/src/croaring/src/roaring64.c
Line | Count | Source (jump to first uncovered line) |
1 | | #include <assert.h> |
2 | | #include <stdalign.h> |
3 | | #include <stdarg.h> |
4 | | #include <stdint.h> |
5 | | #include <string.h> |
6 | | |
7 | | #include <roaring/art/art.h> |
8 | | #include <roaring/portability.h> |
9 | | #include <roaring/roaring64.h> |
10 | | |
11 | | // For serialization / deserialization |
12 | | #include <roaring/containers/array.h> |
13 | | #include <roaring/containers/bitset.h> |
14 | | #include <roaring/containers/run.h> |
15 | | #include <roaring/roaring.h> |
16 | | #include <roaring/roaring_array.h> |
17 | | // containers.h last to avoid conflict with ROARING_CONTAINER_T. |
18 | | #include <roaring/containers/containers.h> |
19 | | |
20 | | #define CROARING_ALIGN_BUF(buf, alignment) \ |
21 | 0 | (char *)(((uintptr_t)(buf) + ((alignment)-1)) & \ |
22 | 0 | (ptrdiff_t)(~((alignment)-1))) |
23 | | |
24 | 0 | #define CROARING_BITSET_ALIGNMENT 64 |
25 | | |
26 | | #ifdef __cplusplus |
27 | | using namespace ::roaring::internal; |
28 | | |
29 | | extern "C" { |
30 | | namespace roaring { |
31 | | namespace api { |
32 | | #endif |
33 | | |
34 | | // TODO: Copy on write. |
35 | | // TODO: Error on failed allocation. |
36 | | |
37 | | typedef struct roaring64_bitmap_s { |
38 | | art_t art; |
39 | | uint8_t flags; |
40 | | uint64_t first_free; |
41 | | uint64_t capacity; |
42 | | container_t **containers; |
43 | | } roaring64_bitmap_t; |
44 | | |
45 | | // Leaf type of the ART used to keep the high 48 bits of each entry. |
46 | | // Low 8 bits: typecode |
47 | | // High 56 bits: container index |
48 | | typedef roaring64_leaf_t leaf_t; |
49 | | |
50 | | // Iterator struct to hold iteration state. |
51 | | typedef struct roaring64_iterator_s { |
52 | | const roaring64_bitmap_t *r; |
53 | | art_iterator_t art_it; |
54 | | roaring_container_iterator_t container_it; |
55 | | uint64_t high48; // Key that art_it points to. |
56 | | |
57 | | uint64_t value; |
58 | | bool has_value; |
59 | | |
60 | | // If has_value is false, then the iterator is saturated. This field |
61 | | // indicates the direction of saturation. If true, there are no more values |
62 | | // in the forward direction. If false, there are no more values in the |
63 | | // backward direction. |
64 | | bool saturated_forward; |
65 | | } roaring64_iterator_t; |
66 | | |
67 | 47.9k | static inline bool is_frozen64(const roaring64_bitmap_t *r) { |
68 | 47.9k | return r->flags & ROARING_FLAG_FROZEN; |
69 | 47.9k | } |
70 | | |
71 | | // Splits the given uint64 key into high 48 bit and low 16 bit components. |
72 | | // Expects high48_out to be of length ART_KEY_BYTES. |
73 | 1.08M | static inline uint16_t split_key(uint64_t key, uint8_t high48_out[]) { |
74 | 1.08M | uint64_t tmp = croaring_htobe64(key); |
75 | 1.08M | memcpy(high48_out, (uint8_t *)(&tmp), ART_KEY_BYTES); |
76 | 1.08M | return (uint16_t)key; |
77 | 1.08M | } |
78 | | |
79 | | // Recombines the high 48 bit and low 16 bit components into a uint64 key. |
80 | | // Expects high48_out to be of length ART_KEY_BYTES. |
81 | 0 | static inline uint64_t combine_key(const uint8_t high48[], uint16_t low16) { |
82 | 0 | uint64_t result = 0; |
83 | 0 | memcpy((uint8_t *)(&result), high48, ART_KEY_BYTES); |
84 | 0 | return croaring_be64toh(result) | low16; |
85 | 0 | } |
86 | | |
87 | 0 | static inline uint64_t minimum(uint64_t a, uint64_t b) { |
88 | 0 | return (a < b) ? a : b; |
89 | 0 | } |
90 | | |
91 | 46.1k | static inline leaf_t create_leaf(uint64_t container_index, uint8_t typecode) { |
92 | 46.1k | return (container_index << 8) | typecode; |
93 | 46.1k | } |
94 | | |
95 | 1.13M | static inline uint8_t get_typecode(leaf_t leaf) { return (uint8_t)leaf; } |
96 | | |
97 | 1.13M | static inline uint64_t get_index(leaf_t leaf) { return leaf >> 8; } |
98 | | |
99 | | static inline container_t *get_container(const roaring64_bitmap_t *r, |
100 | 1.13M | leaf_t leaf) { |
101 | 1.13M | return r->containers[get_index(leaf)]; |
102 | 1.13M | } |
103 | | |
104 | | // Replaces the container of `leaf` with the given container. Returns the |
105 | | // modified leaf for convenience. |
106 | | static inline leaf_t replace_container(roaring64_bitmap_t *r, leaf_t *leaf, |
107 | | container_t *container, |
108 | 0 | uint8_t typecode) { |
109 | 0 | uint64_t index = get_index(*leaf); |
110 | 0 | r->containers[index] = container; |
111 | 0 | *leaf = create_leaf(index, typecode); |
112 | 0 | return *leaf; |
113 | 0 | } |
114 | | |
115 | | /** |
116 | | * Extends the array of container pointers. |
117 | | */ |
118 | 4.15k | static void extend_containers(roaring64_bitmap_t *r) { |
119 | 4.15k | uint64_t size = r->first_free; |
120 | 4.15k | if (size < r->capacity) { |
121 | 0 | return; |
122 | 0 | } |
123 | 4.15k | uint64_t new_capacity; |
124 | 4.15k | if (r->capacity == 0) { |
125 | 1.01k | new_capacity = 2; |
126 | 3.13k | } else if (r->capacity < 1024) { |
127 | 3.13k | new_capacity = 2 * r->capacity; |
128 | 3.13k | } else { |
129 | 0 | new_capacity = 5 * r->capacity / 4; |
130 | 0 | } |
131 | 4.15k | uint64_t increase = new_capacity - r->capacity; |
132 | 4.15k | r->containers = (container_t **)roaring_realloc( |
133 | 4.15k | r->containers, new_capacity * sizeof(container_t *)); |
134 | 4.15k | memset(r->containers + r->capacity, 0, increase * sizeof(container_t *)); |
135 | 4.15k | r->capacity = new_capacity; |
136 | 4.15k | } |
137 | | |
138 | 46.1k | static uint64_t next_free_container_idx(const roaring64_bitmap_t *r) { |
139 | 46.1k | for (uint64_t i = r->first_free + 1; i < r->capacity; ++i) { |
140 | 42.8k | if (r->containers[i] == NULL) { |
141 | 42.8k | return i; |
142 | 42.8k | } |
143 | 42.8k | } |
144 | 3.31k | return r->capacity; |
145 | 46.1k | } |
146 | | |
147 | 46.1k | static uint64_t allocate_index(roaring64_bitmap_t *r) { |
148 | 46.1k | uint64_t first_free = r->first_free; |
149 | 46.1k | if (first_free == r->capacity) { |
150 | 4.15k | extend_containers(r); |
151 | 4.15k | } |
152 | 46.1k | r->first_free = next_free_container_idx(r); |
153 | 46.1k | return first_free; |
154 | 46.1k | } |
155 | | |
156 | | static leaf_t add_container(roaring64_bitmap_t *r, container_t *container, |
157 | 46.1k | uint8_t typecode) { |
158 | 46.1k | uint64_t index = allocate_index(r); |
159 | 46.1k | r->containers[index] = container; |
160 | 46.1k | return create_leaf(index, typecode); |
161 | 46.1k | } |
162 | | |
163 | 0 | static void remove_container(roaring64_bitmap_t *r, leaf_t leaf) { |
164 | 0 | uint64_t index = get_index(leaf); |
165 | 0 | r->containers[index] = NULL; |
166 | 0 | if (index < r->first_free) { |
167 | 0 | r->first_free = index; |
168 | 0 | } |
169 | 0 | } |
170 | | |
171 | | // Copies the container referenced by `leaf` from `r1` to `r2`. |
172 | | static inline leaf_t copy_leaf_container(const roaring64_bitmap_t *r1, |
173 | 0 | roaring64_bitmap_t *r2, leaf_t leaf) { |
174 | 0 | uint8_t typecode = get_typecode(leaf); |
175 | | // get_copy_of_container modifies the typecode passed in. |
176 | 0 | container_t *container = get_copy_of_container( |
177 | 0 | get_container(r1, leaf), &typecode, /*copy_on_write=*/false); |
178 | 0 | return add_container(r2, container, typecode); |
179 | 0 | } |
180 | | |
181 | | static inline int compare_high48(art_key_chunk_t key1[], |
182 | 0 | art_key_chunk_t key2[]) { |
183 | 0 | return art_compare_keys(key1, key2); |
184 | 0 | } |
185 | | |
186 | | static inline bool roaring64_iterator_init_at_leaf_first( |
187 | 0 | roaring64_iterator_t *it) { |
188 | 0 | it->high48 = combine_key(it->art_it.key, 0); |
189 | 0 | leaf_t leaf = (leaf_t)*it->art_it.value; |
190 | 0 | uint16_t low16 = 0; |
191 | 0 | it->container_it = container_init_iterator(get_container(it->r, leaf), |
192 | 0 | get_typecode(leaf), &low16); |
193 | 0 | it->value = it->high48 | low16; |
194 | 0 | return (it->has_value = true); |
195 | 0 | } |
196 | | |
197 | | static inline bool roaring64_iterator_init_at_leaf_last( |
198 | 0 | roaring64_iterator_t *it) { |
199 | 0 | it->high48 = combine_key(it->art_it.key, 0); |
200 | 0 | leaf_t leaf = (leaf_t)*it->art_it.value; |
201 | 0 | uint16_t low16 = 0; |
202 | 0 | it->container_it = container_init_iterator_last(get_container(it->r, leaf), |
203 | 0 | get_typecode(leaf), &low16); |
204 | 0 | it->value = it->high48 | low16; |
205 | 0 | return (it->has_value = true); |
206 | 0 | } |
207 | | |
208 | | static inline roaring64_iterator_t *roaring64_iterator_init_at( |
209 | 0 | const roaring64_bitmap_t *r, roaring64_iterator_t *it, bool first) { |
210 | 0 | it->r = r; |
211 | 0 | it->art_it = art_init_iterator((art_t *)&r->art, first); |
212 | 0 | it->has_value = it->art_it.value != NULL; |
213 | 0 | if (it->has_value) { |
214 | 0 | if (first) { |
215 | 0 | roaring64_iterator_init_at_leaf_first(it); |
216 | 0 | } else { |
217 | 0 | roaring64_iterator_init_at_leaf_last(it); |
218 | 0 | } |
219 | 0 | } else { |
220 | 0 | it->saturated_forward = first; |
221 | 0 | } |
222 | 0 | return it; |
223 | 0 | } |
224 | | |
225 | 1.70k | roaring64_bitmap_t *roaring64_bitmap_create(void) { |
226 | 1.70k | roaring64_bitmap_t *r = |
227 | 1.70k | (roaring64_bitmap_t *)roaring_malloc(sizeof(roaring64_bitmap_t)); |
228 | 1.70k | art_init_cleared(&r->art); |
229 | 1.70k | r->flags = 0; |
230 | 1.70k | r->capacity = 0; |
231 | 1.70k | r->first_free = 0; |
232 | 1.70k | r->containers = NULL; |
233 | 1.70k | return r; |
234 | 1.70k | } |
235 | | |
236 | 1.70k | void roaring64_bitmap_free(roaring64_bitmap_t *r) { |
237 | 1.70k | if (!r) { |
238 | 0 | return; |
239 | 0 | } |
240 | 1.70k | art_iterator_t it = art_init_iterator(&r->art, /*first=*/true); |
241 | 47.9k | while (it.value != NULL) { |
242 | 46.1k | leaf_t leaf = (leaf_t)*it.value; |
243 | 46.1k | if (is_frozen64(r)) { |
244 | | // Only free the container itself, not the buffer-backed contents |
245 | | // within. |
246 | 0 | roaring_free(get_container(r, leaf)); |
247 | 46.1k | } else { |
248 | 46.1k | container_free(get_container(r, leaf), get_typecode(leaf)); |
249 | 46.1k | } |
250 | 46.1k | art_iterator_next(&it); |
251 | 46.1k | } |
252 | 1.70k | if (!is_frozen64(r)) { |
253 | 1.70k | art_free(&r->art); |
254 | 1.70k | } |
255 | 1.70k | roaring_free(r->containers); |
256 | 1.70k | roaring_free(r); |
257 | 1.70k | } |
258 | | |
259 | 0 | roaring64_bitmap_t *roaring64_bitmap_copy(const roaring64_bitmap_t *r) { |
260 | 0 | roaring64_bitmap_t *result = roaring64_bitmap_create(); |
261 | |
|
262 | 0 | art_iterator_t it = art_init_iterator((art_t *)&r->art, /*first=*/true); |
263 | 0 | while (it.value != NULL) { |
264 | 0 | leaf_t leaf = (leaf_t)*it.value; |
265 | 0 | uint8_t result_typecode = get_typecode(leaf); |
266 | 0 | container_t *result_container = get_copy_of_container( |
267 | 0 | get_container(r, leaf), &result_typecode, /*copy_on_write=*/false); |
268 | 0 | leaf_t result_leaf = |
269 | 0 | add_container(result, result_container, result_typecode); |
270 | 0 | art_insert(&result->art, it.key, (art_val_t)result_leaf); |
271 | 0 | art_iterator_next(&it); |
272 | 0 | } |
273 | 0 | return result; |
274 | 0 | } |
275 | | |
276 | | /** |
277 | | * Steal the containers from a 32-bit bitmap and insert them into a 64-bit |
278 | | * bitmap (with an offset) |
279 | | * |
280 | | * After calling this function, the original bitmap will be empty, and the |
281 | | * returned bitmap will contain all the values from the original bitmap. |
282 | | */ |
283 | | static void move_from_roaring32_offset(roaring64_bitmap_t *dst, |
284 | | roaring_bitmap_t *src, |
285 | 2.59k | uint32_t high_bits) { |
286 | 2.59k | uint64_t key_base = ((uint64_t)high_bits) << 32; |
287 | 2.59k | uint32_t r32_size = ra_get_size(&src->high_low_container); |
288 | 48.4k | for (uint32_t i = 0; i < r32_size; ++i) { |
289 | 45.8k | uint16_t key = ra_get_key_at_index(&src->high_low_container, i); |
290 | 45.8k | uint8_t typecode; |
291 | 45.8k | container_t *container = ra_get_container_at_index( |
292 | 45.8k | &src->high_low_container, (uint16_t)i, &typecode); |
293 | | |
294 | 45.8k | uint8_t high48[ART_KEY_BYTES]; |
295 | 45.8k | uint64_t high48_bits = key_base | ((uint64_t)key << 16); |
296 | 45.8k | split_key(high48_bits, high48); |
297 | 45.8k | leaf_t leaf = add_container(dst, container, typecode); |
298 | 45.8k | art_insert(&dst->art, high48, (art_val_t)leaf); |
299 | 45.8k | } |
300 | | // We stole all the containers, so leave behind a size of zero |
301 | 2.59k | src->high_low_container.size = 0; |
302 | 2.59k | } |
303 | | |
304 | | roaring64_bitmap_t *roaring64_bitmap_move_from_roaring32( |
305 | 0 | roaring_bitmap_t *bitmap32) { |
306 | 0 | roaring64_bitmap_t *result = roaring64_bitmap_create(); |
307 | |
|
308 | 0 | move_from_roaring32_offset(result, bitmap32, 0); |
309 | |
|
310 | 0 | return result; |
311 | 0 | } |
312 | | |
313 | | roaring64_bitmap_t *roaring64_bitmap_from_range(uint64_t min, uint64_t max, |
314 | 0 | uint64_t step) { |
315 | 0 | if (step == 0 || max <= min) { |
316 | 0 | return NULL; |
317 | 0 | } |
318 | 0 | roaring64_bitmap_t *r = roaring64_bitmap_create(); |
319 | 0 | if (step >= (1 << 16)) { |
320 | | // Only one value per container. |
321 | 0 | for (uint64_t value = min; value < max; value += step) { |
322 | 0 | roaring64_bitmap_add(r, value); |
323 | 0 | if (value > UINT64_MAX - step) { |
324 | 0 | break; |
325 | 0 | } |
326 | 0 | } |
327 | 0 | return r; |
328 | 0 | } |
329 | 0 | do { |
330 | 0 | uint64_t high_bits = min & 0xFFFFFFFFFFFF0000; |
331 | 0 | uint16_t container_min = min & 0xFFFF; |
332 | 0 | uint32_t container_max = (uint32_t)minimum(max - high_bits, 1 << 16); |
333 | |
|
334 | 0 | uint8_t typecode; |
335 | 0 | container_t *container = container_from_range( |
336 | 0 | &typecode, container_min, container_max, (uint16_t)step); |
337 | |
|
338 | 0 | uint8_t high48[ART_KEY_BYTES]; |
339 | 0 | split_key(min, high48); |
340 | 0 | leaf_t leaf = add_container(r, container, typecode); |
341 | 0 | art_insert(&r->art, high48, (art_val_t)leaf); |
342 | |
|
343 | 0 | uint64_t gap = container_max - container_min + step - 1; |
344 | 0 | uint64_t increment = gap - (gap % step); |
345 | 0 | if (min > UINT64_MAX - increment) { |
346 | 0 | break; |
347 | 0 | } |
348 | 0 | min += increment; |
349 | 0 | } while (min < max); |
350 | 0 | return r; |
351 | 0 | } |
352 | | |
353 | | roaring64_bitmap_t *roaring64_bitmap_of_ptr(size_t n_args, |
354 | 0 | const uint64_t *vals) { |
355 | 0 | roaring64_bitmap_t *r = roaring64_bitmap_create(); |
