Coverage Report

Created: 2024-11-21 07:03

/src/boringssl/crypto/fipsmodule/bn/mul.c.inc
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2
 * All rights reserved.
3
 *
4
 * This package is an SSL implementation written
5
 * by Eric Young (eay@cryptsoft.com).
6
 * The implementation was written so as to conform with Netscapes SSL.
7
 *
8
 * This library is free for commercial and non-commercial use as long as
9
 * the following conditions are aheared to.  The following conditions
10
 * apply to all code found in this distribution, be it the RC4, RSA,
11
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12
 * included with this distribution is covered by the same copyright terms
13
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14
 *
15
 * Copyright remains Eric Young's, and as such any Copyright notices in
16
 * the code are not to be removed.
17
 * If this package is used in a product, Eric Young should be given attribution
18
 * as the author of the parts of the library used.
19
 * This can be in the form of a textual message at program startup or
20
 * in documentation (online or textual) provided with the package.
21
 *
22
 * Redistribution and use in source and binary forms, with or without
23
 * modification, are permitted provided that the following conditions
24
 * are met:
25
 * 1. Redistributions of source code must retain the copyright
26
 *    notice, this list of conditions and the following disclaimer.
27
 * 2. Redistributions in binary form must reproduce the above copyright
28
 *    notice, this list of conditions and the following disclaimer in the
29
 *    documentation and/or other materials provided with the distribution.
30
 * 3. All advertising materials mentioning features or use of this software
31
 *    must display the following acknowledgement:
32
 *    "This product includes cryptographic software written by
33
 *     Eric Young (eay@cryptsoft.com)"
34
 *    The word 'cryptographic' can be left out if the rouines from the library
35
 *    being used are not cryptographic related :-).
36
 * 4. If you include any Windows specific code (or a derivative thereof) from
37
 *    the apps directory (application code) you must include an acknowledgement:
38
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39
 *
40
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50
 * SUCH DAMAGE.
51
 *
52
 * The licence and distribution terms for any publically available version or
53
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
54
 * copied and put under another distribution licence
55
 * [including the GNU Public Licence.] */
56
57
#include <openssl/bn.h>
58
59
#include <assert.h>
60
#include <stdlib.h>
61
#include <string.h>
62
63
#include <openssl/err.h>
64
#include <openssl/mem.h>
65
66
#include "internal.h"
67
#include "../../internal.h"
68
69
70
14.5M
#define BN_MUL_RECURSIVE_SIZE_NORMAL 16
71
3.27M
#define BN_SQR_RECURSIVE_SIZE_NORMAL BN_MUL_RECURSIVE_SIZE_NORMAL
72
73
74
static void bn_abs_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
75
1.07M
                             size_t num, BN_ULONG *tmp) {
76
1.07M
  BN_ULONG borrow = bn_sub_words(tmp, a, b, num);
77
1.07M
  bn_sub_words(r, b, a, num);
78
1.07M
  bn_select_words(r, 0 - borrow, r /* tmp < 0 */, tmp /* tmp >= 0 */, num);
79
1.07M
}
80
81
static void bn_mul_normal(BN_ULONG *r, const BN_ULONG *a, size_t na,
82
957k
                          const BN_ULONG *b, size_t nb) {
83
957k
  if (na < nb) {
84
217k
    size_t itmp = na;
85
217k
    na = nb;
86
217k
    nb = itmp;
87
217k
    const BN_ULONG *ltmp = a;
88
217k
    a = b;
89
217k
    b = ltmp;
90
217k
  }
91
957k
  BN_ULONG *rr = &(r[na]);
92
957k
  if (nb == 0) {
93
374k
    OPENSSL_memset(r, 0, na * sizeof(BN_ULONG));
94
374k
    return;
95
374k
  }
96
583k
  rr[0] = bn_mul_words(r, a, na, b[0]);
97
98
1.15M
  for (;;) {
99
1.15M
    if (--nb == 0) {
100
308k
      return;
101
308k
    }
102
844k
    rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]);
103
844k
    if (--nb == 0) {
104
100k
      return;
105
100k
    }
106
743k
    rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]);
107
743k
    if (--nb == 0) {
108
147k
      return;
109
147k
    }
110
595k
    rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]);
111
595k
    if (--nb == 0) {
112
25.5k
      return;
113
25.5k
    }
114
570k
    rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]);
115
570k
    rr += 4;
116
570k
    r += 4;
117
570k
    b += 4;
118
570k
  }
119
583k
}
120
121
// bn_sub_part_words sets |r| to |a| - |b|. It returns the borrow bit, which is
122
// one if the operation underflowed and zero otherwise. |cl| is the common
123
// length, that is, the shorter of len(a) or len(b). |dl| is the delta length,
124
// that is, len(a) - len(b). |r|'s length matches the larger of |a| and |b|, or
125
// cl + abs(dl).
