/src/SymCrypt/lib/modexp.c
Line | Count | Source (jump to first uncovered line) |
1 | | // |
2 | | // modexp.c Modular exponentiation functions |
3 | | // |
4 | | // Copyright (c) Microsoft Corporation. Licensed under the MIT license. |
5 | | // |
6 | | |
7 | | #include "precomp.h" |
8 | | |
9 | | // |
10 | | // The windowed modular exponentiation algorithm works by generating a |
11 | | // side-channel table of all the powers of the base from 0 up to 2^W - 1 |
12 | | // where W is the window size: |
13 | | // scsPrecomp = { 1, base, base^2, ..., base^(2^W-1) } |
14 | | // |
15 | | // TODO: To mitigate power analysis attacks when multiplying by 1 (which might |
16 | | // contain a lot of zeros in non-Montgomery moduli), future work is to |
17 | | // get rid of the 1 in the table. The leak is limited since now we always |
18 | | // have Montgomery moduli. |
19 | | // |
20 | | // Then it slices the exponent into chunks of W bits and goes through |
21 | | // each chunk of the exponent starting from the most significant |
22 | | // chunk. For each chunk c_i it squares a temporary modelement |
23 | | // W times and then multiplies it by scsPrecomp[c_i]. The starting |
24 | | // value of the temporary modelement is scsPrecomp[c_0] i.e. the one |
25 | | // corresponding to the most significant chunk. |
26 | | // |
27 | | // Denote by M and SQ the multiplications and squarings and by B = nBitsExp |
28 | | // number of bits of the exponent. Then the algorithm does |
29 | | // (2^W - 2)*M + (B-1)/W*(W*SQ + M) = |
30 | | // (2^W + (B-1)/W -2) multiplications and (B-1) squarings |
31 | | // |
32 | | // It is beneficial to change the window size from W to W+1 when |
33 | | // 2^(W+1) + (B-1)/(W+1) < 2^W + (B-1)/W => |
34 | | // B > 2^W*W(W+1)+1 |
35 | | // A simple table that calculates the optimal values for the window size |
36 | | // is shown below. |
37 | | // |
38 | | // The minimum value of W is W=4 as 2^W should be a multiple |
39 | | // of the groupsize of the scsTable, which is 4 by default. |
40 | | |
41 | 0 | #define MIN_WINDOW_SIZE (4) |
42 | | |
43 | | static const UINT32 cutoffs[] = |
44 | | { |
45 | | // 5, // W should be 2 for 5 < B <= 25 |
46 | | // 25, // W should be 3 for 25 < B <= 97 |
47 | | // 97, // W should be 4 for 97 < B <= 321 |
48 | | 321, // W should be 5 for 321 < B <= 961 |
49 | | // 961, // W should be 6 for 961 < B |
50 | | }; |
51 | | |
52 | | static const UINT32 nCuttoffs = sizeof(cutoffs) / sizeof(cutoffs[0]); |
53 | | |
54 | | VOID |
55 | | SYMCRYPT_CALL |
56 | | SymCryptModExpWindowed( |
57 | | _In_ PCSYMCRYPT_MODULUS pmMod, |
58 | | _In_ PCSYMCRYPT_MODELEMENT peBase, |
