Coverage Report

Created: 2024-11-21 07:03

/src/boringssl/crypto/fipsmodule/bn/internal.h
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com)
2
 * All rights reserved.
3
 *
4
 * This package is an SSL implementation written
5
 * by Eric Young (eay@cryptsoft.com).
6
 * The implementation was written so as to conform with Netscapes SSL.
7
 *
8
 * This library is free for commercial and non-commercial use as long as
9
 * the following conditions are aheared to.  The following conditions
10
 * apply to all code found in this distribution, be it the RC4, RSA,
11
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12
 * included with this distribution is covered by the same copyright terms
13
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14
 *
15
 * Copyright remains Eric Young's, and as such any Copyright notices in
16
 * the code are not to be removed.
17
 * If this package is used in a product, Eric Young should be given attribution
18
 * as the author of the parts of the library used.
19
 * This can be in the form of a textual message at program startup or
20
 * in documentation (online or textual) provided with the package.
21
 *
22
 * Redistribution and use in source and binary forms, with or without
23
 * modification, are permitted provided that the following conditions
24
 * are met:
25
 * 1. Redistributions of source code must retain the copyright
26
 *    notice, this list of conditions and the following disclaimer.
27
 * 2. Redistributions in binary form must reproduce the above copyright
28
 *    notice, this list of conditions and the following disclaimer in the
29
 *    documentation and/or other materials provided with the distribution.
30
 * 3. All advertising materials mentioning features or use of this software
31
 *    must display the following acknowledgement:
32
 *    "This product includes cryptographic software written by
33
 *     Eric Young (eay@cryptsoft.com)"
34
 *    The word 'cryptographic' can be left out if the rouines from the library
35
 *    being used are not cryptographic related :-).
36
 * 4. If you include any Windows specific code (or a derivative thereof) from
37
 *    the apps directory (application code) you must include an acknowledgement:
38
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39
 *
40
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50
 * SUCH DAMAGE.
51
 *
52
 * The licence and distribution terms for any publically available version or
53
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
54
 * copied and put under another distribution licence
55
 * [including the GNU Public Licence.]
56
 */
57
/* ====================================================================
58
 * Copyright (c) 1998-2006 The OpenSSL Project.  All rights reserved.
59
 *
60
 * Redistribution and use in source and binary forms, with or without
61
 * modification, are permitted provided that the following conditions
62
 * are met:
63
 *
64
 * 1. Redistributions of source code must retain the above copyright
65
 *    notice, this list of conditions and the following disclaimer.
66
 *
67
 * 2. Redistributions in binary form must reproduce the above copyright
68
 *    notice, this list of conditions and the following disclaimer in
69
 *    the documentation and/or other materials provided with the
70
 *    distribution.
71
 *
72
 * 3. All advertising materials mentioning features or use of this
73
 *    software must display the following acknowledgment:
74
 *    "This product includes software developed by the OpenSSL Project
75
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76
 *
77
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78
 *    endorse or promote products derived from this software without
79
 *    prior written permission. For written permission, please contact
80
 *    openssl-core@openssl.org.
81
 *
82
 * 5. Products derived from this software may not be called "OpenSSL"
83
 *    nor may "OpenSSL" appear in their names without prior written
84
 *    permission of the OpenSSL Project.
85
 *
86
 * 6. Redistributions of any form whatsoever must retain the following
87
 *    acknowledgment:
88
 *    "This product includes software developed by the OpenSSL Project
89
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90
 *
91
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
95
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102
 * OF THE POSSIBILITY OF SUCH DAMAGE.
103
 * ====================================================================
104
 *
105
 * This product includes cryptographic software written by Eric Young
106
 * (eay@cryptsoft.com).  This product includes software written by Tim
107
 * Hudson (tjh@cryptsoft.com).
108
 *
109
 */
110
/* ====================================================================
111
 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
112
 *
113
 * Portions of the attached software ("Contribution") are developed by
114
 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
115
 *
116
 * The Contribution is licensed pursuant to the Eric Young open source
117
 * license provided above.
118
 *
119
 * The binary polynomial arithmetic software is originally written by
120
 * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
121
 * Laboratories. */
122
123
#ifndef OPENSSL_HEADER_BN_INTERNAL_H
124
#define OPENSSL_HEADER_BN_INTERNAL_H
125
126
#include <openssl/bn.h>
127
128
#if defined(OPENSSL_X86_64) && defined(_MSC_VER)
129
OPENSSL_MSVC_PRAGMA(warning(push, 3))
130
#include <intrin.h>
131
OPENSSL_MSVC_PRAGMA(warning(pop))
132
#pragma intrinsic(__umulh, _umul128)
133
#endif
134
135
#include "../../internal.h"
136
137
#if defined(__cplusplus)
138
extern "C" {
139
#endif
140
141
#if defined(OPENSSL_64_BIT)
142
143
#if defined(BORINGSSL_HAS_UINT128)
144
// MSVC doesn't support two-word integers on 64-bit.
145
3.16G
#define BN_ULLONG uint128_t
146
#if defined(BORINGSSL_CAN_DIVIDE_UINT128)
147
#define BN_CAN_DIVIDE_ULLONG
148
#endif
149
#endif
150
151
3.71G
#define BN_BITS2 64
152
5.58k
#define BN_BITS2_LG 6
153
26.0k
#define BN_BYTES 8
154
#define BN_BITS4 32
155
6.24k
#define BN_MASK2 (0xffffffffffffffffUL)
156
#define BN_MASK2l (0xffffffffUL)
157
#define BN_MASK2h (0xffffffff00000000UL)
158
#define BN_MASK2h1 (0xffffffff80000000UL)
159
57.4k
#define BN_MONT_CTX_N0_LIMBS 1
160
211k
#define BN_DEC_CONV (10000000000000000000UL)
161
4.08M
#define BN_DEC_NUM 19
162
0
#define TOBN(hi, lo) ((BN_ULONG)(hi) << 32 | (lo))
163
164
#elif defined(OPENSSL_32_BIT)
165
166
#define BN_ULLONG uint64_t
167
#define BN_CAN_DIVIDE_ULLONG
168
#define BN_BITS2 32
169
#define BN_BITS2_LG 5
170
#define BN_BYTES 4
171
#define BN_BITS4 16
172
#define BN_MASK2 (0xffffffffUL)
173
#define BN_MASK2l (0xffffUL)
174
#define BN_MASK2h1 (0xffff8000UL)
175
#define BN_MASK2h (0xffff0000UL)
176
// On some 32-bit platforms, Montgomery multiplication is done using 64-bit
177
// arithmetic with SIMD instructions. On such platforms, |BN_MONT_CTX::n0|
178
// needs to be two words long. Only certain 32-bit platforms actually make use
179
// of n0[1] and shorter R value would suffice for the others. However,
180
// currently only the assembly files know which is which.
