Coverage Report

Created: 2024-11-21 07:03

/src/boringssl/crypto/fipsmodule/bn/jacobi.c.inc
Line
Count
Source (jump to first uncovered line)
1
/* ====================================================================
2
 * Copyright (c) 1998-2000 The OpenSSL Project.  All rights reserved.
3
 *
4
 * Redistribution and use in source and binary forms, with or without
5
 * modification, are permitted provided that the following conditions
6
 * are met:
7
 *
8
 * 1. Redistributions of source code must retain the above copyright
9
 *    notice, this list of conditions and the following disclaimer.
10
 *
11
 * 2. Redistributions in binary form must reproduce the above copyright
12
 *    notice, this list of conditions and the following disclaimer in
13
 *    the documentation and/or other materials provided with the
14
 *    distribution.
15
 *
16
 * 3. All advertising materials mentioning features or use of this
17
 *    software must display the following acknowledgment:
18
 *    "This product includes software developed by the OpenSSL Project
19
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
20
 *
21
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22
 *    endorse or promote products derived from this software without
23
 *    prior written permission. For written permission, please contact
24
 *    openssl-core@openssl.org.
25
 *
26
 * 5. Products derived from this software may not be called "OpenSSL"
27
 *    nor may "OpenSSL" appear in their names without prior written
28
 *    permission of the OpenSSL Project.
29
 *
30
 * 6. Redistributions of any form whatsoever must retain the following
31
 *    acknowledgment:
32
 *    "This product includes software developed by the OpenSSL Project
33
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
34
 *
35
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
36
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
39
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46
 * OF THE POSSIBILITY OF SUCH DAMAGE.
47
 * ====================================================================
48
 *
49
 * This product includes cryptographic software written by Eric Young
50
 * (eay@cryptsoft.com).  This product includes software written by Tim
51
 * Hudson (tjh@cryptsoft.com). */
52
53
#include <openssl/bn.h>
54
55
#include <openssl/err.h>
56
57
#include "internal.h"
58
59
60
// least significant word
61
113k
#define BN_lsw(n) (((n)->width == 0) ? (BN_ULONG) 0 : (n)->d[0])
62
63
113
int bn_jacobi(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
64
  // In 'tab', only odd-indexed entries are relevant:
65
  // For any odd BIGNUM n,
66
  //     tab[BN_lsw(n) & 7]
67
  // is $(-1)^{(n^2-1)/8}$ (using TeX notation).
68
  // Note that the sign of n does not matter.
69
113
  static const int tab[8] = {0, 1, 0, -1, 0, -1, 0, 1};
70
71
  // The Jacobi symbol is only defined for odd modulus.
72
113
  if (!BN_is_odd(b)) {
73
20
    OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
74
20
    return -2;
75
20
  }
76
77
  // Require b be positive.
78
93
  if (BN_is_negative(b)) {
79
0
    OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
80
0
    return -2;
81
0
  }
82
83
93
  int ret = -2;
84
93
  BN_CTX_start(ctx);
85
93
  BIGNUM *A = BN_CTX_get(ctx);
86
93
  BIGNUM *B = BN_CTX_get(ctx);
87
93
  if (B == NULL) {
88
0
    goto end;
89
0
  }
90
91
93
  if (!BN_copy(A, a) ||
92
93
      !BN_copy(B, b)) {
93
0
    goto end;
94
0
  }
95
96
  // Adapted from logic to compute the Kronecker symbol, originally implemented
97
  // according to Henri Cohen, "A Course in Computational Algebraic Number
98
  // Theory" (algorithm 1.4.10).
99
100
93
  ret = 1;
101
102
47.8k
  while (1) {
103
    // Cohen's step 3:
104
105
    // B is positive and odd
106
47.8k
    if (BN_is_zero(A)) {
107
93
      ret = BN_is_one(B) ? ret : 0;
108
93
      goto end;
109
93
    }
110
111
    // now A is non-zero
112
47.7k
    int i = 0;
113
99.9k
    while (!BN_is_bit_set(A, i)) {
114
52.1k
      i++;
115
52.1k
    }
116
47.7k
    if (!BN_rshift(A, A, i)) {
117
0
      ret = -2;
118
0
      goto end;
119
0
    }
120
47.7k
    if (i & 1) {
121
      // i is odd
122
      // multiply 'ret' by  $(-1)^{(B^2-1)/8}$
123
17.4k
      ret = ret * tab[BN_lsw(B) & 7];
124
17.4k
    }
125
126
    // Cohen's step 4:
127
    // multiply 'ret' by  $(-1)^{(A-1)(B-1)/4}$
128
47.7k
    if ((A->neg ? ~BN_lsw(A) : BN_lsw(A)) & BN_lsw(B) & 2) {
129
11.8k
      ret = -ret;
130
11.8k
    }
131
132
    // (A, B) := (B mod |A|, |A|)
133
47.7k
    if (!BN_nnmod(B, B, A, ctx)) {
134
0
      ret = -2;
135
0
      goto end;
136
0
    }
137
47.7k
    BIGNUM *tmp = A;
138
47.7k
    A = B;
139
47.7k
    B = tmp;
140
47.7k
    tmp->neg = 0;
141
47.7k
  }
142
143
93
end:
144
93
  BN_CTX_end(ctx);
145
93
  return ret;
146
93
}