59 | | _In_ PCSYMCRYPT_INT piExp, |
60 | | UINT32 nBitsExp, |
61 | | _Out_ PSYMCRYPT_MODELEMENT peDst, |
62 | | _Out_writes_bytes_( cbScratch ) PBYTE pbScratch, |
63 | | SIZE_T cbScratch ) |
64 | 0 | { |
65 | 0 | UINT32 W = 0; |
66 | 0 | UINT32 nTableElements = 0; |
67 | |
|
68 | 0 | SYMCRYPT_SCSTABLE scsPrecomp = { 0 }; |
69 | 0 | UINT32 cbScsPrecomp = 0; |
70 | |
|
71 | 0 | UINT32 cbModElement = SymCryptSizeofModElementFromModulus( pmMod ); |
72 | |
|
73 | 0 | PSYMCRYPT_MODELEMENT peT1 = NULL; |
74 | 0 | PSYMCRYPT_MODELEMENT peT2 = NULL; |
75 | |
|
76 | 0 | UINT32 nIterations = 0; |
77 | 0 | UINT32 iBit = 0; |
78 | 0 | UINT32 nBits = 0; |
79 | 0 | UINT32 index = 0; |
80 | | |
81 | | // Truncate the nBitsExp if above the object size |
82 | 0 | nBitsExp = SYMCRYPT_MIN( nBitsExp, SymCryptIntBitsizeOfObject(piExp) ); |
83 | | |
84 | | // Calculate the window size |
85 | 0 | W = MIN_WINDOW_SIZE; |
86 | 0 | while ((W-MIN_WINDOW_SIZE < nCuttoffs) && (cutoffs[W-MIN_WINDOW_SIZE]<nBitsExp)) |
87 | 0 | { |
88 | 0 | W++; |
89 | 0 | } |
90 | 0 | nTableElements = (1<<W); |
91 | | |
92 | | // Initialize the table of temporary modelements |
93 | 0 | cbScsPrecomp = SymCryptScsTableInit( &scsPrecomp, nTableElements, cbModElement ); |
94 | |
|
95 | 0 | SYMCRYPT_ASSERT( cbScratch >= cbScsPrecomp + 2*cbModElement + SYMCRYPT_SCRATCH_BYTES_FOR_COMMON_MOD_OPERATIONS( pmMod->nDigits ) ); |
96 | |
|
97 | 0 | SymCryptScsTableSetBuffer( &scsPrecomp, pbScratch, cbScsPrecomp ); |
98 | 0 | pbScratch += cbScsPrecomp; |
99 | 0 | cbScratch -= cbScsPrecomp; |
100 | | |
101 | | // Create the temporary modelement |
102 | 0 | peT1 = SymCryptModElementCreate( pbScratch, cbModElement, pmMod ); |
103 | 0 | SYMCRYPT_ASSERT( peT1 != NULL ); |
104 | 0 | pbScratch += cbModElement; |
105 | 0 | cbScratch -= cbModElement; |
106 | 0 | peT2 = SymCryptModElementCreate( pbScratch, cbModElement, pmMod ); |
107 | 0 | SYMCRYPT_ASSERT( peT2 != NULL ); |
108 | 0 | pbScratch += cbModElement; |
109 | 0 | cbScratch -= cbModElement; |
110 | | |
111 | | // Fill the first element with 1 (**note: this will cause 0^0 = 1) |
112 | | // and the second with peBase |
113 | 0 | SYMCRYPT_ASSERT( nTableElements >= 2 ); |
114 | |
|
115 | 0 | SymCryptModElementSetValueUint32( 1, pmMod, peT1, pbScratch, cbScratch ); |
116 | 0 | SymCryptScsTableStore( &scsPrecomp, 0, (PBYTE)peT1, cbModElement ); |
117 | |
|
118 | 0 | SymCryptModElementCopy( pmMod, peBase, peT1 ); |
119 | 0 | SymCryptScsTableStore( &scsPrecomp, 1, (PBYTE)peT1, cbModElement ); |
120 | | |
121 | | // Fill the table with the powers of peBase |
122 | 0 | for (UINT32 i=2; i<nTableElements; i++) |
123 | 0 | { |
