Coverage Report

Created: 2024-11-21 07:03

/src/boringssl/crypto/cipher_extra/e_aesgcmsiv.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (c) 2017, Google Inc.
2
 *
3
 * Permission to use, copy, modify, and/or distribute this software for any
4
 * purpose with or without fee is hereby granted, provided that the above
5
 * copyright notice and this permission notice appear in all copies.
6
 *
7
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10
 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12
 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13
 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14
15
#include <openssl/aead.h>
16
17
#include <assert.h>
18
19
#include <openssl/cipher.h>
20
#include <openssl/crypto.h>
21
#include <openssl/err.h>
22
23
#include "../fipsmodule/cipher/internal.h"
24
#include "../internal.h"
25
26
27
0
#define EVP_AEAD_AES_GCM_SIV_NONCE_LEN 12
28
0
#define EVP_AEAD_AES_GCM_SIV_TAG_LEN 16
29
30
// TODO(davidben): AES-GCM-SIV assembly is not correct for Windows. It must save
31
// and restore xmm6 through xmm15.
32
#if defined(OPENSSL_X86_64) && !defined(OPENSSL_NO_ASM) && \
33
    !defined(OPENSSL_WINDOWS)
34
#define AES_GCM_SIV_ASM
35
36
// Optimised AES-GCM-SIV
37
38
struct aead_aes_gcm_siv_asm_ctx {
39
  alignas(16) uint8_t key[16*15];
40
  int is_128_bit;
41
};
42
43
// The assembly code assumes 8-byte alignment of the EVP_AEAD_CTX's state, and
44
// aligns to 16 bytes itself.
45
static_assert(sizeof(((EVP_AEAD_CTX *)NULL)->state) + 8 >=
46
                  sizeof(struct aead_aes_gcm_siv_asm_ctx),
47
              "AEAD state is too small");
48
static_assert(alignof(union evp_aead_ctx_st_state) >= 8,
49
              "AEAD state has insufficient alignment");
50
51
// asm_ctx_from_ctx returns a 16-byte aligned context pointer from |ctx|.
52
static struct aead_aes_gcm_siv_asm_ctx *asm_ctx_from_ctx(
53
0
    const EVP_AEAD_CTX *ctx) {
54
  // ctx->state must already be 8-byte aligned. Thus, at most, we may need to
55
  // add eight to align it to 16 bytes.
56
0
  const uintptr_t offset = ((uintptr_t)&ctx->state) & 8;
57
0
  return (struct aead_aes_gcm_siv_asm_ctx *)(&ctx->state.opaque[offset]);
58
0
}
59
60
// aes128gcmsiv_aes_ks writes an AES-128 key schedule for |key| to
61
// |out_expanded_key|.
62
extern void aes128gcmsiv_aes_ks(
63
    const uint8_t key[16], uint8_t out_expanded_key[16*15]);
64
65
// aes256gcmsiv_aes_ks writes an AES-256 key schedule for |key| to
66
// |out_expanded_key|.
67
extern void aes256gcmsiv_aes_ks(
68
    const uint8_t key[32], uint8_t out_expanded_key[16*15]);
69
70
static int aead_aes_gcm_siv_asm_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
71
0
                                     size_t key_len, size_t tag_len) {
72
0
  const size_t key_bits = key_len * 8;
73
74
0
  if (key_bits != 128 && key_bits != 256) {
75
0
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH);
76
0
    return 0;  // EVP_AEAD_CTX_init should catch this.
77
0
  }
78
79
0
  if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) {
80
0
    tag_len = EVP_AEAD_AES_GCM_SIV_TAG_LEN;
81
0
  }
82
83
0
  if (tag_len != EVP_AEAD_AES_GCM_SIV_TAG_LEN) {
84
0
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE);
85
0
    return 0;
86
0
  }
87
88
0
  struct aead_aes_gcm_siv_asm_ctx *gcm_siv_ctx = asm_ctx_from_ctx(ctx);
89
0
  assert((((uintptr_t)gcm_siv_ctx) & 15) == 0);
90
91
0
  if (key_bits == 128) {
92
0
    aes128gcmsiv_aes_ks(key, &gcm_siv_ctx->key[0]);
93
0
    gcm_siv_ctx->is_128_bit = 1;
94
0
  } else {
95
0
    aes256gcmsiv_aes_ks(key, &gcm_siv_ctx->key[0]);
96
0
    gcm_siv_ctx->is_128_bit = 0;
97
0
  }
98
99
0
  ctx->tag_len = tag_len;
100
101
0
  return 1;
102
0
}
103
104
0
static void aead_aes_gcm_siv_asm_cleanup(EVP_AEAD_CTX *ctx) {}
105
106
// aesgcmsiv_polyval_horner updates the POLYVAL value in |in_out_poly| to
107
// include a number (|in_blocks|) of 16-byte blocks of data from |in|, given
108
// the POLYVAL key in |key|.
109
extern void aesgcmsiv_polyval_horner(const uint8_t in_out_poly[16],
110
                                     const uint8_t key[16], const uint8_t *in,
111
                                     size_t in_blocks);
112
113
// aesgcmsiv_htable_init writes powers 1..8 of |auth_key| to |out_htable|.
114
extern void aesgcmsiv_htable_init(uint8_t out_htable[16 * 8],
115
                                  const uint8_t auth_key[16]);
116
117
// aesgcmsiv_htable6_init writes powers 1..6 of |auth_key| to |out_htable|.