356 | 0 | roaring64_bitmap_add_many(r, n_args, vals); |
357 | 0 | return r; |
358 | 0 | } |
359 | | |
360 | | static inline leaf_t *containerptr_roaring64_bitmap_add(roaring64_bitmap_t *r, |
361 | | uint8_t *high48, |
362 | | uint16_t low16, |
363 | 504k | leaf_t *leaf) { |
364 | 504k | if (leaf != NULL) { |
365 | 504k | uint8_t typecode = get_typecode(*leaf); |
366 | 504k | container_t *container = get_container(r, *leaf); |
367 | 504k | uint8_t typecode2; |
368 | 504k | container_t *container2 = |
369 | 504k | container_add(container, low16, typecode, &typecode2); |
370 | 504k | if (container2 != container) { |
371 | 0 | container_free(container, typecode); |
372 | 0 | replace_container(r, leaf, container2, typecode2); |
373 | 0 | } |
374 | 504k | return leaf; |
375 | 504k | } else { |
376 | 384 | array_container_t *ac = array_container_create(); |
377 | 384 | uint8_t typecode; |
378 | 384 | container_t *container = |
379 | 384 | container_add(ac, low16, ARRAY_CONTAINER_TYPE, &typecode); |
380 | 384 | assert(ac == container); |
381 | 384 | leaf_t new_leaf = add_container(r, container, typecode); |
382 | 384 | return (leaf_t *)art_insert(&r->art, high48, (art_val_t)new_leaf); |
383 | 384 | } |
384 | 504k | } |
385 | | |
386 | 504k | void roaring64_bitmap_add(roaring64_bitmap_t *r, uint64_t val) { |
387 | 504k | uint8_t high48[ART_KEY_BYTES]; |
388 | 504k | uint16_t low16 = split_key(val, high48); |
389 | 504k | leaf_t *leaf = (leaf_t *)art_find(&r->art, high48); |
390 | 504k | containerptr_roaring64_bitmap_add(r, high48, low16, leaf); |
391 | 504k | } |
392 | | |
393 | 0 | bool roaring64_bitmap_add_checked(roaring64_bitmap_t *r, uint64_t val) { |
394 | 0 | uint8_t high48[ART_KEY_BYTES]; |
395 | 0 | uint16_t low16 = split_key(val, high48); |
396 | 0 | leaf_t *leaf = (leaf_t *)art_find(&r->art, high48); |
397 | |
|
398 | 0 | int old_cardinality = 0; |
399 | 0 | if (leaf != NULL) { |
400 | 0 | old_cardinality = container_get_cardinality(get_container(r, *leaf), |
401 | 0 | get_typecode(*leaf)); |
402 | 0 | } |
403 | 0 | leaf = containerptr_roaring64_bitmap_add(r, high48, low16, leaf); |
404 | 0 | int new_cardinality = |
405 | 0 | container_get_cardinality(get_container(r, *leaf), get_typecode(*leaf)); |
406 | 0 | return old_cardinality != new_cardinality; |
407 | 0 | } |
408 | | |
409 | | void roaring64_bitmap_add_bulk(roaring64_bitmap_t *r, |
410 | | roaring64_bulk_context_t *context, |
411 | 0 | uint64_t val) { |
412 | 0 | uint8_t high48[ART_KEY_BYTES]; |
413 | 0 | uint16_t low16 = split_key(val, high48); |
414 | 0 | leaf_t *leaf = context->leaf; |
415 | 0 | if (leaf != NULL && compare_high48(context->high_bytes, high48) == 0) { |
416 | | // We're at a container with the correct high bits. |
417 | 0 | uint8_t typecode1 = get_typecode(*leaf); |
418 | 0 | container_t *container1 = get_container(r, *leaf); |
419 | 0 | uint8_t typecode2; |
420 | 0 | container_t *container2 = |
421 | 0 | container_add(container1, low16, typecode1, &typecode2); |
422 | 0 | if (container2 != container1) { |
423 | 0 | container_free(container1, typecode1); |
424 | 0 | replace_container(r, leaf, container2, typecode2); |
425 | 0 | } |
426 | 0 | } else { |
427 | | // We're not positioned anywhere yet or the high bits of the key |
428 | | // differ. |
429 | 0 | leaf = (leaf_t *)art_find(&r->art, high48); |
430 | 0 | context->leaf = |
431 | 0 | containerptr_roaring64_bitmap_add(r, high48, low16, leaf); |
432 | 0 | memcpy(context->high_bytes, high48, ART_KEY_BYTES); |
433 | 0 | } |
434 | 0 | } |
435 | | |
436 | | void roaring64_bitmap_add_many(roaring64_bitmap_t *r, size_t n_args, |
437 | 0 | const uint64_t *vals) { |
438 | 0 | if (n_args == 0) { |
439 | 0 | return; |
440 | 0 | } |
441 | 0 | const uint64_t *end = vals + n_args; |
442 | 0 | roaring64_bulk_context_t context = CROARING_ZERO_INITIALIZER; |
443 | 0 | for (const uint64_t *current_val = vals; current_val != end; |
444 | 0 | current_val++) { |
445 | 0 | roaring64_bitmap_add_bulk(r, &context, *current_val); |
446 | 0 | } |
447 | 0 | } |
448 | | |
449 | | static inline void add_range_closed_at(roaring64_bitmap_t *r, art_t *art, |
450 | | uint8_t *high48, uint16_t min, |
451 | 0 | uint16_t max) { |
452 | 0 | leaf_t *leaf = (leaf_t *)art_find(art, high48); |
453 | 0 | if (leaf != NULL) { |
454 | 0 | uint8_t typecode1 = get_typecode(*leaf); |
455 | 0 | container_t *container1 = get_container(r, *leaf); |
456 | 0 | uint8_t typecode2; |
457 | 0 | container_t *container2 = |
458 | 0 | container_add_range(container1, typecode1, min, max, &typecode2); |
459 | 0 | if (container2 != container1) { |
460 | 0 | container_free(container1, typecode1); |
461 | 0 | replace_container(r, leaf, container2, typecode2); |
462 | 0 | } |
463 | 0 | return; |
464 | 0 | } |
465 | 0 | uint8_t typecode; |
466 | | // container_add_range is inclusive, but `container_range_of_ones` is |
467 | | // exclusive. |
468 | 0 | container_t *container = container_range_of_ones(min, max + 1, &typecode); |
469 | 0 | leaf_t new_leaf = add_container(r, container, typecode); |
470 | 0 | art_insert(art, high48, (art_val_t)new_leaf); |
471 | 0 | } |
472 | | |
473 | | void roaring64_bitmap_add_range(roaring64_bitmap_t *r, uint64_t min, |
474 | 0 | uint64_t max) { |
475 | 0 | if (min >= max) { |
476 | 0 | return; |
477 | 0 | } |
478 | 0 | roaring64_bitmap_add_range_closed(r, min, max - 1); |
479 | 0 | } |
480 | | |
481 | | void roaring64_bitmap_add_range_closed(roaring64_bitmap_t *r, uint64_t min, |
482 | 0 | uint64_t max) { |
483 | 0 | if (min > max) { |
484 | 0 | return; |
485 | 0 | } |
486 | | |
487 | 0 | art_t *art = &r->art; |
488 | 0 | uint8_t min_high48[ART_KEY_BYTES]; |
489 | 0 | uint16_t min_low16 = split_key(min, min_high48); |
490 | 0 | uint8_t max_high48[ART_KEY_BYTES]; |
491 | 0 | uint16_t max_low16 = split_key(max, max_high48); |
492 | 0 | if (compare_high48(min_high48, max_high48) == 0) { |
493 | | // Only populate range within one container. |
494 | 0 | add_range_closed_at(r, art, min_high48, min_low16, max_low16); |
495 | 0 | return; |
496 | 0 | } |
497 | | |
498 | | // Populate a range across containers. Fill intermediate containers |
499 | | // entirely. |
500 | 0 | add_range_closed_at(r, art, min_high48, min_low16, 0xffff); |
501 | 0 | uint64_t min_high_bits = min >> 16; |
502 | 0 | uint64_t max_high_bits = max >> 16; |
503 | 0 | for (uint64_t current = min_high_bits + 1; current < max_high_bits; |
504 | 0 | ++current) { |
505 | 0 | uint8_t current_high48[ART_KEY_BYTES]; |
506 | 0 | split_key(current << 16, current_high48); |
507 | 0 | add_range_closed_at(r, art, current_high48, 0, 0xffff); |
508 | 0 | } |
509 | 0 | add_range_closed_at(r, art, max_high48, 0, max_low16); |
510 | 0 | } |
511 | | |
512 | 534k | bool roaring64_bitmap_contains(const roaring64_bitmap_t *r, uint64_t val) { |
513 | 534k | uint8_t high48[ART_KEY_BYTES]; |
514 | 534k | uint16_t low16 = split_key(val, high48); |
515 | 534k | leaf_t *leaf = (leaf_t *)art_find(&r->art, high48); |
516 | 534k | if (leaf != NULL) { |
517 | 534k | return container_contains(get_container(r, *leaf), low16, |
518 | 534k | get_typecode(*leaf)); |
519 | 534k | } |
520 | 384 | return false; |
521 | 534k | } |
522 | | |
523 | | bool roaring64_bitmap_contains_range(const roaring64_bitmap_t *r, uint64_t min, |
524 | 0 | uint64_t max) { |
525 | 0 | if (min >= max) { |
526 | 0 | return true; |
527 | 0 | } |
528 | | |
529 | 0 | uint8_t min_high48[ART_KEY_BYTES]; |
530 | 0 | uint16_t min_low16 = split_key(min, min_high48); |
531 | 0 | uint8_t max_high48[ART_KEY_BYTES]; |
532 | 0 | uint16_t max_low16 = split_key(max, max_high48); |
533 | 0 | uint64_t max_high48_bits = (max - 1) & 0xFFFFFFFFFFFF0000; // Inclusive |
534 | |
|
535 | 0 | art_iterator_t it = art_lower_bound((art_t *)&r->art, min_high48); |
536 | 0 | if (it.value == NULL || combine_key(it.key, 0) > min) { |
537 | 0 | return false; |
538 | 0 | } |
539 | 0 | uint64_t prev_high48_bits = min & 0xFFFFFFFFFFFF0000; |
540 | 0 | while (it.value != NULL) { |
541 | 0 | uint64_t current_high48_bits = combine_key(it.key, 0); |
542 | 0 | if (current_high48_bits > max_high48_bits) { |
543 | | // We've passed the end of the range with all containers containing |
544 | | // the range. |
545 | 0 | return true; |
546 | 0 | } |
547 | 0 | if (current_high48_bits - prev_high48_bits > 0x10000) { |
548 | | // There is a gap in the iterator that falls in the range. |
549 | 0 | return false; |
550 | 0 | } |
551 | | |
552 | 0 | leaf_t leaf = (leaf_t)*it.value; |
553 | 0 | uint32_t container_min = 0; |
554 | 0 | if (compare_high48(it.key, min_high48) == 0) { |
555 | 0 | container_min = min_low16; |
556 | 0 | } |
557 | 0 | uint32_t container_max = 0xFFFF + 1; // Exclusive |
558 | 0 | if (compare_high48(it.key, max_high48) == 0) { |
559 | 0 | container_max = max_low16; |
560 | 0 | } |
561 | | |
562 | | // For the first and last containers we use container_contains_range, |
563 | | // for the intermediate containers we can use container_is_full. |
564 | 0 | if (container_min == 0 && container_max == 0xFFFF + 1) { |
565 | 0 | if (!container_is_full(get_container(r, leaf), |
566 | 0 | get_typecode(leaf))) { |
567 | 0 | return false; |
568 | 0 | } |
569 | 0 | } else if (!container_contains_range(get_container(r, leaf), |
570 | 0 | container_min, container_max, |
571 | 0 | get_typecode(leaf))) { |
572 | 0 | return false; |
573 | 0 | } |
574 | 0 | prev_high48_bits = current_high48_bits; |
575 | 0 | art_iterator_next(&it); |
576 | 0 | } |
577 | 0 | return prev_high48_bits == max_high48_bits; |
578 | 0 | } |
579 | | |
580 | | bool roaring64_bitmap_contains_bulk(const roaring64_bitmap_t *r, |
581 | | roaring64_bulk_context_t *context, |
582 | 0 | uint64_t val) { |
583 | 0 | uint8_t high48[ART_KEY_BYTES]; |
584 | 0 | uint16_t low16 = split_key(val, high48); |
585 | |
|
586 | 0 | if (context->leaf == NULL || |
587 | 0 | art_compare_keys(context->high_bytes, high48) != 0) { |
588 | | // We're not positioned anywhere yet or the high bits of the key |
589 | | // differ. |
590 | 0 | leaf_t *leaf = (leaf_t *)art_find(&r->art, high48); |
591 | 0 | if (leaf == NULL) { |
592 | 0 | return false; |
593 | 0 | } |
594 | 0 | context->leaf = leaf; |
595 | 0 | memcpy(context->high_bytes, high48, ART_KEY_BYTES); |
596 | 0 | } |
597 | 0 | return container_contains(get_container(r, *context->leaf), low16, |
598 | 0 | get_typecode(*context->leaf)); |
599 | 0 | } |
600 | | |
601 | | bool roaring64_bitmap_select(const roaring64_bitmap_t *r, uint64_t rank, |
602 | 0 | uint64_t *element) { |
603 | 0 | art_iterator_t it = art_init_iterator((art_t *)&r->art, /*first=*/true); |
604 | 0 | uint64_t start_rank = 0; |
605 | 0 | while (it.value != NULL) { |
606 | 0 | leaf_t leaf = (leaf_t)*it.value; |
607 | 0 | uint64_t cardinality = container_get_cardinality(get_container(r, leaf), |
608 | 0 | get_typecode(leaf)); |
609 | 0 | if (start_rank + cardinality > rank) { |
610 | 0 | uint32_t uint32_start = 0; |
611 | 0 | uint32_t uint32_rank = rank - start_rank; |
612 | 0 | uint32_t uint32_element = 0; |
613 | 0 | if (container_select(get_container(r, leaf), get_typecode(leaf), |
614 | 0 | &uint32_start, uint32_rank, &uint32_element)) { |
615 | 0 | *element = combine_key(it.key, (uint16_t)uint32_element); |
616 | 0 | return true; |
617 | 0 | } |
618 | 0 | return false; |
619 | 0 | } |
620 | 0 | start_rank += cardinality; |
621 | 0 | art_iterator_next(&it); |
622 | 0 | } |
623 | 0 | return false; |
624 | 0 | } |
625 | | |
626 | 0 | uint64_t roaring64_bitmap_rank(const roaring64_bitmap_t *r, uint64_t val) { |
627 | 0 | uint8_t high48[ART_KEY_BYTES]; |
628 | 0 | uint16_t low16 = split_key(val, high48); |
629 | |
|
630 | 0 | art_iterator_t it = art_init_iterator((art_t *)&r->art, /*first=*/true); |
631 | 0 | uint64_t rank = 0; |
632 | 0 | while (it.value != NULL) { |
633 | 0 | leaf_t leaf = (leaf_t)*it.value; |
634 | 0 | int compare_result = compare_high48(it.key, high48); |
635 | 0 | if (compare_result < 0) { |
636 | 0 | rank += container_get_cardinality(get_container(r, leaf), |
637 | 0 | get_typecode(leaf)); |
638 | 0 | } else if (compare_result == 0) { |
639 | 0 | return rank + container_rank(get_container(r, leaf), |
640 | 0 | get_typecode(leaf), low16); |
641 | 0 | } else { |
642 | 0 | return rank; |
643 | 0 | } |
644 | 0 | art_iterator_next(&it); |
645 | 0 | } |
646 | 0 | return rank; |
647 | 0 | } |
648 | | |
649 | | bool roaring64_bitmap_get_index(const roaring64_bitmap_t *r, uint64_t val, |
650 | 0 | uint64_t *out_index) { |
651 | 0 | uint8_t high48[ART_KEY_BYTES]; |
652 | 0 | uint16_t low16 = split_key(val, high48); |
653 | |
|
654 | 0 | art_iterator_t it = art_init_iterator((art_t *)&r->art, /*first=*/true); |
655 | 0 | uint64_t index = 0; |
656 | 0 | while (it.value != NULL) { |
657 | 0 | leaf_t leaf = (leaf_t)*it.value; |
658 | 0 | int compare_result = compare_high48(it.key, high48); |
659 | 0 | if (compare_result < 0) { |
660 | 0 | index += container_get_cardinality(get_container(r, leaf), |
661 | 0 | get_typecode(leaf)); |
662 | 0 | } else if (compare_result == 0) { |
663 | 0 | int index16 = container_get_index(get_container(r, leaf), |
664 | 0 | get_typecode(leaf), low16); |
665 | 0 | if (index16 < 0) { |
666 | 0 | return false; |
667 | 0 | } |
668 | 0 | *out_index = index + index16; |
669 | 0 | return true; |
670 | 0 | } else { |
671 | 0 | return false; |
672 | 0 | } |
673 | 0 | art_iterator_next(&it); |
674 | 0 | } |
675 | 0 | return false; |
676 | 0 | } |
677 | | |
678 | | // Returns true if a container was removed. |
679 | | static inline bool containerptr_roaring64_bitmap_remove(roaring64_bitmap_t *r, |
680 | | uint8_t *high48, |
681 | | uint16_t low16, |
682 | 0 | leaf_t *leaf) { |
683 | 0 | if (leaf == NULL) { |
684 | 0 | return false; |
685 | 0 | } |
686 | | |
687 | 0 | uint8_t typecode = get_typecode(*leaf); |
688 | 0 | container_t *container = get_container(r, *leaf); |
689 | 0 | uint8_t typecode2; |
690 | 0 | container_t *container2 = |
691 | 0 | container_remove(container, low16, typecode, &typecode2); |
692 | 0 | if (container2 != container) { |
693 | 0 | container_free(container, typecode); |
694 | 0 | replace_container(r, leaf, container2, typecode2); |
695 | 0 | } |
696 | 0 | if (!container_nonzero_cardinality(container2, typecode2)) { |
697 | 0 | container_free(container2, typecode2); |
698 | 0 | bool erased = art_erase(&r->art, high48, (art_val_t *)leaf); |
699 | 0 | assert(erased); |
700 | 0 | (void)erased; |