124 | | // TODO: Future improvement, use squarings for this table. |
125 | 0 | SymCryptModMul( pmMod, peT1, peBase, peT1, pbScratch, cbScratch ); |
126 | 0 | SymCryptScsTableStore( &scsPrecomp, i, (PBYTE)peT1, cbModElement ); |
127 | 0 | } |
128 | | |
129 | | // Find the number of iterations (minus one) and the starting position bit |
130 | 0 | SYMCRYPT_ASSERT( nBitsExp != 0 ); |
131 | 0 | nIterations = (nBitsExp - 1) / W; |
132 | 0 | iBit = nIterations * W; |
133 | | |
134 | | // Do the first chunk (it might be smaller than W bits) |
135 | 0 | nBits = nBitsExp - iBit; |
136 | 0 | index = SymCryptIntGetBits( piExp, iBit, nBits ); |
137 | 0 | SymCryptScsTableLoad( &scsPrecomp, index, (PBYTE)peT1, cbModElement ); |
138 | | |
139 | | // Work in batches of W bits in the exponent |
140 | 0 | for (UINT32 i=0; i<nIterations; i++) |
141 | 0 | { |
142 | | // Square W times |
143 | 0 | for (UINT32 j=0; j<W; j++) |
144 | 0 | { |
145 | 0 | SymCryptModSquare( pmMod, peT1, peT1, pbScratch, cbScratch ); |
146 | 0 | } |
147 | |
|
148 | 0 | iBit -= W; |
149 | 0 | index = SymCryptIntGetBits( piExp, iBit, W ); |
150 | 0 | SymCryptScsTableLoad( &scsPrecomp, index, (PBYTE)peT2, cbModElement ); |
151 | |
|
152 | 0 | SymCryptModMul( pmMod, peT1, peT2, peT1, pbScratch, cbScratch ); |
153 | 0 | } |
154 | |
|
155 | 0 | SYMCRYPT_ASSERT( iBit == 0 ); |
156 | |
|
157 | 0 | SymCryptModElementCopy( pmMod, peT1, peDst ); |
158 | 0 | } |
159 | | |
160 | | VOID |
161 | | SYMCRYPT_CALL |
162 | | SymCryptModExpSquareAndMultiply32( |
163 | | _In_ PCSYMCRYPT_MODULUS pmMod, |
164 | | _In_ PCSYMCRYPT_MODELEMENT peBase, |
165 | | _In_ PCSYMCRYPT_INT piExp, |
166 | | _Out_ PSYMCRYPT_MODELEMENT peDst, |
167 | | _Out_writes_bytes_( cbScratch ) PBYTE pbScratch, |
168 | | SIZE_T cbScratch ) |
169 | 0 | { |
170 | 0 | UINT32 cbModElement = SymCryptSizeofModElementFromModulus( pmMod ); |
171 | |
|
172 | 0 | PSYMCRYPT_MODELEMENT peT1 = NULL; |
173 | 0 | PSYMCRYPT_MODELEMENT peT2 = NULL; |
174 | | |
175 | | // The bits of the exponent when this function is called are |
176 | | // always less than 32. |
177 | 0 | UINT32 exp = SymCryptIntGetValueLsbits32( piExp ); |
178 | |
|
179 | 0 | SYMCRYPT_ASSERT( cbScratch >= 2*cbModElement + SYMCRYPT_SCRATCH_BYTES_FOR_COMMON_MOD_OPERATIONS( pmMod->nDigits ) ); |
180 | | |
181 | | // Create the temporary modelements |
182 | 0 | peT1 = SymCryptModElementCreate( pbScratch, cbModElement, pmMod ); |
183 | 0 | SYMCRYPT_ASSERT( peT1 != NULL ); |
184 | 0 | pbScratch += cbModElement; |
185 | 0 | cbScratch -= cbModElement; |
186 | 0 | peT2 = SymCryptModElementCreate( pbScratch, cbModElement, pmMod ); |
187 | 0 | SYMCRYPT_ASSERT( peT2 != NULL ); |