126
//
127
// TODO(davidben): Make this take |size_t|. The |cl| + |dl| calling convention
128
// is confusing.
129
static BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a,
130
37.4M
                                  const BN_ULONG *b, int cl, int dl) {
131
37.4M
  assert(cl >= 0);
132
37.4M
  BN_ULONG borrow = bn_sub_words(r, a, b, cl);
133
37.4M
  if (dl == 0) {
134
32.3M
    return borrow;
135
32.3M
  }
136
137
5.11M
  r += cl;
138
5.11M
  a += cl;
139
5.11M
  b += cl;
140
141
5.11M
  if (dl < 0) {
142
    // |a| is shorter than |b|. Complete the subtraction as if the excess words
143
    // in |a| were zeros.
144
2.55M
    dl = -dl;
145
44.8M
    for (int i = 0; i < dl; i++) {
146
42.2M
      r[i] = CRYPTO_subc_w(0, b[i], borrow, &borrow);
147
42.2M
    }
148
2.55M
  } else {
149
    // |b| is shorter than |a|. Complete the subtraction as if the excess words
150
    // in |b| were zeros.
151
44.8M
    for (int i = 0; i < dl; i++) {
152
42.2M
      r[i] = CRYPTO_subc_w(a[i], 0, borrow, &borrow);
153
42.2M
    }
154
2.55M
  }
155
156
5.11M
  return borrow;
157
37.4M
}
158
159
// bn_abs_sub_part_words computes |r| = |a| - |b|, storing the absolute value
160
// and returning a mask of all ones if the result was negative and all zeros if
161
// the result was positive. |cl| and |dl| follow the |bn_sub_part_words| calling
162
// convention.
163
//
164
// TODO(davidben): Make this take |size_t|. The |cl| + |dl| calling convention
165
// is confusing.
166
static BN_ULONG bn_abs_sub_part_words(BN_ULONG *r, const BN_ULONG *a,
167
                                      const BN_ULONG *b, int cl, int dl,
168
18.7M
                                      BN_ULONG *tmp) {
169
18.7M
  BN_ULONG borrow = bn_sub_part_words(tmp, a, b, cl, dl);
170
18.7M
  bn_sub_part_words(r, b, a, cl, -dl);
171
18.7M
  int r_len = cl + (dl < 0 ? -dl : dl);
172
18.7M
  borrow = 0 - borrow;
173
18.7M
  bn_select_words(r, borrow, r /* tmp < 0 */, tmp /* tmp >= 0 */, r_len);
174
18.7M
  return borrow;
175
18.7M
}
176
177
int bn_abs_sub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
178
12
                         BN_CTX *ctx) {
179
12
  int cl = a->width < b->width ? a->width : b->width;
180
12
  int dl = a->width - b->width;
181
12
  int r_len = a->width < b->width ? b->width : a->width;
182
12
  BN_CTX_start(ctx);
183
12
  BIGNUM *tmp = BN_CTX_get(ctx);
184
12
  int ok = tmp != NULL &&
185
12
           bn_wexpand(r, r_len) &&
186
12
           bn_wexpand(tmp, r_len);
187
12
  if (ok) {
188
12
    bn_abs_sub_part_words(r->d, a->d, b->d, cl, dl, tmp->d);
189
12
    r->width = r_len;
190
12
  }
191
12
  BN_CTX_end(ctx);
192
12
  return ok;
193
12
}
194
195
// Karatsuba recursive multiplication algorithm
196
// (cf. Knuth, The Art of Computer Programming, Vol. 2)
197
198
// bn_mul_recursive sets |r| to |a| * |b|, using |t| as scratch space. |r| has
199
// length 2*|n2|, |a| has length |n2| + |dna|, |b| has length |n2| + |dnb|, and
200
// |t| has length 4*|n2|. |n2| must be a power of two. Finally, we must have
201
// -|BN_MUL_RECURSIVE_SIZE_NORMAL|/2 <= |dna| <= 0 and
202
// -|BN_MUL_RECURSIVE_SIZE_NORMAL|/2 <= |dnb| <= 0.
