/src/boringssl/crypto/fipsmodule/cipher/e_aesccm.c.inc
Line | Count | Source (jump to first uncovered line) |
1 | | /* ==================================================================== |
2 | | * Copyright (c) 2008 The OpenSSL Project. All rights reserved. |
3 | | * |
4 | | * Redistribution and use in source and binary forms, with or without |
5 | | * modification, are permitted provided that the following conditions |
6 | | * are met: |
7 | | * |
8 | | * 1. Redistributions of source code must retain the above copyright |
9 | | * notice, this list of conditions and the following disclaimer. |
10 | | * |
11 | | * 2. Redistributions in binary form must reproduce the above copyright |
12 | | * notice, this list of conditions and the following disclaimer in |
13 | | * the documentation and/or other materials provided with the |
14 | | * distribution. |
15 | | * |
16 | | * 3. All advertising materials mentioning features or use of this |
17 | | * software must display the following acknowledgment: |
18 | | * "This product includes software developed by the OpenSSL Project |
19 | | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
20 | | * |
21 | | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
22 | | * endorse or promote products derived from this software without |
23 | | * prior written permission. For written permission, please contact |
24 | | * openssl-core@openssl.org. |
25 | | * |
26 | | * 5. Products derived from this software may not be called "OpenSSL" |
27 | | * nor may "OpenSSL" appear in their names without prior written |
28 | | * permission of the OpenSSL Project. |
29 | | * |
30 | | * 6. Redistributions of any form whatsoever must retain the following |
31 | | * acknowledgment: |
32 | | * "This product includes software developed by the OpenSSL Project |
33 | | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
34 | | * |
35 | | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
36 | | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
37 | | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
38 | | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
39 | | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
40 | | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
41 | | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
42 | | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
43 | | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
44 | | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
45 | | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
46 | | * OF THE POSSIBILITY OF SUCH DAMAGE. |
47 | | * ==================================================================== */ |
48 | | |
49 | | #include <openssl/aead.h> |
50 | | |
51 | | #include <assert.h> |
52 | | |
53 | | #include <openssl/cipher.h> |
54 | | #include <openssl/err.h> |
55 | | #include <openssl/mem.h> |
56 | | |
57 | | #include "../delocate.h" |
58 | | #include "../modes/internal.h" |
59 | | #include "../service_indicator/internal.h" |
60 | | #include "internal.h" |