118
extern void aesgcmsiv_htable6_init(uint8_t out_htable[16 * 6],
119
                                   const uint8_t auth_key[16]);
120
121
// aesgcmsiv_htable_polyval updates the POLYVAL value in |in_out_poly| to
122
// include |in_len| bytes of data from |in|. (Where |in_len| must be a multiple
123
// of 16.) It uses the precomputed powers of the key given in |htable|.
124
extern void aesgcmsiv_htable_polyval(const uint8_t htable[16 * 8],
125
                                     const uint8_t *in, size_t in_len,
126
                                     uint8_t in_out_poly[16]);
127
128
// aes128gcmsiv_dec decrypts |in_len| & ~15 bytes from |out| and writes them to
129
// |in|. |in| and |out| may be equal, but must not otherwise alias.
130
//
131
// |in_out_calculated_tag_and_scratch|, on entry, must contain:
132
//    1. The current value of the calculated tag, which will be updated during
133
//       decryption and written back to the beginning of this buffer on exit.
134
//    2. The claimed tag, which is needed to derive counter values.
135
//
136
// While decrypting, the whole of |in_out_calculated_tag_and_scratch| may be
137
// used for other purposes. In order to decrypt and update the POLYVAL value, it
138
// uses the expanded key from |key| and the table of powers in |htable|.
139
extern void aes128gcmsiv_dec(const uint8_t *in, uint8_t *out,
140
                             uint8_t in_out_calculated_tag_and_scratch[16 * 8],
141
                             const uint8_t htable[16 * 6],
142
                             const struct aead_aes_gcm_siv_asm_ctx *key,
143
                             size_t in_len);
144
145
// aes256gcmsiv_dec acts like |aes128gcmsiv_dec|, but for AES-256.
146
extern void aes256gcmsiv_dec(const uint8_t *in, uint8_t *out,
147
                             uint8_t in_out_calculated_tag_and_scratch[16 * 8],
148
                             const uint8_t htable[16 * 6],
149
                             const struct aead_aes_gcm_siv_asm_ctx *key,
150
                             size_t in_len);
151
152
// aes128gcmsiv_kdf performs the AES-GCM-SIV KDF given the expanded key from
153
// |key_schedule| and the nonce in |nonce|. Note that, while only 12 bytes of
154
// the nonce are used, 16 bytes are read and so the value must be
155
// right-padded.
156
extern void aes128gcmsiv_kdf(const uint8_t nonce[16],
157
                             uint64_t out_key_material[8],
158
                             const uint8_t *key_schedule);
159
160
// aes256gcmsiv_kdf acts like |aes128gcmsiv_kdf|, but for AES-256.
161
extern void aes256gcmsiv_kdf(const uint8_t nonce[16],
162
                             uint64_t out_key_material[12],
163
                             const uint8_t *key_schedule);
164
165
// aes128gcmsiv_aes_ks_enc_x1 performs a key expansion of the AES-128 key in
166
// |key|, writes the expanded key to |out_expanded_key| and encrypts a single
167
// block from |in| to |out|.
168
extern void aes128gcmsiv_aes_ks_enc_x1(const uint8_t in[16], uint8_t out[16],
169
                                       uint8_t out_expanded_key[16 * 15],
170
                                       const uint64_t key[2]);
171
172
// aes256gcmsiv_aes_ks_enc_x1 acts like |aes128gcmsiv_aes_ks_enc_x1|, but for
173
// AES-256.
174
extern void aes256gcmsiv_aes_ks_enc_x1(const uint8_t in[16], uint8_t out[16],
175
                                       uint8_t out_expanded_key[16 * 15],
176
                                       const uint64_t key[4]);
177
178
// aes128gcmsiv_ecb_enc_block encrypts a single block from |in| to |out| using
179
// the expanded key in |expanded_key|.
180
extern void aes128gcmsiv_ecb_enc_block(
181
    const uint8_t in[16], uint8_t out[16],
182
    const struct aead_aes_gcm_siv_asm_ctx *expanded_key);
183
184
// aes256gcmsiv_ecb_enc_block acts like |aes128gcmsiv_ecb_enc_block|, but for
185
// AES-256.
186
extern void aes256gcmsiv_ecb_enc_block(
187
    const uint8_t in[16], uint8_t out[16],
188
    const struct aead_aes_gcm_siv_asm_ctx *expanded_key);
189
190
// aes128gcmsiv_enc_msg_x4 encrypts |in_len| bytes from |in| to |out| using the
191
// expanded key from |key|. (The value of |in_len| must be a multiple of 16.)
192
// The |in| and |out| buffers may be equal but must not otherwise overlap. The
193
// initial counter is constructed from the given |tag| as required by
194
// AES-GCM-SIV.
195
extern void aes128gcmsiv_enc_msg_x4(const uint8_t *in, uint8_t *out,
196
                                    const uint8_t *tag,
197
                                    const struct aead_aes_gcm_siv_asm_ctx *key,
198
                                    size_t in_len);
199
200
// aes256gcmsiv_enc_msg_x4 acts like |aes128gcmsiv_enc_msg_x4|, but for
201
// AES-256.
202
extern void aes256gcmsiv_enc_msg_x4(const uint8_t *in, uint8_t *out,
203
                                    const uint8_t *tag,
204
                                    const struct aead_aes_gcm_siv_asm_ctx *key,
205
                                    size_t in_len);
206
207
// aes128gcmsiv_enc_msg_x8 acts like |aes128gcmsiv_enc_msg_x4|, but is
208
// optimised for longer messages.