188 | 0 | pbScratch += cbModElement; |
189 | 0 | cbScratch -= cbModElement; |
190 | |
|
191 | 0 | if (exp == 0) |
192 | 0 | { |
193 | 0 | SymCryptModElementSetValueUint32( 1, pmMod, peDst, pbScratch, cbScratch ); |
194 | 0 | } |
195 | 0 | else |
196 | 0 | { |
197 | 0 | SymCryptModElementSetValueUint32( 1, pmMod, peT1, pbScratch, cbScratch ); |
198 | 0 | SymCryptModElementCopy( pmMod, peBase, peT2 ); |
199 | |
|
200 | 0 | while (exp>1) |
201 | 0 | { |
202 | 0 | if (exp%2 == 1) |
203 | 0 | { |
204 | 0 | SymCryptModMul( pmMod, peT1, peT2, peT1, pbScratch, cbScratch ); |
205 | 0 | } |
206 | |
|
207 | 0 | SymCryptModSquare( pmMod, peT2, peT2, pbScratch, cbScratch ); |
208 | 0 | exp /= 2; |
209 | 0 | } |
210 | |
|
211 | 0 | SymCryptModMul( pmMod, peT1, peT2, peDst, pbScratch, cbScratch ); |
212 | 0 | } |
213 | 0 | } |
214 | | |
215 | | VOID |
216 | | SYMCRYPT_CALL |
217 | | SymCryptModExpGeneric( |
218 | | _In_ PCSYMCRYPT_MODULUS pmMod, |
219 | | _In_ PCSYMCRYPT_MODELEMENT peBase, |
220 | | _In_ PCSYMCRYPT_INT piExp, |
221 | | UINT32 nBitsExp, |
222 | | UINT32 flags, |
223 | | _Out_ PSYMCRYPT_MODELEMENT peDst, |
224 | | _Out_writes_bytes_( cbScratch ) PBYTE pbScratch, |
225 | | SIZE_T cbScratch ) |
226 | 0 | { |
227 | 0 | if ( ((flags & SYMCRYPT_FLAG_DATA_PUBLIC)!=0) && (nBitsExp <= sizeof(UINT32)*8) ) |
228 | 0 | { |
229 | 0 | SymCryptModExpSquareAndMultiply32( pmMod, peBase, piExp, peDst, pbScratch, cbScratch ); |
230 | 0 | } |
231 | 0 | else |
232 | 0 | { |
233 | 0 | SymCryptModExpWindowed( pmMod, peBase, piExp, nBitsExp, peDst, pbScratch, cbScratch ); // This is the default |
234 | 0 | } |
235 | 0 | } |
236 | | |
237 | | // |
238 | | // MultiExponentiation |
239 | | // |
240 | | |
241 | | // SYMCRYPT_MODMULTIEXP_MAX_NPRECOMP: The maximum number of precomputed powers of the |
242 | | // base point allowed for the multi-exponentiation operation. |
243 | | // It should be equal to 2^(SYMCRYPT_FDEF_MAX_WINDOW_MODEXP-1) |
244 | | #define SYMCRYPT_MODMULTIEXP_MAX_NPRECOMP (1<<(SYMCRYPT_FDEF_MAX_WINDOW_MODEXP-1)) |
245 | | |
246 | | // SYMCRYPT_MODMULTIEXP_WINDOW_SIZE: Fixed window size for the WnafWithInterleaving |
247 | | // implementation. It is found to give the faster running times for sizes |
248 | | // 512 - 2048 bits. |
249 | 0 | #define SYMCRYPT_MODMULTIEXP_WINDOW_SIZE (5) |
250 | | |
251 | | C_ASSERT( (1 << (SYMCRYPT_MODMULTIEXP_WINDOW_SIZE-1)) <= SYMCRYPT_MODMULTIEXP_MAX_NPRECOMP ); |
252 | | |
253 | | // |
254 | | // The following function fills the table with odd powers |
255 | | // of the base point B. |
256 | | // |
257 | | // The first value must be filled by the caller. |
258 | | VOID |