203
//
204
// TODO(davidben): Simplify and |size_t| the calling convention around lengths
205
// here.
206
static void bn_mul_recursive(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
207
8.10M
                             int n2, int dna, int dnb, BN_ULONG *t) {
208
  // |n2| is a power of two.
209
8.10M
  assert(n2 != 0 && (n2 & (n2 - 1)) == 0);
210
  // Check |dna| and |dnb| are in range.
211
8.10M
  assert(-BN_MUL_RECURSIVE_SIZE_NORMAL/2 <= dna && dna <= 0);
212
8.10M
  assert(-BN_MUL_RECURSIVE_SIZE_NORMAL/2 <= dnb && dnb <= 0);
213
214
  // Only call bn_mul_comba 8 if n2 == 8 and the
215
  // two arrays are complete [steve]
216
8.10M
  if (n2 == 8 && dna == 0 && dnb == 0) {
217
5.66k
    bn_mul_comba8(r, a, b);
218
5.66k
    return;
219
5.66k
  }
220
221
  // Else do normal multiply
222
8.09M
  if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) {
223
2.83k
    bn_mul_normal(r, a, n2 + dna, b, n2 + dnb);
224
2.83k
    if (dna + dnb < 0) {
225
2.83k
      OPENSSL_memset(&r[2 * n2 + dna + dnb], 0,
226
2.83k
                     sizeof(BN_ULONG) * -(dna + dnb));
227
2.83k
    }
228
2.83k
    return;
229
2.83k
  }
230
231
  // Split |a| and |b| into a0,a1 and b0,b1, where a0 and b0 have size |n|.
232
  // Split |t| into t0,t1,t2,t3, each of size |n|, with the remaining 4*|n| used
233
  // for recursive calls.
234
  // Split |r| into r0,r1,r2,r3. We must contribute a0*b0 to r0,r1, a0*a1+b0*b1
235
  // to r1,r2, and a1*b1 to r2,r3. The middle term we will compute as:
236
  //
237
  //   a0*a1 + b0*b1 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0
238
  //
239
  // Note that we know |n| >= |BN_MUL_RECURSIVE_SIZE_NORMAL|/2 above, so
240
  // |tna| and |tnb| are non-negative.
241
8.09M
  int n = n2 / 2, tna = n + dna, tnb = n + dnb;
242
243
  // t0 = a0 - a1 and t1 = b1 - b0. The result will be multiplied, so we XOR
244
  // their sign masks, giving the sign of (a0 - a1)*(b1 - b0). t0 and t1
245
  // themselves store the absolute value.
246
8.09M
  BN_ULONG neg = bn_abs_sub_part_words(t, a, &a[n], tna, n - tna, &t[n2]);
247
8.09M
  neg ^= bn_abs_sub_part_words(&t[n], &b[n], b, tnb, tnb - n, &t[n2]);
248
249
  // Compute:
250
  // t2,t3 = t0 * t1 = |(a0 - a1)*(b1 - b0)|
251
  // r0,r1 = a0 * b0
252
  // r2,r3 = a1 * b1
253
8.09M
  if (n == 4 && dna == 0 && dnb == 0) {
254
0
    bn_mul_comba4(&t[n2], t, &t[n]);
255
256
0
    bn_mul_comba4(r, a, b);
257
0
    bn_mul_comba4(&r[n2], &a[n], &b[n]);
258
8.09M
  } else if (n == 8 && dna == 0 && dnb == 0) {
259
6.30M
    bn_mul_comba8(&t[n2], t, &t[n]);
260
261
6.30M
    bn_mul_comba8(r, a, b);
262
6.30M
    bn_mul_comba8(&r[n2], &a[n], &b[n]);
263
6.30M
  } else {
264
1.78M
    BN_ULONG *p = &t[n2 * 2];
265
1.78M
    bn_mul_recursive(&t[n2], t, &t[n], n, 0, 0, p);
266
1.78M
    bn_mul_recursive(r, a, b, n, 0, 0, p);
267
1.78M
    bn_mul_recursive(&r[n2], &a[n], &b[n], n, dna, dnb, p);
268
1.78M
  }
269
270
  // t0,t1,c = r0,r1 + r2,r3 = a0*b0 + a1*b1
271
8.09M
  BN_ULONG c = bn_add_words(t, r, &r[n2], n2);
272
273
  // t2,t3,c = t0,t1,c + neg*t2,t3 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0.
274
  // The second term is stored as the absolute value, so we do this with a
275
  // constant-time select.