209
extern void aes128gcmsiv_enc_msg_x8(const uint8_t *in, uint8_t *out,
210
                                    const uint8_t *tag,
211
                                    const struct aead_aes_gcm_siv_asm_ctx *key,
212
                                    size_t in_len);
213
214
// aes256gcmsiv_enc_msg_x8 acts like |aes256gcmsiv_enc_msg_x4|, but is
215
// optimised for longer messages.
216
extern void aes256gcmsiv_enc_msg_x8(const uint8_t *in, uint8_t *out,
217
                                    const uint8_t *tag,
218
                                    const struct aead_aes_gcm_siv_asm_ctx *key,
219
                                    size_t in_len);
220
221
// gcm_siv_asm_polyval evaluates POLYVAL at |auth_key| on the given plaintext
222
// and AD. The result is written to |out_tag|.
223
static void gcm_siv_asm_polyval(uint8_t out_tag[16], const uint8_t *in,
224
                                size_t in_len, const uint8_t *ad, size_t ad_len,
225
                                const uint8_t auth_key[16],
226
0
                                const uint8_t nonce[12]) {
227
0
  OPENSSL_memset(out_tag, 0, 16);
228
0
  const size_t ad_blocks = ad_len / 16;
229
0
  const size_t in_blocks = in_len / 16;
230
0
  int htable_init = 0;
231
0
  alignas(16) uint8_t htable[16*8];
232
233
0
  if (ad_blocks > 8 || in_blocks > 8) {
234
0
    htable_init = 1;
235
0
    aesgcmsiv_htable_init(htable, auth_key);
236
0
  }
237
238
0
  if (htable_init) {
239
0
    aesgcmsiv_htable_polyval(htable, ad, ad_len & ~15, out_tag);
240
0
  } else {
241
0
    aesgcmsiv_polyval_horner(out_tag, auth_key, ad, ad_blocks);
242
0
  }
243
244
0
  uint8_t scratch[16];
245
0
  if (ad_len & 15) {
246
0
    OPENSSL_memset(scratch, 0, sizeof(scratch));
247
0
    OPENSSL_memcpy(scratch, &ad[ad_len & ~15], ad_len & 15);
248
0
    aesgcmsiv_polyval_horner(out_tag, auth_key, scratch, 1);
249
0
  }
250
251
0
  if (htable_init) {
252
0
    aesgcmsiv_htable_polyval(htable, in, in_len & ~15, out_tag);
253
0
  } else {
254
0
    aesgcmsiv_polyval_horner(out_tag, auth_key, in, in_blocks);
255
0
  }
256
257
0
  if (in_len & 15) {
258
0
    OPENSSL_memset(scratch, 0, sizeof(scratch));
259
0
    OPENSSL_memcpy(scratch, &in[in_len & ~15], in_len & 15);
260
0
    aesgcmsiv_polyval_horner(out_tag, auth_key, scratch, 1);
261
0
  }
262
263
0
  uint8_t length_block[16];
264
0
  CRYPTO_store_u64_le(length_block, ad_len * 8);
265
0
  CRYPTO_store_u64_le(length_block + 8, in_len * 8);
266
0
  aesgcmsiv_polyval_horner(out_tag, auth_key, length_block, 1);
267
268
0
  for (size_t i = 0; i < 12; i++) {
269
0
    out_tag[i] ^= nonce[i];
270
0
  }
271
272
0
  out_tag[15] &= 0x7f;
273
0
}
274
275
// aead_aes_gcm_siv_asm_crypt_last_block handles the encryption/decryption
276
// (same thing in CTR mode) of the final block of a plaintext/ciphertext. It
277
// writes |in_len| & 15 bytes to |out| + |in_len|, based on an initial counter
278
// derived from |tag|.
279
static void aead_aes_gcm_siv_asm_crypt_last_block(
280
    int is_128_bit, uint8_t *out, const uint8_t *in, size_t in_len,
281
    const uint8_t tag[16],
282
0
    const struct aead_aes_gcm_siv_asm_ctx *enc_key_expanded) {
283
0
  alignas(16) uint8_t counter[16];
284
0
  OPENSSL_memcpy(&counter, tag, sizeof(counter));
285
0
  counter[15] |= 0x80;
286
0
  CRYPTO_store_u32_le(counter, CRYPTO_load_u32_le(counter) + in_len / 16);
287
288
0
  if (is_128_bit) {
289
0
    aes128gcmsiv_ecb_enc_block(counter, counter, enc_key_expanded);
290
0
  } else {
291
0
    aes256gcmsiv_ecb_enc_block(counter, counter, enc_key_expanded);
292
0
  }
293
294
0
  const size_t last_bytes_offset = in_len & ~15;
295
0
  const size_t last_bytes_len = in_len & 15;
296
0
  uint8_t *last_bytes_out = &out[last_bytes_offset];
297
0
  const uint8_t *last_bytes_in = &in[last_bytes_offset];
298
0
  for (size_t i = 0; i < last_bytes_len; i++) {
299
0
    last_bytes_out[i] = last_bytes_in[i] ^ counter[i];
300
0
  }
301
0
}
302
303
// aead_aes_gcm_siv_kdf calculates the record encryption and authentication
304
// keys given the |nonce|.