259 | | SYMCRYPT_CALL |
260 | | SymCryptModExpPrecomputation( |
261 | | _In_ PCSYMCRYPT_MODULUS pmP, |
262 | | UINT32 nPrecomputedPowers, |
263 | | _In_reads_( SYMCRYPT_MODMULTIEXP_MAX_NPRECOMP ) |
264 | | PSYMCRYPT_MODELEMENT * pePIs, |
265 | | PSYMCRYPT_MODELEMENT peTemp, |
266 | | _Out_writes_bytes_opt_( cbScratch ) |
267 | | PBYTE pbScratch, |
268 | | SIZE_T cbScratch |
269 | | ) |
270 | 0 | { |
271 | 0 | SYMCRYPT_ASSERT(nPrecomputedPowers>=2); |
272 | | |
273 | | // Calculate B^2 |
274 | 0 | SymCryptModSquare( pmP, pePIs[0], peTemp, pbScratch, cbScratch ); |
275 | |
|
276 | 0 | for (UINT32 i=1; i<nPrecomputedPowers; i++) |
277 | 0 | { |
278 | | // B[i] = B^2*B[i-1] |
279 | 0 | SymCryptModMul( pmP, peTemp, pePIs[i-1], pePIs[i], pbScratch, cbScratch ); |
280 | 0 | } |
281 | 0 | } |
282 | | |
283 | | // |
284 | | // The following is a similar algorithm to SymCryptEcpointMultiScalarMulWnafWithInterleaving. |
285 | | // It is a NON SIDE-CHANNEL SAFE algorithm. |
286 | | // |
287 | | VOID |
288 | | SYMCRYPT_CALL |
289 | | SymCryptModMultiExpWnafWithInterleaving( |
290 | | _In_ PCSYMCRYPT_MODULUS pmMod, |
291 | | _In_reads_( nBases ) PCSYMCRYPT_MODELEMENT * peBaseArray, |
292 | | _In_reads_( nBases ) PCSYMCRYPT_INT * piExpArray, |
293 | | UINT32 nBases, |
294 | | UINT32 nBitsExp, |
295 | | _Out_ PSYMCRYPT_MODELEMENT peDst, |
296 | | _Out_writes_bytes_( cbScratch ) PBYTE pbScratch, |
297 | | SIZE_T cbScratch ) |
298 | 0 | { |
299 | 0 | UINT32 i, j; |
300 | |
|
301 | 0 | UINT32 w = 0; |
302 | 0 | UINT32 nPrecompPoints = 0; |
303 | 0 | UINT32 nRecodedDigits = 0; |
304 | | |
305 | | // Masks |
306 | 0 | UINT32 fOne[SYMCRYPT_MODMULTIEXP_MAX_NBASES] = { 0 }; |
307 | 0 | UINT32 fOneTot = 0xffffffff; // Final result 1 |
308 | |
|
309 | 0 | UINT32 fZeroExp = 0; // Zero exponent |
310 | 0 | UINT32 fZeroTot = 0; // Final result 0 |
311 | |
|
312 | 0 | UINT32 cbModElement = SymCryptSizeofModElementFromModulus( pmMod ); |
313 | | |
314 | | // ==================================================== |
315 | | // Temporaries |
316 | 0 | PSYMCRYPT_MODELEMENT pePIs[SYMCRYPT_MODMULTIEXP_MAX_NBASES*SYMCRYPT_MODMULTIEXP_MAX_NPRECOMP] = { 0 }; |
317 | 0 | PSYMCRYPT_MODELEMENT peTemp = NULL; |
318 | 0 | PSYMCRYPT_MODELEMENT peOne = NULL; |
319 | |
|
320 | 0 | PUINT32 absofKIs = NULL; |
321 | | // =================================================== |
322 | | |
323 | | // Calculate the window size |
324 | 0 | w = SYMCRYPT_MODMULTIEXP_WINDOW_SIZE; |
325 | 0 | nPrecompPoints = (1 << (w-1)); // We only store odd powers of the base point |
326 | | |
327 | | // Number of recoded digits |
328 | 0 | nRecodedDigits = nBitsExp; |
329 | | |