276
8.09M
  BN_ULONG c_neg = c - bn_sub_words(&t[n2 * 2], t, &t[n2], n2);
277
8.09M
  BN_ULONG c_pos = c + bn_add_words(&t[n2], t, &t[n2], n2);
278
8.09M
  bn_select_words(&t[n2], neg, &t[n2 * 2], &t[n2], n2);
279
8.09M
  static_assert(sizeof(BN_ULONG) <= sizeof(crypto_word_t),
280
8.09M
                "crypto_word_t is too small");
281
8.09M
  c = constant_time_select_w(neg, c_neg, c_pos);
282
283
  // We now have our three components. Add them together.
284
  // r1,r2,c = r1,r2 + t2,t3,c
285
8.09M
  c += bn_add_words(&r[n], &r[n], &t[n2], n2);
286
287
  // Propagate the carry bit to the end.
288
89.1M
  for (int i = n + n2; i < n2 + n2; i++) {
289
81.0M
    BN_ULONG old = r[i];
290
81.0M
    r[i] = old + c;
291
81.0M
    c = r[i] < old;
292
81.0M
  }
293
294
  // The product should fit without carries.
295
8.09M
  declassify_assert(c == 0);
296
8.09M
}
297
298
// bn_mul_part_recursive sets |r| to |a| * |b|, using |t| as scratch space. |r|
299
// has length 4*|n|, |a| has length |n| + |tna|, |b| has length |n| + |tnb|, and
300
// |t| has length 8*|n|. |n| must be a power of two. Additionally, we must have
301
// 0 <= tna < n and 0 <= tnb < n, and |tna| and |tnb| must differ by at most
302
// one.
303
//
304
// TODO(davidben): Make this take |size_t| and perhaps the actual lengths of |a|
305
// and |b|.
306
static void bn_mul_part_recursive(BN_ULONG *r, const BN_ULONG *a,
307
                                  const BN_ULONG *b, int n, int tna, int tnb,
308
1.27M
                                  BN_ULONG *t) {
309
  // |n| is a power of two.
310
1.27M
  assert(n != 0 && (n & (n - 1)) == 0);
311
  // Check |tna| and |tnb| are in range.
312
1.27M
  assert(0 <= tna && tna < n);
313
1.27M
  assert(0 <= tnb && tnb < n);
314
1.27M
  assert(-1 <= tna - tnb && tna - tnb <= 1);
315
316
1.27M
  int n2 = n * 2;
317
1.27M
  if (n < 8) {
318
0
    bn_mul_normal(r, a, n + tna, b, n + tnb);
319
0
    OPENSSL_memset(r + n2 + tna + tnb, 0, n2 - tna - tnb);
320
0
    return;
321
0
  }
322
323
  // Split |a| and |b| into a0,a1 and b0,b1, where a0 and b0 have size |n|. |a1|
324
  // and |b1| have size |tna| and |tnb|, respectively.
325
  // Split |t| into t0,t1,t2,t3, each of size |n|, with the remaining 4*|n| used
326
  // for recursive calls.
327
  // Split |r| into r0,r1,r2,r3. We must contribute a0*b0 to r0,r1, a0*a1+b0*b1
328
  // to r1,r2, and a1*b1 to r2,r3. The middle term we will compute as:
329
  //
330
  //   a0*a1 + b0*b1 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0
331
332
  // t0 = a0 - a1 and t1 = b1 - b0. The result will be multiplied, so we XOR
333
  // their sign masks, giving the sign of (a0 - a1)*(b1 - b0). t0 and t1
334
  // themselves store the absolute value.
335
1.27M
  BN_ULONG neg = bn_abs_sub_part_words(t, a, &a[n], tna, n - tna, &t[n2]);
336
1.27M
  neg ^= bn_abs_sub_part_words(&t[n], &b[n], b, tnb, tnb - n, &t[n2]);
337
338
  // Compute:
339
  // t2,t3 = t0 * t1 = |(a0 - a1)*(b1 - b0)|
340
  // r0,r1 = a0 * b0
341
  // r2,r3 = a1 * b1
342
1.27M
  if (n == 8) {
343
0
    bn_mul_comba8(&t[n2], t, &t[n]);
344
0
    bn_mul_comba8(r, a, b);
345
346
0
    bn_mul_normal(&r[n2], &a[n], tna, &b[n], tnb);
347
    // |bn_mul_normal| only writes |tna| + |tna| words. Zero the rest.