305
static void aead_aes_gcm_siv_kdf(
306
    int is_128_bit, const struct aead_aes_gcm_siv_asm_ctx *gcm_siv_ctx,
307
    uint64_t out_record_auth_key[2], uint64_t out_record_enc_key[4],
308
0
    const uint8_t nonce[12]) {
309
0
  alignas(16) uint8_t padded_nonce[16];
310
0
  OPENSSL_memcpy(padded_nonce, nonce, 12);
311
312
0
  alignas(16) uint64_t key_material[12];
313
0
  if (is_128_bit) {
314
0
    aes128gcmsiv_kdf(padded_nonce, key_material, &gcm_siv_ctx->key[0]);
315
0
    out_record_enc_key[0] = key_material[4];
316
0
    out_record_enc_key[1] = key_material[6];
317
0
  } else {
318
0
    aes256gcmsiv_kdf(padded_nonce, key_material, &gcm_siv_ctx->key[0]);
319
0
    out_record_enc_key[0] = key_material[4];
320
0
    out_record_enc_key[1] = key_material[6];
321
0
    out_record_enc_key[2] = key_material[8];
322
0
    out_record_enc_key[3] = key_material[10];
323
0
  }
324
325
0
  out_record_auth_key[0] = key_material[0];
326
0
  out_record_auth_key[1] = key_material[2];
327
0
}
328
329
static int aead_aes_gcm_siv_asm_seal_scatter(
330
    const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag,
331
    size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce,
332
    size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in,
333
0
    size_t extra_in_len, const uint8_t *ad, size_t ad_len) {
334
0
  const struct aead_aes_gcm_siv_asm_ctx *gcm_siv_ctx = asm_ctx_from_ctx(ctx);
335
0
  const uint64_t in_len_64 = in_len;
336
0
  const uint64_t ad_len_64 = ad_len;
337
338
0
  if (in_len_64 > (UINT64_C(1) << 36) ||
339
0
      ad_len_64 >= (UINT64_C(1) << 61)) {
340
0
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
341
0
    return 0;
342
0
  }
343
344
0
  if (max_out_tag_len < EVP_AEAD_AES_GCM_SIV_TAG_LEN) {
345
0
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
346
0
    return 0;
347
0
  }
348
349
0
  if (nonce_len != EVP_AEAD_AES_GCM_SIV_NONCE_LEN) {
350
0
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE);
351
0
    return 0;
352
0
  }
353
354
0
  alignas(16) uint64_t record_auth_key[2];
355
0
  alignas(16) uint64_t record_enc_key[4];
356
0
  aead_aes_gcm_siv_kdf(gcm_siv_ctx->is_128_bit, gcm_siv_ctx, record_auth_key,
357
0
                       record_enc_key, nonce);
358
359
0
  alignas(16) uint8_t tag[16] = {0};
360
0
  gcm_siv_asm_polyval(tag, in, in_len, ad, ad_len,
361
0
                      (const uint8_t *)record_auth_key, nonce);
362
363
0
  struct aead_aes_gcm_siv_asm_ctx enc_key_expanded;
364
365
0
  if (gcm_siv_ctx->is_128_bit) {
366
0
    aes128gcmsiv_aes_ks_enc_x1(tag, tag, &enc_key_expanded.key[0],
367
0
                               record_enc_key);
368
369
0
    if (in_len < 128) {
370
0
      aes128gcmsiv_enc_msg_x4(in, out, tag, &enc_key_expanded, in_len & ~15);
371
0
    } else {
372
0
      aes128gcmsiv_enc_msg_x8(in, out, tag, &enc_key_expanded, in_len & ~15);
373
0
    }
374
0
  } else {
375
0
    aes256gcmsiv_aes_ks_enc_x1(tag, tag, &enc_key_expanded.key[0],
376
0
                               record_enc_key);
377
378
0
    if (in_len < 128) {
379
0
      aes256gcmsiv_enc_msg_x4(in, out, tag, &enc_key_expanded, in_len & ~15);
380
0
    } else {
381
0
      aes256gcmsiv_enc_msg_x8(in, out, tag, &enc_key_expanded, in_len & ~15);
382
0
    }
383
0
  }
384
385
0
  if (in_len & 15) {
386
0
    aead_aes_gcm_siv_asm_crypt_last_block(gcm_siv_ctx->is_128_bit, out, in,
387
0
                                          in_len, tag, &enc_key_expanded);
388
0
  }
389
390
0
  OPENSSL_memcpy(out_tag, tag, sizeof(tag));
391
0
  *out_tag_len = EVP_AEAD_AES_GCM_SIV_TAG_LEN;
392
393
0
  return 1;
394
0
}
395
396
static int aead_aes_gcm_siv_asm_open_gather(
397
    const EVP_AEAD_CTX *ctx, uint8_t *out, const uint8_t *nonce,
398
    size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *in_tag,
399
0
    size_t in_tag_len, const uint8_t *ad, size_t ad_len) {
400
0
  const uint64_t ad_len_64 = ad_len;
401
0
  if (ad_len_64 >= (UINT64_C(1) << 61)) {
402
0
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
403
0
    return 0;
404
0
  }
405
406
0
  const uint64_t in_len_64 = in_len;
407
0
  if (in_len_64 > UINT64_C(1) << 36 ||
408
0
      in_tag_len != EVP_AEAD_AES_GCM_SIV_TAG_LEN) {
409
0
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
410
0
    return 0;
411
0
  }
412
413
0
  if (nonce_len != EVP_AEAD_AES_GCM_SIV_NONCE_LEN) {
414
0
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE);
415
0
    return 0;
416
0
  }
417
418
0
  const struct aead_aes_gcm_siv_asm_ctx *gcm_siv_ctx = asm_ctx_from_ctx(ctx);
419
420
0
  alignas(16) uint64_t record_auth_key[2];
421
0
  alignas(16) uint64_t record_enc_key[4];
422
0
  aead_aes_gcm_siv_kdf(gcm_siv_ctx->is_128_bit, gcm_siv_ctx, record_auth_key,
423
0
                       record_enc_key, nonce);
424
425
0
  struct aead_aes_gcm_siv_asm_ctx expanded_key;
426
0
  if (gcm_siv_ctx->is_128_bit) {
427
0
    aes128gcmsiv_aes_ks((const uint8_t *) record_enc_key, &expanded_key.key[0]);
428
0
  } else {
429
0
    aes256gcmsiv_aes_ks((const uint8_t *) record_enc_key, &expanded_key.key[0]);
430
0
  }
431
  // calculated_tag is 16*8 bytes, rather than 16 bytes, because
432
  // aes[128|256]gcmsiv_dec uses the extra as scratch space.