181
#define BN_MONT_CTX_N0_LIMBS 2
182
#define BN_DEC_CONV (1000000000UL)
183
#define BN_DEC_NUM 9
184
#define TOBN(hi, lo) (lo), (hi)
185
186
#else
187
#error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
188
#endif
189
190
#if !defined(OPENSSL_NO_ASM) && (defined(__GNUC__) || defined(__clang__))
191
#define BN_CAN_USE_INLINE_ASM
192
#endif
193
194
// MOD_EXP_CTIME_ALIGN is the alignment needed for |BN_mod_exp_mont_consttime|'s
195
// tables.
196
//
197
// TODO(davidben): Historically, this alignment came from cache line
198
// assumptions, which we've since removed. Is 64-byte alignment still necessary
199
// or ideal? The true alignment requirement seems to now be 32 bytes, coming
200
// from RSAZ's use of VMOVDQA to a YMM register. Non-x86_64 has even fewer
201
// requirements.
202
6.34k
#define MOD_EXP_CTIME_ALIGN 64
203
204
// MOD_EXP_CTIME_STORAGE_LEN is the number of |BN_ULONG|s needed for the
205
// |BN_mod_exp_mont_consttime| stack-allocated storage buffer. The buffer is
206
// just the right size for the RSAZ and is about ~1KB larger than what's
207
// necessary (4480 bytes) for 1024-bit inputs.
208
#define MOD_EXP_CTIME_STORAGE_LEN \
209
0
  (((320u * 3u) + (32u * 9u * 16u)) / sizeof(BN_ULONG))
210
211
#define STATIC_BIGNUM(x)                                    \
212
  {                                                         \
213
    (BN_ULONG *)(x), sizeof(x) / sizeof(BN_ULONG),          \
214
        sizeof(x) / sizeof(BN_ULONG), 0, BN_FLG_STATIC_DATA \
215
  }
216
217
#if defined(BN_ULLONG)
218
3.16G
#define Lw(t) ((BN_ULONG)(t))
219
3.16G
#define Hw(t) ((BN_ULONG)((t) >> BN_BITS2))
220
#endif
221
222
// bn_minimal_width returns the minimal number of words needed to represent
223
// |bn|.
224
int bn_minimal_width(const BIGNUM *bn);
225
226
// bn_set_minimal_width sets |bn->width| to |bn_minimal_width(bn)|. If |bn| is
227
// zero, |bn->neg| is set to zero.
228
void bn_set_minimal_width(BIGNUM *bn);
229
230
// bn_wexpand ensures that |bn| has at least |words| works of space without
231
// altering its value. It returns one on success or zero on allocation
232
// failure.
233
int bn_wexpand(BIGNUM *bn, size_t words);
234
235
// bn_expand acts the same as |bn_wexpand|, but takes a number of bits rather
236
// than a number of words.
237
int bn_expand(BIGNUM *bn, size_t bits);
238
239
// bn_resize_words adjusts |bn->width| to be |words|. It returns one on success
240
// and zero on allocation error or if |bn|'s value is too large.
241
OPENSSL_EXPORT int bn_resize_words(BIGNUM *bn, size_t words);
242
243
// bn_select_words sets |r| to |a| if |mask| is all ones or |b| if |mask| is
244
// all zeros.
245
void bn_select_words(BN_ULONG *r, BN_ULONG mask, const BN_ULONG *a,
246
                     const BN_ULONG *b, size_t num);
247
248
// bn_set_words sets |bn| to the value encoded in the |num| words in |words|,
249
// least significant word first.
250
int bn_set_words(BIGNUM *bn, const BN_ULONG *words, size_t num);
251
252
// bn_set_static_words acts like |bn_set_words|, but doesn't copy the data. A
253
// flag is set on |bn| so that |BN_free| won't attempt to free the data.
254
//
255
// The |STATIC_BIGNUM| macro is probably a better solution for this outside of
256
// the FIPS module. Inside of the FIPS module that macro generates rel.ro data,
257
// which doesn't work with FIPS requirements.
258
void bn_set_static_words(BIGNUM *bn, const BN_ULONG *words, size_t num);
259
260
// bn_fits_in_words returns one if |bn| may be represented in |num| words, plus
261
// a sign bit, and zero otherwise.
262
int bn_fits_in_words(const BIGNUM *bn, size_t num);
263
264
// bn_copy_words copies the value of |bn| to |out| and returns one if the value
265
// is representable in |num| words. Otherwise, it returns zero.
266
int bn_copy_words(BN_ULONG *out, size_t num, const BIGNUM *bn);
267
268
// bn_assert_fits_in_bytes asserts that |bn| fits in |num| bytes. This is a
269
// no-op in release builds, but triggers an assert in debug builds, and
270
// declassifies all bytes which are therefore known to be zero in constant-time
271
// validation.
272
void bn_assert_fits_in_bytes(const BIGNUM *bn, size_t num);
273
274
// bn_secret marks |bn|'s contents, but not its width or sign, as secret. See
275
// |CONSTTIME_SECRET| for details.
276
1
OPENSSL_INLINE void bn_secret(BIGNUM *bn) {
277
1
  CONSTTIME_SECRET(bn->d, bn->width * sizeof(BN_ULONG));
278
1
}
bcm.c:bn_secret
Line
Count
Source
276
1
OPENSSL_INLINE void bn_secret(BIGNUM *bn) {
277
1
  CONSTTIME_SECRET(bn->d, bn->width * sizeof(BN_ULONG));
278
1
}
Unexecuted instantiation: convert.c:bn_secret
Unexecuted instantiation: dsa.c:bn_secret
Unexecuted instantiation: ecdh_extra.c:bn_secret
Unexecuted instantiation: ecdsa_asn1.c:bn_secret
Unexecuted instantiation: p_ec.c:bn_secret
Unexecuted instantiation: rsa_crypt.c:bn_secret
Unexecuted instantiation: ec_asn1.c:bn_secret
279
280
// bn_declassify marks |bn|'s value as public. See |CONSTTIME_DECLASSIFY| for
281
// details.