701 | 0 | remove_container(r, *leaf); |
702 | 0 | return true; |
703 | 0 | } |
704 | 0 | return false; |
705 | 0 | } |
706 | | |
707 | 0 | void roaring64_bitmap_remove(roaring64_bitmap_t *r, uint64_t val) { |
708 | 0 | art_t *art = &r->art; |
709 | 0 | uint8_t high48[ART_KEY_BYTES]; |
710 | 0 | uint16_t low16 = split_key(val, high48); |
711 | |
|
712 | 0 | leaf_t *leaf = (leaf_t *)art_find(art, high48); |
713 | 0 | containerptr_roaring64_bitmap_remove(r, high48, low16, leaf); |
714 | 0 | } |
715 | | |
716 | 0 | bool roaring64_bitmap_remove_checked(roaring64_bitmap_t *r, uint64_t val) { |
717 | 0 | art_t *art = &r->art; |
718 | 0 | uint8_t high48[ART_KEY_BYTES]; |
719 | 0 | uint16_t low16 = split_key(val, high48); |
720 | 0 | leaf_t *leaf = (leaf_t *)art_find(art, high48); |
721 | |
|
722 | 0 | if (leaf == NULL) { |
723 | 0 | return false; |
724 | 0 | } |
725 | 0 | int old_cardinality = |
726 | 0 | container_get_cardinality(get_container(r, *leaf), get_typecode(*leaf)); |
727 | 0 | if (containerptr_roaring64_bitmap_remove(r, high48, low16, leaf)) { |
728 | 0 | return true; |
729 | 0 | } |
730 | 0 | int new_cardinality = |
731 | 0 | container_get_cardinality(get_container(r, *leaf), get_typecode(*leaf)); |
732 | 0 | return new_cardinality != old_cardinality; |
733 | 0 | } |
734 | | |
735 | | void roaring64_bitmap_remove_bulk(roaring64_bitmap_t *r, |
736 | | roaring64_bulk_context_t *context, |
737 | 0 | uint64_t val) { |
738 | 0 | art_t *art = &r->art; |
739 | 0 | uint8_t high48[ART_KEY_BYTES]; |
740 | 0 | uint16_t low16 = split_key(val, high48); |
741 | 0 | if (context->leaf != NULL && |
742 | 0 | compare_high48(context->high_bytes, high48) == 0) { |
743 | | // We're at a container with the correct high bits. |
744 | 0 | uint8_t typecode = get_typecode(*context->leaf); |
745 | 0 | container_t *container = get_container(r, *context->leaf); |
746 | 0 | uint8_t typecode2; |
747 | 0 | container_t *container2 = |
748 | 0 | container_remove(container, low16, typecode, &typecode2); |
749 | 0 | if (container2 != container) { |
750 | 0 | container_free(container, typecode); |
751 | 0 | replace_container(r, context->leaf, container2, typecode2); |
752 | 0 | } |
753 | 0 | if (!container_nonzero_cardinality(container2, typecode2)) { |
754 | 0 | container_free(container2, typecode2); |
755 | 0 | leaf_t leaf; |
756 | 0 | bool erased = art_erase(art, high48, (art_val_t *)&leaf); |
757 | 0 | assert(erased); |
758 | 0 | (void)erased; |
759 | 0 | remove_container(r, leaf); |
760 | 0 | } |
761 | 0 | } else { |
762 | | // We're not positioned anywhere yet or the high bits of the key |
763 | | // differ. |
764 | 0 | leaf_t *leaf = (leaf_t *)art_find(art, high48); |
765 | 0 | containerptr_roaring64_bitmap_remove(r, high48, low16, leaf); |
766 | 0 | context->leaf = leaf; |
767 | 0 | memcpy(context->high_bytes, high48, ART_KEY_BYTES); |
768 | 0 | } |
769 | 0 | } |
770 | | |
771 | | void roaring64_bitmap_remove_many(roaring64_bitmap_t *r, size_t n_args, |
772 | 0 | const uint64_t *vals) { |
773 | 0 | if (n_args == 0) { |
774 | 0 | return; |
775 | 0 | } |
776 | 0 | const uint64_t *end = vals + n_args; |
777 | 0 | roaring64_bulk_context_t context = CROARING_ZERO_INITIALIZER; |
778 | 0 | for (const uint64_t *current_val = vals; current_val != end; |
779 | 0 | current_val++) { |
780 | 0 | roaring64_bitmap_remove_bulk(r, &context, *current_val); |
781 | 0 | } |
782 | 0 | } |
783 | | |
784 | | static inline void remove_range_closed_at(roaring64_bitmap_t *r, art_t *art, |
785 | | uint8_t *high48, uint16_t min, |
786 | 0 | uint16_t max) { |
787 | 0 | leaf_t *leaf = (leaf_t *)art_find(art, high48); |
788 | 0 | if (leaf == NULL) { |
789 | 0 | return; |
790 | 0 | } |
791 | 0 | uint8_t typecode = get_typecode(*leaf); |
792 | 0 | container_t *container = get_container(r, *leaf); |
793 | 0 | uint8_t typecode2; |
794 | 0 | container_t *container2 = |
795 | 0 | container_remove_range(container, typecode, min, max, &typecode2); |
796 | 0 | if (container2 != container) { |
797 | 0 | container_free(container, typecode); |
798 | 0 | if (container2 != NULL) { |
799 | 0 | replace_container(r, leaf, container2, typecode2); |
800 | 0 | } else { |
801 | 0 | bool erased = art_erase(art, high48, NULL); |
802 | 0 | assert(erased); |
803 | 0 | (void)erased; |
804 | 0 | remove_container(r, *leaf); |
805 | 0 | } |
806 | 0 | } |
807 | 0 | } |
808 | | |
809 | | void roaring64_bitmap_remove_range(roaring64_bitmap_t *r, uint64_t min, |
810 | 0 | uint64_t max) { |
811 | 0 | if (min >= max) { |
812 | 0 | return; |
813 | 0 | } |
814 | 0 | roaring64_bitmap_remove_range_closed(r, min, max - 1); |
815 | 0 | } |
816 | | |
817 | | void roaring64_bitmap_remove_range_closed(roaring64_bitmap_t *r, uint64_t min, |
818 | 0 | uint64_t max) { |
819 | 0 | if (min > max) { |
820 | 0 | return; |
821 | 0 | } |
822 | | |
823 | 0 | art_t *art = &r->art; |
824 | 0 | uint8_t min_high48[ART_KEY_BYTES]; |
825 | 0 | uint16_t min_low16 = split_key(min, min_high48); |
826 | 0 | uint8_t max_high48[ART_KEY_BYTES]; |
827 | 0 | uint16_t max_low16 = split_key(max, max_high48); |
828 | 0 | if (compare_high48(min_high48, max_high48) == 0) { |
829 | | // Only remove a range within one container. |
830 | 0 | remove_range_closed_at(r, art, min_high48, min_low16, max_low16); |
831 | 0 | return; |
832 | 0 | } |
833 | | |
834 | | // Remove a range across containers. Remove intermediate containers |
835 | | // entirely. |
836 | 0 | remove_range_closed_at(r, art, min_high48, min_low16, 0xffff); |
837 | |
|
838 | 0 | art_iterator_t it = art_upper_bound(art, min_high48); |
839 | 0 | while (it.value != NULL && art_compare_keys(it.key, max_high48) < 0) { |
840 | 0 | leaf_t leaf; |
841 | 0 | bool erased = art_iterator_erase(&it, (art_val_t *)&leaf); |
842 | 0 | assert(erased); |
843 | 0 | (void)erased; |
844 | 0 | container_free(get_container(r, leaf), get_typecode(leaf)); |
845 | 0 | remove_container(r, leaf); |
846 | 0 | } |
847 | 0 | remove_range_closed_at(r, art, max_high48, 0, max_low16); |
848 | 0 | } |
849 | | |
850 | 0 | void roaring64_bitmap_clear(roaring64_bitmap_t *r) { |
851 | 0 | roaring64_bitmap_remove_range_closed(r, 0, UINT64_MAX); |
852 | 0 | } |
853 | | |
854 | 1.18k | uint64_t roaring64_bitmap_get_cardinality(const roaring64_bitmap_t *r) { |
855 | 1.18k | art_iterator_t it = art_init_iterator((art_t *)&r->art, /*first=*/true); |
856 | 1.18k | uint64_t cardinality = 0; |
857 | 31.5k | while (it.value != NULL) { |
858 | 30.3k | leaf_t leaf = (leaf_t)*it.value; |
859 | 30.3k | cardinality += container_get_cardinality(get_container(r, leaf), |
860 | 30.3k | get_typecode(leaf)); |
861 | 30.3k | art_iterator_next(&it); |
862 | 30.3k | } |
863 | 1.18k | return cardinality; |
864 | 1.18k | } |
865 | | |
866 | | uint64_t roaring64_bitmap_range_cardinality(const roaring64_bitmap_t *r, |
867 | 0 | uint64_t min, uint64_t max) { |
868 | 0 | if (min >= max) { |
869 | 0 | return 0; |
870 | 0 | } |
871 | | // Convert to a closed range |
872 | | // No underflow here: passing the above condition implies min < max, so |
873 | | // there is a number less than max |
874 | 0 | return roaring64_bitmap_range_closed_cardinality(r, min, max - 1); |
875 | 0 | } |
876 | | |
877 | | uint64_t roaring64_bitmap_range_closed_cardinality(const roaring64_bitmap_t *r, |
878 | 0 | uint64_t min, uint64_t max) { |
879 | 0 | if (min > max) { |
880 | 0 | return 0; |
881 | 0 | } |
882 | | |
883 | 0 | uint64_t cardinality = 0; |
884 | 0 | uint8_t min_high48[ART_KEY_BYTES]; |
885 | 0 | uint16_t min_low16 = split_key(min, min_high48); |
886 | 0 | uint8_t max_high48[ART_KEY_BYTES]; |
887 | 0 | uint16_t max_low16 = split_key(max, max_high48); |
888 | |
|
889 | 0 | art_iterator_t it = art_lower_bound((art_t *)&r->art, min_high48); |
890 | 0 | while (it.value != NULL) { |
891 | 0 | int max_compare_result = compare_high48(it.key, max_high48); |
892 | 0 | if (max_compare_result > 0) { |
893 | | // We're outside the range. |
894 | 0 | break; |
895 | 0 | } |
896 | | |
897 | 0 | leaf_t leaf = (leaf_t)*it.value; |
898 | 0 | uint8_t typecode = get_typecode(leaf); |
899 | 0 | container_t *container = get_container(r, leaf); |
900 | 0 | if (max_compare_result == 0) { |
901 | | // We're at the max high key, add only the range up to the low |
902 | | // 16 bits of max. |
903 | 0 | cardinality += container_rank(container, typecode, max_low16); |
904 | 0 | } else { |
905 | | // We're not yet at the max high key, add the full container |
906 | | // range. |
907 | 0 | cardinality += container_get_cardinality(container, typecode); |
908 | 0 | } |
909 | 0 | if (compare_high48(it.key, min_high48) == 0 && min_low16 > 0) { |
910 | | // We're at the min high key, remove the range up to the low 16 |
911 | | // bits of min. |
912 | 0 | cardinality -= container_rank(container, typecode, min_low16 - 1); |
913 | 0 | } |
914 | 0 | art_iterator_next(&it); |
915 | 0 | } |
916 | 0 | return cardinality; |
917 | 0 | } |
918 | | |
919 | 0 | bool roaring64_bitmap_is_empty(const roaring64_bitmap_t *r) { |
920 | 0 | return art_is_empty(&r->art); |
921 | 0 | } |
922 | | |
923 | 0 | uint64_t roaring64_bitmap_minimum(const roaring64_bitmap_t *r) { |
924 | 0 | art_iterator_t it = art_init_iterator((art_t *)&r->art, /*first=*/true); |
925 | 0 | if (it.value == NULL) { |
926 | 0 | return UINT64_MAX; |
927 | 0 | } |
928 | 0 | leaf_t leaf = (leaf_t)*it.value; |
929 | 0 | return combine_key( |
930 | 0 | it.key, container_minimum(get_container(r, leaf), get_typecode(leaf))); |
931 | 0 | } |
932 | | |
933 | 0 | uint64_t roaring64_bitmap_maximum(const roaring64_bitmap_t *r) { |
934 | 0 | art_iterator_t it = art_init_iterator((art_t *)&r->art, /*first=*/false); |
935 | 0 | if (it.value == NULL) { |
936 | 0 | return 0; |
937 | 0 | } |
938 | 0 | leaf_t leaf = (leaf_t)*it.value; |
939 | 0 | return combine_key( |
940 | 0 | it.key, container_maximum(get_container(r, leaf), get_typecode(leaf))); |
941 | 0 | } |
942 | | |
943 | 0 | bool roaring64_bitmap_run_optimize(roaring64_bitmap_t *r) { |
944 | 0 | art_iterator_t it = art_init_iterator(&r->art, /*first=*/true); |
945 | 0 | bool has_run_container = false; |
946 | 0 | while (it.value != NULL) { |
947 | 0 | leaf_t *leaf = (leaf_t *)it.value; |
948 | 0 | uint8_t new_typecode; |
949 | | // We don't need to free the existing container if a new one was |
950 | | // created, convert_run_optimize does that internally. |
951 | 0 | container_t *new_container = convert_run_optimize( |
952 | 0 | get_container(r, *leaf), get_typecode(*leaf), &new_typecode); |
953 | 0 | replace_container(r, leaf, new_container, new_typecode); |
954 | 0 | has_run_container |= new_typecode == RUN_CONTAINER_TYPE; |
955 | 0 | art_iterator_next(&it); |
956 | 0 | } |
957 | 0 | return has_run_container; |
958 | 0 | } |
959 | | |
960 | 0 | static void move_to_shrink(roaring64_bitmap_t *r, leaf_t *leaf) { |
961 | 0 | uint64_t idx = get_index(*leaf); |
962 | 0 | if (idx < r->first_free) { |
963 | 0 | return; |
964 | 0 | } |
965 | 0 | r->containers[r->first_free] = get_container(r, *leaf); |
966 | 0 | r->containers[idx] = NULL; |
967 | 0 | *leaf = create_leaf(r->first_free, get_typecode(*leaf)); |
968 | 0 | r->first_free = next_free_container_idx(r); |
969 | 0 | } |
970 | | |
971 | 0 | static inline bool is_shrunken(const roaring64_bitmap_t *r) { |
972 | 0 | return art_is_shrunken(&r->art) && r->first_free == r->capacity; |
973 | 0 | } |
974 | | |
975 | 0 | size_t roaring64_bitmap_shrink_to_fit(roaring64_bitmap_t *r) { |
976 | 0 | size_t freed = art_shrink_to_fit(&r->art); |
977 | 0 | art_iterator_t it = art_init_iterator(&r->art, true); |
978 | 0 | while (it.value != NULL) { |
979 | 0 | leaf_t *leaf = (leaf_t *)it.value; |
980 | 0 | freed += container_shrink_to_fit(get_container(r, *leaf), |
981 | 0 | get_typecode(*leaf)); |
982 | 0 | move_to_shrink(r, leaf); |
983 | 0 | art_iterator_next(&it); |
984 | 0 | } |
985 | 0 | if (is_shrunken(r)) { |
986 | 0 | return freed; |
987 | 0 | } |
988 | 0 | uint64_t new_capacity = r->first_free; |
989 | 0 | if (new_capacity < r->capacity) { |
990 | 0 | r->containers = (container_t **)roaring_realloc( |
991 | 0 | r->containers, new_capacity * sizeof(container_t *)); |
992 | 0 | freed += (r->capacity - new_capacity) * sizeof(container_t *); |
993 | 0 | r->capacity = new_capacity; |
994 | 0 | } |
995 | 0 | return freed; |
996 | 0 | } |
997 | | |
998 | | /** |
999 | | * (For advanced users.) |
1000 | | * Collect statistics about the bitmap |
1001 | | */ |
1002 | | void roaring64_bitmap_statistics(const roaring64_bitmap_t *r, |
1003 | 0 | roaring64_statistics_t *stat) { |
1004 | 0 | memset(stat, 0, sizeof(*stat)); |
1005 | 0 | stat->min_value = roaring64_bitmap_minimum(r); |
1006 | 0 | stat->max_value = roaring64_bitmap_maximum(r); |
1007 | |
|
1008 | 0 | art_iterator_t it = art_init_iterator((art_t *)&r->art, true); |
1009 | 0 | while (it.value != NULL) { |
1010 | 0 | leaf_t leaf = (leaf_t)*it.value; |
1011 | 0 | stat->n_containers++; |
1012 | 0 | uint8_t truetype = |
1013 | 0 | get_container_type(get_container(r, leaf), get_typecode(leaf)); |
1014 | 0 | uint32_t card = container_get_cardinality(get_container(r, leaf), |
1015 | 0 | get_typecode(leaf)); |
1016 | 0 | uint32_t sbytes = |
1017 | 0 | container_size_in_bytes(get_container(r, leaf), get_typecode(leaf)); |
1018 | 0 | stat->cardinality += card; |
1019 | 0 | switch (truetype) { |
1020 | 0 | case BITSET_CONTAINER_TYPE: |
1021 | 0 | stat->n_bitset_containers++; |
1022 | 0 | stat->n_values_bitset_containers += card; |
1023 | 0 | stat->n_bytes_bitset_containers += sbytes; |
1024 | 0 | break; |
1025 | 0 | case ARRAY_CONTAINER_TYPE: |
1026 | 0 | stat->n_array_containers++; |
1027 | 0 | stat->n_values_array_containers += card; |
1028 | 0 | stat->n_bytes_array_containers += sbytes; |
1029 | 0 | break; |
1030 | 0 | case RUN_CONTAINER_TYPE: |
1031 | 0 | stat->n_run_containers++; |
1032 | 0 | stat->n_values_run_containers += card; |
1033 | 0 | stat->n_bytes_run_containers += sbytes; |
1034 | 0 | break; |
1035 | 0 | default: |
1036 | 0 | assert(false); |
1037 | 0 | roaring_unreachable; |
1038 | 0 | } |
1039 | 0 | art_iterator_next(&it); |
1040 | 0 | } |
1041 | 0 | } |
1042 | | |
1043 | | static bool roaring64_leaf_internal_validate(const art_val_t val, |
1044 | | const char **reason, |
1045 | 17.8k | void *context) { |
1046 | 17.8k | leaf_t leaf = (leaf_t)val; |
1047 | 17.8k | roaring64_bitmap_t *r = (roaring64_bitmap_t *)context; |
1048 | 17.8k | return container_internal_validate(get_container(r, leaf), |