433
0
  alignas(16) uint8_t calculated_tag[16 * 8] = {0};
434
435
0
  OPENSSL_memset(calculated_tag, 0, EVP_AEAD_AES_GCM_SIV_TAG_LEN);
436
0
  const size_t ad_blocks = ad_len / 16;
437
0
  aesgcmsiv_polyval_horner(calculated_tag, (const uint8_t *)record_auth_key, ad,
438
0
                           ad_blocks);
439
440
0
  uint8_t scratch[16];
441
0
  if (ad_len & 15) {
442
0
    OPENSSL_memset(scratch, 0, sizeof(scratch));
443
0
    OPENSSL_memcpy(scratch, &ad[ad_len & ~15], ad_len & 15);
444
0
    aesgcmsiv_polyval_horner(calculated_tag, (const uint8_t *)record_auth_key,
445
0
                             scratch, 1);
446
0
  }
447
448
0
  alignas(16) uint8_t htable[16 * 6];
449
0
  aesgcmsiv_htable6_init(htable, (const uint8_t *)record_auth_key);
450
451
  // aes[128|256]gcmsiv_dec needs access to the claimed tag. So it's put into
452
  // its scratch space.
453
0
  memcpy(calculated_tag + 16, in_tag, EVP_AEAD_AES_GCM_SIV_TAG_LEN);
454
0
  if (gcm_siv_ctx->is_128_bit) {
455
0
    aes128gcmsiv_dec(in, out, calculated_tag, htable, &expanded_key, in_len);
456
0
  } else {
457
0
    aes256gcmsiv_dec(in, out, calculated_tag, htable, &expanded_key, in_len);
458
0
  }
459
460
0
  if (in_len & 15) {
461
0
    aead_aes_gcm_siv_asm_crypt_last_block(gcm_siv_ctx->is_128_bit, out, in,
462
0
                                          in_len, in_tag, &expanded_key);
463
0
    OPENSSL_memset(scratch, 0, sizeof(scratch));
464
0
    OPENSSL_memcpy(scratch, out + (in_len & ~15), in_len & 15);
465
0
    aesgcmsiv_polyval_horner(calculated_tag, (const uint8_t *)record_auth_key,
466
0
                             scratch, 1);
467
0
  }
468
469
0
  uint8_t length_block[16];
470
0
  CRYPTO_store_u64_le(length_block, ad_len * 8);
471
0
  CRYPTO_store_u64_le(length_block + 8, in_len * 8);
472
0
  aesgcmsiv_polyval_horner(calculated_tag, (const uint8_t *)record_auth_key,
473
0
                           length_block, 1);
474
475
0
  for (size_t i = 0; i < 12; i++) {
476
0
    calculated_tag[i] ^= nonce[i];
477
0
  }
478
479
0
  calculated_tag[15] &= 0x7f;
480
481
0
  if (gcm_siv_ctx->is_128_bit) {
482
0
    aes128gcmsiv_ecb_enc_block(calculated_tag, calculated_tag, &expanded_key);
483
0
  } else {
484
0
    aes256gcmsiv_ecb_enc_block(calculated_tag, calculated_tag, &expanded_key);
485
0
  }
486
487
0
  if (CRYPTO_memcmp(calculated_tag, in_tag, EVP_AEAD_AES_GCM_SIV_TAG_LEN) !=
488
0
      0) {
489
0
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
490
0
    return 0;
491
0
  }
492
493
0
  return 1;
494
0
}
495
496
static const EVP_AEAD aead_aes_128_gcm_siv_asm = {
497
    16,                              // key length
498
    EVP_AEAD_AES_GCM_SIV_NONCE_LEN,  // nonce length
499
    EVP_AEAD_AES_GCM_SIV_TAG_LEN,    // overhead
500
    EVP_AEAD_AES_GCM_SIV_TAG_LEN,    // max tag length
501
    0,                               // seal_scatter_supports_extra_in
502
503
    aead_aes_gcm_siv_asm_init,
504
    NULL /* init_with_direction */,
505
    aead_aes_gcm_siv_asm_cleanup,
506
    NULL /* open */,
507
    aead_aes_gcm_siv_asm_seal_scatter,
508
    aead_aes_gcm_siv_asm_open_gather,
509
    NULL /* get_iv */,
510
    NULL /* tag_len */,
511
};
512
513
static const EVP_AEAD aead_aes_256_gcm_siv_asm = {
514
    32,                              // key length
515
    EVP_AEAD_AES_GCM_SIV_NONCE_LEN,  // nonce length
516
    EVP_AEAD_AES_GCM_SIV_TAG_LEN,    // overhead
517
    EVP_AEAD_AES_GCM_SIV_TAG_LEN,    // max tag length
518
    0,                               // seal_scatter_supports_extra_in