348
0
    OPENSSL_memset(&r[n2 + tna + tnb], 0, sizeof(BN_ULONG) * (n2 - tna - tnb));
349
1.27M
  } else {
350
1.27M
    BN_ULONG *p = &t[n2 * 2];
351
1.27M
    bn_mul_recursive(&t[n2], t, &t[n], n, 0, 0, p);
352
1.27M
    bn_mul_recursive(r, a, b, n, 0, 0, p);
353
354
1.27M
    OPENSSL_memset(&r[n2], 0, sizeof(BN_ULONG) * n2);
355
1.27M
    if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL &&
356
1.27M
        tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) {
357
651k
      bn_mul_normal(&r[n2], &a[n], tna, &b[n], tnb);
358
651k
    } else {
359
625k
      int i = n;
360
628k
      for (;;) {
361
628k
        i /= 2;
362
628k
        if (i < tna || i < tnb) {
363
          // E.g., n == 16, i == 8 and tna == 11. |tna| and |tnb| are within one
364
          // of each other, so if |tna| is larger and tna > i, then we know
365
          // tnb >= i, and this call is valid.
366
581k
          bn_mul_part_recursive(&r[n2], &a[n], &b[n], i, tna - i, tnb - i, p);
367
581k
          break;
368
581k
        }
369
46.9k
        if (i == tna || i == tnb) {
370
          // If there is only a bottom half to the number, just do it. We know
371
          // the larger of |tna - i| and |tnb - i| is zero. The other is zero or
372
          // -1 by because of |tna| and |tnb| differ by at most one.
373
43.4k
          bn_mul_recursive(&r[n2], &a[n], &b[n], i, tna - i, tnb - i, p);
374
43.4k
          break;
375
43.4k
        }
376
377
        // This loop will eventually terminate when |i| falls below
378
        // |BN_MUL_RECURSIVE_SIZE_NORMAL| because we know one of |tna| and |tnb|
379
        // exceeds that.
380
46.9k
      }
381
625k
    }
382
1.27M
  }
383
384
  // t0,t1,c = r0,r1 + r2,r3 = a0*b0 + a1*b1
385
1.27M
  BN_ULONG c = bn_add_words(t, r, &r[n2], n2);
386
387
  // t2,t3,c = t0,t1,c + neg*t2,t3 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0.
388
  // The second term is stored as the absolute value, so we do this with a
389
  // constant-time select.
390
1.27M
  BN_ULONG c_neg = c - bn_sub_words(&t[n2 * 2], t, &t[n2], n2);
391
1.27M
  BN_ULONG c_pos = c + bn_add_words(&t[n2], t, &t[n2], n2);
392
1.27M
  bn_select_words(&t[n2], neg, &t[n2 * 2], &t[n2], n2);
393
1.27M
  static_assert(sizeof(BN_ULONG) <= sizeof(crypto_word_t),
394
1.27M
                "crypto_word_t is too small");
395
1.27M
  c = constant_time_select_w(neg, c_neg, c_pos);
396
397
  // We now have our three components. Add them together.
398
  // r1,r2,c = r1,r2 + t2,t3,c
399
1.27M
  c += bn_add_words(&r[n], &r[n], &t[n2], n2);
400
401
  // Propagate the carry bit to the end.
402
34.8M
  for (int i = n + n2; i < n2 + n2; i++) {
403
33.5M
    BN_ULONG old = r[i];
404
33.5M
    r[i] = old + c;
405
33.5M
    c = r[i] < old;
406
33.5M
  }
407
408
  // The product should fit without carries.
409
1.27M
  declassify_assert(c == 0);
410
1.27M
}
411
412
// bn_mul_impl implements |BN_mul| and |bn_mul_consttime|. Note this function
413
// breaks |BIGNUM| invariants and may return a negative zero. This is handled by
414
// the callers.