1049 | 17.8k | get_typecode(leaf), reason); |
1050 | 17.8k | } |
1051 | | |
1052 | | bool roaring64_bitmap_internal_validate(const roaring64_bitmap_t *r, |
1053 | 805 | const char **reason) { |
1054 | 805 | return art_internal_validate(&r->art, reason, |
1055 | 805 | roaring64_leaf_internal_validate, (void *)r); |
1056 | 805 | } |
1057 | | |
1058 | | bool roaring64_bitmap_equals(const roaring64_bitmap_t *r1, |
1059 | 0 | const roaring64_bitmap_t *r2) { |
1060 | 0 | art_iterator_t it1 = art_init_iterator((art_t *)&r1->art, /*first=*/true); |
1061 | 0 | art_iterator_t it2 = art_init_iterator((art_t *)&r2->art, /*first=*/true); |
1062 | |
|
1063 | 0 | while (it1.value != NULL && it2.value != NULL) { |
1064 | 0 | if (compare_high48(it1.key, it2.key) != 0) { |
1065 | 0 | return false; |
1066 | 0 | } |
1067 | 0 | leaf_t leaf1 = (leaf_t)*it1.value; |
1068 | 0 | leaf_t leaf2 = (leaf_t)*it2.value; |
1069 | 0 | if (!container_equals(get_container(r1, leaf1), get_typecode(leaf1), |
1070 | 0 | get_container(r2, leaf2), get_typecode(leaf2))) { |
1071 | 0 | return false; |
1072 | 0 | } |
1073 | 0 | art_iterator_next(&it1); |
1074 | 0 | art_iterator_next(&it2); |
1075 | 0 | } |
1076 | 0 | return it1.value == NULL && it2.value == NULL; |
1077 | 0 | } |
1078 | | |
1079 | | bool roaring64_bitmap_is_subset(const roaring64_bitmap_t *r1, |
1080 | 0 | const roaring64_bitmap_t *r2) { |
1081 | 0 | art_iterator_t it1 = art_init_iterator((art_t *)&r1->art, /*first=*/true); |
1082 | 0 | art_iterator_t it2 = art_init_iterator((art_t *)&r2->art, /*first=*/true); |
1083 | |
|
1084 | 0 | while (it1.value != NULL) { |
1085 | 0 | bool it2_present = it2.value != NULL; |
1086 | |
|
1087 | 0 | int compare_result = 0; |
1088 | 0 | if (it2_present) { |
1089 | 0 | compare_result = compare_high48(it1.key, it2.key); |
1090 | 0 | if (compare_result == 0) { |
1091 | 0 | leaf_t leaf1 = (leaf_t)*it1.value; |
1092 | 0 | leaf_t leaf2 = (leaf_t)*it2.value; |
1093 | 0 | if (!container_is_subset( |
1094 | 0 | get_container(r1, leaf1), get_typecode(leaf1), |
1095 | 0 | get_container(r2, leaf2), get_typecode(leaf2))) { |
1096 | 0 | return false; |
1097 | 0 | } |
1098 | 0 | art_iterator_next(&it1); |
1099 | 0 | art_iterator_next(&it2); |
1100 | 0 | } |
1101 | 0 | } |
1102 | 0 | if (!it2_present || compare_result < 0) { |
1103 | 0 | return false; |
1104 | 0 | } else if (compare_result > 0) { |
1105 | 0 | art_iterator_lower_bound(&it2, it1.key); |
1106 | 0 | } |
1107 | 0 | } |
1108 | 0 | return true; |
1109 | 0 | } |
1110 | | |
1111 | | bool roaring64_bitmap_is_strict_subset(const roaring64_bitmap_t *r1, |
1112 | 0 | const roaring64_bitmap_t *r2) { |
1113 | 0 | return roaring64_bitmap_get_cardinality(r1) < |
1114 | 0 | roaring64_bitmap_get_cardinality(r2) && |
1115 | 0 | roaring64_bitmap_is_subset(r1, r2); |
1116 | 0 | } |
1117 | | |
1118 | | roaring64_bitmap_t *roaring64_bitmap_and(const roaring64_bitmap_t *r1, |
1119 | 0 | const roaring64_bitmap_t *r2) { |
1120 | 0 | roaring64_bitmap_t *result = roaring64_bitmap_create(); |
1121 | |
|
1122 | 0 | art_iterator_t it1 = art_init_iterator((art_t *)&r1->art, /*first=*/true); |
1123 | 0 | art_iterator_t it2 = art_init_iterator((art_t *)&r2->art, /*first=*/true); |
1124 | |
|
1125 | 0 | while (it1.value != NULL && it2.value != NULL) { |
1126 | | // Cases: |
1127 | | // 1. it1 < it2 -> it1++ |
1128 | | // 2. it1 == it1 -> output it1 & it2, it1++, it2++ |
1129 | | // 3. it1 > it2 -> it2++ |
1130 | 0 | int compare_result = compare_high48(it1.key, it2.key); |
1131 | 0 | if (compare_result == 0) { |
1132 | | // Case 2: iterators at the same high key position. |
1133 | 0 | leaf_t leaf1 = (leaf_t)*it1.value; |
1134 | 0 | leaf_t leaf2 = (leaf_t)*it2.value; |
1135 | 0 | uint8_t result_typecode; |
1136 | 0 | container_t *result_container = |
1137 | 0 | container_and(get_container(r1, leaf1), get_typecode(leaf1), |
1138 | 0 | get_container(r2, leaf2), get_typecode(leaf2), |
1139 | 0 | &result_typecode); |
1140 | 0 | if (container_nonzero_cardinality(result_container, |
1141 | 0 | result_typecode)) { |
1142 | 0 | leaf_t result_leaf = |
1143 | 0 | add_container(result, result_container, result_typecode); |
1144 | 0 | art_insert(&result->art, it1.key, (art_val_t)result_leaf); |
1145 | 0 | } else { |
1146 | 0 | container_free(result_container, result_typecode); |
1147 | 0 | } |
1148 | 0 | art_iterator_next(&it1); |
1149 | 0 | art_iterator_next(&it2); |
1150 | 0 | } else if (compare_result < 0) { |
1151 | | // Case 1: it1 is before it2. |
1152 | 0 | art_iterator_lower_bound(&it1, it2.key); |
1153 | 0 | } else { |
1154 | | // Case 3: it2 is before it1. |
1155 | 0 | art_iterator_lower_bound(&it2, it1.key); |
1156 | 0 | } |
1157 | 0 | } |
1158 | 0 | return result; |
1159 | 0 | } |
1160 | | |
1161 | | uint64_t roaring64_bitmap_and_cardinality(const roaring64_bitmap_t *r1, |
1162 | 0 | const roaring64_bitmap_t *r2) { |
1163 | 0 | uint64_t result = 0; |
1164 | |
|
1165 | 0 | art_iterator_t it1 = art_init_iterator((art_t *)&r1->art, /*first=*/true); |
1166 | 0 | art_iterator_t it2 = art_init_iterator((art_t *)&r2->art, /*first=*/true); |
1167 | |
|
1168 | 0 | while (it1.value != NULL && it2.value != NULL) { |
1169 | | // Cases: |
1170 | | // 1. it1 < it2 -> it1++ |
1171 | | // 2. it1 == it1 -> output cardinaltiy it1 & it2, it1++, it2++ |
1172 | | // 3. it1 > it2 -> it2++ |
1173 | 0 | int compare_result = compare_high48(it1.key, it2.key); |
1174 | 0 | if (compare_result == 0) { |
1175 | | // Case 2: iterators at the same high key position. |
1176 | 0 | leaf_t leaf1 = (leaf_t)*it1.value; |
1177 | 0 | leaf_t leaf2 = (leaf_t)*it2.value; |
1178 | 0 | result += container_and_cardinality( |
1179 | 0 | get_container(r1, leaf1), get_typecode(leaf1), |
1180 | 0 | get_container(r2, leaf2), get_typecode(leaf2)); |
1181 | 0 | art_iterator_next(&it1); |
1182 | 0 | art_iterator_next(&it2); |
1183 | 0 | } else if (compare_result < 0) { |
1184 | | // Case 1: it1 is before it2. |
1185 | 0 | art_iterator_lower_bound(&it1, it2.key); |
1186 | 0 | } else { |
1187 | | // Case 3: it2 is before it1. |
1188 | 0 | art_iterator_lower_bound(&it2, it1.key); |
1189 | 0 | } |
1190 | 0 | } |
1191 | 0 | return result; |
1192 | 0 | } |
1193 | | |
1194 | | // Inplace and (modifies its first argument). |
1195 | | void roaring64_bitmap_and_inplace(roaring64_bitmap_t *r1, |
1196 | 0 | const roaring64_bitmap_t *r2) { |
1197 | 0 | if (r1 == r2) { |
1198 | 0 | return; |
1199 | 0 | } |
1200 | 0 | art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true); |
1201 | 0 | art_iterator_t it2 = art_init_iterator((art_t *)&r2->art, /*first=*/true); |
1202 | |
|
1203 | 0 | while (it1.value != NULL) { |
1204 | | // Cases: |
1205 | | // 1. !it2_present -> erase it1 |
1206 | | // 2. it2_present |
1207 | | // a. it1 < it2 -> erase it1 |
1208 | | // b. it1 == it2 -> output it1 & it2, it1++, it2++ |
1209 | | // c. it1 > it2 -> it2++ |
1210 | 0 | bool it2_present = it2.value != NULL; |
1211 | 0 | int compare_result = 0; |
1212 | 0 | if (it2_present) { |
1213 | 0 | compare_result = compare_high48(it1.key, it2.key); |
1214 | 0 | if (compare_result == 0) { |
1215 | | // Case 2a: iterators at the same high key position. |
1216 | 0 | leaf_t *leaf1 = (leaf_t *)it1.value; |
1217 | 0 | leaf_t leaf2 = (leaf_t)*it2.value; |
1218 | | |
1219 | | // We do the computation "in place" only when c1 is not a |
1220 | | // shared container. Rationale: using a shared container |
1221 | | // safely with in place computation would require making a |
1222 | | // copy and then doing the computation in place which is |
1223 | | // likely less efficient than avoiding in place entirely and |
1224 | | // always generating a new container. |
1225 | 0 | uint8_t typecode = get_typecode(*leaf1); |
1226 | 0 | container_t *container = get_container(r1, *leaf1); |
1227 | 0 | uint8_t typecode2; |
1228 | 0 | container_t *container2; |
1229 | 0 | if (typecode == SHARED_CONTAINER_TYPE) { |
1230 | 0 | container2 = container_and(container, typecode, |
1231 | 0 | get_container(r2, leaf2), |
1232 | 0 | get_typecode(leaf2), &typecode2); |
1233 | 0 | } else { |
1234 | 0 | container2 = container_iand( |
1235 | 0 | container, typecode, get_container(r2, leaf2), |
1236 | 0 | get_typecode(leaf2), &typecode2); |
1237 | 0 | } |
1238 | |
|
1239 | 0 | if (container2 != container) { |
1240 | 0 | container_free(container, typecode); |
1241 | 0 | } |
1242 | 0 | if (!container_nonzero_cardinality(container2, typecode2)) { |
1243 | 0 | container_free(container2, typecode2); |
1244 | 0 | art_iterator_erase(&it1, NULL); |
1245 | 0 | remove_container(r1, *leaf1); |
1246 | 0 | } else { |
1247 | 0 | if (container2 != container) { |
1248 | 0 | replace_container(r1, leaf1, container2, typecode2); |
1249 | 0 | } |
1250 | | // Only advance the iterator if we didn't delete the |
1251 | | // leaf, as erasing advances by itself. |
1252 | 0 | art_iterator_next(&it1); |
1253 | 0 | } |
1254 | 0 | art_iterator_next(&it2); |
1255 | 0 | } |
1256 | 0 | } |
1257 | |
|
1258 | 0 | if (!it2_present || compare_result < 0) { |
1259 | | // Cases 1 and 3a: it1 is the only iterator or is before it2. |
1260 | 0 | leaf_t leaf; |
1261 | 0 | bool erased = art_iterator_erase(&it1, (art_val_t *)&leaf); |
1262 | 0 | assert(erased); |
1263 | 0 | (void)erased; |
1264 | 0 | container_free(get_container(r1, leaf), get_typecode(leaf)); |
1265 | 0 | remove_container(r1, leaf); |
1266 | 0 | } else if (compare_result > 0) { |
1267 | | // Case 2c: it1 is after it2. |
1268 | 0 | art_iterator_lower_bound(&it2, it1.key); |
1269 | 0 | } |
1270 | 0 | } |
1271 | 0 | } |
1272 | | |
1273 | | bool roaring64_bitmap_intersect(const roaring64_bitmap_t *r1, |
1274 | 0 | const roaring64_bitmap_t *r2) { |
1275 | 0 | bool intersect = false; |
1276 | 0 | art_iterator_t it1 = art_init_iterator((art_t *)&r1->art, /*first=*/true); |
1277 | 0 | art_iterator_t it2 = art_init_iterator((art_t *)&r2->art, /*first=*/true); |
1278 | |
|
1279 | 0 | while (it1.value != NULL && it2.value != NULL) { |
1280 | | // Cases: |
1281 | | // 1. it1 < it2 -> it1++ |
1282 | | // 2. it1 == it1 -> intersect |= it1 & it2, it1++, it2++ |
1283 | | // 3. it1 > it2 -> it2++ |
1284 | 0 | int compare_result = compare_high48(it1.key, it2.key); |
1285 | 0 | if (compare_result == 0) { |
1286 | | // Case 2: iterators at the same high key position. |
1287 | 0 | leaf_t leaf1 = (leaf_t)*it1.value; |
1288 | 0 | leaf_t leaf2 = (leaf_t)*it2.value; |
1289 | 0 | intersect |= container_intersect( |
1290 | 0 | get_container(r1, leaf1), get_typecode(leaf1), |
1291 | 0 | get_container(r2, leaf2), get_typecode(leaf2)); |
1292 | 0 | art_iterator_next(&it1); |
1293 | 0 | art_iterator_next(&it2); |
1294 | 0 | } else if (compare_result < 0) { |
1295 | | // Case 1: it1 is before it2. |
1296 | 0 | art_iterator_lower_bound(&it1, it2.key); |
1297 | 0 | } else { |
1298 | | // Case 3: it2 is before it1. |
1299 | 0 | art_iterator_lower_bound(&it2, it1.key); |
1300 | 0 | } |
1301 | 0 | } |
1302 | 0 | return intersect; |
1303 | 0 | } |
1304 | | |
1305 | | bool roaring64_bitmap_intersect_with_range(const roaring64_bitmap_t *r, |
1306 | 0 | uint64_t min, uint64_t max) { |
1307 | 0 | if (min >= max) { |
1308 | 0 | return false; |
1309 | 0 | } |
1310 | 0 | roaring64_iterator_t it; |
1311 | 0 | roaring64_iterator_init_at(r, &it, /*first=*/true); |
1312 | 0 | if (!roaring64_iterator_move_equalorlarger(&it, min)) { |
1313 | 0 | return false; |
1314 | 0 | } |
1315 | 0 | return roaring64_iterator_has_value(&it) && |
1316 | 0 | roaring64_iterator_value(&it) < max; |
1317 | 0 | } |
1318 | | |
1319 | | double roaring64_bitmap_jaccard_index(const roaring64_bitmap_t *r1, |
1320 | 0 | const roaring64_bitmap_t *r2) { |
1321 | 0 | uint64_t c1 = roaring64_bitmap_get_cardinality(r1); |
1322 | 0 | uint64_t c2 = roaring64_bitmap_get_cardinality(r2); |
1323 | 0 | uint64_t inter = roaring64_bitmap_and_cardinality(r1, r2); |
1324 | 0 | return (double)inter / (double)(c1 + c2 - inter); |
1325 | 0 | } |
1326 | | |
1327 | | roaring64_bitmap_t *roaring64_bitmap_or(const roaring64_bitmap_t *r1, |
1328 | 0 | const roaring64_bitmap_t *r2) { |
1329 | 0 | roaring64_bitmap_t *result = roaring64_bitmap_create(); |
1330 | |
|
1331 | 0 | art_iterator_t it1 = art_init_iterator((art_t *)&r1->art, /*first=*/true); |
1332 | 0 | art_iterator_t it2 = art_init_iterator((art_t *)&r2->art, /*first=*/true); |
1333 | |
|
1334 | 0 | while (it1.value != NULL || it2.value != NULL) { |
1335 | 0 | bool it1_present = it1.value != NULL; |
1336 | 0 | bool it2_present = it2.value != NULL; |
1337 | | |
1338 | | // Cases: |
1339 | | // 1. it1_present && !it2_present -> output it1, it1++ |
1340 | | // 2. !it1_present && it2_present -> output it2, it2++ |
1341 | | // 3. it1_present && it2_present |
1342 | | // a. it1 < it2 -> output it1, it1++ |
1343 | | // b. it1 == it2 -> output it1 | it2, it1++, it2++ |
1344 | | // c. it1 > it2 -> output it2, it2++ |
1345 | 0 | int compare_result = 0; |
1346 | 0 | if (it1_present && it2_present) { |
1347 | 0 | compare_result = compare_high48(it1.key, it2.key); |
1348 | 0 | if (compare_result == 0) { |
1349 | | // Case 3b: iterators at the same high key position. |
1350 | 0 | leaf_t leaf1 = (leaf_t)*it1.value; |
1351 | 0 | leaf_t leaf2 = (leaf_t)*it2.value; |
1352 | 0 | uint8_t result_typecode; |
1353 | 0 | container_t *result_container = |
1354 | 0 | container_or(get_container(r1, leaf1), get_typecode(leaf1), |
1355 | 0 | get_container(r2, leaf2), get_typecode(leaf2), |
1356 | 0 | &result_typecode); |
1357 | 0 | leaf_t result_leaf = |
1358 | 0 | add_container(result, result_container, result_typecode); |
1359 | 0 | art_insert(&result->art, it1.key, (art_val_t)result_leaf); |
1360 | 0 | art_iterator_next(&it1); |
1361 | 0 | art_iterator_next(&it2); |
1362 | 0 | } |
1363 | 0 | } |
1364 | 0 | if ((it1_present && !it2_present) || compare_result < 0) { |
1365 | | // Cases 1 and 3a: it1 is the only iterator or is before it2. |
1366 | 0 | leaf_t result_leaf = |
1367 | 0 | copy_leaf_container(r1, result, (leaf_t)*it1.value); |
1368 | 0 | art_insert(&result->art, it1.key, (art_val_t)result_leaf); |
1369 | 0 | art_iterator_next(&it1); |
1370 | 0 | } else if ((!it1_present && it2_present) || compare_result > 0) { |
1371 | | // Cases 2 and 3c: it2 is the only iterator or is before it1. |
1372 | 0 | leaf_t result_leaf = |
1373 | 0 | copy_leaf_container(r2, result, (leaf_t)*it2.value); |
1374 | 0 | art_insert(&result->art, it2.key, (art_val_t)result_leaf); |
1375 | 0 | art_iterator_next(&it2); |
1376 | 0 | } |
1377 | 0 | } |