282
1
OPENSSL_INLINE void bn_declassify(BIGNUM *bn) {
283
1
  CONSTTIME_DECLASSIFY(bn->d, bn->width * sizeof(BN_ULONG));
284
1
}
bcm.c:bn_declassify
Line
Count
Source
282
1
OPENSSL_INLINE void bn_declassify(BIGNUM *bn) {
283
1
  CONSTTIME_DECLASSIFY(bn->d, bn->width * sizeof(BN_ULONG));
284
1
}
Unexecuted instantiation: convert.c:bn_declassify
Unexecuted instantiation: dsa.c:bn_declassify
Unexecuted instantiation: ecdh_extra.c:bn_declassify
Unexecuted instantiation: ecdsa_asn1.c:bn_declassify
Unexecuted instantiation: p_ec.c:bn_declassify
Unexecuted instantiation: rsa_crypt.c:bn_declassify
Unexecuted instantiation: ec_asn1.c:bn_declassify
285
286
// bn_mul_add_words multiples |ap| by |w|, adds the result to |rp|, and places
287
// the result in |rp|. |ap| and |rp| must both be |num| words long. It returns
288
// the carry word of the operation. |ap| and |rp| may be equal but otherwise may
289
// not alias.
290
BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num,
291
                          BN_ULONG w);
292
293
// bn_mul_words multiples |ap| by |w| and places the result in |rp|. |ap| and
294
// |rp| must both be |num| words long. It returns the carry word of the
295
// operation. |ap| and |rp| may be equal but otherwise may not alias.
296
BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num, BN_ULONG w);
297
298
// bn_sqr_words sets |rp[2*i]| and |rp[2*i+1]| to |ap[i]|'s square, for all |i|
299
// up to |num|. |ap| is an array of |num| words and |rp| an array of |2*num|
300
// words. |ap| and |rp| may not alias.
301
//
302
// This gives the contribution of the |ap[i]*ap[i]| terms when squaring |ap|.
303
void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num);
304
305
// bn_add_words adds |ap| to |bp| and places the result in |rp|, each of which
306
// are |num| words long. It returns the carry bit, which is one if the operation
307
// overflowed and zero otherwise. Any pair of |ap|, |bp|, and |rp| may be equal
308
// to each other but otherwise may not alias.
309
BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
310
                      size_t num);
311
312
// bn_sub_words subtracts |bp| from |ap| and places the result in |rp|. It
313
// returns the borrow bit, which is one if the computation underflowed and zero
314
// otherwise. Any pair of |ap|, |bp|, and |rp| may be equal to each other but
315
// otherwise may not alias.
316
BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
317
                      size_t num);
318
319
// bn_mul_comba4 sets |r| to the product of |a| and |b|.
320
void bn_mul_comba4(BN_ULONG r[8], const BN_ULONG a[4], const BN_ULONG b[4]);
321
322
// bn_mul_comba8 sets |r| to the product of |a| and |b|.
323
void bn_mul_comba8(BN_ULONG r[16], const BN_ULONG a[8], const BN_ULONG b[8]);
324
325
// bn_sqr_comba8 sets |r| to |a|^2.
326
void bn_sqr_comba8(BN_ULONG r[16], const BN_ULONG a[8]);
327
328
// bn_sqr_comba4 sets |r| to |a|^2.
329
void bn_sqr_comba4(BN_ULONG r[8], const BN_ULONG a[4]);
330
331
// bn_less_than_words returns one if |a| < |b| and zero otherwise, where |a|
332
// and |b| both are |len| words long. It runs in constant time.
333
int bn_less_than_words(const BN_ULONG *a, const BN_ULONG *b, size_t len);
334
335
// bn_in_range_words returns one if |min_inclusive| <= |a| < |max_exclusive|,
336
// where |a| and |max_exclusive| both are |len| words long. |a| and
337
// |max_exclusive| are treated as secret.
338
int bn_in_range_words(const BN_ULONG *a, BN_ULONG min_inclusive,
339
                      const BN_ULONG *max_exclusive, size_t len);
340
341
// bn_rand_range_words sets |out| to a uniformly distributed random number from
342
// |min_inclusive| to |max_exclusive|. Both |out| and |max_exclusive| are |len|
343
// words long.
344
//
345
// This function runs in time independent of the result, but |min_inclusive| and
346
// |max_exclusive| are public data. (Information about the range is unavoidably
347
// leaked by how many iterations it took to select a number.)
348
int bn_rand_range_words(BN_ULONG *out, BN_ULONG min_inclusive,
349
                        const BN_ULONG *max_exclusive, size_t len,
350
                        const uint8_t additional_data[32]);
351
352
// bn_range_secret_range behaves like |BN_rand_range_ex|, but treats
353
// |max_exclusive| as secret. Because of this constraint, the distribution of
354
// values returned is more complex.
355
//
356
// Rather than repeatedly generating values until one is in range, which would
357
// leak information, it generates one value. If the value is in range, it sets
358
// |*out_is_uniform| to one. Otherwise, it sets |*out_is_uniform| to zero,
359
// fixing up the value to force it in range.
360
//
361
// The subset of calls to |bn_rand_secret_range| which set |*out_is_uniform| to
362
// one are uniformly distributed in the target range. Calls overall are not.
363
// This function is intended for use in situations where the extra values are
364
// still usable and where the number of iterations needed to reach the target
365
// number of uniform outputs may be blinded for negligible probabilities of
366
// timing leaks.
367
//
368
// Although this function treats |max_exclusive| as secret, it treats the number
369
// of bits in |max_exclusive| as public.
370
int bn_rand_secret_range(BIGNUM *r, int *out_is_uniform, BN_ULONG min_inclusive,
371
                         const BIGNUM *max_exclusive);
372
373
// BN_MONTGOMERY_MAX_WORDS is the maximum numer of words allowed in a |BIGNUM|
374
// used with Montgomery reduction. Ideally this limit would be applied to all
375
// |BIGNUM|s, in |bn_wexpand|, but the exactfloat library needs to create 8 MiB
376
// values for other operations.
377
871
#define BN_MONTGOMERY_MAX_WORDS (8 * 1024 / sizeof(BN_ULONG))
378
379
#if !defined(OPENSSL_NO_ASM) &&                         \
380
    (defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \
381
     defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64))
382
#define OPENSSL_BN_ASM_MONT
383
// bn_mul_mont writes |ap| * |bp| mod |np| to |rp|, each |num| words
384
// long. Inputs and outputs are in Montgomery form. |n0| is a pointer to the
385
// corresponding field in |BN_MONT_CTX|. It returns one if |bn_mul_mont| handles
386
// inputs of this size and zero otherwise.