415
static int bn_mul_impl(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
416
1.05M
                       BN_CTX *ctx) {
417
1.05M
  int al = a->width;
418
1.05M
  int bl = b->width;
419
1.05M
  if (al == 0 || bl == 0) {
420
2
    BN_zero(r);
421
2
    return 1;
422
2
  }
423
424
1.05M
  int ret = 0;
425
1.05M
  BIGNUM *rr;
426
1.05M
  BN_CTX_start(ctx);
427
1.05M
  if (r == a || r == b) {
428
3
    rr = BN_CTX_get(ctx);
429
3
    if (rr == NULL) {
430
0
      goto err;
431
0
    }
432
1.05M
  } else {
433
1.05M
    rr = r;
434
1.05M
  }
435
1.05M
  rr->neg = a->neg ^ b->neg;
436
437
1.05M
  int i = al - bl;
438
1.05M
  if (i == 0) {
439
622k
    if (al == 8) {
440
2.79k
      if (!bn_wexpand(rr, 16)) {
441
0
        goto err;
442
0
      }
443
2.79k
      rr->width = 16;
444
2.79k
      bn_mul_comba8(rr->d, a->d, b->d);
445
2.79k
      goto end;
446
2.79k
    }
447
622k
  }
448
449
1.05M
  int top = al + bl;
450
1.05M
  static const int kMulNormalSize = 16;
451
1.05M
  if (al >= kMulNormalSize && bl >= kMulNormalSize) {
452
880k
    if (-1 <= i && i <= 1) {
453
      // Find the largest power of two less than or equal to the larger length.
454
848k
      int j;
455
848k
      if (i >= 0) {
456
650k
        j = BN_num_bits_word((BN_ULONG)al);
457
650k
      } else {
458
197k
        j = BN_num_bits_word((BN_ULONG)bl);
459
197k
      }
460
848k
      j = 1 << (j - 1);
461
848k
      assert(j <= al || j <= bl);
462
848k
      BIGNUM *t = BN_CTX_get(ctx);
463
848k
      if (t == NULL) {
464
0
        goto err;
465
0
      }
466
848k
      if (al > j || bl > j) {
467
        // We know |al| and |bl| are at most one from each other, so if al > j,
468
        // bl >= j, and vice versa. Thus we can use |bn_mul_part_recursive|.
469
        //
470
        // TODO(davidben): This codepath is almost unused in standard
471
        // algorithms. Is this optimization necessary? See notes in
472
        // https://boringssl-review.googlesource.com/q/I0bd604e2cd6a75c266f64476c23a730ca1721ea6
473
694k
        assert(al >= j && bl >= j);
474
694k
        if (!bn_wexpand(t, j * 8) ||
475
694k
            !bn_wexpand(rr, j * 4)) {
476
0
          goto err;
477
0
        }
478
694k
        bn_mul_part_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
479
694k
      } else {
480
        // al <= j && bl <= j. Additionally, we know j <= al or j <= bl, so one
481
        // of al - j or bl - j is zero. The other, by the bound on |i| above, is
482
        // zero or -1. Thus, we can use |bn_mul_recursive|.
483
153k
        if (!bn_wexpand(t, j * 4) ||
484
153k
            !bn_wexpand(rr, j * 2)) {
485
0
          goto err;
486
0
        }
487
153k
        bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
488
153k
      }
489
848k
      rr->width = top;
490
848k
      goto end;
491
848k
    }
492
880k
  }
493
494
209k
  if (!bn_wexpand(rr, top)) {
495
0
    goto err;
496
0
  }
497
209k
  rr->width = top;
498
209k
  bn_mul_normal(rr->d, a->d, al, b->d, bl);
499
500
1.05M
end:
501
1.05M
  if (r != rr && !BN_copy(r, rr)) {
502
0
    goto err;
503
0
  }
504
1.05M
  ret = 1;
505
506
1.05M
err:
507
1.05M
  BN_CTX_end(ctx);
508
1.05M
  return ret;
509
1.05M
}
510
511
734k
int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
512
734k
  if (!bn_mul_impl(r, a, b, ctx)) {
513
0
    return 0;
514
0
  }
515
516
  // This additionally fixes any negative zeros created by |bn_mul_impl|.
517
734k
  bn_set_minimal_width(r);
518
734k
  return 1;
519
734k
}
520
521
325k
int bn_mul_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
522
  // Prevent negative zeros.
523
325k
  if (a->neg || b->neg) {
524
0
    OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
525
0
    return 0;
526
0
  }
527
528
325k
  return bn_mul_impl(r, a, b, ctx);
529
325k
}
530
531
void bn_mul_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a,
532
94.0k
                  const BN_ULONG *b, size_t num_b) {
533
94.0k
  if (num_r != num_a + num_b) {
534
0
    abort();
535
0
  }
536
  // TODO(davidben): Should this call |bn_mul_comba4| too? |BN_mul| does not
537
  // hit that code.