1378 | 0 | return result; |
1379 | 0 | } |
1380 | | |
1381 | | uint64_t roaring64_bitmap_or_cardinality(const roaring64_bitmap_t *r1, |
1382 | 0 | const roaring64_bitmap_t *r2) { |
1383 | 0 | uint64_t c1 = roaring64_bitmap_get_cardinality(r1); |
1384 | 0 | uint64_t c2 = roaring64_bitmap_get_cardinality(r2); |
1385 | 0 | uint64_t inter = roaring64_bitmap_and_cardinality(r1, r2); |
1386 | 0 | return c1 + c2 - inter; |
1387 | 0 | } |
1388 | | |
1389 | | void roaring64_bitmap_or_inplace(roaring64_bitmap_t *r1, |
1390 | 0 | const roaring64_bitmap_t *r2) { |
1391 | 0 | if (r1 == r2) { |
1392 | 0 | return; |
1393 | 0 | } |
1394 | 0 | art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true); |
1395 | 0 | art_iterator_t it2 = art_init_iterator((art_t *)&r2->art, /*first=*/true); |
1396 | |
|
1397 | 0 | while (it1.value != NULL || it2.value != NULL) { |
1398 | 0 | bool it1_present = it1.value != NULL; |
1399 | 0 | bool it2_present = it2.value != NULL; |
1400 | | |
1401 | | // Cases: |
1402 | | // 1. it1_present && !it2_present -> it1++ |
1403 | | // 2. !it1_present && it2_present -> add it2, it2++ |
1404 | | // 3. it1_present && it2_present |
1405 | | // a. it1 < it2 -> it1++ |
1406 | | // b. it1 == it2 -> it1 | it2, it1++, it2++ |
1407 | | // c. it1 > it2 -> add it2, it2++ |
1408 | 0 | int compare_result = 0; |
1409 | 0 | if (it1_present && it2_present) { |
1410 | 0 | compare_result = compare_high48(it1.key, it2.key); |
1411 | 0 | if (compare_result == 0) { |
1412 | | // Case 3b: iterators at the same high key position. |
1413 | 0 | leaf_t *leaf1 = (leaf_t *)it1.value; |
1414 | 0 | leaf_t leaf2 = (leaf_t)*it2.value; |
1415 | 0 | uint8_t typecode1 = get_typecode(*leaf1); |
1416 | 0 | container_t *container1 = get_container(r1, *leaf1); |
1417 | 0 | uint8_t typecode2; |
1418 | 0 | container_t *container2; |
1419 | 0 | if (get_typecode(*leaf1) == SHARED_CONTAINER_TYPE) { |
1420 | 0 | container2 = container_or(container1, typecode1, |
1421 | 0 | get_container(r2, leaf2), |
1422 | 0 | get_typecode(leaf2), &typecode2); |
1423 | 0 | } else { |
1424 | 0 | container2 = container_ior(container1, typecode1, |
1425 | 0 | get_container(r2, leaf2), |
1426 | 0 | get_typecode(leaf2), &typecode2); |
1427 | 0 | } |
1428 | 0 | if (container2 != container1) { |
1429 | 0 | container_free(container1, typecode1); |
1430 | 0 | replace_container(r1, leaf1, container2, typecode2); |
1431 | 0 | } |
1432 | 0 | art_iterator_next(&it1); |
1433 | 0 | art_iterator_next(&it2); |
1434 | 0 | } |
1435 | 0 | } |
1436 | 0 | if ((it1_present && !it2_present) || compare_result < 0) { |
1437 | | // Cases 1 and 3a: it1 is the only iterator or is before it2. |
1438 | 0 | art_iterator_next(&it1); |
1439 | 0 | } else if ((!it1_present && it2_present) || compare_result > 0) { |
1440 | | // Cases 2 and 3c: it2 is the only iterator or is before it1. |
1441 | 0 | leaf_t result_leaf = |
1442 | 0 | copy_leaf_container(r2, r1, (leaf_t)*it2.value); |
1443 | 0 | art_iterator_insert(&it1, it2.key, (art_val_t)result_leaf); |
1444 | 0 | art_iterator_next(&it2); |
1445 | 0 | } |
1446 | 0 | } |
1447 | 0 | } |
1448 | | |
1449 | | roaring64_bitmap_t *roaring64_bitmap_xor(const roaring64_bitmap_t *r1, |
1450 | 0 | const roaring64_bitmap_t *r2) { |
1451 | 0 | roaring64_bitmap_t *result = roaring64_bitmap_create(); |
1452 | |
|
1453 | 0 | art_iterator_t it1 = art_init_iterator((art_t *)&r1->art, /*first=*/true); |
1454 | 0 | art_iterator_t it2 = art_init_iterator((art_t *)&r2->art, /*first=*/true); |
1455 | |
|
1456 | 0 | while (it1.value != NULL || it2.value != NULL) { |
1457 | 0 | bool it1_present = it1.value != NULL; |
1458 | 0 | bool it2_present = it2.value != NULL; |
1459 | | |
1460 | | // Cases: |
1461 | | // 1. it1_present && !it2_present -> output it1, it1++ |
1462 | | // 2. !it1_present && it2_present -> output it2, it2++ |
1463 | | // 3. it1_present && it2_present |
1464 | | // a. it1 < it2 -> output it1, it1++ |
1465 | | // b. it1 == it2 -> output it1 ^ it2, it1++, it2++ |
1466 | | // c. it1 > it2 -> output it2, it2++ |
1467 | 0 | int compare_result = 0; |
1468 | 0 | if (it1_present && it2_present) { |
1469 | 0 | compare_result = compare_high48(it1.key, it2.key); |
1470 | 0 | if (compare_result == 0) { |
1471 | | // Case 3b: iterators at the same high key position. |
1472 | 0 | leaf_t leaf1 = (leaf_t)*it1.value; |
1473 | 0 | leaf_t leaf2 = (leaf_t)*it2.value; |
1474 | 0 | uint8_t result_typecode; |
1475 | 0 | container_t *result_container = |
1476 | 0 | container_xor(get_container(r1, leaf1), get_typecode(leaf1), |
1477 | 0 | get_container(r2, leaf2), get_typecode(leaf2), |
1478 | 0 | &result_typecode); |
1479 | 0 | if (container_nonzero_cardinality(result_container, |
1480 | 0 | result_typecode)) { |
1481 | 0 | leaf_t result_leaf = add_container(result, result_container, |
1482 | 0 | result_typecode); |
1483 | 0 | art_insert(&result->art, it1.key, (art_val_t)result_leaf); |
1484 | 0 | } else { |
1485 | 0 | container_free(result_container, result_typecode); |
1486 | 0 | } |
1487 | 0 | art_iterator_next(&it1); |
1488 | 0 | art_iterator_next(&it2); |
1489 | 0 | } |
1490 | 0 | } |
1491 | 0 | if ((it1_present && !it2_present) || compare_result < 0) { |
1492 | | // Cases 1 and 3a: it1 is the only iterator or is before it2. |
1493 | 0 | leaf_t result_leaf = |
1494 | 0 | copy_leaf_container(r1, result, (leaf_t)*it1.value); |
1495 | 0 | art_insert(&result->art, it1.key, (art_val_t)result_leaf); |
1496 | 0 | art_iterator_next(&it1); |
1497 | 0 | } else if ((!it1_present && it2_present) || compare_result > 0) { |
1498 | | // Cases 2 and 3c: it2 is the only iterator or is before it1. |
1499 | 0 | leaf_t result_leaf = |
1500 | 0 | copy_leaf_container(r2, result, (leaf_t)*it2.value); |
1501 | 0 | art_insert(&result->art, it2.key, (art_val_t)result_leaf); |
1502 | 0 | art_iterator_next(&it2); |
1503 | 0 | } |
1504 | 0 | } |
1505 | 0 | return result; |
1506 | 0 | } |
1507 | | |
1508 | | uint64_t roaring64_bitmap_xor_cardinality(const roaring64_bitmap_t *r1, |
1509 | 0 | const roaring64_bitmap_t *r2) { |
1510 | 0 | uint64_t c1 = roaring64_bitmap_get_cardinality(r1); |
1511 | 0 | uint64_t c2 = roaring64_bitmap_get_cardinality(r2); |
1512 | 0 | uint64_t inter = roaring64_bitmap_and_cardinality(r1, r2); |
1513 | 0 | return c1 + c2 - 2 * inter; |
1514 | 0 | } |
1515 | | |
1516 | | void roaring64_bitmap_xor_inplace(roaring64_bitmap_t *r1, |
1517 | 0 | const roaring64_bitmap_t *r2) { |
1518 | 0 | assert(r1 != r2); |
1519 | 0 | art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true); |
1520 | 0 | art_iterator_t it2 = art_init_iterator((art_t *)&r2->art, /*first=*/true); |
1521 | |
|
1522 | 0 | while (it1.value != NULL || it2.value != NULL) { |
1523 | 0 | bool it1_present = it1.value != NULL; |
1524 | 0 | bool it2_present = it2.value != NULL; |
1525 | | |
1526 | | // Cases: |
1527 | | // 1. it1_present && !it2_present -> it1++ |
1528 | | // 2. !it1_present && it2_present -> add it2, it2++ |
1529 | | // 3. it1_present && it2_present |
1530 | | // a. it1 < it2 -> it1++ |
1531 | | // b. it1 == it2 -> it1 ^ it2, it1++, it2++ |
1532 | | // c. it1 > it2 -> add it2, it2++ |
1533 | 0 | int compare_result = 0; |
1534 | 0 | if (it1_present && it2_present) { |
1535 | 0 | compare_result = compare_high48(it1.key, it2.key); |
1536 | 0 | if (compare_result == 0) { |
1537 | | // Case 3b: iterators at the same high key position. |
1538 | 0 | leaf_t *leaf1 = (leaf_t *)it1.value; |
1539 | 0 | leaf_t leaf2 = (leaf_t)*it2.value; |
1540 | 0 | uint8_t typecode1 = get_typecode(*leaf1); |
1541 | 0 | container_t *container1 = get_container(r1, *leaf1); |
1542 | 0 | uint8_t typecode2; |
1543 | 0 | container_t *container2; |
1544 | 0 | if (typecode1 == SHARED_CONTAINER_TYPE) { |
1545 | 0 | container2 = container_xor(container1, typecode1, |
1546 | 0 | get_container(r2, leaf2), |
1547 | 0 | get_typecode(leaf2), &typecode2); |
1548 | 0 | if (container2 != container1) { |
1549 | | // We only free when doing container_xor, not |
1550 | | // container_ixor, as ixor frees the original |
1551 | | // internally. |
1552 | 0 | container_free(container1, typecode1); |
1553 | 0 | } |
1554 | 0 | } else { |
1555 | 0 | container2 = container_ixor( |
1556 | 0 | container1, typecode1, get_container(r2, leaf2), |
1557 | 0 | get_typecode(leaf2), &typecode2); |
1558 | 0 | } |
1559 | |
|
1560 | 0 | if (!container_nonzero_cardinality(container2, typecode2)) { |
1561 | 0 | container_free(container2, typecode2); |
1562 | 0 | bool erased = art_iterator_erase(&it1, NULL); |
1563 | 0 | assert(erased); |
1564 | 0 | (void)erased; |
1565 | 0 | remove_container(r1, *leaf1); |
1566 | 0 | } else { |
1567 | 0 | if (container2 != container1) { |
1568 | 0 | replace_container(r1, leaf1, container2, typecode2); |
1569 | 0 | } |
1570 | | // Only advance the iterator if we didn't delete the |
1571 | | // leaf, as erasing advances by itself. |
1572 | 0 | art_iterator_next(&it1); |
1573 | 0 | } |
1574 | 0 | art_iterator_next(&it2); |
1575 | 0 | } |
1576 | 0 | } |
1577 | 0 | if ((it1_present && !it2_present) || compare_result < 0) { |
1578 | | // Cases 1 and 3a: it1 is the only iterator or is before it2. |
1579 | 0 | art_iterator_next(&it1); |
1580 | 0 | } else if ((!it1_present && it2_present) || compare_result > 0) { |
1581 | | // Cases 2 and 3c: it2 is the only iterator or is before it1. |
1582 | 0 | leaf_t result_leaf = |
1583 | 0 | copy_leaf_container(r2, r1, (leaf_t)*it2.value); |
1584 | 0 | if (it1_present) { |
1585 | 0 | art_iterator_insert(&it1, it2.key, (art_val_t)result_leaf); |
1586 | 0 | art_iterator_next(&it1); |
1587 | 0 | } else { |
1588 | 0 | art_insert(&r1->art, it2.key, (art_val_t)result_leaf); |
1589 | 0 | } |
1590 | 0 | art_iterator_next(&it2); |
1591 | 0 | } |
1592 | 0 | } |
1593 | 0 | } |
1594 | | |
1595 | | roaring64_bitmap_t *roaring64_bitmap_andnot(const roaring64_bitmap_t *r1, |
1596 | 0 | const roaring64_bitmap_t *r2) { |
1597 | 0 | roaring64_bitmap_t *result = roaring64_bitmap_create(); |
1598 | |
|
1599 | 0 | art_iterator_t it1 = art_init_iterator((art_t *)&r1->art, /*first=*/true); |
1600 | 0 | art_iterator_t it2 = art_init_iterator((art_t *)&r2->art, /*first=*/true); |
1601 | |
|
1602 | 0 | while (it1.value != NULL) { |
1603 | | // Cases: |
1604 | | // 1. it1_present && !it2_present -> output it1, it1++ |
1605 | | // 2. it1_present && it2_present |
1606 | | // a. it1 < it2 -> output it1, it1++ |
1607 | | // b. it1 == it2 -> output it1 - it2, it1++, it2++ |
1608 | | // c. it1 > it2 -> it2++ |
1609 | 0 | bool it2_present = it2.value != NULL; |
1610 | 0 | int compare_result = 0; |
1611 | 0 | if (it2_present) { |
1612 | 0 | compare_result = compare_high48(it1.key, it2.key); |
1613 | 0 | if (compare_result == 0) { |
1614 | | // Case 2b: iterators at the same high key position. |
1615 | 0 | leaf_t *leaf1 = (leaf_t *)it1.value; |
1616 | 0 | leaf_t leaf2 = (leaf_t)*it2.value; |
1617 | 0 | uint8_t result_typecode; |
1618 | 0 | container_t *result_container = container_andnot( |
1619 | 0 | get_container(r1, *leaf1), get_typecode(*leaf1), |
1620 | 0 | get_container(r2, leaf2), get_typecode(leaf2), |
1621 | 0 | &result_typecode); |
1622 | |
|
1623 | 0 | if (container_nonzero_cardinality(result_container, |
1624 | 0 | result_typecode)) { |
1625 | 0 | leaf_t result_leaf = add_container(result, result_container, |
1626 | 0 | result_typecode); |
1627 | 0 | art_insert(&result->art, it1.key, (art_val_t)result_leaf); |
1628 | 0 | } else { |
1629 | 0 | container_free(result_container, result_typecode); |
1630 | 0 | } |
1631 | 0 | art_iterator_next(&it1); |
1632 | 0 | art_iterator_next(&it2); |
1633 | 0 | } |
1634 | 0 | } |
1635 | 0 | if (!it2_present || compare_result < 0) { |
1636 | | // Cases 1 and 2a: it1 is the only iterator or is before it2. |
1637 | 0 | leaf_t result_leaf = |
1638 | 0 | copy_leaf_container(r1, result, (leaf_t)*it1.value); |
1639 | 0 | art_insert(&result->art, it1.key, (art_val_t)result_leaf); |
1640 | 0 | art_iterator_next(&it1); |
1641 | 0 | } else if (compare_result > 0) { |
1642 | | // Case 2c: it1 is after it2. |
1643 | 0 | art_iterator_next(&it2); |
1644 | 0 | } |
1645 | 0 | } |
1646 | 0 | return result; |
1647 | 0 | } |
1648 | | |
1649 | | uint64_t roaring64_bitmap_andnot_cardinality(const roaring64_bitmap_t *r1, |
1650 | 0 | const roaring64_bitmap_t *r2) { |
1651 | 0 | uint64_t c1 = roaring64_bitmap_get_cardinality(r1); |
1652 | 0 | uint64_t inter = roaring64_bitmap_and_cardinality(r1, r2); |
1653 | 0 | return c1 - inter; |
1654 | 0 | } |
1655 | | |
1656 | | void roaring64_bitmap_andnot_inplace(roaring64_bitmap_t *r1, |
1657 | 0 | const roaring64_bitmap_t *r2) { |
1658 | 0 | art_iterator_t it1 = art_init_iterator(&r1->art, /*first=*/true); |
1659 | 0 | art_iterator_t it2 = art_init_iterator((art_t *)&r2->art, /*first=*/true); |
1660 | |
|
1661 | 0 | while (it1.value != NULL) { |
1662 | | // Cases: |
1663 | | // 1. it1_present && !it2_present -> it1++ |
1664 | | // 2. it1_present && it2_present |
1665 | | // a. it1 < it2 -> it1++ |
1666 | | // b. it1 == it2 -> it1 - it2, it1++, it2++ |
1667 | | // c. it1 > it2 -> it2++ |
1668 | 0 | bool it2_present = it2.value != NULL; |
1669 | 0 | int compare_result = 0; |
1670 | 0 | if (it2_present) { |
1671 | 0 | compare_result = compare_high48(it1.key, it2.key); |
1672 | 0 | if (compare_result == 0) { |
1673 | | // Case 2b: iterators at the same high key position. |
1674 | 0 | leaf_t *leaf1 = (leaf_t *)it1.value; |
1675 | 0 | leaf_t leaf2 = (leaf_t)*it2.value; |
1676 | 0 | uint8_t typecode1 = get_typecode(*leaf1); |
1677 | 0 | container_t *container1 = get_container(r1, *leaf1); |
1678 | 0 | uint8_t typecode2; |
1679 | 0 | container_t *container2; |
1680 | 0 | if (typecode1 == SHARED_CONTAINER_TYPE) { |
1681 | 0 | container2 = container_andnot( |
1682 | 0 | container1, typecode1, get_container(r2, leaf2), |
1683 | 0 | get_typecode(leaf2), &typecode2); |
1684 | 0 | if (container2 != container1) { |
1685 | | // We only free when doing container_andnot, not |
1686 | | // container_iandnot, as iandnot frees the original |
1687 | | // internally. |
1688 | 0 | container_free(container1, typecode1); |
1689 | 0 | } |
1690 | 0 | } else { |
1691 | 0 | container2 = container_iandnot( |
1692 | 0 | container1, typecode1, get_container(r2, leaf2), |
1693 | 0 | get_typecode(leaf2), &typecode2); |
1694 | 0 | } |
1695 | |
|
1696 | 0 | if (!container_nonzero_cardinality(container2, typecode2)) { |
1697 | 0 | container_free(container2, typecode2); |
1698 | 0 | bool erased = art_iterator_erase(&it1, NULL); |