387
//
388
// If at least one of |ap| or |bp| is fully reduced, |rp| will be fully reduced.
389
// If neither is fully-reduced, the output may not be either.
390
//
391
// This function allocates |num| words on the stack, so |num| should be at most
392
// |BN_MONTGOMERY_MAX_WORDS|.
393
//
394
// TODO(davidben): The x86_64 implementation expects a 32-bit input and masks
395
// off upper bits. The aarch64 implementation expects a 64-bit input and does
396
// not. |size_t| is the safer option but not strictly correct for x86_64. But
397
// the |BN_MONTGOMERY_MAX_WORDS| bound makes this moot.
398
//
399
// See also discussion in |ToWord| in abi_test.h for notes on smaller-than-word
400
// inputs.
401
int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
402
                const BN_ULONG *np, const BN_ULONG *n0, size_t num);
403
404
#if defined(OPENSSL_X86_64)
405
11.0k
OPENSSL_INLINE int bn_mulx_adx_capable(void) {
406
  // MULX is in BMI2.
407
11.0k
  return CRYPTO_is_BMI2_capable() && CRYPTO_is_ADX_capable();
408
11.0k
}
bcm.c:bn_mulx_adx_capable
Line
Count
Source
405
11.0k
OPENSSL_INLINE int bn_mulx_adx_capable(void) {
406
  // MULX is in BMI2.
407
11.0k
  return CRYPTO_is_BMI2_capable() && CRYPTO_is_ADX_capable();
408
11.0k
}
Unexecuted instantiation: convert.c:bn_mulx_adx_capable
Unexecuted instantiation: dsa.c:bn_mulx_adx_capable
Unexecuted instantiation: ecdh_extra.c:bn_mulx_adx_capable
Unexecuted instantiation: ecdsa_asn1.c:bn_mulx_adx_capable
Unexecuted instantiation: p_ec.c:bn_mulx_adx_capable
Unexecuted instantiation: rsa_crypt.c:bn_mulx_adx_capable
Unexecuted instantiation: ec_asn1.c:bn_mulx_adx_capable
409
int bn_mul_mont_nohw(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
410
                     const BN_ULONG *np, const BN_ULONG *n0, size_t num);
411
1.17M
OPENSSL_INLINE int bn_mul4x_mont_capable(size_t num) {
412
1.17M
  return num >= 8 && (num & 3) == 0;
413
1.17M
}
bcm.c:bn_mul4x_mont_capable
Line
Count
Source
411
1.17M
OPENSSL_INLINE int bn_mul4x_mont_capable(size_t num) {
412
1.17M
  return num >= 8 && (num & 3) == 0;
413
1.17M
}
Unexecuted instantiation: convert.c:bn_mul4x_mont_capable
Unexecuted instantiation: dsa.c:bn_mul4x_mont_capable
Unexecuted instantiation: ecdh_extra.c:bn_mul4x_mont_capable
Unexecuted instantiation: ecdsa_asn1.c:bn_mul4x_mont_capable
Unexecuted instantiation: p_ec.c:bn_mul4x_mont_capable
Unexecuted instantiation: rsa_crypt.c:bn_mul4x_mont_capable
Unexecuted instantiation: ec_asn1.c:bn_mul4x_mont_capable
414
int bn_mul4x_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
415
                  const BN_ULONG *np, const BN_ULONG *n0, size_t num);
416
590k
OPENSSL_INLINE int bn_mulx4x_mont_capable(size_t num) {
417
590k
  return bn_mul4x_mont_capable(num) && bn_mulx_adx_capable();
418
590k
}
bcm.c:bn_mulx4x_mont_capable
Line
Count
Source
416
590k
OPENSSL_INLINE int bn_mulx4x_mont_capable(size_t num) {
417
590k
  return bn_mul4x_mont_capable(num) && bn_mulx_adx_capable();
418
590k
}
Unexecuted instantiation: convert.c:bn_mulx4x_mont_capable
Unexecuted instantiation: dsa.c:bn_mulx4x_mont_capable
Unexecuted instantiation: ecdh_extra.c:bn_mulx4x_mont_capable
Unexecuted instantiation: ecdsa_asn1.c:bn_mulx4x_mont_capable
Unexecuted instantiation: p_ec.c:bn_mulx4x_mont_capable
Unexecuted instantiation: rsa_crypt.c:bn_mulx4x_mont_capable
Unexecuted instantiation: ec_asn1.c:bn_mulx4x_mont_capable
419
int bn_mulx4x_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
420
                   const BN_ULONG *np, const BN_ULONG *n0, size_t num);
421
520k
OPENSSL_INLINE int bn_sqr8x_mont_capable(size_t num) {
422
520k
  return num >= 8 && (num & 7) == 0;
423
520k
}
bcm.c:bn_sqr8x_mont_capable
Line
Count
Source
421
520k
OPENSSL_INLINE int bn_sqr8x_mont_capable(size_t num) {
422
520k
  return num >= 8 && (num & 7) == 0;
423
520k
}
Unexecuted instantiation: convert.c:bn_sqr8x_mont_capable
Unexecuted instantiation: dsa.c:bn_sqr8x_mont_capable
Unexecuted instantiation: ecdh_extra.c:bn_sqr8x_mont_capable
Unexecuted instantiation: ecdsa_asn1.c:bn_sqr8x_mont_capable
Unexecuted instantiation: p_ec.c:bn_sqr8x_mont_capable
Unexecuted instantiation: rsa_crypt.c:bn_sqr8x_mont_capable
Unexecuted instantiation: ec_asn1.c:bn_sqr8x_mont_capable
424
int bn_sqr8x_mont(BN_ULONG *rp, const BN_ULONG *ap, BN_ULONG mulx_adx_capable,
425
                  const BN_ULONG *np, const BN_ULONG *n0, size_t num);
426
#elif defined(OPENSSL_ARM)
427
OPENSSL_INLINE int bn_mul8x_mont_neon_capable(size_t num) {
428
  return (num & 7) == 0 && CRYPTO_is_NEON_capable();
429
}
430
int bn_mul8x_mont_neon(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
431
                       const BN_ULONG *np, const BN_ULONG *n0, size_t num);
432
int bn_mul_mont_nohw(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
433
                     const BN_ULONG *np, const BN_ULONG *n0, size_t num);
434
#endif
435
436
#endif  // OPENSSL_BN_ASM_MONT
437
438
#if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64)
439
#define OPENSSL_BN_ASM_MONT5
440
441
// The following functions implement |bn_mul_mont_gather5|. See
442
// |bn_mul_mont_gather5| for details.