61 | | |
62 | | |
63 | | struct ccm128_context { |
64 | | block128_f block; |
65 | | ctr128_f ctr; |
66 | | unsigned M, L; |
67 | | }; |
68 | | |
69 | | struct ccm128_state { |
70 | | alignas(16) uint8_t nonce[16]; |
71 | | alignas(16) uint8_t cmac[16]; |
72 | | }; |
73 | | |
74 | | static int CRYPTO_ccm128_init(struct ccm128_context *ctx, const AES_KEY *key, |
75 | | block128_f block, ctr128_f ctr, unsigned M, |
76 | 82 | unsigned L) { |
77 | 82 | if (M < 4 || M > 16 || (M & 1) != 0 || L < 2 || L > 8) { |
78 | 0 | return 0; |
79 | 0 | } |
80 | 82 | ctx->block = block; |
81 | 82 | ctx->ctr = ctr; |
82 | 82 | ctx->M = M; |
83 | 82 | ctx->L = L; |
84 | 82 | return 1; |
85 | 82 | } |
86 | | |
87 | 164 | static size_t CRYPTO_ccm128_max_input(const struct ccm128_context *ctx) { |
88 | 164 | return ctx->L >= sizeof(size_t) ? SIZE_MAX |
89 | 164 | : (((size_t)1) << (ctx->L * 8)) - 1; |
90 | 164 | } |
91 | | |
92 | | static int ccm128_init_state(const struct ccm128_context *ctx, |
93 | | struct ccm128_state *state, const AES_KEY *key, |
94 | | const uint8_t *nonce, size_t nonce_len, |
95 | | const uint8_t *aad, size_t aad_len, |
96 | 82 | size_t plaintext_len) { |
97 | 82 | const block128_f block = ctx->block; |
98 | 82 | const unsigned M = ctx->M; |
99 | 82 | const unsigned L = ctx->L; |
100 | | |
101 | | // |L| determines the expected |nonce_len| and the limit for |plaintext_len|. |
102 | 82 | if (plaintext_len > CRYPTO_ccm128_max_input(ctx) || |
103 | 82 | nonce_len != 15 - L) { |
104 | 0 | return 0; |
105 | 0 | } |
106 | | |
107 | | // Assemble the first block for computing the MAC. |
108 | 82 | OPENSSL_memset(state, 0, sizeof(*state)); |
109 | 82 | state->nonce[0] = (uint8_t)((L - 1) | ((M - 2) / 2) << 3); |
110 | 82 | if (aad_len != 0) { |
111 | 0 | state->nonce[0] |= 0x40; // Set AAD Flag |
112 | 0 | } |
113 | 82 | OPENSSL_memcpy(&state->nonce[1], nonce, nonce_len); |
114 | 246 | for (unsigned i = 0; i < L; i++) { |
115 | 164 | state->nonce[15 - i] = (uint8_t)(plaintext_len >> (8 * i)); |
116 | 164 | } |
117 | | |
118 | 82 | (*block)(state->nonce, state->cmac, key); |
119 | 82 | size_t blocks = 1; |
120 | | |
121 | 82 | if (aad_len != 0) { |
122 | 0 | unsigned i; |
123 | | // Cast to u64 to avoid the compiler complaining about invalid shifts. |
124 | 0 | uint64_t aad_len_u64 = aad_len; |
125 | 0 | if (aad_len_u64 < 0x10000 - 0x100) { |
126 | 0 | state->cmac[0] ^= (uint8_t)(aad_len_u64 >> 8); |
127 | 0 | state->cmac[1] ^= (uint8_t)aad_len_u64; |
128 | 0 | i = 2; |
129 | 0 | } else if (aad_len_u64 <= 0xffffffff) { |
130 | 0 | state->cmac[0] ^= 0xff; |
131 | 0 | state->cmac[1] ^= 0xfe; |
132 | 0 | state->cmac[2] ^= (uint8_t)(aad_len_u64 >> 24); |
133 | 0 | state->cmac[3] ^= (uint8_t)(aad_len_u64 >> 16); |
134 | 0 | state->cmac[4] ^= (uint8_t)(aad_len_u64 >> 8); |
135 | 0 | state->cmac[5] ^= (uint8_t)aad_len_u64; |
136 | 0 | i = 6; |
137 | 0 | } else { |
138 | 0 | state->cmac[0] ^= 0xff; |
139 | 0 | state->cmac[1] ^= 0xff; |
140 | 0 | state->cmac[2] ^= (uint8_t)(aad_len_u64 >> 56); |