330 | | // |
331 | | // From symcrypt_internal.h we have: |
332 | | // - sizeof results are upper bounded by 2^19 |
333 | | // - SYMCRYPT_SCRATCH_BYTES results are upper bounded by 2^27 (including RSA and ECURVE) |
334 | | // - nBases, nPrecompPoints, and nRecodedDigits are bounded by SYMCRYPT_MODMULTIEXP_MAX_NBASES, |
335 | | // SYMCRYPT_MODMULTIEXP_MAX_NBITSEXP, and SYMCRYPT_MODMULTIEXP_MAX_NPRECOMP, repspectively. |
336 | | // Thus the following calculation does not overflow cbScratch. |
337 | | // |
338 | 0 | SYMCRYPT_ASSERT( SYMCRYPT_MODMULTIEXP_MAX_NBASES >= nBases ); |
339 | 0 | SYMCRYPT_ASSERT( SYMCRYPT_MODMULTIEXP_MAX_NPRECOMP >= nPrecompPoints ); |
340 | | |
341 | | // Creating temporary precomputed modelements |
342 | 0 | for (i=0; i<nBases*nPrecompPoints; i++) |
343 | 0 | { |
344 | 0 | SYMCRYPT_ASSERT( cbScratch >= cbModElement ); |
345 | 0 | pePIs[i] = SymCryptModElementCreate( pbScratch, cbModElement, pmMod ); |
346 | 0 | SYMCRYPT_ASSERT( pePIs[i] != NULL ); |
347 | 0 | pbScratch += cbModElement; |
348 | 0 | cbScratch -= cbModElement; |
349 | 0 | } |
350 | |
|
351 | 0 | SYMCRYPT_ASSERT( cbScratch >= |
352 | 0 | 2*cbModElement + |
353 | 0 | ((nBases*nRecodedDigits*sizeof(UINT32) + SYMCRYPT_ASYM_ALIGN_VALUE - 1)/SYMCRYPT_ASYM_ALIGN_VALUE)*SYMCRYPT_ASYM_ALIGN_VALUE + |
354 | 0 | SYMCRYPT_SCRATCH_BYTES_FOR_COMMON_MOD_OPERATIONS( SymCryptModulusDigitsizeOfObject( pmMod ) ) ); |
355 | | |
356 | | // Creating temporary points |
357 | 0 | peTemp = SymCryptModElementCreate( pbScratch, cbModElement, pmMod ); |
358 | 0 | SYMCRYPT_ASSERT( peTemp != NULL ); |
359 | 0 | pbScratch += cbModElement; |
360 | 0 | cbScratch -= cbModElement; |
361 | |
|
362 | 0 | peOne = SymCryptModElementCreate( pbScratch, cbModElement, pmMod ); |
363 | 0 | SYMCRYPT_ASSERT( peOne != NULL ); |
364 | 0 | pbScratch += cbModElement; |
365 | 0 | cbScratch -= cbModElement; |
366 | | |
367 | | // Fixing pointers to recoded digits (be careful that the remaining space is SYMCRYPT_ASYM_ALIGNed) |
368 | 0 | absofKIs = (PUINT32) pbScratch; |
369 | 0 | pbScratch += nBases * nRecodedDigits * sizeof(UINT32); |
370 | 0 | cbScratch -= nBases * nRecodedDigits * sizeof(UINT32); |
371 | | |
372 | | // Update cbScratch first using pbScratch, as the amount of scratch skipped for alignment depends upon the alignment of pbScratch |
373 | 0 | cbScratch -= ( ((ULONG_PTR)pbScratch + SYMCRYPT_ASYM_ALIGN_VALUE - 1) & ~(SYMCRYPT_ASYM_ALIGN_VALUE - 1) ) - (ULONG_PTR)pbScratch; |
374 | 0 | pbScratch = (PBYTE) ( ((ULONG_PTR)pbScratch + SYMCRYPT_ASYM_ALIGN_VALUE - 1) & ~(SYMCRYPT_ASYM_ALIGN_VALUE - 1) ); |
375 | | |
376 | | |
377 | | // |
378 | | // Main algorithm |