443
72.0k
OPENSSL_INLINE int bn_mul4x_mont_gather5_capable(int num) {
444
72.0k
  return (num & 7) == 0;
445
72.0k
}
bcm.c:bn_mul4x_mont_gather5_capable
Line
Count
Source
443
72.0k
OPENSSL_INLINE int bn_mul4x_mont_gather5_capable(int num) {
444
72.0k
  return (num & 7) == 0;
445
72.0k
}
Unexecuted instantiation: convert.c:bn_mul4x_mont_gather5_capable
Unexecuted instantiation: dsa.c:bn_mul4x_mont_gather5_capable
Unexecuted instantiation: ecdh_extra.c:bn_mul4x_mont_gather5_capable
Unexecuted instantiation: ecdsa_asn1.c:bn_mul4x_mont_gather5_capable
Unexecuted instantiation: p_ec.c:bn_mul4x_mont_gather5_capable
Unexecuted instantiation: rsa_crypt.c:bn_mul4x_mont_gather5_capable
Unexecuted instantiation: ec_asn1.c:bn_mul4x_mont_gather5_capable
446
void bn_mul4x_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap,
447
                           const BN_ULONG *table, const BN_ULONG *np,
448
                           const BN_ULONG *n0, int num, int power);
449
450
36.1k
OPENSSL_INLINE int bn_mulx4x_mont_gather5_capable(int num) {
451
36.1k
  return bn_mul4x_mont_gather5_capable(num) && CRYPTO_is_ADX_capable() &&
452
36.1k
         CRYPTO_is_BMI1_capable() && CRYPTO_is_BMI2_capable();
453
36.1k
}
bcm.c:bn_mulx4x_mont_gather5_capable
Line
Count
Source
450
36.1k
OPENSSL_INLINE int bn_mulx4x_mont_gather5_capable(int num) {
451
36.1k
  return bn_mul4x_mont_gather5_capable(num) && CRYPTO_is_ADX_capable() &&
452
36.1k
         CRYPTO_is_BMI1_capable() && CRYPTO_is_BMI2_capable();
453
36.1k
}
Unexecuted instantiation: convert.c:bn_mulx4x_mont_gather5_capable
Unexecuted instantiation: dsa.c:bn_mulx4x_mont_gather5_capable
Unexecuted instantiation: ecdh_extra.c:bn_mulx4x_mont_gather5_capable
Unexecuted instantiation: ecdsa_asn1.c:bn_mulx4x_mont_gather5_capable
Unexecuted instantiation: p_ec.c:bn_mulx4x_mont_gather5_capable
Unexecuted instantiation: rsa_crypt.c:bn_mulx4x_mont_gather5_capable
Unexecuted instantiation: ec_asn1.c:bn_mulx4x_mont_gather5_capable
454
void bn_mulx4x_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap,
455
                            const BN_ULONG *table, const BN_ULONG *np,
456
                            const BN_ULONG *n0, int num, int power);
457
458
void bn_mul_mont_gather5_nohw(BN_ULONG *rp, const BN_ULONG *ap,
459
                              const BN_ULONG *table, const BN_ULONG *np,
460
                              const BN_ULONG *n0, int num, int power);
461
462
// bn_scatter5 stores |inp| to index |power| of |table|. |inp| and each entry of
463
// |table| are |num| words long. |power| must be less than 32 and is treated as
464
// public. |table| must be 32*|num| words long. |table| must be aligned to at
465
// least 16 bytes.
466
void bn_scatter5(const BN_ULONG *inp, size_t num, BN_ULONG *table,
467
                 size_t power);
468
469
// bn_gather5 loads index |power| of |table| and stores it in |out|. |out| and
470
// each entry of |table| are |num| words long. |power| must be less than 32 and
471
// is treated as secret. |table| must be aligned to at least 16 bytes.
472
void bn_gather5(BN_ULONG *out, size_t num, const BN_ULONG *table, size_t power);
473
474
// The following functions implement |bn_power5|. See |bn_power5| for details.
475
void bn_power5_nohw(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *table,
476
                    const BN_ULONG *np, const BN_ULONG *n0, int num, int power);
477
478
9.76k
OPENSSL_INLINE int bn_power5_capable(int num) { return (num & 7) == 0; }
bcm.c:bn_power5_capable
Line
Count
Source
478
9.76k
OPENSSL_INLINE int bn_power5_capable(int num) { return (num & 7) == 0; }
Unexecuted instantiation: convert.c:bn_power5_capable
Unexecuted instantiation: dsa.c:bn_power5_capable
Unexecuted instantiation: ecdh_extra.c:bn_power5_capable
Unexecuted instantiation: ecdsa_asn1.c:bn_power5_capable
Unexecuted instantiation: p_ec.c:bn_power5_capable
Unexecuted instantiation: rsa_crypt.c:bn_power5_capable
Unexecuted instantiation: ec_asn1.c:bn_power5_capable
479
480
4.77k
OPENSSL_INLINE int bn_powerx5_capable(int num) {
481
4.77k
  return bn_power5_capable(num) && CRYPTO_is_ADX_capable() &&
482
4.77k
         CRYPTO_is_BMI1_capable() && CRYPTO_is_BMI2_capable();
483
4.77k
}
bcm.c:bn_powerx5_capable
Line
Count
Source
480
4.77k
OPENSSL_INLINE int bn_powerx5_capable(int num) {
481
4.77k
  return bn_power5_capable(num) && CRYPTO_is_ADX_capable() &&
482
4.77k
         CRYPTO_is_BMI1_capable() && CRYPTO_is_BMI2_capable();
483
4.77k
}
Unexecuted instantiation: convert.c:bn_powerx5_capable
Unexecuted instantiation: dsa.c:bn_powerx5_capable
Unexecuted instantiation: ecdh_extra.c:bn_powerx5_capable
Unexecuted instantiation: ecdsa_asn1.c:bn_powerx5_capable
Unexecuted instantiation: p_ec.c:bn_powerx5_capable
Unexecuted instantiation: rsa_crypt.c:bn_powerx5_capable
Unexecuted instantiation: ec_asn1.c:bn_powerx5_capable
484
void bn_powerx5(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *table,
485
                const BN_ULONG *np, const BN_ULONG *n0, int num, int power);
486
487
#endif  // !OPENSSL_NO_ASM && OPENSSL_X86_64
488
489
uint64_t bn_mont_n0(const BIGNUM *n);
490
491
// bn_mont_ctx_set_RR_consttime initializes |mont->RR|. It returns one on
492
// success and zero on error. |mont->N| and |mont->n0| must have been
493
// initialized already. The bit width of |mont->N| is assumed public, but
494
// |mont->N| is otherwise treated as secret.