141 | 0 | state->cmac[3] ^= (uint8_t)(aad_len_u64 >> 48); |
142 | 0 | state->cmac[4] ^= (uint8_t)(aad_len_u64 >> 40); |
143 | 0 | state->cmac[5] ^= (uint8_t)(aad_len_u64 >> 32); |
144 | 0 | state->cmac[6] ^= (uint8_t)(aad_len_u64 >> 24); |
145 | 0 | state->cmac[7] ^= (uint8_t)(aad_len_u64 >> 16); |
146 | 0 | state->cmac[8] ^= (uint8_t)(aad_len_u64 >> 8); |
147 | 0 | state->cmac[9] ^= (uint8_t)aad_len_u64; |
148 | 0 | i = 10; |
149 | 0 | } |
150 | |
|
151 | 0 | do { |
152 | 0 | for (; i < 16 && aad_len != 0; i++) { |
153 | 0 | state->cmac[i] ^= *aad; |
154 | 0 | aad++; |
155 | 0 | aad_len--; |
156 | 0 | } |
157 | 0 | (*block)(state->cmac, state->cmac, key); |
158 | 0 | blocks++; |
159 | 0 | i = 0; |
160 | 0 | } while (aad_len != 0); |
161 | 0 | } |
162 | | |
163 | | // Per RFC 3610, section 2.6, the total number of block cipher operations done |
164 | | // must not exceed 2^61. There are two block cipher operations remaining per |
165 | | // message block, plus one block at the end to encrypt the MAC. |
166 | 82 | size_t remaining_blocks = 2 * ((plaintext_len + 15) / 16) + 1; |
167 | 82 | if (plaintext_len + 15 < plaintext_len || |
168 | 82 | remaining_blocks + blocks < blocks || |
169 | 82 | (uint64_t) remaining_blocks + blocks > UINT64_C(1) << 61) { |
170 | 0 | return 0; |
171 | 0 | } |
172 | | |
173 | | // Assemble the first block for encrypting and decrypting. The bottom |L| |
174 | | // bytes are replaced with a counter and all bit the encoding of |L| is |
175 | | // cleared in the first byte. |
176 | 82 | state->nonce[0] &= 7; |
177 | 82 | return 1; |
178 | 82 | } |
179 | | |
180 | | static int ccm128_encrypt(const struct ccm128_context *ctx, |
181 | | struct ccm128_state *state, const AES_KEY *key, |
182 | 82 | uint8_t *out, const uint8_t *in, size_t len) { |
183 | | // The counter for encryption begins at one. |
184 | 246 | for (unsigned i = 0; i < ctx->L; i++) { |
185 | 164 | state->nonce[15 - i] = 0; |
186 | 164 | } |
187 | 82 | state->nonce[15] = 1; |
188 | | |
189 | 82 | uint8_t partial_buf[16]; |
190 | 82 | unsigned num = 0; |
191 | 82 | if (ctx->ctr != NULL) { |
192 | 82 | CRYPTO_ctr128_encrypt_ctr32(in, out, len, key, state->nonce, partial_buf, |
193 | 82 | &num, ctx->ctr); |
194 | 82 | } else { |
195 | 0 | CRYPTO_ctr128_encrypt(in, out, len, key, state->nonce, partial_buf, &num, |
196 | 0 | ctx->block); |
197 | 0 | } |
198 | 82 | return 1; |
199 | 82 | } |
200 | | |
201 | | static int ccm128_compute_mac(const struct ccm128_context *ctx, |
202 | | struct ccm128_state *state, const AES_KEY *key, |
203 | | uint8_t *out_tag, size_t tag_len, |
204 | 82 | const uint8_t *in, size_t len) { |
205 | 82 | block128_f block = ctx->block; |
206 | 82 | if (tag_len != ctx->M) { |
207 | 0 | return 0; |
208 | 0 | } |
209 | | |
210 | | // Incorporate |in| into the MAC. |
211 | 164 | while (len >= 16) { |
212 | 82 | CRYPTO_xor16(state->cmac, state->cmac, in); |
213 | 82 | (*block)(state->cmac, state->cmac, key); |
214 | 82 | in += 16; |
215 | 82 | len -= 16; |
216 | 82 | } |