519
520
    aead_aes_gcm_siv_asm_init,
521
    NULL /* init_with_direction */,
522
    aead_aes_gcm_siv_asm_cleanup,
523
    NULL /* open */,
524
    aead_aes_gcm_siv_asm_seal_scatter,
525
    aead_aes_gcm_siv_asm_open_gather,
526
    NULL /* get_iv */,
527
    NULL /* tag_len */,
528
};
529
530
#endif  // X86_64 && !NO_ASM && !WINDOWS
531
532
struct aead_aes_gcm_siv_ctx {
533
  union {
534
    double align;
535
    AES_KEY ks;
536
  } ks;
537
  block128_f kgk_block;
538
  unsigned is_256:1;
539
};
540
541
static_assert(sizeof(((EVP_AEAD_CTX *)NULL)->state) >=
542
                  sizeof(struct aead_aes_gcm_siv_ctx),
543
              "AEAD state is too small");
544
static_assert(alignof(union evp_aead_ctx_st_state) >=
545
                  alignof(struct aead_aes_gcm_siv_ctx),
546
              "AEAD state has insufficient alignment");
547
548
static int aead_aes_gcm_siv_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
549
0
                                 size_t key_len, size_t tag_len) {
550
0
  const size_t key_bits = key_len * 8;
551
552
0
  if (key_bits != 128 && key_bits != 256) {
553
0
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH);
554
0
    return 0;  // EVP_AEAD_CTX_init should catch this.
555
0
  }
556
557
0
  if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) {
558
0
    tag_len = EVP_AEAD_AES_GCM_SIV_TAG_LEN;
559
0
  }
560
0
  if (tag_len != EVP_AEAD_AES_GCM_SIV_TAG_LEN) {
561
0
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE);
562
0
    return 0;
563
0
  }
564
565
0
  struct aead_aes_gcm_siv_ctx *gcm_siv_ctx =
566
0
      (struct aead_aes_gcm_siv_ctx *)&ctx->state;
567
0
  OPENSSL_memset(gcm_siv_ctx, 0, sizeof(struct aead_aes_gcm_siv_ctx));
568
569
0
  aes_ctr_set_key(&gcm_siv_ctx->ks.ks, NULL, &gcm_siv_ctx->kgk_block, key,
570
0
                  key_len);
571
0
  gcm_siv_ctx->is_256 = (key_len == 32);
572
0
  ctx->tag_len = tag_len;
573
574
0
  return 1;
575
0
}
576
577
0
static void aead_aes_gcm_siv_cleanup(EVP_AEAD_CTX *ctx) {}
578
579
// gcm_siv_crypt encrypts (or decrypts—it's the same thing) |in_len| bytes from
580
// |in| to |out|, using the block function |enc_block| with |key| in counter
581
// mode, starting at |initial_counter|. This differs from the traditional
582
// counter mode code in that the counter is handled little-endian, only the
583
// first four bytes are used and the GCM-SIV tweak to the final byte is
584
// applied. The |in| and |out| pointers may be equal but otherwise must not
585
// alias.
586
static void gcm_siv_crypt(uint8_t *out, const uint8_t *in, size_t in_len,
587
                          const uint8_t initial_counter[AES_BLOCK_SIZE],
588
0
                          block128_f enc_block, const AES_KEY *key) {
589
0
  uint8_t counter[16];
590
591
0
  OPENSSL_memcpy(counter, initial_counter, AES_BLOCK_SIZE);
592
0
  counter[15] |= 0x80;
593
594
0
  for (size_t done = 0; done < in_len;) {
595
0
    uint8_t keystream[AES_BLOCK_SIZE];
596
0
    enc_block(counter, keystream, key);
597
0
    CRYPTO_store_u32_le(counter, CRYPTO_load_u32_le(counter) + 1);
598
599
0
    size_t todo = AES_BLOCK_SIZE;
600
0
    if (in_len - done < todo) {
601
0
      todo = in_len - done;
602
0
    }
603
604
0
    for (size_t i = 0; i < todo; i++) {
605
0
      out[done + i] = keystream[i] ^ in[done + i];
606
0
    }
607
608
0
    done += todo;
609
0
  }
610
0
}
611
612
// gcm_siv_polyval evaluates POLYVAL at |auth_key| on the given plaintext and
613
// AD. The result is written to |out_tag|.