495
int bn_mont_ctx_set_RR_consttime(BN_MONT_CTX *mont, BN_CTX *ctx);
496
497
#if defined(_MSC_VER)
498
#if defined(OPENSSL_X86_64)
499
#define BN_UMULT_LOHI(low, high, a, b) ((low) = _umul128((a), (b), &(high)))
500
#elif defined(OPENSSL_AARCH64)
501
#define BN_UMULT_LOHI(low, high, a, b) \
502
  do {                                 \
503
    const BN_ULONG _a = (a);           \
504
    const BN_ULONG _b = (b);           \
505
    (low) = _a * _b;                   \
506
    (high) = __umulh(_a, _b);          \
507
  } while (0)
508
#endif
509
#endif  // _MSC_VER
510
511
#if !defined(BN_ULLONG) && !defined(BN_UMULT_LOHI)
512
#error "Either BN_ULLONG or BN_UMULT_LOHI must be defined on every platform."
513
#endif
514
515
// bn_jacobi returns the Jacobi symbol of |a| and |b| (which is -1, 0 or 1), or
516
// -2 on error.
517
int bn_jacobi(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
518
519
// bn_is_bit_set_words returns one if bit |bit| is set in |a| and zero
520
// otherwise.
521
int bn_is_bit_set_words(const BN_ULONG *a, size_t num, size_t bit);
522
523
// bn_one_to_montgomery sets |r| to one in Montgomery form. It returns one on
524
// success and zero on error. This function treats the bit width of the modulus
525
// as public.
526
int bn_one_to_montgomery(BIGNUM *r, const BN_MONT_CTX *mont, BN_CTX *ctx);
527
528
// bn_less_than_montgomery_R returns one if |bn| is less than the Montgomery R
529
// value for |mont| and zero otherwise.
530
int bn_less_than_montgomery_R(const BIGNUM *bn, const BN_MONT_CTX *mont);
531
532
// bn_mod_u16_consttime returns |bn| mod |d|, ignoring |bn|'s sign bit. It runs
533
// in time independent of the value of |bn|, but it treats |d| as public.
534
OPENSSL_EXPORT uint16_t bn_mod_u16_consttime(const BIGNUM *bn, uint16_t d);
535
536
// bn_odd_number_is_obviously_composite returns one if |bn| is divisible by one
537
// of the first several odd primes and zero otherwise.
538
int bn_odd_number_is_obviously_composite(const BIGNUM *bn);
539
540
// A BN_MILLER_RABIN stores state common to each Miller-Rabin iteration. It is
541
// initialized within an existing |BN_CTX| scope and may not be used after
542
// that scope is released with |BN_CTX_end|. Field names match those in FIPS
543
// 186-4, section C.3.1.
544
typedef struct {
545
  // w1 is w-1.
546
  BIGNUM *w1;
547
  // m is (w-1)/2^a.
548
  BIGNUM *m;
549
  // one_mont is 1 (mod w) in Montgomery form.
550
  BIGNUM *one_mont;
551
  // w1_mont is w-1 (mod w) in Montgomery form.
552
  BIGNUM *w1_mont;
553
  // w_bits is BN_num_bits(w).
554
  int w_bits;
555
  // a is the largest integer such that 2^a divides w-1.
556
  int a;
557
} BN_MILLER_RABIN;
558
559
// bn_miller_rabin_init initializes |miller_rabin| for testing if |mont->N| is
560
// prime. It returns one on success and zero on error.
561
OPENSSL_EXPORT int bn_miller_rabin_init(BN_MILLER_RABIN *miller_rabin,
562
                                        const BN_MONT_CTX *mont, BN_CTX *ctx);
563
564
// bn_miller_rabin_iteration performs one Miller-Rabin iteration, checking if
565
// |b| is a composite witness for |mont->N|. |miller_rabin| must have been
566
// initialized with |bn_miller_rabin_setup|. On success, it returns one and sets
567
// |*out_is_possibly_prime| to one if |mont->N| may still be prime or zero if
568
// |b| shows it is composite. On allocation or internal failure, it returns
569
// zero.
570
OPENSSL_EXPORT int bn_miller_rabin_iteration(
571
    const BN_MILLER_RABIN *miller_rabin, int *out_is_possibly_prime,
572
    const BIGNUM *b, const BN_MONT_CTX *mont, BN_CTX *ctx);
573
574
// bn_rshift1_words sets |r| to |a| >> 1, where both arrays are |num| bits wide.
575
void bn_rshift1_words(BN_ULONG *r, const BN_ULONG *a, size_t num);
576
577
// bn_rshift_words sets |r| to |a| >> |shift|, where both arrays are |num| bits
578
// wide.
579
void bn_rshift_words(BN_ULONG *r, const BN_ULONG *a, unsigned shift,
580
                     size_t num);
581
582
// bn_rshift_secret_shift behaves like |BN_rshift| but runs in time independent
583
// of both |a| and |n|.
584
OPENSSL_EXPORT int bn_rshift_secret_shift(BIGNUM *r, const BIGNUM *a,
585
                                          unsigned n, BN_CTX *ctx);
586
587
// bn_reduce_once sets |r| to |a| mod |m| where 0 <= |a| < 2*|m|. It returns
588
// zero if |a| < |m| and a mask of all ones if |a| >= |m|. Each array is |num|
589
// words long, but |a| has an additional word specified by |carry|. |carry| must
590
// be zero or one, as implied by the bounds on |a|.
591
//
592
// |r|, |a|, and |m| may not alias. Use |bn_reduce_once_in_place| if |r| and |a|
593
// must alias.
594
BN_ULONG bn_reduce_once(BN_ULONG *r, const BN_ULONG *a, BN_ULONG carry,
595
                        const BN_ULONG *m, size_t num);
596
597
// bn_reduce_once_in_place behaves like |bn_reduce_once| but acts in-place on
598
// |r|, using |tmp| as scratch space. |r|, |tmp|, and |m| may not alias.