379 | | // |
380 | | |
381 | | // Set peOne to 1 |
382 | 0 | SymCryptModElementSetValueUint32( 1, pmMod, peOne, pbScratch, cbScratch ); |
383 | | |
384 | | // Zero-out all recoded digits |
385 | 0 | SymCryptWipe( (PBYTE)absofKIs, nBases*nRecodedDigits*sizeof(UINT32) ); |
386 | |
|
387 | 0 | for (j = 0; j<nBases; j++) |
388 | 0 | { |
389 | | // Check if the exponent is zero |
390 | 0 | fZeroExp = SymCryptIntIsEqualUint32( piExpArray[j], 0 ); |
391 | | |
392 | | // Check if the result is 0 (i.e. 0^e with e!=0) |
393 | 0 | if( !fZeroExp && SymCryptModElementIsZero(pmMod, peBaseArray[j]) ) |
394 | 0 | { |
395 | 0 | fZeroTot = 0xffffffff; |
396 | 0 | break; |
397 | 0 | } |
398 | | |
399 | | // Check if the exponent is 0 or if the base point is 1 |
400 | 0 | fOne[j] = ( fZeroExp | SymCryptModElementIsEqual( pmMod, peBaseArray[j], peOne ) ); |
401 | 0 | fOneTot &= fOne[j]; |
402 | | |
403 | | // Skip the recoding stage (and all remaining steps) if this point will give result 1 |
404 | 0 | if (!fOne[j]) |
405 | 0 | { |
406 | | // Recoding stage |
407 | 0 | SymCryptPositiveWidthNafRecoding( w, piExpArray[j], nBitsExp, &absofKIs[j*nRecodedDigits], nRecodedDigits ); |
408 | | |
409 | | // Copy the base in the start of the pePIs array |
410 | 0 | SymCryptModElementCopy( pmMod, peBaseArray[j], pePIs[j*nPrecompPoints] ); |
411 | | |
412 | | // Precomputation stage |
413 | 0 | SymCryptModExpPrecomputation( pmMod, nPrecompPoints, &pePIs[j*nPrecompPoints], peTemp, pbScratch, cbScratch ); |
414 | 0 | } |
415 | 0 | } |
416 | |
|
417 | 0 | if (fZeroTot) |
418 | 0 | { |
419 | 0 | SymCryptModElementSetValueUint32( 0, pmMod, peDst, pbScratch, cbScratch ); |
420 | 0 | } |
421 | 0 | else |
422 | 0 | { |
423 | 0 | SymCryptModElementSetValueUint32( 1, pmMod, peTemp, pbScratch, cbScratch ); |
424 | |
|
425 | 0 | if (!fOneTot) |
426 | 0 | { |
427 | | // Main loop |
428 | 0 | for (INT32 i = nRecodedDigits-1; i>-1; i--) |
429 | 0 | { |
430 | 0 | SymCryptModSquare( pmMod, peTemp, peTemp, pbScratch, cbScratch ); |
431 | |
|
432 | 0 | for (j = 0; j<nBases; j++) |
433 | 0 | { |
434 | 0 | if (absofKIs[j*nRecodedDigits + i] != 0) |
435 | 0 | { |
436 | 0 | SymCryptModMul( pmMod, peTemp, pePIs[j*nPrecompPoints + absofKIs[j*nRecodedDigits + i]/2], peTemp, pbScratch, cbScratch ); |
437 | 0 | } |
438 | 0 | } |
439 | 0 | } |
440 | 0 | } |
441 | | |
442 | | // Copy the result into the destination |
443 | 0 | SymCryptModElementCopy( pmMod, peTemp, peDst ); |
444 | 0 | } |
445 | 0 | } |
446 | | |
447 | | SYMCRYPT_ERROR |
448 | | SYMCRYPT_CALL |
449 | | SymCryptModMultiExpGeneric( |
450 | | _In_ PCSYMCRYPT_MODULUS pmMod, |