538
94.0k
  if (num_a == 8 && num_b == 8) {
539
0
    bn_mul_comba8(r, a, b);
540
94.0k
  } else {
541
94.0k
    bn_mul_normal(r, a, num_a, b, num_b);
542
94.0k
  }
543
94.0k
}
544
545
// tmp must have 2*n words
546
static void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, size_t n,
547
1.31M
                          BN_ULONG *tmp) {
548
1.31M
  if (n == 0) {
549
0
    return;
550
0
  }
551
552
1.31M
  size_t max = n * 2;
553
1.31M
  const BN_ULONG *ap = a;
554
1.31M
  BN_ULONG *rp = r;
555
1.31M
  rp[0] = rp[max - 1] = 0;
556
1.31M
  rp++;
557
558
  // Compute the contribution of a[i] * a[j] for all i < j.
559
1.31M
  if (n > 1) {
560
1.28M
    ap++;
561
1.28M
    rp[n - 1] = bn_mul_words(rp, ap, n - 1, ap[-1]);
562
1.28M
    rp += 2;
563
1.28M
  }
564
1.31M
  if (n > 2) {
565
26.2M
    for (size_t i = n - 2; i > 0; i--) {
566
25.0M
      ap++;
567
25.0M
      rp[i] = bn_mul_add_words(rp, ap, i, ap[-1]);
568
25.0M
      rp += 2;
569
25.0M
    }
570
1.22M
  }
571
572
  // The final result fits in |max| words, so none of the following operations
573
  // will overflow.
574
575
  // Double |r|, giving the contribution of a[i] * a[j] for all i != j.
576
1.31M
  bn_add_words(r, r, r, max);
577
578
  // Add in the contribution of a[i] * a[i] for all i.
579
1.31M
  bn_sqr_words(tmp, a, n);
580
1.31M
  bn_add_words(r, r, tmp, max);
581
1.31M
}
582
583
// bn_sqr_recursive sets |r| to |a|^2, using |t| as scratch space. |r| has
584
// length 2*|n2|, |a| has length |n2|, and |t| has length 4*|n2|. |n2| must be
585
// a power of two.
586
static void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, size_t n2,
587
4.22M
                             BN_ULONG *t) {
588
  // |n2| is a power of two.
589
4.22M
  assert(n2 != 0 && (n2 & (n2 - 1)) == 0);
590
591
4.22M
  if (n2 == 4) {
592
0
    bn_sqr_comba4(r, a);
593
0
    return;
594
0
  }
595
4.22M
  if (n2 == 8) {
596
3.15M
    bn_sqr_comba8(r, a);
597
3.15M
    return;
598
3.15M
  }
599
1.07M
  if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL) {
600
0
    bn_sqr_normal(r, a, n2, t);
601
0
    return;
602
0
  }
603
604
  // Split |a| into a0,a1, each of size |n|.
605
  // Split |t| into t0,t1,t2,t3, each of size |n|, with the remaining 4*|n| used
606
  // for recursive calls.
607
  // Split |r| into r0,r1,r2,r3. We must contribute a0^2 to r0,r1, 2*a0*a1 to
608
  // r1,r2, and a1^2 to r2,r3.
609
1.07M
  size_t n = n2 / 2;
610
1.07M
  BN_ULONG *t_recursive = &t[n2 * 2];
611
612
  // t0 = |a0 - a1|.
613
1.07M
  bn_abs_sub_words(t, a, &a[n], n, &t[n]);
614
  // t2,t3 = t0^2 = |a0 - a1|^2 = a0^2 - 2*a0*a1 + a1^2
615
1.07M
  bn_sqr_recursive(&t[n2], t, n, t_recursive);
616
617
  // r0,r1 = a0^2
618
1.07M
  bn_sqr_recursive(r, a, n, t_recursive);
619
620
  // r2,r3 = a1^2
621
1.07M
  bn_sqr_recursive(&r[n2], &a[n], n, t_recursive);
622
623
  // t0,t1,c = r0,r1 + r2,r3 = a0^2 + a1^2
624
1.07M
  BN_ULONG c = bn_add_words(t, r, &r[n2], n2);
625
  // t2,t3,c = t0,t1,c - t2,t3 = 2*a0*a1
626
1.07M
  c -= bn_sub_words(&t[n2], t, &t[n2], n2);
627
628
  // We now have our three components. Add them together.
629
  // r1,r2,c = r1,r2 + t2,t3,c
630
1.07M
  c += bn_add_words(&r[n], &r[n], &t[n2], n2);
631
632
  // Propagate the carry bit to the end.
