2;
56
0
    let mp = 4 * m2 + 2;
57
    // Implicit bool -> int conversion. True is 1, false is 0.
58
0
    let mm_shift = (ieee_mantissa != 0 || ieee_exponent <= 1) as u32;
59
0
    let mm = 4 * m2 - 1 - mm_shift;
60
0
61
0
    // Step 3: Convert to a decimal power base using 64-bit arithmetic.
62
0
    let mut vr: u32;
63
0
    let mut vp: u32;
64
0
    let mut vm: u32;
65
0
    let e10: i32;
66
0
    let mut vm_is_trailing_zeros = false;
67
0
    let mut vr_is_trailing_zeros = false;
68
0
    let mut last_removed_digit = 0u8;
69
0
    if e2 >= 0 {
70
0
        let q = log10_pow2(e2);
71
0
        e10 = q as i32;
72
0
        let k = FLOAT_POW5_INV_BITCOUNT + pow5bits(q as i32) - 1;
73
0
        let i = -e2 + q as i32 + k;
74
0
        vr = mul_pow5_inv_div_pow2(mv, q, i);
75
0
        vp = mul_pow5_inv_div_pow2(mp, q, i);
76
0
        vm = mul_pow5_inv_div_pow2(mm, q, i);
77
0
        if q != 0 && (vp - 1) / 10 <= vm / 10 {
78
0
            // We need to know one removed digit even if we are not going to loop below. We could use
79
0
            // q = X - 1 above, except that would require 33 bits for the result, and we've found that
80
0
            // 32-bit arithmetic is faster even on 64-bit machines.
81
0
            let l = FLOAT_POW5_INV_BITCOUNT + pow5bits(q as i32 - 1) - 1;
82
0
            last_removed_digit =
83
0
                (mul_pow5_inv_div_pow2(mv, q - 1, -e2 + q as i32 - 1 + l) % 10) as u8;
84
0
        }
85
0
        if q <= 9 {
86
            // The largest power of 5 that fits in 24 bits is 5^10, but q <= 9 seems to be safe as well.
87
            // Only one of mp, mv, and mm can be a multiple of 5, if any.
88
0
            if mv % 5 == 0 {
89
0
                vr_is_trailing_zeros = multiple_of_power_of_5_32(mv, q);
90
0
            } else if accept_bounds {
91
0
                vm_is_trailing_zeros = multiple_of_power_of_5_32(mm, q);
92
0
            } else {
93
0
                vp -= multiple_of_power_of_5_32(mp, q) as u32;
94
0
            }
95
0
        }
96
    } else {
97
0
        let q = log10_pow5(-e2);
98
0
        e10 = q as i32 + e2;
99
0
        let i = -e2 - q as i32;
100
0
        let k = pow5bits(i) - FLOAT_POW5_BITCOUNT;
101
0
        let mut j = q as i32 - k;
102
0
        vr = mul_pow5_div_pow2(mv, i as u32, j);
103
0
        vp = mul_pow5_div_pow2(mp, i as u32, j);
104
0
        vm = mul_pow5_div_pow2(mm, i as u32, j);
105
0
        if q != 0 && (vp - 1) / 10 <= vm / 10 {
106
0
            j = q as i32 - 1 - (pow5bits(i + 1) - FLOAT_POW5_BITCOUNT);
107
0
            last_removed_digit = (mul_pow5_div_pow2(mv, (i + 1) as u32, j) % 10) as u8;
108
0
        }
109
0
        if q <= 1 {
110
            // {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits.
111
            // mv = 4 * m2, so it always has at least two trailing 0 bits.
112
0
            vr_is_trailing_zeros = true;
113
0
            if accept_bounds {
114
0
                // mm = mv - 1 - mm_shift, so it has 1 trailing 0 bit iff mm_shift == 1.
115
0
                vm_is_trailing_zeros = mm_shift == 1;
116
0
            } else {
117
0
                // mp = mv + 2, so it always has at least one trailing 0 bit.
118
0
                vp -= 1;
119
0
            }
120
0
        } else if q < 31 {
121
0
            // TODO(ulfjack): Use a tighter bound here.
122
0
            vr_is_trailing_zeros = multiple_of_power_of_2_32(mv, q - 1);
123
0
        }
124
    }
125
126
    // Step 4: Find the shortest decimal representation in the interval of valid representations.
127
0
    let mut removed = 0i32;
128
0
    let output = if vm_is_trailing_zeros || vr_is_trailing_zeros {
129
        // General case, which happens rarely (~4.0%).
130
0
        while vp / 10 > vm / 10 {
131
0
            vm_is_trailing_zeros &= vm - (vm / 10) * 10 == 0;
132
0
            vr_is_trailing_zeros &= last_removed_digit == 0;
133
0
            last_removed_digit = (vr % 10) as u8;
134
0
            vr /= 10;
135
0
            vp /= 10;
136
0
            vm /= 10;
137
0
            removed += 1;
138
0
        }
139
0
        if vm_is_trailing_zeros {
140
0
            while vm % 10 == 0 {
141
0
                vr_is_trailing_zeros &= last_removed_digit == 0;
142
0
                last_removed_digit = (vr % 10) as u8;
143
0
                vr /= 10;
144
0
                vp /= 10;
145
0
                vm /= 10;
146
0
                removed += 1;
147
0
            }
148
0
        }
149
0
        if vr_is_trailing_zeros && last_removed_digit == 5 && vr % 2 == 0 {
150
0
            // Round even if the exact number is .....50..0.
151
0
            last_removed_digit = 4;
152
0
        }
153
        // We need to take vr + 1 if vr is outside bounds or we need to round up.
154
0
        vr + ((vr == vm && (!accept_bounds || !vm_is_trailing_zeros)) || last_removed_digit >= 5)
155
            as u32
156
    } else {
157
        // Specialized for the common case (~96.0%). Percentages below are relative to this.
158
        // Loop iterations below (approximately):
159
        // 0: 13.6%, 1: 70.7%, 2: 14.1%, 3: 1.39%, 4: 0.14%, 5+: 0.01%
160
0
        while vp / 10 > vm / 10 {
161
0
            last_removed_digit = (vr % 10) as u8;
162
0
            vr /= 10;
163
0
            vp /= 10;
164
0
            vm /= 10;
165
0
            removed += 1;
166
0
        }
167
        // We need to take vr + 1 if vr is outside bounds or we need to round up.
168
0
        vr + (vr == vm || last_removed_digit >= 5) as u32
169
    };
170
0
    let exp = e10 + removed;
171
0
172
0
    FloatingDecimal32 {
173
0
        exponent: exp,
174
0
        mantissa: output,
175
0
    }
176
0
}