1699 | 0 | assert(erased); |
1700 | 0 | (void)erased; |
1701 | 0 | remove_container(r1, *leaf1); |
1702 | 0 | } else { |
1703 | 0 | if (container2 != container1) { |
1704 | 0 | replace_container(r1, leaf1, container2, typecode2); |
1705 | 0 | } |
1706 | | // Only advance the iterator if we didn't delete the |
1707 | | // leaf, as erasing advances by itself. |
1708 | 0 | art_iterator_next(&it1); |
1709 | 0 | } |
1710 | 0 | art_iterator_next(&it2); |
1711 | 0 | } |
1712 | 0 | } |
1713 | 0 | if (!it2_present || compare_result < 0) { |
1714 | | // Cases 1 and 2a: it1 is the only iterator or is before it2. |
1715 | 0 | art_iterator_next(&it1); |
1716 | 0 | } else if (compare_result > 0) { |
1717 | | // Case 2c: it1 is after it2. |
1718 | 0 | art_iterator_next(&it2); |
1719 | 0 | } |
1720 | 0 | } |
1721 | 0 | } |
1722 | | |
1723 | | /** |
1724 | | * Flips the leaf at high48 in the range [min, max), adding the result to |
1725 | | * `r2`. If the high48 key is not found in `r1`, a new container is created. |
1726 | | */ |
1727 | | static void roaring64_flip_leaf(const roaring64_bitmap_t *r1, |
1728 | | roaring64_bitmap_t *r2, uint8_t high48[], |
1729 | 0 | uint32_t min, uint32_t max) { |
1730 | 0 | leaf_t *leaf1 = (leaf_t *)art_find(&r1->art, high48); |
1731 | 0 | uint8_t typecode2; |
1732 | 0 | container_t *container2; |
1733 | 0 | if (leaf1 == NULL) { |
1734 | | // No container at this key, create a full container. |
1735 | 0 | container2 = container_range_of_ones(min, max, &typecode2); |
1736 | 0 | } else if (min == 0 && max > 0xFFFF) { |
1737 | | // Flip whole container. |
1738 | 0 | container2 = container_not(get_container(r1, *leaf1), |
1739 | 0 | get_typecode(*leaf1), &typecode2); |
1740 | 0 | } else { |
1741 | | // Partially flip a container. |
1742 | 0 | container2 = |
1743 | 0 | container_not_range(get_container(r1, *leaf1), get_typecode(*leaf1), |
1744 | 0 | min, max, &typecode2); |
1745 | 0 | } |
1746 | 0 | if (container_nonzero_cardinality(container2, typecode2)) { |
1747 | 0 | leaf_t leaf2 = add_container(r2, container2, typecode2); |
1748 | 0 | art_insert(&r2->art, high48, (art_val_t)leaf2); |
1749 | 0 | } else { |
1750 | 0 | container_free(container2, typecode2); |
1751 | 0 | } |
1752 | 0 | } |
1753 | | |
1754 | | /** |
1755 | | * Flips the leaf at high48 in the range [min, max). If the high48 key is |
1756 | | * not found in the bitmap, a new container is created. Deletes the leaf and |
1757 | | * associated container if the negation results in an empty range. |
1758 | | */ |
1759 | | static void roaring64_flip_leaf_inplace(roaring64_bitmap_t *r, uint8_t high48[], |
1760 | 0 | uint32_t min, uint32_t max) { |
1761 | 0 | leaf_t *leaf = (leaf_t *)art_find(&r->art, high48); |
1762 | 0 | container_t *container2; |
1763 | 0 | uint8_t typecode2; |
1764 | 0 | if (leaf == NULL) { |
1765 | | // No container at this key, insert a full container. |
1766 | 0 | container2 = container_range_of_ones(min, max, &typecode2); |
1767 | 0 | leaf_t new_leaf = add_container(r, container2, typecode2); |
1768 | 0 | art_insert(&r->art, high48, (art_val_t)new_leaf); |
1769 | 0 | return; |
1770 | 0 | } |
1771 | | |
1772 | 0 | if (min == 0 && max > 0xFFFF) { |
1773 | | // Flip whole container. |
1774 | 0 | container2 = container_inot(get_container(r, *leaf), |
1775 | 0 | get_typecode(*leaf), &typecode2); |
1776 | 0 | } else { |
1777 | | // Partially flip a container. |
1778 | 0 | container2 = container_inot_range( |
1779 | 0 | get_container(r, *leaf), get_typecode(*leaf), min, max, &typecode2); |
1780 | 0 | } |
1781 | |
|
1782 | 0 | if (container_nonzero_cardinality(container2, typecode2)) { |
1783 | 0 | replace_container(r, leaf, container2, typecode2); |
1784 | 0 | } else { |
1785 | 0 | bool erased = art_erase(&r->art, high48, NULL); |
1786 | 0 | assert(erased); |
1787 | 0 | (void)erased; |
1788 | 0 | container_free(container2, typecode2); |
1789 | 0 | remove_container(r, *leaf); |
1790 | 0 | } |
1791 | 0 | } |
1792 | | |
1793 | | roaring64_bitmap_t *roaring64_bitmap_flip(const roaring64_bitmap_t *r, |
1794 | 0 | uint64_t min, uint64_t max) { |
1795 | 0 | if (min >= max) { |
1796 | 0 | return roaring64_bitmap_copy(r); |
1797 | 0 | } |
1798 | 0 | return roaring64_bitmap_flip_closed(r, min, max - 1); |
1799 | 0 | } |
1800 | | |
1801 | | roaring64_bitmap_t *roaring64_bitmap_flip_closed(const roaring64_bitmap_t *r1, |
1802 | 0 | uint64_t min, uint64_t max) { |
1803 | 0 | if (min > max) { |
1804 | 0 | return roaring64_bitmap_copy(r1); |
1805 | 0 | } |
1806 | 0 | uint8_t min_high48_key[ART_KEY_BYTES]; |
1807 | 0 | uint16_t min_low16 = split_key(min, min_high48_key); |
1808 | 0 | uint8_t max_high48_key[ART_KEY_BYTES]; |
1809 | 0 | uint16_t max_low16 = split_key(max, max_high48_key); |
1810 | 0 | uint64_t min_high48_bits = (min & 0xFFFFFFFFFFFF0000ULL) >> 16; |
1811 | 0 | uint64_t max_high48_bits = (max & 0xFFFFFFFFFFFF0000ULL) >> 16; |
1812 | |
|
1813 | 0 | roaring64_bitmap_t *r2 = roaring64_bitmap_create(); |
1814 | 0 | art_iterator_t it = art_init_iterator((art_t *)&r1->art, /*first=*/true); |
1815 | | |
1816 | | // Copy the containers before min unchanged. |
1817 | 0 | while (it.value != NULL && compare_high48(it.key, min_high48_key) < 0) { |
1818 | 0 | leaf_t leaf1 = (leaf_t)*it.value; |
1819 | 0 | uint8_t typecode2 = get_typecode(leaf1); |
1820 | 0 | container_t *container2 = get_copy_of_container( |
1821 | 0 | get_container(r1, leaf1), &typecode2, /*copy_on_write=*/false); |
1822 | 0 | leaf_t leaf2 = add_container(r2, container2, typecode2); |
1823 | 0 | art_insert(&r2->art, it.key, (art_val_t)leaf2); |
1824 | 0 | art_iterator_next(&it); |
1825 | 0 | } |
1826 | | |
1827 | | // Flip the range (including non-existent containers!) between min and |
1828 | | // max. |
1829 | 0 | for (uint64_t high48_bits = min_high48_bits; high48_bits <= max_high48_bits; |
1830 | 0 | high48_bits++) { |
1831 | 0 | uint8_t current_high48_key[ART_KEY_BYTES]; |
1832 | 0 | split_key(high48_bits << 16, current_high48_key); |
1833 | |
|
1834 | 0 | uint32_t min_container = 0; |
1835 | 0 | if (high48_bits == min_high48_bits) { |
1836 | 0 | min_container = min_low16; |
1837 | 0 | } |
1838 | 0 | uint32_t max_container = 0xFFFF + 1; // Exclusive range. |
1839 | 0 | if (high48_bits == max_high48_bits) { |
1840 | 0 | max_container = max_low16 + 1; // Exclusive. |
1841 | 0 | } |
1842 | |
|
1843 | 0 | roaring64_flip_leaf(r1, r2, current_high48_key, min_container, |
1844 | 0 | max_container); |
1845 | 0 | } |
1846 | | |
1847 | | // Copy the containers after max unchanged. |
1848 | 0 | it = art_upper_bound((art_t *)&r1->art, max_high48_key); |
1849 | 0 | while (it.value != NULL) { |
1850 | 0 | leaf_t leaf1 = (leaf_t)*it.value; |
1851 | 0 | uint8_t typecode2 = get_typecode(leaf1); |
1852 | 0 | container_t *container2 = get_copy_of_container( |
1853 | 0 | get_container(r1, leaf1), &typecode2, /*copy_on_write=*/false); |
1854 | 0 | leaf_t leaf2 = add_container(r2, container2, typecode2); |
1855 | 0 | art_insert(&r2->art, it.key, (art_val_t)leaf2); |
1856 | 0 | art_iterator_next(&it); |
1857 | 0 | } |
1858 | |
|
1859 | 0 | return r2; |
1860 | 0 | } |
1861 | | |
1862 | | void roaring64_bitmap_flip_inplace(roaring64_bitmap_t *r, uint64_t min, |
1863 | 0 | uint64_t max) { |
1864 | 0 | if (min >= max) { |
1865 | 0 | return; |
1866 | 0 | } |
1867 | 0 | roaring64_bitmap_flip_closed_inplace(r, min, max - 1); |
1868 | 0 | } |
1869 | | |
1870 | | void roaring64_bitmap_flip_closed_inplace(roaring64_bitmap_t *r, uint64_t min, |
1871 | 0 | uint64_t max) { |
1872 | 0 | if (min > max) { |
1873 | 0 | return; |
1874 | 0 | } |
1875 | 0 | uint16_t min_low16 = (uint16_t)min; |
1876 | 0 | uint16_t max_low16 = (uint16_t)max; |
1877 | 0 | uint64_t min_high48_bits = (min & 0xFFFFFFFFFFFF0000ULL) >> 16; |
1878 | 0 | uint64_t max_high48_bits = (max & 0xFFFFFFFFFFFF0000ULL) >> 16; |
1879 | | |
1880 | | // Flip the range (including non-existent containers!) between min and |
1881 | | // max. |
1882 | 0 | for (uint64_t high48_bits = min_high48_bits; high48_bits <= max_high48_bits; |
1883 | 0 | high48_bits++) { |
1884 | 0 | uint8_t current_high48_key[ART_KEY_BYTES]; |
1885 | 0 | split_key(high48_bits << 16, current_high48_key); |
1886 | |
|
1887 | 0 | uint32_t min_container = 0; |
1888 | 0 | if (high48_bits == min_high48_bits) { |
1889 | 0 | min_container = min_low16; |
1890 | 0 | } |
1891 | 0 | uint32_t max_container = 0xFFFF + 1; // Exclusive range. |
1892 | 0 | if (high48_bits == max_high48_bits) { |
1893 | 0 | max_container = max_low16 + 1; // Exclusive. |
1894 | 0 | } |
1895 | |
|
1896 | 0 | roaring64_flip_leaf_inplace(r, current_high48_key, min_container, |
1897 | 0 | max_container); |
1898 | 0 | } |
1899 | 0 | } |
1900 | | |
1901 | | // Returns the number of distinct high 32-bit entries in the bitmap. |
1902 | 0 | static inline uint64_t count_high32(const roaring64_bitmap_t *r) { |
1903 | 0 | art_iterator_t it = art_init_iterator((art_t *)&r->art, /*first=*/true); |
1904 | 0 | uint64_t high32_count = 0; |
1905 | 0 | uint32_t prev_high32 = 0; |
1906 | 0 | while (it.value != NULL) { |
1907 | 0 | uint32_t current_high32 = (uint32_t)(combine_key(it.key, 0) >> 32); |
1908 | 0 | if (high32_count == 0 || prev_high32 != current_high32) { |
1909 | 0 | high32_count++; |
1910 | 0 | prev_high32 = current_high32; |
1911 | 0 | } |
1912 | 0 | art_iterator_next(&it); |
1913 | 0 | } |
1914 | 0 | return high32_count; |
1915 | 0 | } |
1916 | | |
1917 | | // Frees the (32-bit!) bitmap without freeing the containers. |
1918 | 0 | static inline void roaring_bitmap_free_without_containers(roaring_bitmap_t *r) { |
1919 | 0 | ra_clear_without_containers(&r->high_low_container); |
1920 | 0 | roaring_free(r); |
1921 | 0 | } |
1922 | | |
1923 | 0 | size_t roaring64_bitmap_portable_size_in_bytes(const roaring64_bitmap_t *r) { |
1924 | | // https://github.com/RoaringBitmap/RoaringFormatSpec#extension-for-64-bit-implementations |
1925 | 0 | size_t size = 0; |
1926 | | |
1927 | | // Write as uint64 the distinct number of "buckets", where a bucket is |
1928 | | // defined as the most significant 32 bits of an element. |
1929 | 0 | uint64_t high32_count; |
1930 | 0 | size += sizeof(high32_count); |
1931 | |
|
1932 | 0 | art_iterator_t it = art_init_iterator((art_t *)&r->art, /*first=*/true); |
1933 | 0 | uint32_t prev_high32 = 0; |
1934 | 0 | roaring_bitmap_t *bitmap32 = NULL; |
1935 | | |
1936 | | // Iterate through buckets ordered by increasing keys. |
1937 | 0 | while (it.value != NULL) { |
1938 | 0 | uint32_t current_high32 = (uint32_t)(combine_key(it.key, 0) >> 32); |
1939 | 0 | if (bitmap32 == NULL || prev_high32 != current_high32) { |
1940 | 0 | if (bitmap32 != NULL) { |
1941 | | // Write as uint32 the most significant 32 bits of the |
1942 | | // bucket. |
1943 | 0 | size += sizeof(prev_high32); |
1944 | | |
1945 | | // Write the 32-bit Roaring bitmaps representing the least |
1946 | | // significant bits of a set of elements. |
1947 | 0 | size += roaring_bitmap_portable_size_in_bytes(bitmap32); |
1948 | 0 | roaring_bitmap_free_without_containers(bitmap32); |
1949 | 0 | } |
1950 | | |
1951 | | // Start a new 32-bit bitmap with the current high 32 bits. |
1952 | 0 | art_iterator_t it2 = it; |
1953 | 0 | uint32_t containers_with_high32 = 0; |
1954 | 0 | while (it2.value != NULL && (uint32_t)(combine_key(it2.key, 0) >> |
1955 | 0 | 32) == current_high32) { |
1956 | 0 | containers_with_high32++; |
1957 | 0 | art_iterator_next(&it2); |
1958 | 0 | } |
1959 | 0 | bitmap32 = |
1960 | 0 | roaring_bitmap_create_with_capacity(containers_with_high32); |
1961 | |
|
1962 | 0 | prev_high32 = current_high32; |
1963 | 0 | } |
1964 | 0 | leaf_t leaf = (leaf_t)*it.value; |
1965 | 0 | ra_append(&bitmap32->high_low_container, |
1966 | 0 | (uint16_t)(current_high32 >> 16), get_container(r, leaf), |
1967 | 0 | get_typecode(leaf)); |
1968 | 0 | art_iterator_next(&it); |
1969 | 0 | } |
1970 | |
|
1971 | 0 | if (bitmap32 != NULL) { |
1972 | | // Write as uint32 the most significant 32 bits of the bucket. |
1973 | 0 | size += sizeof(prev_high32); |
1974 | | |
1975 | | // Write the 32-bit Roaring bitmaps representing the least |
1976 | | // significant bits of a set of elements. |
1977 | 0 | size += roaring_bitmap_portable_size_in_bytes(bitmap32); |
1978 | 0 | roaring_bitmap_free_without_containers(bitmap32); |
1979 | 0 | } |
1980 | |
|
1981 | 0 | return size; |
1982 | 0 | } |
1983 | | |
1984 | | size_t roaring64_bitmap_portable_serialize(const roaring64_bitmap_t *r, |
1985 | 0 | char *buf) { |
1986 | | // https://github.com/RoaringBitmap/RoaringFormatSpec#extension-for-64-bit-implementations |
1987 | 0 | if (buf == NULL) { |
1988 | 0 | return 0; |
1989 | 0 | } |
1990 | 0 | const char *initial_buf = buf; |
1991 | | |
1992 | | // Write as uint64 the distinct number of "buckets", where a bucket is |
1993 | | // defined as the most significant 32 bits of an element. |
1994 | 0 | uint64_t high32_count = count_high32(r); |
1995 | 0 | memcpy(buf, &high32_count, sizeof(high32_count)); |
1996 | 0 | buf += sizeof(high32_count); |
1997 | |
|
1998 | 0 | art_iterator_t it = art_init_iterator((art_t *)&r->art, /*first=*/true); |
1999 | 0 | uint32_t prev_high32 = 0; |
2000 | 0 | roaring_bitmap_t *bitmap32 = NULL; |
2001 | | |
2002 | | // Iterate through buckets ordered by increasing keys. |
2003 | 0 | while (it.value != NULL) { |
2004 | 0 | uint64_t current_high48 = combine_key(it.key, 0); |
2005 | 0 | uint32_t current_high32 = (uint32_t)(current_high48 >> 32); |
2006 | 0 | if (bitmap32 == NULL || prev_high32 != current_high32) { |
2007 | 0 | if (bitmap32 != NULL) { |
2008 | | // Write as uint32 the most significant 32 bits of the |
2009 | | // bucket. |
2010 | 0 | memcpy(buf, &prev_high32, sizeof(prev_high32)); |
2011 | 0 | buf += sizeof(prev_high32); |
2012 | | |
2013 | | // Write the 32-bit Roaring bitmaps representing the least |
2014 | | // significant bits of a set of elements. |
2015 | 0 | buf += roaring_bitmap_portable_serialize(bitmap32, buf); |
2016 | 0 | roaring_bitmap_free_without_containers(bitmap32); |
2017 | 0 | } |
2018 | | |
2019 | | // Start a new 32-bit bitmap with the current high 32 bits. |
2020 | 0 | art_iterator_t it2 = it; |
2021 | 0 | uint32_t containers_with_high32 = 0; |
2022 | 0 | while (it2.value != NULL && |
2023 | 0 | (uint32_t)combine_key(it2.key, 0) == current_high32) { |
2024 | 0 | containers_with_high32++; |
2025 | 0 | art_iterator_next(&it2); |
2026 | 0 | } |
2027 | 0 | bitmap32 = |