599
BN_ULONG bn_reduce_once_in_place(BN_ULONG *r, BN_ULONG carry, const BN_ULONG *m,
600
                                 BN_ULONG *tmp, size_t num);
601
602
603
// Constant-time non-modular arithmetic.
604
//
605
// The following functions implement non-modular arithmetic in constant-time
606
// and pessimally set |r->width| to the largest possible word size.
607
//
608
// Note this means that, e.g., repeatedly multiplying by one will cause widths
609
// to increase without bound. The corresponding public API functions minimize
610
// their outputs to avoid regressing calculator consumers.
611
612
// bn_uadd_consttime behaves like |BN_uadd|, but it pessimally sets
613
// |r->width| = |a->width| + |b->width| + 1.
614
int bn_uadd_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
615
616
// bn_usub_consttime behaves like |BN_usub|, but it pessimally sets
617
// |r->width| = |a->width|.
618
int bn_usub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
619
620
// bn_abs_sub_consttime sets |r| to the absolute value of |a| - |b|, treating
621
// both inputs as secret. It returns one on success and zero on error.
622
OPENSSL_EXPORT int bn_abs_sub_consttime(BIGNUM *r, const BIGNUM *a,
623
                                        const BIGNUM *b, BN_CTX *ctx);
624
625
// bn_mul_consttime behaves like |BN_mul|, but it rejects negative inputs and
626
// pessimally sets |r->width| to |a->width| + |b->width|, to avoid leaking
627
// information about |a| and |b|.
628
int bn_mul_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
629
630
// bn_sqrt_consttime behaves like |BN_sqrt|, but it pessimally sets |r->width|
631
// to 2*|a->width|, to avoid leaking information about |a| and |b|.
632
int bn_sqr_consttime(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx);
633
634
// bn_div_consttime behaves like |BN_div|, but it rejects negative inputs and
635
// treats both inputs, including their magnitudes, as secret. It is, as a
636
// result, much slower than |BN_div| and should only be used for rare operations
637
// where Montgomery reduction is not available. |divisor_min_bits| is a
638
// public lower bound for |BN_num_bits(divisor)|. When |divisor|'s bit width is
639
// public, this can speed up the operation.
640
//
641
// Note that |quotient->width| will be set pessimally to |numerator->width|.
642
OPENSSL_EXPORT int bn_div_consttime(BIGNUM *quotient, BIGNUM *remainder,
643
                                    const BIGNUM *numerator,
644
                                    const BIGNUM *divisor,
645
                                    unsigned divisor_min_bits, BN_CTX *ctx);
646
647
// bn_is_relatively_prime checks whether GCD(|x|, |y|) is one. On success, it
648
// returns one and sets |*out_relatively_prime| to one if the GCD was one and
649
// zero otherwise. On error, it returns zero.
650
OPENSSL_EXPORT int bn_is_relatively_prime(int *out_relatively_prime,
651
                                          const BIGNUM *x, const BIGNUM *y,
652
                                          BN_CTX *ctx);
653
654
// bn_lcm_consttime sets |r| to LCM(|a|, |b|). It returns one and success and
655
// zero on error. |a| and |b| are both treated as secret.
656
OPENSSL_EXPORT int bn_lcm_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
657
                                    BN_CTX *ctx);
658
659
// bn_mont_ctx_init zero-initialies |mont|.
660
void bn_mont_ctx_init(BN_MONT_CTX *mont);
661
662
// bn_mont_ctx_cleanup releases memory associated with |mont|, without freeing
663
// |mont| itself.
664
void bn_mont_ctx_cleanup(BN_MONT_CTX *mont);
665
666
667
// Constant-time modular arithmetic.
668
//
669
// The following functions implement basic constant-time modular arithmetic.
670
671
// bn_mod_add_words sets |r| to |a| + |b| (mod |m|), using |tmp| as scratch
672
// space. Each array is |num| words long. |a| and |b| must be < |m|. Any pair of
673
// |r|, |a|, and |b| may alias.
674
void bn_mod_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
675
                      const BN_ULONG *m, BN_ULONG *tmp, size_t num);
676
677
// bn_mod_add_consttime acts like |BN_mod_add_quick| but takes a |BN_CTX|.
678
int bn_mod_add_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
679
                         const BIGNUM *m, BN_CTX *ctx);
680
681
// bn_mod_sub_words sets |r| to |a| - |b| (mod |m|), using |tmp| as scratch
682
// space. Each array is |num| words long. |a| and |b| must be < |m|. Any pair of
683
// |r|, |a|, and |b| may alias.
684
void bn_mod_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
685
                      const BN_ULONG *m, BN_ULONG *tmp, size_t num);
686
687
// bn_mod_sub_consttime acts like |BN_mod_sub_quick| but takes a |BN_CTX|.
688
int bn_mod_sub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
689
                         const BIGNUM *m, BN_CTX *ctx);
690
691
// bn_mod_lshift1_consttime acts like |BN_mod_lshift1_quick| but takes a
692
// |BN_CTX|.
693
int bn_mod_lshift1_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *m,
694
                             BN_CTX *ctx);
695
696
// bn_mod_lshift_consttime acts like |BN_mod_lshift_quick| but takes a |BN_CTX|.
697
int bn_mod_lshift_consttime(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
698
                            BN_CTX *ctx);
699
700
// bn_mod_inverse_consttime sets |r| to |a|^-1, mod |n|. |a| must be non-
701
// negative and less than |n|. It returns one on success and zero on error. On
702
// failure, if the failure was caused by |a| having no inverse mod |n| then
703
// |*out_no_inverse| will be set to one; otherwise it will be set to zero.
704
//
705
// This function treats both |a| and |n| as secret, provided they are both non-
706
// zero and the inverse exists. It should only be used for even moduli where
707
// none of the less general implementations are applicable.
708
OPENSSL_EXPORT int bn_mod_inverse_consttime(BIGNUM *r, int *out_no_inverse,
709
                                            const BIGNUM *a, const BIGNUM *n,
710
                                            BN_CTX *ctx);
711
712
// bn_mod_inverse_prime sets |out| to the modular inverse of |a| modulo |p|,
713
// computed with Fermat's Little Theorem. It returns one on success and zero on
714
// error. If |mont_p| is NULL, one will be computed temporarily.
715
int bn_mod_inverse_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p,
716
                         BN_CTX *ctx, const BN_MONT_CTX *mont_p);
717
718
// bn_mod_inverse_secret_prime behaves like |bn_mod_inverse_prime| but uses
719
// |BN_mod_exp_mont_consttime| instead of |BN_mod_exp_mont| in hopes of
720
// protecting the exponent.