614
static void gcm_siv_polyval(
615
    uint8_t out_tag[16], const uint8_t *in, size_t in_len, const uint8_t *ad,
616
    size_t ad_len, const uint8_t auth_key[16],
617
0
    const uint8_t nonce[EVP_AEAD_AES_GCM_SIV_NONCE_LEN]) {
618
0
  struct polyval_ctx polyval_ctx;
619
0
  CRYPTO_POLYVAL_init(&polyval_ctx, auth_key);
620
621
0
  CRYPTO_POLYVAL_update_blocks(&polyval_ctx, ad, ad_len & ~15);
622
623
0
  uint8_t scratch[16];
624
0
  if (ad_len & 15) {
625
0
    OPENSSL_memset(scratch, 0, sizeof(scratch));
626
0
    OPENSSL_memcpy(scratch, &ad[ad_len & ~15], ad_len & 15);
627
0
    CRYPTO_POLYVAL_update_blocks(&polyval_ctx, scratch, sizeof(scratch));
628
0
  }
629
630
0
  CRYPTO_POLYVAL_update_blocks(&polyval_ctx, in, in_len & ~15);
631
0
  if (in_len & 15) {
632
0
    OPENSSL_memset(scratch, 0, sizeof(scratch));
633
0
    OPENSSL_memcpy(scratch, &in[in_len & ~15], in_len & 15);
634
0
    CRYPTO_POLYVAL_update_blocks(&polyval_ctx, scratch, sizeof(scratch));
635
0
  }
636
637
0
  uint8_t length_block[16];
638
0
  CRYPTO_store_u64_le(length_block, ((uint64_t) ad_len) * 8);
639
0
  CRYPTO_store_u64_le(length_block + 8, ((uint64_t) in_len) * 8);
640
0
  CRYPTO_POLYVAL_update_blocks(&polyval_ctx, length_block,
641
0
                               sizeof(length_block));
642
643
0
  CRYPTO_POLYVAL_finish(&polyval_ctx, out_tag);
644
0
  for (size_t i = 0; i < EVP_AEAD_AES_GCM_SIV_NONCE_LEN; i++) {
645
0
    out_tag[i] ^= nonce[i];
646
0
  }
647
0
  out_tag[15] &= 0x7f;
648
0
}
649
650
// gcm_siv_record_keys contains the keys used for a specific GCM-SIV record.
651
struct gcm_siv_record_keys {
652
  uint8_t auth_key[16];
653
  union {
654
    double align;
655
    AES_KEY ks;
656
  } enc_key;
657
  block128_f enc_block;
658
};
659
660
// gcm_siv_keys calculates the keys for a specific GCM-SIV record with the
661
// given nonce and writes them to |*out_keys|.
662
static void gcm_siv_keys(
663
    const struct aead_aes_gcm_siv_ctx *gcm_siv_ctx,
664
    struct gcm_siv_record_keys *out_keys,
665
0
    const uint8_t nonce[EVP_AEAD_AES_GCM_SIV_NONCE_LEN]) {
666
0
  const AES_KEY *const key = &gcm_siv_ctx->ks.ks;
667
0
  uint8_t key_material[(128 /* POLYVAL key */ + 256 /* max AES key */) / 8];
668
0
  const size_t blocks_needed = gcm_siv_ctx->is_256 ? 6 : 4;
669
670
0
  uint8_t counter[AES_BLOCK_SIZE];
671
0
  OPENSSL_memset(counter, 0, AES_BLOCK_SIZE - EVP_AEAD_AES_GCM_SIV_NONCE_LEN);
672
0
  OPENSSL_memcpy(counter + AES_BLOCK_SIZE - EVP_AEAD_AES_GCM_SIV_NONCE_LEN,
673
0
                 nonce, EVP_AEAD_AES_GCM_SIV_NONCE_LEN);
674
0
  for (size_t i = 0; i < blocks_needed; i++) {
675
0
    counter[0] = i;
676
677
0
    uint8_t ciphertext[AES_BLOCK_SIZE];
678
0
    gcm_siv_ctx->kgk_block(counter, ciphertext, key);
679
0
    OPENSSL_memcpy(&key_material[i * 8], ciphertext, 8);
680
0
  }
681
682
0
  OPENSSL_memcpy(out_keys->auth_key, key_material, 16);
683
  // Note the |ctr128_f| function uses a big-endian couner, while AES-GCM-SIV
684
  // uses a little-endian counter. We ignore the return value and only use
685
  // |block128_f|. This has a significant performance cost for the fallback
686
  // bitsliced AES implementations (bsaes and aes_nohw).
687
  //
688
  // We currently do not consider AES-GCM-SIV to be performance-sensitive on
689
  // client hardware. If this changes, we can write little-endian |ctr128_f|
690
  // functions.
691
0
  aes_ctr_set_key(&out_keys->enc_key.ks, NULL, &out_keys->enc_block,
692
0
                  key_material + 16, gcm_siv_ctx->is_256 ? 32 : 16);
693
0
}
694
695
static int aead_aes_gcm_siv_seal_scatter(
696
    const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag,
697
    size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce,
698
    size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in,
699
0
    size_t extra_in_len, const uint8_t *ad, size_t ad_len) {
700
0
  const struct aead_aes_gcm_siv_ctx *gcm_siv_ctx =
701
0
      (struct aead_aes_gcm_siv_ctx *)&ctx->state;
702
0
  const uint64_t in_len_64 = in_len;
703
0
  const uint64_t ad_len_64 = ad_len;
704
705
0
  if (in_len + EVP_AEAD_AES_GCM_SIV_TAG_LEN < in_len ||
706
0
      in_len_64 > (UINT64_C(1) << 36) ||
707
0
      ad_len_64 >= (UINT64_C(1) << 61)) {
708
0
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
709
0
    return 0;
710
0
  }
711
712
0
  if (max_out_tag_len < EVP_AEAD_AES_GCM_SIV_TAG_LEN) {
713
0
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