217 | 82 | if (len > 0) { |
218 | 0 | for (size_t i = 0; i < len; i++) { |
219 | 0 | state->cmac[i] ^= in[i]; |
220 | 0 | } |
221 | 0 | (*block)(state->cmac, state->cmac, key); |
222 | 0 | } |
223 | | |
224 | | // Encrypt the MAC with counter zero. |
225 | 246 | for (unsigned i = 0; i < ctx->L; i++) { |
226 | 164 | state->nonce[15 - i] = 0; |
227 | 164 | } |
228 | 82 | alignas(16) uint8_t tmp[16]; |
229 | 82 | (*block)(state->nonce, tmp, key); |
230 | 82 | CRYPTO_xor16(state->cmac, state->cmac, tmp); |
231 | | |
232 | 82 | OPENSSL_memcpy(out_tag, state->cmac, tag_len); |
233 | 82 | return 1; |
234 | 82 | } |
235 | | |
236 | | static int CRYPTO_ccm128_encrypt(const struct ccm128_context *ctx, |
237 | | const AES_KEY *key, uint8_t *out, |
238 | | uint8_t *out_tag, size_t tag_len, |
239 | | const uint8_t *nonce, size_t nonce_len, |
240 | | const uint8_t *in, size_t len, |
241 | 41 | const uint8_t *aad, size_t aad_len) { |
242 | 41 | struct ccm128_state state; |
243 | 41 | return ccm128_init_state(ctx, &state, key, nonce, nonce_len, aad, aad_len, |
244 | 41 | len) && |
245 | 41 | ccm128_compute_mac(ctx, &state, key, out_tag, tag_len, in, len) && |
246 | 41 | ccm128_encrypt(ctx, &state, key, out, in, len); |
247 | 41 | } |
248 | | |
249 | | static int CRYPTO_ccm128_decrypt(const struct ccm128_context *ctx, |
250 | | const AES_KEY *key, uint8_t *out, |
251 | | uint8_t *out_tag, size_t tag_len, |
252 | | const uint8_t *nonce, size_t nonce_len, |
253 | | const uint8_t *in, size_t len, |
254 | 41 | const uint8_t *aad, size_t aad_len) { |
255 | 41 | struct ccm128_state state; |
256 | 41 | return ccm128_init_state(ctx, &state, key, nonce, nonce_len, aad, aad_len, |
257 | 41 | len) && |
258 | 41 | ccm128_encrypt(ctx, &state, key, out, in, len) && |
259 | 41 | ccm128_compute_mac(ctx, &state, key, out_tag, tag_len, out, len); |
260 | 41 | } |
261 | | |
262 | | #define EVP_AEAD_AES_CCM_MAX_TAG_LEN 16 |
263 | | |
264 | | struct aead_aes_ccm_ctx { |
265 | | union { |
266 | | double align; |
267 | | AES_KEY ks; |
268 | | } ks; |
269 | | struct ccm128_context ccm; |
270 | | }; |
271 | | |
272 | | static_assert(sizeof(((EVP_AEAD_CTX *)NULL)->state) >= |
273 | | sizeof(struct aead_aes_ccm_ctx), |
274 | | "AEAD state is too small"); |
275 | | static_assert(alignof(union evp_aead_ctx_st_state) >= |
276 | | alignof(struct aead_aes_ccm_ctx), |
277 | | "AEAD state has insufficient alignment"); |
278 | | |
279 | | static int aead_aes_ccm_init(EVP_AEAD_CTX *ctx, const uint8_t *key, |
280 | | size_t key_len, size_t tag_len, unsigned M, |
281 | 102 | unsigned L) { |
282 | 102 | assert(M == EVP_AEAD_max_overhead(ctx->aead)); |
283 | 102 | assert(M == EVP_AEAD_max_tag_len(ctx->aead)); |
284 | 102 | assert(15 - L == EVP_AEAD_nonce_length(ctx->aead)); |
285 | | |
286 | 102 | if (key_len != EVP_AEAD_key_length(ctx->aead)) { |
287 | 0 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); |
288 | 0 | return 0; // EVP_AEAD_CTX_init should catch this. |
289 | 0 | } |
290 | | |