633
9.83M
  for (size_t i = n + n2; i < n2 + n2; i++) {
634
8.76M
    BN_ULONG old = r[i];
635
8.76M
    r[i] = old + c;
636
8.76M
    c = r[i] < old;
637
8.76M
  }
638
639
  // The square should fit without carries.
640
1.07M
  assert(c == 0);
641
1.07M
}
642
643
201k
int BN_mul_word(BIGNUM *bn, BN_ULONG w) {
644
201k
  if (!bn->width) {
645
13.2k
    return 1;
646
13.2k
  }
647
648
187k
  if (w == 0) {
649
0
    BN_zero(bn);
650
0
    return 1;
651
0
  }
652
653
187k
  BN_ULONG ll = bn_mul_words(bn->d, bn->d, bn->width, w);
654
187k
  if (ll) {
655
183k
    if (!bn_wexpand(bn, bn->width + 1)) {
656
0
      return 0;
657
0
    }
658
183k
    bn->d[bn->width++] = ll;
659
183k
  }
660
661
187k
  return 1;
662
187k
}
663
664
2.23M
int bn_sqr_consttime(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) {
665
2.23M
  int al = a->width;
666
2.23M
  if (al <= 0) {
667
1
    r->width = 0;
668
1
    r->neg = 0;
669
1
    return 1;
670
1
  }
671
672
2.23M
  int ret = 0;
673
2.23M
  BN_CTX_start(ctx);
674
2.23M
  BIGNUM *rr = (a != r) ? r : BN_CTX_get(ctx);
675
2.23M
  BIGNUM *tmp = BN_CTX_get(ctx);
676
2.23M
  if (!rr || !tmp) {
677
0
    goto err;
678
0
  }
679
680
2.23M
  int max = 2 * al;  // Non-zero (from above)
681
2.23M
  if (!bn_wexpand(rr, max)) {
682
0
    goto err;
683
0
  }
684
685
2.23M
  if (al == 4) {
686
13.9k
    bn_sqr_comba4(rr->d, a->d);
687
2.21M
  } else if (al == 8) {
688
10.9k
    bn_sqr_comba8(rr->d, a->d);
689
2.20M
  } else {
690
2.20M
    if (al < BN_SQR_RECURSIVE_SIZE_NORMAL) {
691
784k
      BN_ULONG t[BN_SQR_RECURSIVE_SIZE_NORMAL * 2];
692
784k
      bn_sqr_normal(rr->d, a->d, al, t);
693
1.42M
    } else {
694
      // If |al| is a power of two, we can use |bn_sqr_recursive|.
695
1.42M
      if (al != 0 && (al & (al - 1)) == 0) {
696
1.00M
        if (!bn_wexpand(tmp, al * 4)) {
697
0
          goto err;
698
0
        }
699
1.00M
        bn_sqr_recursive(rr->d, a->d, al, tmp->d);
700
1.00M
      } else {
701
414k
        if (!bn_wexpand(tmp, max)) {
702
0
          goto err;
703
0
        }
704
414k
        bn_sqr_normal(rr->d, a->d, al, tmp->d);
705
414k
      }
706
1.42M
    }
707
2.20M
  }
708
709
2.23M
  rr->neg = 0;
710
2.23M
  rr->width = max;
711
712
2.23M
  if (rr != r && !BN_copy(r, rr)) {
713
0
    goto err;
714
0
  }
715
2.23M
  ret = 1;
716
717
2.23M
err:
718
2.23M
  BN_CTX_end(ctx);
719
2.23M
  return ret;
720
2.23M
}
721
722
302k
int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) {
723
302k
  if (!bn_sqr_consttime(r, a, ctx)) {
724
0
    return 0;
725
0
  }
726
727
302k
  bn_set_minimal_width(r);
728
302k
  return 1;
729
302k
}
730
731
115k
void bn_sqr_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a) {
732
115k
  if (num_r != 2 * num_a || num_a > BN_SMALL_MAX_WORDS) {
733
0
    abort();
734
0
  }
735
115k
  if (num_a == 4) {
736
198
    bn_sqr_comba4(r, a);
737
115k
  } else if (num_a == 8) {
738
0
    bn_sqr_comba8(r, a);
739
115k
  } else {
740
115k
    BN_ULONG tmp[2 * BN_SMALL_MAX_WORDS];
741
115k
    bn_sqr_normal(r, a, num_a, tmp);
742
115k
    OPENSSL_cleanse(tmp, 2 * num_a * sizeof(BN_ULONG));
743
115k
  }
744
115k
}