714
0
    return 0;
715
0
  }
716
717
0
  if (nonce_len != EVP_AEAD_AES_GCM_SIV_NONCE_LEN) {
718
0
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE);
719
0
    return 0;
720
0
  }
721
722
0
  struct gcm_siv_record_keys keys;
723
0
  gcm_siv_keys(gcm_siv_ctx, &keys, nonce);
724
725
0
  uint8_t tag[16];
726
0
  gcm_siv_polyval(tag, in, in_len, ad, ad_len, keys.auth_key, nonce);
727
0
  keys.enc_block(tag, tag, &keys.enc_key.ks);
728
729
0
  gcm_siv_crypt(out, in, in_len, tag, keys.enc_block, &keys.enc_key.ks);
730
731
0
  OPENSSL_memcpy(out_tag, tag, EVP_AEAD_AES_GCM_SIV_TAG_LEN);
732
0
  *out_tag_len = EVP_AEAD_AES_GCM_SIV_TAG_LEN;
733
734
0
  return 1;
735
0
}
736
737
static int aead_aes_gcm_siv_open_gather(const EVP_AEAD_CTX *ctx, uint8_t *out,
738
                                        const uint8_t *nonce, size_t nonce_len,
739
                                        const uint8_t *in, size_t in_len,
740
                                        const uint8_t *in_tag,
741
                                        size_t in_tag_len, const uint8_t *ad,
742
0
                                        size_t ad_len) {
743
0
  const uint64_t ad_len_64 = ad_len;
744
0
  if (ad_len_64 >= (UINT64_C(1) << 61)) {
745
0
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
746
0
    return 0;
747
0
  }
748
749
0
  const uint64_t in_len_64 = in_len;
750
0
  if (in_tag_len != EVP_AEAD_AES_GCM_SIV_TAG_LEN ||
751
0
      in_len_64 > (UINT64_C(1) << 36) + AES_BLOCK_SIZE) {
752
0
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
753
0
    return 0;
754
0
  }
755
756
0
  if (nonce_len != EVP_AEAD_AES_GCM_SIV_NONCE_LEN) {
757
0
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE);
758
0
    return 0;
759
0
  }
760
761
0
  const struct aead_aes_gcm_siv_ctx *gcm_siv_ctx =
762
0
      (struct aead_aes_gcm_siv_ctx *)&ctx->state;
763
764
0
  struct gcm_siv_record_keys keys;
765
0
  gcm_siv_keys(gcm_siv_ctx, &keys, nonce);
766
767
0
  gcm_siv_crypt(out, in, in_len, in_tag, keys.enc_block, &keys.enc_key.ks);
768
769
0
  uint8_t expected_tag[EVP_AEAD_AES_GCM_SIV_TAG_LEN];
770
0
  gcm_siv_polyval(expected_tag, out, in_len, ad, ad_len, keys.auth_key, nonce);
771
0
  keys.enc_block(expected_tag, expected_tag, &keys.enc_key.ks);
772
773
0
  if (CRYPTO_memcmp(expected_tag, in_tag, sizeof(expected_tag)) != 0) {
774
0
    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
775
0
    return 0;
776
0
  }
777
778
0
  return 1;
779
0
}
780
781
static const EVP_AEAD aead_aes_128_gcm_siv = {
782
    16,                              // key length
783
    EVP_AEAD_AES_GCM_SIV_NONCE_LEN,  // nonce length
784
    EVP_AEAD_AES_GCM_SIV_TAG_LEN,    // overhead
785
    EVP_AEAD_AES_GCM_SIV_TAG_LEN,    // max tag length
786
    0,                               // seal_scatter_supports_extra_in
787
788
    aead_aes_gcm_siv_init,
789
    NULL /* init_with_direction */,
790
    aead_aes_gcm_siv_cleanup,
791
    NULL /* open */,
792
    aead_aes_gcm_siv_seal_scatter,
793
    aead_aes_gcm_siv_open_gather,
794
    NULL /* get_iv */,
795
    NULL /* tag_len */,
796
};
797
798
static const EVP_AEAD aead_aes_256_gcm_siv = {
799
    32,                              // key length
800
    EVP_AEAD_AES_GCM_SIV_NONCE_LEN,  // nonce length
801
    EVP_AEAD_AES_GCM_SIV_TAG_LEN,    // overhead
802
    EVP_AEAD_AES_GCM_SIV_TAG_LEN,    // max tag length
803
    0,                               // seal_scatter_supports_extra_in
804
805
    aead_aes_gcm_siv_init,
806
    NULL /* init_with_direction */,
807
    aead_aes_gcm_siv_cleanup,
808
    NULL /* open */,
809
    aead_aes_gcm_siv_seal_scatter,
810
    aead_aes_gcm_siv_open_gather,
811
    NULL /* get_iv */,
812
    NULL /* tag_len */,
813
};
814
815
#if defined(AES_GCM_SIV_ASM)
816
817
const EVP_AEAD *EVP_aead_aes_128_gcm_siv(void) {
818
  if (CRYPTO_is_AVX_capable() && CRYPTO_is_AESNI_capable()) {
819
    return &aead_aes_128_gcm_siv_asm;
820
  }
821
  return &aead_aes_128_gcm_siv;
822
}
823
824
const EVP_AEAD *EVP_aead_aes_256_gcm_siv(void) {
825
  if (CRYPTO_is_AVX_capable() && CRYPTO_is_AESNI_capable()) {
826
    return &aead_aes_256_gcm_siv_asm;
827
  }
828
  return &aead_aes_256_gcm_siv;
829
}
830
831
#else
832
833
1
const EVP_AEAD *EVP_aead_aes_128_gcm_siv(void) {
834
1
  return &aead_aes_128_gcm_siv;
835
1
}
836
837
1
const EVP_AEAD *EVP_aead_aes_256_gcm_siv(void) {
838
1
  return &aead_aes_256_gcm_siv;
839
1
}
840
841
#endif  // AES_GCM_SIV_ASM