721
int bn_mod_inverse_secret_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p,
722
                                BN_CTX *ctx, const BN_MONT_CTX *mont_p);
723
724
// BN_MONT_CTX_set_locked takes |lock| and checks whether |*pmont| is NULL. If
725
// so, it creates a new |BN_MONT_CTX| and sets the modulus for it to |mod|. It
726
// then stores it as |*pmont|. It returns one on success and zero on error. Note
727
// this function assumes |mod| is public.
728
//
729
// If |*pmont| is already non-NULL then it does nothing and returns one.
730
int BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_MUTEX *lock,
731
                           const BIGNUM *mod, BN_CTX *bn_ctx);
732
733
734
// Low-level operations for small numbers.
735
//
736
// The following functions implement algorithms suitable for use with scalars
737
// and field elements in elliptic curves. They rely on the number being small
738
// both to stack-allocate various temporaries and because they do not implement
739
// optimizations useful for the larger values used in RSA.
740
741
// BN_SMALL_MAX_WORDS is the largest size input these functions handle. This
742
// limit allows temporaries to be more easily stack-allocated. This limit is set
743
// to accommodate P-521.
744
#if defined(OPENSSL_32_BIT)
745
#define BN_SMALL_MAX_WORDS 17
746
#else
747
385k
#define BN_SMALL_MAX_WORDS 9
748
#endif
749
750
// bn_mul_small sets |r| to |a|*|b|. |num_r| must be |num_a| + |num_b|. |r| may
751
// not alias with |a| or |b|.
752
void bn_mul_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a,
753
                 const BN_ULONG *b, size_t num_b);
754
755
// bn_sqr_small sets |r| to |a|^2. |num_a| must be at most |BN_SMALL_MAX_WORDS|.
756
// |num_r| must be |num_a|*2. |r| and |a| may not alias.
757
void bn_sqr_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a);
758
759
// In the following functions, the modulus must be at most |BN_SMALL_MAX_WORDS|
760
// words long.
761
762
// bn_to_montgomery_small sets |r| to |a| translated to the Montgomery domain.
763
// |r| and |a| are |num| words long, which must be |mont->N.width|. |a| must be
764
// fully reduced and may alias |r|.
765
void bn_to_montgomery_small(BN_ULONG *r, const BN_ULONG *a, size_t num,
766
                            const BN_MONT_CTX *mont);
767
768
// bn_from_montgomery_small sets |r| to |a| translated out of the Montgomery
769
// domain. |r| and |a| are |num_r| and |num_a| words long, respectively. |num_r|
770
// must be |mont->N.width|. |a| must be at most |mont->N|^2 and may alias |r|.
771
//
772
// Unlike most of these functions, only |num_r| is bounded by
773
// |BN_SMALL_MAX_WORDS|. |num_a| may exceed it, but must be at most 2 * |num_r|.
774
void bn_from_montgomery_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a,
775
                              size_t num_a, const BN_MONT_CTX *mont);
776
777
// bn_mod_mul_montgomery_small sets |r| to |a| * |b| mod |mont->N|. Both inputs
778
// and outputs are in the Montgomery domain. Each array is |num| words long,
779
// which must be |mont->N.width|. Any two of |r|, |a|, and |b| may alias. |a|
780
// and |b| must be reduced on input.
781
void bn_mod_mul_montgomery_small(BN_ULONG *r, const BN_ULONG *a,
782
                                 const BN_ULONG *b, size_t num,
783
                                 const BN_MONT_CTX *mont);
784
785
// bn_mod_exp_mont_small sets |r| to |a|^|p| mod |mont->N|. It returns one on
786
// success and zero on programmer or internal error. Both inputs and outputs are
787
// in the Montgomery domain. |r| and |a| are |num| words long, which must be
788
// |mont->N.width| and at most |BN_SMALL_MAX_WORDS|. |num_p|, measured in bits,
789
// must fit in |size_t|. |a| must be fully-reduced. This function runs in time
790
// independent of |a|, but |p| and |mont->N| are public values. |a| must be
791
// fully-reduced and may alias with |r|.
792
//
793
// Note this function differs from |BN_mod_exp_mont| which uses Montgomery
794
// reduction but takes input and output outside the Montgomery domain. Combine
795
// this function with |bn_from_montgomery_small| and |bn_to_montgomery_small|
796
// if necessary.
797
void bn_mod_exp_mont_small(BN_ULONG *r, const BN_ULONG *a, size_t num,
798
                           const BN_ULONG *p, size_t num_p,
799
                           const BN_MONT_CTX *mont);
800
801
// bn_mod_inverse0_prime_mont_small sets |r| to |a|^-1 mod |mont->N|. If |a| is
802
// zero, |r| is set to zero. |mont->N| must be a prime. |r| and |a| are |num|
803
// words long, which must be |mont->N.width| and at most |BN_SMALL_MAX_WORDS|.
804
// |a| must be fully-reduced and may alias |r|. This function runs in time
805
// independent of |a|, but |mont->N| is a public value.
806
void bn_mod_inverse0_prime_mont_small(BN_ULONG *r, const BN_ULONG *a,
807
                                      size_t num, const BN_MONT_CTX *mont);
808
809
810
// Word-based byte conversion functions.
811
812
// bn_big_endian_to_words interprets |in_len| bytes from |in| as a big-endian,
813
// unsigned integer and writes the result to |out_len| words in |out|. |out_len|
814
// must be large enough to represent any |in_len|-byte value. That is, |in_len|
815
// must be at most |BN_BYTES * out_len|.
816
void bn_big_endian_to_words(BN_ULONG *out, size_t out_len, const uint8_t *in,
817
                            size_t in_len);
818
819
// bn_words_to_big_endian represents |in_len| words from |in| as a big-endian,
820
// unsigned integer in |out_len| bytes. It writes the result to |out|. |out_len|
821
// must be large enough to represent |in| without truncation.
822
//
823
// Note |out_len| may be less than |BN_BYTES * in_len| if |in| is known to have
824
// leading zeros.
825
void bn_words_to_big_endian(uint8_t *out, size_t out_len, const BN_ULONG *in,
826
                            size_t in_len);
827
828
829
#if defined(__cplusplus)
830
}  // extern C
831
#endif
832
833
#endif  // OPENSSL_HEADER_BN_INTERNAL_H