2028 | 0 | roaring_bitmap_create_with_capacity(containers_with_high32); |
2029 | |
|
2030 | 0 | prev_high32 = current_high32; |
2031 | 0 | } |
2032 | 0 | leaf_t leaf = (leaf_t)*it.value; |
2033 | 0 | ra_append(&bitmap32->high_low_container, |
2034 | 0 | (uint16_t)(current_high48 >> 16), get_container(r, leaf), |
2035 | 0 | get_typecode(leaf)); |
2036 | 0 | art_iterator_next(&it); |
2037 | 0 | } |
2038 | |
|
2039 | 0 | if (bitmap32 != NULL) { |
2040 | | // Write as uint32 the most significant 32 bits of the bucket. |
2041 | 0 | memcpy(buf, &prev_high32, sizeof(prev_high32)); |
2042 | 0 | buf += sizeof(prev_high32); |
2043 | | |
2044 | | // Write the 32-bit Roaring bitmaps representing the least |
2045 | | // significant bits of a set of elements. |
2046 | 0 | buf += roaring_bitmap_portable_serialize(bitmap32, buf); |
2047 | 0 | roaring_bitmap_free_without_containers(bitmap32); |
2048 | 0 | } |
2049 | |
|
2050 | 0 | return buf - initial_buf; |
2051 | 0 | } |
2052 | | |
2053 | | size_t roaring64_bitmap_portable_deserialize_size(const char *buf, |
2054 | 0 | size_t maxbytes) { |
2055 | | // https://github.com/RoaringBitmap/RoaringFormatSpec#extension-for-64-bit-implementations |
2056 | 0 | if (buf == NULL) { |
2057 | 0 | return 0; |
2058 | 0 | } |
2059 | 0 | size_t read_bytes = 0; |
2060 | | |
2061 | | // Read as uint64 the distinct number of "buckets", where a bucket is |
2062 | | // defined as the most significant 32 bits of an element. |
2063 | 0 | uint64_t buckets; |
2064 | 0 | if (read_bytes + sizeof(buckets) > maxbytes) { |
2065 | 0 | return 0; |
2066 | 0 | } |
2067 | 0 | memcpy(&buckets, buf, sizeof(buckets)); |
2068 | 0 | buf += sizeof(buckets); |
2069 | 0 | read_bytes += sizeof(buckets); |
2070 | | |
2071 | | // Buckets should be 32 bits with 4 bits of zero padding. |
2072 | 0 | if (buckets > UINT32_MAX) { |
2073 | 0 | return 0; |
2074 | 0 | } |
2075 | | |
2076 | | // Iterate through buckets ordered by increasing keys. |
2077 | 0 | for (uint64_t bucket = 0; bucket < buckets; ++bucket) { |
2078 | | // Read as uint32 the most significant 32 bits of the bucket. |
2079 | 0 | uint32_t high32; |
2080 | 0 | if (read_bytes + sizeof(high32) > maxbytes) { |
2081 | 0 | return 0; |
2082 | 0 | } |
2083 | 0 | buf += sizeof(high32); |
2084 | 0 | read_bytes += sizeof(high32); |
2085 | | |
2086 | | // Read the 32-bit Roaring bitmaps representing the least |
2087 | | // significant bits of a set of elements. |
2088 | 0 | size_t bitmap32_size = roaring_bitmap_portable_deserialize_size( |
2089 | 0 | buf, maxbytes - read_bytes); |
2090 | 0 | if (bitmap32_size == 0) { |
2091 | 0 | return 0; |
2092 | 0 | } |
2093 | 0 | buf += bitmap32_size; |
2094 | 0 | read_bytes += bitmap32_size; |
2095 | 0 | } |
2096 | 0 | return read_bytes; |
2097 | 0 | } |
2098 | | |
2099 | | roaring64_bitmap_t *roaring64_bitmap_portable_deserialize_safe( |
2100 | 1.76k | const char *buf, size_t maxbytes) { |
2101 | | // https://github.com/RoaringBitmap/RoaringFormatSpec#extension-for-64-bit-implementations |
2102 | 1.76k | if (buf == NULL) { |
2103 | 0 | return NULL; |
2104 | 0 | } |
2105 | 1.76k | size_t read_bytes = 0; |
2106 | | |
2107 | | // Read as uint64 the distinct number of "buckets", where a bucket is |
2108 | | // defined as the most significant 32 bits of an element. |
2109 | 1.76k | uint64_t buckets; |
2110 | 1.76k | if (read_bytes + sizeof(buckets) > maxbytes) { |
2111 | 6 | return NULL; |
2112 | 6 | } |
2113 | 1.75k | memcpy(&buckets, buf, sizeof(buckets)); |
2114 | 1.75k | buf += sizeof(buckets); |
2115 | 1.75k | read_bytes += sizeof(buckets); |
2116 | | |
2117 | | // Buckets should be 32 bits with 4 bits of zero padding. |
2118 | 1.75k | if (buckets > UINT32_MAX) { |
2119 | 54 | return NULL; |
2120 | 54 | } |
2121 | | |
2122 | 1.70k | roaring64_bitmap_t *r = roaring64_bitmap_create(); |
2123 | | // Iterate through buckets ordered by increasing keys. |
2124 | 1.70k | int64_t previous_high32 = -1; |
2125 | 4.30k | for (uint64_t bucket = 0; bucket < buckets; ++bucket) { |
2126 | | // Read as uint32 the most significant 32 bits of the bucket. |
2127 | 3.49k | uint32_t high32; |
2128 | 3.49k | if (read_bytes + sizeof(high32) > maxbytes) { |
2129 | 225 | roaring64_bitmap_free(r); |
2130 | 225 | return NULL; |
2131 | 225 | } |
2132 | 3.27k | memcpy(&high32, buf, sizeof(high32)); |
2133 | 3.27k | buf += sizeof(high32); |
2134 | 3.27k | read_bytes += sizeof(high32); |
2135 | | // High 32 bits must be strictly increasing. |
2136 | 3.27k | if (high32 <= previous_high32) { |
2137 | 56 | roaring64_bitmap_free(r); |
2138 | 56 | return NULL; |
2139 | 56 | } |
2140 | 3.21k | previous_high32 = high32; |
2141 | | |
2142 | | // Read the 32-bit Roaring bitmaps representing the least |
2143 | | // significant bits of a set of elements. |
2144 | 3.21k | size_t bitmap32_size = roaring_bitmap_portable_deserialize_size( |
2145 | 3.21k | buf, maxbytes - read_bytes); |
2146 | 3.21k | if (bitmap32_size == 0) { |
2147 | 556 | roaring64_bitmap_free(r); |
2148 | 556 | return NULL; |
2149 | 556 | } |
2150 | | |
2151 | 2.65k | roaring_bitmap_t *bitmap32 = roaring_bitmap_portable_deserialize_safe( |
2152 | 2.65k | buf, maxbytes - read_bytes); |
2153 | 2.65k | if (bitmap32 == NULL) { |
2154 | 0 | roaring64_bitmap_free(r); |
2155 | 0 | return NULL; |
2156 | 0 | } |
2157 | 2.65k | buf += bitmap32_size; |
2158 | 2.65k | read_bytes += bitmap32_size; |
2159 | | |
2160 | | // While we don't attempt to validate much, we must ensure that there |
2161 | | // is no duplication in the high 48 bits - inserting into the ART |
2162 | | // assumes (or UB) no duplicate keys. The top 32 bits must be unique |
2163 | | // because we check for strict increasing values of high32, but we |
2164 | | // must also ensure the top 16 bits within each 32-bit bitmap are also |
2165 | | // at least unique (we ensure they're strictly increasing as well, |
2166 | | // which they must be for a _valid_ bitmap, since it's cheaper to check) |
2167 | 2.65k | int32_t last_bitmap_key = -1; |
2168 | 48.6k | for (int i = 0; i < bitmap32->high_low_container.size; i++) { |
2169 | 46.0k | uint16_t key = bitmap32->high_low_container.keys[i]; |
2170 | 46.0k | if (key <= last_bitmap_key) { |
2171 | 60 | roaring_bitmap_free(bitmap32); |
2172 | 60 | roaring64_bitmap_free(r); |
2173 | 60 | return NULL; |
2174 | 60 | } |
2175 | 45.9k | last_bitmap_key = key; |
2176 | 45.9k | } |
2177 | | |
2178 | | // Insert all containers of the 32-bit bitmap into the 64-bit bitmap. |
2179 | 2.59k | move_from_roaring32_offset(r, bitmap32, high32); |
2180 | 2.59k | roaring_bitmap_free(bitmap32); |
2181 | 2.59k | } |
2182 | 805 | return r; |
2183 | 1.70k | } |
2184 | | |
2185 | | // Returns an "element count" for the given container. This has a different |
2186 | | // meaning for each container type, but the purpose is the minimal information |
2187 | | // required to serialize the container metadata. |
2188 | | static inline uint32_t container_get_element_count(const container_t *c, |
2189 | 0 | uint8_t typecode) { |
2190 | 0 | switch (typecode) { |
2191 | 0 | case BITSET_CONTAINER_TYPE: { |
2192 | 0 | return ((bitset_container_t *)c)->cardinality; |
2193 | 0 | } |
2194 | 0 | case ARRAY_CONTAINER_TYPE: { |
2195 | 0 | return ((array_container_t *)c)->cardinality; |
2196 | 0 | } |
2197 | 0 | case RUN_CONTAINER_TYPE: { |
2198 | 0 | return ((run_container_t *)c)->n_runs; |
2199 | 0 | } |
2200 | 0 | default: { |
2201 | 0 | assert(false); |
2202 | 0 | roaring_unreachable; |
2203 | 0 | return 0; |
2204 | 0 | } |
2205 | 0 | } |
2206 | 0 | } |
2207 | | |
2208 | | static inline size_t container_get_frozen_size(const container_t *c, |
2209 | 0 | uint8_t typecode) { |
2210 | 0 | switch (typecode) { |
2211 | 0 | case BITSET_CONTAINER_TYPE: { |
2212 | 0 | return BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t); |
2213 | 0 | } |
2214 | 0 | case ARRAY_CONTAINER_TYPE: { |
2215 | 0 | return container_get_element_count(c, typecode) * sizeof(uint16_t); |
2216 | 0 | } |
2217 | 0 | case RUN_CONTAINER_TYPE: { |
2218 | 0 | return container_get_element_count(c, typecode) * sizeof(rle16_t); |
2219 | 0 | } |
2220 | 0 | default: { |
2221 | 0 | assert(false); |
2222 | 0 | roaring_unreachable; |
2223 | 0 | return 0; |
2224 | 0 | } |
2225 | 0 | } |
2226 | 0 | } |
2227 | | |
2228 | 0 | uint64_t align_size(uint64_t size, uint64_t alignment) { |
2229 | 0 | return (size + alignment - 1) & ~(alignment - 1); |
2230 | 0 | } |
2231 | | |
2232 | 0 | size_t roaring64_bitmap_frozen_size_in_bytes(const roaring64_bitmap_t *r) { |
2233 | 0 | if (!is_shrunken(r)) { |
2234 | 0 | return 0; |
2235 | 0 | } |
2236 | | // Flags. |
2237 | 0 | uint64_t size = sizeof(r->flags); |
2238 | | // Container count. |
2239 | 0 | size += sizeof(r->capacity); |
2240 | | // Container element counts. |
2241 | 0 | size += r->capacity * sizeof(uint16_t); |
2242 | | // Total container sizes. |
2243 | 0 | size += 3 * sizeof(uint64_t); |
2244 | | // ART (8 byte aligned). |
2245 | 0 | size = align_size(size, 8); |
2246 | 0 | size += art_size_in_bytes(&r->art); |
2247 | |
|
2248 | 0 | uint64_t total_sizes[4] = |
2249 | 0 | CROARING_ZERO_INITIALIZER; // Indexed by typecode. |
2250 | 0 | art_iterator_t it = art_init_iterator((art_t *)&r->art, /*first=*/true); |
2251 | 0 | while (it.value != NULL) { |
2252 | 0 | leaf_t leaf = (leaf_t)*it.value; |
2253 | 0 | uint8_t typecode = get_typecode(leaf); |
2254 | 0 | total_sizes[typecode] += |
2255 | 0 | container_get_frozen_size(get_container(r, leaf), typecode); |
2256 | 0 | art_iterator_next(&it); |
2257 | 0 | } |
2258 | | // Containers (aligned). |
2259 | 0 | size = align_size(size, CROARING_BITSET_ALIGNMENT); |
2260 | 0 | size += total_sizes[BITSET_CONTAINER_TYPE]; |
2261 | 0 | size = align_size(size, alignof(rle16_t)); |
2262 | 0 | size += total_sizes[ARRAY_CONTAINER_TYPE]; |
2263 | 0 | size = align_size(size, alignof(uint16_t)); |
2264 | 0 | size += total_sizes[RUN_CONTAINER_TYPE]; |
2265 | | // Padding to make overall size a multiple of required alignment. |
2266 | 0 | size = align_size(size, CROARING_BITSET_ALIGNMENT); |
2267 | 0 | return size; |
2268 | 0 | } |
2269 | | |
2270 | | static inline void container_frozen_serialize(const container_t *container, |
2271 | | uint8_t typecode, |
2272 | | uint64_t **bitsets, |
2273 | | uint16_t **arrays, |
2274 | 0 | rle16_t **runs) { |
2275 | 0 | size_t size = container_get_frozen_size(container, typecode); |
2276 | 0 | switch (typecode) { |
2277 | 0 | case BITSET_CONTAINER_TYPE: { |
2278 | 0 | bitset_container_t *bitset = (bitset_container_t *)container; |
2279 | 0 | memcpy(*bitsets, bitset->words, size); |
2280 | 0 | *bitsets += BITSET_CONTAINER_SIZE_IN_WORDS; |
2281 | 0 | break; |
2282 | 0 | } |
2283 | 0 | case ARRAY_CONTAINER_TYPE: { |
2284 | 0 | array_container_t *array = (array_container_t *)container; |
2285 | 0 | memcpy(*arrays, array->array, size); |
2286 | 0 | *arrays += container_get_element_count(container, typecode); |
2287 | 0 | break; |
2288 | 0 | } |
2289 | 0 | case RUN_CONTAINER_TYPE: { |
2290 | 0 | run_container_t *run = (run_container_t *)container; |
2291 | 0 | memcpy(*runs, run->runs, size); |
2292 | 0 | *runs += container_get_element_count(container, typecode); |
2293 | 0 | break; |
2294 | 0 | } |
2295 | 0 | default: { |
2296 | 0 | assert(false); |
2297 | 0 | roaring_unreachable; |
2298 | 0 | } |
2299 | 0 | } |
2300 | 0 | } |
2301 | | |
2302 | | static inline char *pad_align(char *buf, const char *initial_buf, |
2303 | 0 | size_t alignment) { |
2304 | 0 | uint64_t buf_size = buf - initial_buf; |
2305 | 0 | uint64_t pad = align_size(buf_size, alignment) - buf_size; |
2306 | 0 | memset(buf, 0, pad); |
2307 | 0 | return buf + pad; |
2308 | 0 | } |
2309 | | |
2310 | | size_t roaring64_bitmap_frozen_serialize(const roaring64_bitmap_t *r, |
2311 | 0 | char *buf) { |
2312 | 0 | if (buf == NULL) { |
2313 | 0 | return 0; |
2314 | 0 | } |
2315 | 0 | if (!is_shrunken(r)) { |
2316 | 0 | return 0; |
2317 | 0 | } |
2318 | 0 | const char *initial_buf = buf; |
2319 | | |
2320 | | // Flags. |
2321 | 0 | memcpy(buf, &r->flags, sizeof(r->flags)); |
2322 | 0 | buf += sizeof(r->flags); |
2323 | | |
2324 | | // Container count. |
2325 | 0 | memcpy(buf, &r->capacity, sizeof(r->capacity)); |
2326 | 0 | buf += sizeof(r->capacity); |
2327 | | |
2328 | | // Container element counts. |
2329 | 0 | uint64_t total_sizes[4] = |
2330 | 0 | CROARING_ZERO_INITIALIZER; // Indexed by typecode. |
2331 | 0 | art_iterator_t it = art_init_iterator((art_t *)&r->art, /*first=*/true); |
2332 | 0 | while (it.value != NULL) { |
2333 | 0 | leaf_t leaf = (leaf_t)*it.value; |
2334 | 0 | uint8_t typecode = get_typecode(leaf); |
2335 | 0 | container_t *container = get_container(r, leaf); |
2336 | |
|
2337 | 0 | uint32_t elem_count = container_get_element_count(container, typecode); |
2338 | 0 | uint16_t compressed_elem_count = (uint16_t)(elem_count - 1); |
2339 | 0 | memcpy(buf, &compressed_elem_count, sizeof(compressed_elem_count)); |
2340 | 0 | buf += sizeof(compressed_elem_count); |
2341 | |
|
2342 | 0 | total_sizes[typecode] += container_get_frozen_size(container, typecode); |
2343 | 0 | art_iterator_next(&it); |
2344 | 0 | } |
2345 | | |
2346 | | // Total container sizes. |
2347 | 0 | memcpy(buf, &(total_sizes[BITSET_CONTAINER_TYPE]), sizeof(uint64_t)); |
2348 | 0 | buf += sizeof(uint64_t); |
2349 | 0 | memcpy(buf, &(total_sizes[RUN_CONTAINER_TYPE]), sizeof(uint64_t)); |
2350 | 0 | buf += sizeof(uint64_t); |
2351 | 0 | memcpy(buf, &(total_sizes[ARRAY_CONTAINER_TYPE]), sizeof(uint64_t)); |
2352 | 0 | buf += sizeof(uint64_t); |
2353 | | |
2354 | | // ART. |
2355 | 0 | buf = pad_align(buf, initial_buf, 8); |
2356 | 0 | buf += art_serialize(&r->art, buf); |
2357 | | |
2358 | | // Containers (aligned). |
2359 | | // Runs before arrays as run elements are larger than array elements and |
2360 | | // smaller than bitset elements. |
2361 | 0 | buf = pad_align(buf, initial_buf, CROARING_BITSET_ALIGNMENT); |
2362 | 0 | uint64_t *bitsets = (uint64_t *)buf; |
2363 | 0 | buf += total_sizes[BITSET_CONTAINER_TYPE]; |
2364 | 0 | buf = pad_align(buf, initial_buf, alignof(rle16_t)); |
2365 | 0 | rle16_t *runs = (rle16_t *)buf; |
2366 | 0 | buf += total_sizes[RUN_CONTAINER_TYPE]; |
2367 | 0 | buf = pad_align(buf, initial_buf, alignof(uint16_t)); |
2368 | 0 | uint16_t *arrays = (uint16_t *)buf; |
2369 | 0 | buf += total_sizes[ARRAY_CONTAINER_TYPE]; |
2370 | |
|
2371 | 0 | it = art_init_iterator((art_t *)&r->art, /*first=*/true); |
2372 | 0 | while (it.value != NULL) { |