291 | 102 | if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) { |
292 | 0 | tag_len = M; |
293 | 0 | } |
294 | | |
295 | 102 | if (tag_len != M) { |
296 | 20 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE); |
297 | 20 | return 0; |
298 | 20 | } |
299 | | |
300 | 82 | struct aead_aes_ccm_ctx *ccm_ctx = (struct aead_aes_ccm_ctx *)&ctx->state; |
301 | | |
302 | 82 | block128_f block; |
303 | 82 | ctr128_f ctr = aes_ctr_set_key(&ccm_ctx->ks.ks, NULL, &block, key, key_len); |
304 | 82 | ctx->tag_len = tag_len; |
305 | 82 | if (!CRYPTO_ccm128_init(&ccm_ctx->ccm, &ccm_ctx->ks.ks, block, ctr, M, L)) { |
306 | 0 | OPENSSL_PUT_ERROR(CIPHER, ERR_R_INTERNAL_ERROR); |
307 | 0 | return 0; |
308 | 0 | } |
309 | | |
310 | 82 | return 1; |
311 | 82 | } |
312 | | |
313 | 82 | static void aead_aes_ccm_cleanup(EVP_AEAD_CTX *ctx) {} |
314 | | |
315 | | static int aead_aes_ccm_seal_scatter( |
316 | | const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag, |
317 | | size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce, |
318 | | size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in, |
319 | 41 | size_t extra_in_len, const uint8_t *ad, size_t ad_len) { |
320 | 41 | const struct aead_aes_ccm_ctx *ccm_ctx = |
321 | 41 | (struct aead_aes_ccm_ctx *)&ctx->state; |
322 | | |
323 | 41 | if (in_len > CRYPTO_ccm128_max_input(&ccm_ctx->ccm)) { |
324 | 0 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); |
325 | 0 | return 0; |
326 | 0 | } |
327 | | |
328 | 41 | if (max_out_tag_len < ctx->tag_len) { |
329 | 0 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); |
330 | 0 | return 0; |
331 | 0 | } |
332 | | |
333 | 41 | if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) { |
334 | 0 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); |
335 | 0 | return 0; |
336 | 0 | } |
337 | | |
338 | 41 | if (!CRYPTO_ccm128_encrypt(&ccm_ctx->ccm, &ccm_ctx->ks.ks, out, out_tag, |
339 | 41 | ctx->tag_len, nonce, nonce_len, in, in_len, ad, |
340 | 41 | ad_len)) { |
341 | 0 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); |
342 | 0 | return 0; |
343 | 0 | } |
344 | | |
345 | 41 | *out_tag_len = ctx->tag_len; |
346 | 41 | AEAD_CCM_verify_service_indicator(ctx); |
347 | 41 | return 1; |
348 | 41 | } |
349 | | |
350 | | static int aead_aes_ccm_open_gather(const EVP_AEAD_CTX *ctx, uint8_t *out, |
351 | | const uint8_t *nonce, size_t nonce_len, |
352 | | const uint8_t *in, size_t in_len, |
353 | | const uint8_t *in_tag, size_t in_tag_len, |
354 | 41 | const uint8_t *ad, size_t ad_len) { |
355 | 41 | const struct aead_aes_ccm_ctx *ccm_ctx = |
356 | 41 | (struct aead_aes_ccm_ctx *)&ctx->state; |
357 | | |
358 | 41 | if (in_len > CRYPTO_ccm128_max_input(&ccm_ctx->ccm)) { |
359 | 0 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); |
360 | 0 | return 0; |
361 | 0 | } |
362 | | |
363 | 41 | if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) { |
364 | 0 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); |
365 | 0 | return 0; |
366 | 0 | } |
367 | | |
368 | 41 | if (in_tag_len != ctx->tag_len) { |