451 | | _In_reads_( nBases ) PCSYMCRYPT_MODELEMENT * peBaseArray, |
452 | | _In_reads_( nBases ) PCSYMCRYPT_INT * piExpArray, |
453 | | UINT32 nBases, |
454 | | UINT32 nBitsExp, |
455 | | UINT32 flags, |
456 | | _Out_ PSYMCRYPT_MODELEMENT peDst, |
457 | | _Out_writes_bytes_( cbScratch ) PBYTE pbScratch, |
458 | | SIZE_T cbScratch ) |
459 | 0 | { |
460 | 0 | SYMCRYPT_ERROR scError = SYMCRYPT_NO_ERROR; |
461 | |
|
462 | 0 | if ( (nBases > SYMCRYPT_MODMULTIEXP_MAX_NBASES) || |
463 | 0 | (nBitsExp > SYMCRYPT_MODMULTIEXP_MAX_NBITSEXP) ) |
464 | 0 | { |
465 | 0 | scError = SYMCRYPT_INVALID_ARGUMENT; |
466 | 0 | goto cleanup; |
467 | 0 | } |
468 | | |
469 | 0 | if ((flags & SYMCRYPT_FLAG_DATA_PUBLIC)!=0) |
470 | 0 | { |
471 | 0 | SymCryptModMultiExpWnafWithInterleaving( pmMod, peBaseArray, piExpArray, nBases, nBitsExp, peDst, pbScratch, cbScratch ); |
472 | 0 | } |
473 | 0 | else |
474 | 0 | { |
475 | 0 | UINT32 cbModElement = 0; |
476 | 0 | PSYMCRYPT_MODELEMENT peTemp = NULL; |
477 | 0 | PSYMCRYPT_MODELEMENT peAcc = NULL; |
478 | | |
479 | | // Use two temporary modelements to store the results |
480 | | // *** Make sure that the scratch space is enough i.e. the scratch space of ModMultiExp is |
481 | | // at least 2 modelements bigger than the scratch space of ModExp |
482 | 0 | cbModElement = SymCryptSizeofModElementFromModulus( pmMod ); |
483 | |
|
484 | 0 | SYMCRYPT_ASSERT( SYMCRYPT_SCRATCH_BYTES_FOR_MODEXP(SymCryptModulusDigitsizeOfObject(pmMod)) + 2*cbModElement <= |
485 | 0 | SYMCRYPT_SCRATCH_BYTES_FOR_MODMULTIEXP( SymCryptModulusDigitsizeOfObject(pmMod), nBases, nBitsExp ) ); |
486 | 0 | SYMCRYPT_ASSERT( cbScratch >= 2*cbModElement + SYMCRYPT_SCRATCH_BYTES_FOR_MODEXP(SymCryptModulusDigitsizeOfObject(pmMod)) ); |
487 | |
|
488 | 0 | peTemp = SymCryptModElementCreate( pbScratch, cbModElement, pmMod ); |
489 | 0 | pbScratch += cbModElement; cbScratch -= cbModElement; |
490 | |
|
491 | 0 | peAcc = SymCryptModElementCreate( pbScratch, cbModElement, pmMod ); |
492 | 0 | pbScratch += cbModElement; cbScratch -= cbModElement; |
493 | | |
494 | | // Set peAcc to 1 |
495 | 0 | SymCryptModElementSetValueUint32( 1, pmMod, peAcc, pbScratch, cbScratch ); |
496 | |
|
497 | 0 | for (UINT32 i=0; i<nBases; i++) |
498 | 0 | { |
499 | 0 | SymCryptModExpWindowed( pmMod, peBaseArray[i], piExpArray[i], nBitsExp, peTemp, pbScratch, cbScratch ); |
500 | |
|
501 | 0 | SymCryptModMul( pmMod, peAcc, peTemp, peAcc, pbScratch, cbScratch ); |
502 | 0 | } |
503 | | |
504 | | // Copy the result into the destination |
505 | 0 | SymCryptModElementCopy( pmMod, peAcc, peDst ); |
506 | 0 | } |
507 | |
|
508 | 0 | cleanup: |
509 | 0 | return scError; |
510 | 0 | } |