2373 | 0 | leaf_t leaf = (leaf_t)*it.value; |
2374 | 0 | uint8_t typecode = get_typecode(leaf); |
2375 | 0 | container_t *container = get_container(r, leaf); |
2376 | 0 | container_frozen_serialize(container, typecode, &bitsets, &arrays, |
2377 | 0 | &runs); |
2378 | 0 | art_iterator_next(&it); |
2379 | 0 | } |
2380 | | |
2381 | | // Padding to make overall size a multiple of required alignment. |
2382 | 0 | buf = pad_align(buf, initial_buf, CROARING_BITSET_ALIGNMENT); |
2383 | |
|
2384 | 0 | return buf - initial_buf; |
2385 | 0 | } |
2386 | | |
2387 | | static container_t *container_frozen_view(uint8_t typecode, uint32_t elem_count, |
2388 | | const uint64_t **bitsets, |
2389 | | const uint16_t **arrays, |
2390 | 0 | const rle16_t **runs) { |
2391 | 0 | switch (typecode) { |
2392 | 0 | case BITSET_CONTAINER_TYPE: { |
2393 | 0 | bitset_container_t *c = (bitset_container_t *)roaring_malloc( |
2394 | 0 | sizeof(bitset_container_t)); |
2395 | 0 | c->cardinality = elem_count; |
2396 | 0 | c->words = (uint64_t *)*bitsets; |
2397 | 0 | *bitsets += BITSET_CONTAINER_SIZE_IN_WORDS; |
2398 | 0 | return (container_t *)c; |
2399 | 0 | } |
2400 | 0 | case ARRAY_CONTAINER_TYPE: { |
2401 | 0 | array_container_t *c = |
2402 | 0 | (array_container_t *)roaring_malloc(sizeof(array_container_t)); |
2403 | 0 | c->cardinality = elem_count; |
2404 | 0 | c->capacity = elem_count; |
2405 | 0 | c->array = (uint16_t *)*arrays; |
2406 | 0 | *arrays += elem_count; |
2407 | 0 | return (container_t *)c; |
2408 | 0 | } |
2409 | 0 | case RUN_CONTAINER_TYPE: { |
2410 | 0 | run_container_t *c = |
2411 | 0 | (run_container_t *)roaring_malloc(sizeof(run_container_t)); |
2412 | 0 | c->n_runs = elem_count; |
2413 | 0 | c->capacity = elem_count; |
2414 | 0 | c->runs = (rle16_t *)*runs; |
2415 | 0 | *runs += elem_count; |
2416 | 0 | return (container_t *)c; |
2417 | 0 | } |
2418 | 0 | default: { |
2419 | 0 | assert(false); |
2420 | 0 | roaring_unreachable; |
2421 | 0 | return NULL; |
2422 | 0 | } |
2423 | 0 | } |
2424 | 0 | } |
2425 | | |
2426 | | roaring64_bitmap_t *roaring64_bitmap_frozen_view(const char *buf, |
2427 | 0 | size_t maxbytes) { |
2428 | 0 | if (buf == NULL) { |
2429 | 0 | return NULL; |
2430 | 0 | } |
2431 | 0 | if ((uintptr_t)buf % CROARING_BITSET_ALIGNMENT != 0) { |
2432 | 0 | return NULL; |
2433 | 0 | } |
2434 | | |
2435 | 0 | roaring64_bitmap_t *r = roaring64_bitmap_create(); |
2436 | | |
2437 | | // Flags. |
2438 | 0 | if (maxbytes < sizeof(r->flags)) { |
2439 | 0 | roaring64_bitmap_free(r); |
2440 | 0 | return NULL; |
2441 | 0 | } |
2442 | 0 | memcpy(&r->flags, buf, sizeof(r->flags)); |
2443 | 0 | buf += sizeof(r->flags); |
2444 | 0 | maxbytes -= sizeof(r->flags); |
2445 | 0 | r->flags |= ROARING_FLAG_FROZEN; |
2446 | | |
2447 | | // Container count. |
2448 | 0 | if (maxbytes < sizeof(r->capacity)) { |
2449 | 0 | roaring64_bitmap_free(r); |
2450 | 0 | return NULL; |
2451 | 0 | } |
2452 | 0 | memcpy(&r->capacity, buf, sizeof(r->capacity)); |
2453 | 0 | buf += sizeof(r->capacity); |
2454 | 0 | maxbytes -= sizeof(r->capacity); |
2455 | |
|
2456 | 0 | r->containers = |
2457 | 0 | (container_t **)roaring_malloc(r->capacity * sizeof(container_t *)); |
2458 | | |
2459 | | // Container element counts. |
2460 | 0 | if (maxbytes < r->capacity * sizeof(uint16_t)) { |
2461 | 0 | roaring64_bitmap_free(r); |
2462 | 0 | return NULL; |
2463 | 0 | } |
2464 | 0 | const char *elem_counts = buf; |
2465 | 0 | buf += r->capacity * sizeof(uint16_t); |
2466 | 0 | maxbytes -= r->capacity * sizeof(uint16_t); |
2467 | | |
2468 | | // Total container sizes. |
2469 | 0 | uint64_t total_sizes[4]; |
2470 | 0 | if (maxbytes < sizeof(uint64_t) * 3) { |
2471 | 0 | roaring64_bitmap_free(r); |
2472 | 0 | return NULL; |
2473 | 0 | } |
2474 | 0 | memcpy(&(total_sizes[BITSET_CONTAINER_TYPE]), buf, sizeof(uint64_t)); |
2475 | 0 | buf += sizeof(uint64_t); |
2476 | 0 | maxbytes -= sizeof(uint64_t); |
2477 | 0 | memcpy(&(total_sizes[RUN_CONTAINER_TYPE]), buf, sizeof(uint64_t)); |
2478 | 0 | buf += sizeof(uint64_t); |
2479 | 0 | maxbytes -= sizeof(uint64_t); |
2480 | 0 | memcpy(&(total_sizes[ARRAY_CONTAINER_TYPE]), buf, sizeof(uint64_t)); |
2481 | 0 | buf += sizeof(uint64_t); |
2482 | 0 | maxbytes -= sizeof(uint64_t); |
2483 | | |
2484 | | // ART (8 byte aligned). |
2485 | 0 | buf = CROARING_ALIGN_BUF(buf, 8); |
2486 | 0 | size_t art_size = art_frozen_view(buf, maxbytes, &r->art); |
2487 | 0 | if (art_size == 0) { |
2488 | 0 | roaring64_bitmap_free(r); |
2489 | 0 | return NULL; |
2490 | 0 | } |
2491 | 0 | buf += art_size; |
2492 | 0 | maxbytes -= art_size; |
2493 | | |
2494 | | // Containers (aligned). |
2495 | 0 | const char *before_containers = buf; |
2496 | 0 | buf = CROARING_ALIGN_BUF(buf, CROARING_BITSET_ALIGNMENT); |
2497 | 0 | const uint64_t *bitsets = (const uint64_t *)buf; |
2498 | 0 | buf += total_sizes[BITSET_CONTAINER_TYPE]; |
2499 | 0 | buf = CROARING_ALIGN_BUF(buf, alignof(rle16_t)); |
2500 | 0 | const rle16_t *runs = (const rle16_t *)buf; |
2501 | 0 | buf += total_sizes[RUN_CONTAINER_TYPE]; |
2502 | 0 | buf = CROARING_ALIGN_BUF(buf, alignof(uint16_t)); |
2503 | 0 | const uint16_t *arrays = (const uint16_t *)buf; |
2504 | 0 | buf += total_sizes[ARRAY_CONTAINER_TYPE]; |
2505 | 0 | if (maxbytes < (uint64_t)(buf - before_containers)) { |
2506 | 0 | roaring64_bitmap_free(r); |
2507 | 0 | return NULL; |
2508 | 0 | } |
2509 | 0 | maxbytes -= buf - before_containers; |
2510 | | |
2511 | | // Deserialize in ART iteration order. |
2512 | 0 | art_iterator_t it = art_init_iterator(&r->art, /*first=*/true); |
2513 | 0 | for (size_t i = 0; it.value != NULL; ++i) { |
2514 | 0 | leaf_t leaf = (leaf_t)*it.value; |
2515 | 0 | uint8_t typecode = get_typecode(leaf); |
2516 | |
|
2517 | 0 | uint16_t compressed_elem_count; |
2518 | 0 | memcpy(&compressed_elem_count, elem_counts + (i * sizeof(uint16_t)), |
2519 | 0 | sizeof(compressed_elem_count)); |
2520 | 0 | uint32_t elem_count = (uint32_t)(compressed_elem_count) + 1; |
2521 | | |
2522 | | // The container index is unrelated to the iteration order. |
2523 | 0 | uint64_t index = get_index(leaf); |
2524 | 0 | r->containers[index] = container_frozen_view(typecode, elem_count, |
2525 | 0 | &bitsets, &arrays, &runs); |
2526 | |
|
2527 | 0 | art_iterator_next(&it); |
2528 | 0 | } |
2529 | | |
2530 | | // Padding to make overall size a multiple of required alignment. |
2531 | 0 | buf = CROARING_ALIGN_BUF(buf, CROARING_BITSET_ALIGNMENT); |
2532 | |
|
2533 | 0 | return r; |
2534 | 0 | } |
2535 | | |
2536 | | bool roaring64_bitmap_iterate(const roaring64_bitmap_t *r, |
2537 | 0 | roaring_iterator64 iterator, void *ptr) { |
2538 | 0 | art_iterator_t it = art_init_iterator((art_t *)&r->art, /*first=*/true); |
2539 | 0 | while (it.value != NULL) { |
2540 | 0 | uint64_t high48 = combine_key(it.key, 0); |
2541 | 0 | uint64_t high32 = high48 & 0xFFFFFFFF00000000ULL; |
2542 | 0 | uint32_t low32 = high48; |
2543 | 0 | leaf_t leaf = (leaf_t)*it.value; |
2544 | 0 | if (!container_iterate64(get_container(r, leaf), get_typecode(leaf), |
2545 | 0 | low32, iterator, high32, ptr)) { |
2546 | 0 | return false; |
2547 | 0 | } |
2548 | 0 | art_iterator_next(&it); |
2549 | 0 | } |
2550 | 0 | return true; |
2551 | 0 | } |
2552 | | |
2553 | | void roaring64_bitmap_to_uint64_array(const roaring64_bitmap_t *r, |
2554 | 0 | uint64_t *out) { |
2555 | 0 | roaring64_iterator_t it; // gets initialized in the next line |
2556 | 0 | roaring64_iterator_init_at(r, &it, /*first=*/true); |
2557 | 0 | roaring64_iterator_read(&it, out, UINT64_MAX); |
2558 | 0 | } |
2559 | | |
2560 | 0 | roaring64_iterator_t *roaring64_iterator_create(const roaring64_bitmap_t *r) { |
2561 | 0 | roaring64_iterator_t *it = |
2562 | 0 | (roaring64_iterator_t *)roaring_malloc(sizeof(roaring64_iterator_t)); |
2563 | 0 | return roaring64_iterator_init_at(r, it, /*first=*/true); |
2564 | 0 | } |
2565 | | |
2566 | | roaring64_iterator_t *roaring64_iterator_create_last( |
2567 | 0 | const roaring64_bitmap_t *r) { |
2568 | 0 | roaring64_iterator_t *it = |
2569 | 0 | (roaring64_iterator_t *)roaring_malloc(sizeof(roaring64_iterator_t)); |
2570 | 0 | return roaring64_iterator_init_at(r, it, /*first=*/false); |
2571 | 0 | } |
2572 | | |
2573 | | void roaring64_iterator_reinit(const roaring64_bitmap_t *r, |
2574 | 0 | roaring64_iterator_t *it) { |
2575 | 0 | roaring64_iterator_init_at(r, it, /*first=*/true); |
2576 | 0 | } |
2577 | | |
2578 | | void roaring64_iterator_reinit_last(const roaring64_bitmap_t *r, |
2579 | 0 | roaring64_iterator_t *it) { |
2580 | 0 | roaring64_iterator_init_at(r, it, /*first=*/false); |
2581 | 0 | } |
2582 | | |
2583 | 0 | roaring64_iterator_t *roaring64_iterator_copy(const roaring64_iterator_t *it) { |
2584 | 0 | roaring64_iterator_t *new_it = |
2585 | 0 | (roaring64_iterator_t *)roaring_malloc(sizeof(roaring64_iterator_t)); |
2586 | 0 | memcpy(new_it, it, sizeof(*it)); |
2587 | 0 | return new_it; |
2588 | 0 | } |
2589 | | |
2590 | 0 | void roaring64_iterator_free(roaring64_iterator_t *it) { roaring_free(it); } |
2591 | | |
2592 | 0 | bool roaring64_iterator_has_value(const roaring64_iterator_t *it) { |
2593 | 0 | return it->has_value; |
2594 | 0 | } |
2595 | | |
2596 | 0 | uint64_t roaring64_iterator_value(const roaring64_iterator_t *it) { |
2597 | 0 | return it->value; |
2598 | 0 | } |
2599 | | |
2600 | 0 | bool roaring64_iterator_advance(roaring64_iterator_t *it) { |
2601 | 0 | if (it->art_it.value == NULL) { |
2602 | 0 | if (it->saturated_forward) { |
2603 | 0 | return (it->has_value = false); |
2604 | 0 | } |
2605 | 0 | roaring64_iterator_init_at(it->r, it, /*first=*/true); |
2606 | 0 | return it->has_value; |
2607 | 0 | } |
2608 | 0 | leaf_t leaf = (leaf_t)*it->art_it.value; |
2609 | 0 | uint16_t low16 = (uint16_t)it->value; |
2610 | 0 | if (container_iterator_next(get_container(it->r, leaf), get_typecode(leaf), |
2611 | 0 | &it->container_it, &low16)) { |
2612 | 0 | it->value = it->high48 | low16; |
2613 | 0 | return (it->has_value = true); |
2614 | 0 | } |
2615 | 0 | if (art_iterator_next(&it->art_it)) { |
2616 | 0 | return roaring64_iterator_init_at_leaf_first(it); |
2617 | 0 | } |
2618 | 0 | it->saturated_forward = true; |
2619 | 0 | return (it->has_value = false); |
2620 | 0 | } |
2621 | | |
2622 | 0 | bool roaring64_iterator_previous(roaring64_iterator_t *it) { |
2623 | 0 | if (it->art_it.value == NULL) { |
2624 | 0 | if (!it->saturated_forward) { |
2625 | | // Saturated backward. |
2626 | 0 | return (it->has_value = false); |
2627 | 0 | } |
2628 | 0 | roaring64_iterator_init_at(it->r, it, /*first=*/false); |
2629 | 0 | return it->has_value; |
2630 | 0 | } |
2631 | 0 | leaf_t leaf = (leaf_t)*it->art_it.value; |
2632 | 0 | uint16_t low16 = (uint16_t)it->value; |
2633 | 0 | if (container_iterator_prev(get_container(it->r, leaf), get_typecode(leaf), |
2634 | 0 | &it->container_it, &low16)) { |
2635 | 0 | it->value = it->high48 | low16; |
2636 | 0 | return (it->has_value = true); |
2637 | 0 | } |
2638 | 0 | if (art_iterator_prev(&it->art_it)) { |
2639 | 0 | return roaring64_iterator_init_at_leaf_last(it); |
2640 | 0 | } |
2641 | 0 | it->saturated_forward = false; // Saturated backward. |
2642 | 0 | return (it->has_value = false); |
2643 | 0 | } |
2644 | | |
2645 | | bool roaring64_iterator_move_equalorlarger(roaring64_iterator_t *it, |
2646 | 0 | uint64_t val) { |
2647 | 0 | uint8_t val_high48[ART_KEY_BYTES]; |
2648 | 0 | uint16_t val_low16 = split_key(val, val_high48); |
2649 | 0 | if (!it->has_value || it->high48 != (val & 0xFFFFFFFFFFFF0000)) { |
2650 | | // The ART iterator is before or after the high48 bits of `val` (or |
2651 | | // beyond the ART altogether), so we need to move to a leaf with a |
2652 | | // key equal or greater. |
2653 | 0 | if (!art_iterator_lower_bound(&it->art_it, val_high48)) { |
2654 | | // Only smaller keys found. |
2655 | 0 | it->saturated_forward = true; |
2656 | 0 | return (it->has_value = false); |
2657 | 0 | } |
2658 | 0 | it->high48 = combine_key(it->art_it.key, 0); |
2659 | | // Fall through to the next if statement. |
2660 | 0 | } |
2661 | | |
2662 | 0 | if (it->high48 == (val & 0xFFFFFFFFFFFF0000)) { |
2663 | | // We're at equal high bits, check if a suitable value can be found |
2664 | | // in this container. |
2665 | 0 | leaf_t leaf = (leaf_t)*it->art_it.value; |
2666 | 0 | uint16_t low16 = (uint16_t)it->value; |
2667 | 0 | if (container_iterator_lower_bound( |
2668 | 0 | get_container(it->r, leaf), get_typecode(leaf), |
2669 | 0 | &it->container_it, &low16, val_low16)) { |
2670 | 0 | it->value = it->high48 | low16; |
2671 | 0 | return (it->has_value = true); |
2672 | 0 | } |
2673 | | // Only smaller entries in this container, move to the next. |
2674 | 0 | if (!art_iterator_next(&it->art_it)) { |
2675 | 0 | it->saturated_forward = true; |
2676 | 0 | return (it->has_value = false); |
2677 | 0 | } |
2678 | 0 | } |
2679 | | |
2680 | | // We're at a leaf with high bits greater than `val`, so the first entry |
2681 | | // in this container is our result. |
2682 | 0 | return roaring64_iterator_init_at_leaf_first(it); |
2683 | 0 | } |
2684 | | |
2685 | | uint64_t roaring64_iterator_read(roaring64_iterator_t *it, uint64_t *buf, |
2686 | 0 | uint64_t count) { |
2687 | 0 | uint64_t consumed = 0; |
2688 | 0 | while (it->has_value && consumed < count) { |
2689 | 0 | uint32_t container_consumed; |
2690 | 0 | leaf_t leaf = (leaf_t)*it->art_it.value; |
2691 | 0 | uint16_t low16 = (uint16_t)it->value; |
2692 | 0 | uint32_t container_count = UINT32_MAX; |
2693 | 0 | if (count - consumed < (uint64_t)UINT32_MAX) { |
2694 | 0 | container_count = count - consumed; |
2695 | 0 | } |
2696 | 0 | bool has_value = container_iterator_read_into_uint64( |
2697 | 0 | get_container(it->r, leaf), get_typecode(leaf), &it->container_it, |
2698 | 0 | it->high48, buf, container_count, &container_consumed, &low16); |
2699 | 0 | consumed += container_consumed; |
2700 | 0 | buf += container_consumed; |
2701 | 0 | if (has_value) { |
2702 | 0 | it->has_value = true; |
2703 | 0 | it->value = it->high48 | low16; |
2704 | 0 | assert(consumed == count); |
2705 | 0 | return consumed; |
2706 | 0 | } |
2707 | 0 | it->has_value = art_iterator_next(&it->art_it); |
2708 | 0 | if (it->has_value) { |
2709 | 0 | roaring64_iterator_init_at_leaf_first(it); |
2710 | 0 | } |
2711 | 0 | } |
2712 | 0 | return consumed; |
2713 | 0 | } |
2714 | | |
2715 | | #ifdef __cplusplus |
2716 | | } // extern "C" |
2717 | | } // namespace roaring |
2718 | | } // namespace api |
2719 | | #endif |