369 | 0 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
370 | 0 | return 0; |
371 | 0 | } |
372 | | |
373 | 41 | uint8_t tag[EVP_AEAD_AES_CCM_MAX_TAG_LEN]; |
374 | 41 | assert(ctx->tag_len <= EVP_AEAD_AES_CCM_MAX_TAG_LEN); |
375 | 41 | if (!CRYPTO_ccm128_decrypt(&ccm_ctx->ccm, &ccm_ctx->ks.ks, out, tag, |
376 | 41 | ctx->tag_len, nonce, nonce_len, in, in_len, ad, |
377 | 41 | ad_len)) { |
378 | 0 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); |
379 | 0 | return 0; |
380 | 0 | } |
381 | | |
382 | 41 | if (CRYPTO_memcmp(tag, in_tag, ctx->tag_len) != 0) { |
383 | 0 | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
384 | 0 | return 0; |
385 | 0 | } |
386 | | |
387 | 41 | AEAD_CCM_verify_service_indicator(ctx); |
388 | 41 | return 1; |
389 | 41 | } |
390 | | |
391 | | static int aead_aes_ccm_bluetooth_init(EVP_AEAD_CTX *ctx, const uint8_t *key, |
392 | 102 | size_t key_len, size_t tag_len) { |
393 | 102 | return aead_aes_ccm_init(ctx, key, key_len, tag_len, 4, 2); |
394 | 102 | } |
395 | | |
396 | 2 | DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_ccm_bluetooth) { |
397 | 2 | memset(out, 0, sizeof(EVP_AEAD)); |
398 | | |
399 | 2 | out->key_len = 16; |
400 | 2 | out->nonce_len = 13; |
401 | 2 | out->overhead = 4; |
402 | 2 | out->max_tag_len = 4; |
403 | | |
404 | 2 | out->init = aead_aes_ccm_bluetooth_init; |
405 | 2 | out->cleanup = aead_aes_ccm_cleanup; |
406 | 2 | out->seal_scatter = aead_aes_ccm_seal_scatter; |
407 | 2 | out->open_gather = aead_aes_ccm_open_gather; |
408 | 2 | } |
409 | | |
410 | | static int aead_aes_ccm_bluetooth_8_init(EVP_AEAD_CTX *ctx, const uint8_t *key, |
411 | 0 | size_t key_len, size_t tag_len) { |
412 | 0 | return aead_aes_ccm_init(ctx, key, key_len, tag_len, 8, 2); |
413 | 0 | } |
414 | | |
415 | 2 | DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_ccm_bluetooth_8) { |
416 | 2 | memset(out, 0, sizeof(EVP_AEAD)); |
417 | | |
418 | 2 | out->key_len = 16; |
419 | 2 | out->nonce_len = 13; |
420 | 2 | out->overhead = 8; |
421 | 2 | out->max_tag_len = 8; |
422 | | |
423 | 2 | out->init = aead_aes_ccm_bluetooth_8_init; |
424 | 2 | out->cleanup = aead_aes_ccm_cleanup; |
425 | 2 | out->seal_scatter = aead_aes_ccm_seal_scatter; |
426 | 2 | out->open_gather = aead_aes_ccm_open_gather; |
427 | 2 | } |
428 | | |
429 | | static int aead_aes_ccm_matter_init(EVP_AEAD_CTX *ctx, const uint8_t *key, |
430 | 0 | size_t key_len, size_t tag_len) { |
431 | 0 | return aead_aes_ccm_init(ctx, key, key_len, tag_len, 16, 2); |
432 | 0 | } |
433 | | |
434 | 0 | DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_ccm_matter) { |
435 | 0 | memset(out, 0, sizeof(EVP_AEAD)); |
436 | |
|
437 | 0 | out->key_len = 16; |
438 | 0 | out->nonce_len = 13; |
439 | 0 | out->overhead = 16; |
440 | 0 | out->max_tag_len = 16; |
441 | |
|
442 | 0 | out->init = aead_aes_ccm_matter_init; |
443 | 0 | out->cleanup = aead_aes_ccm_cleanup; |
444 | 0 | out->seal_scatter = aead_aes_ccm_seal_scatter; |
445 | 0 | out->open_gather = aead_aes_ccm_open_gather; |
446 | 0 | } |