Coverage Report

Created: 2024-11-21 07:03

/src/boringssl/crypto/fipsmodule/ec/p224-64.c.inc
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (c) 2015, Google Inc.
2
 *
3
 * Permission to use, copy, modify, and/or distribute this software for any
4
 * purpose with or without fee is hereby granted, provided that the above
5
 * copyright notice and this permission notice appear in all copies.
6
 *
7
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10
 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12
 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13
 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14
15
// A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
16
//
17
// Inspired by Daniel J. Bernstein's public domain nistp224 implementation
18
// and Adam Langley's public domain 64-bit C implementation of curve25519.
19
20
#include <openssl/base.h>
21
22
#include <openssl/bn.h>
23
#include <openssl/ec.h>
24
#include <openssl/err.h>
25
#include <openssl/mem.h>
26
27
#include <assert.h>
28
#include <string.h>
29
30
#include "internal.h"
31
#include "../delocate.h"
32
#include "../../internal.h"
33
34
35
#if defined(BORINGSSL_HAS_UINT128) && !defined(OPENSSL_SMALL)
36
37
// Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
38
// using 64-bit coefficients called 'limbs', and sometimes (for multiplication
39
// results) as b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 +
40
// 2^336*b_6 using 128-bit coefficients called 'widelimbs'. A 4-p224_limb
41
// representation is an 'p224_felem'; a 7-p224_widelimb representation is a
42
// 'p224_widefelem'. Even within felems, bits of adjacent limbs overlap, and we
43
// don't always reduce the representations: we ensure that inputs to each
44
// p224_felem multiplication satisfy a_i < 2^60, so outputs satisfy b_i <
45
// 4*2^60*2^60, and fit into a 128-bit word without overflow. The coefficients
46
// are then again partially reduced to obtain an p224_felem satisfying a_i <
47
// 2^57. We only reduce to the unique minimal representation at the end of the
48
// computation.
49
50
typedef uint64_t p224_limb;
51
typedef uint128_t p224_widelimb;
52
53
typedef p224_limb p224_felem[4];
54
typedef p224_widelimb p224_widefelem[7];
55
56
// Precomputed multiples of the standard generator
57
// Points are given in coordinates (X, Y, Z) where Z normally is 1
58
// (0 for the point at infinity).
59
// For each field element, slice a_0 is word 0, etc.
60
//
61
// The table has 2 * 16 elements, starting with the following:
62
// index | bits    | point
63
// ------+---------+------------------------------
64
//     0 | 0 0 0 0 | 0G
65
//     1 | 0 0 0 1 | 1G
66
//     2 | 0 0 1 0 | 2^56G
67
//     3 | 0 0 1 1 | (2^56 + 1)G
68
//     4 | 0 1 0 0 | 2^112G
69
//     5 | 0 1 0 1 | (2^112 + 1)G
70
//     6 | 0 1 1 0 | (2^112 + 2^56)G
71
//     7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
72
//     8 | 1 0 0 0 | 2^168G
73
//     9 | 1 0 0 1 | (2^168 + 1)G
74
//    10 | 1 0 1 0 | (2^168 + 2^56)G
75
//    11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
76
//    12 | 1 1 0 0 | (2^168 + 2^112)G
77
//    13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
78
//    14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
79
//    15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
80
// followed by a copy of this with each element multiplied by 2^28.
81
//
82
// The reason for this is so that we can clock bits into four different
83
// locations when doing simple scalar multiplies against the base point,
84
// and then another four locations using the second 16 elements.
85
static const p224_felem g_p224_pre_comp[2][16][3] = {
86
    {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
87
     {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
88
      {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
89
      {1, 0, 0, 0}},
90
     {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
91
      {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
92
      {1, 0, 0, 0}},
93
     {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
94
      {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
95
      {1, 0, 0, 0}},
96
     {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
97
      {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
98
      {1, 0, 0, 0}},
99
     {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
100
      {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
101
      {1, 0, 0, 0}},
102
     {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
103
      {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
104
      {1, 0, 0, 0}},
105
     {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
106
      {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
107
      {1, 0, 0, 0}},
108
     {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
109
      {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
110
      {1, 0, 0, 0}},
111
     {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
112
      {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
113
      {1, 0, 0, 0}},
114
     {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
115
      {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
116
      {1, 0, 0, 0}},
117
     {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
118
      {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
119
      {1, 0, 0, 0}},
120
     {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
121
      {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
122
      {1, 0, 0, 0}},
123
     {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
124
      {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
125
      {1, 0, 0, 0}},
126
     {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
127
      {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
128
      {1, 0, 0, 0}},
129
     {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
130
      {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
131
      {1, 0, 0, 0}}},
132
    {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
133
     {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
134
      {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
135
      {1, 0, 0, 0}},
136
     {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
137
      {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
138
      {1, 0, 0, 0}},
139
     {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
140
      {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
141
      {1, 0, 0, 0}},
142
     {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
143
      {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
144
      {1, 0, 0, 0}},
145
     {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
146
      {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
147
      {1, 0, 0, 0}},
148
     {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
149
      {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
150
      {1, 0, 0, 0}},
151
     {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
152
      {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
153
      {1, 0, 0, 0}},
154
     {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
155
      {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
156
      {1, 0, 0, 0}},
157
     {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
158
      {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
159
      {1, 0, 0, 0}},
160
     {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
161
      {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
162
      {1, 0, 0, 0}},
163
     {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
164
      {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
165
      {1, 0, 0, 0}},
166
     {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
167
      {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
168
      {1, 0, 0, 0}},
169
     {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
170
      {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
171
      {1, 0, 0, 0}},
172
     {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
173
      {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
174
      {1, 0, 0, 0}},
175
     {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
176
      {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
177
      {1, 0, 0, 0}}}};
178
179
180
// Helper functions to convert field elements to/from internal representation
181
182
414
static void p224_generic_to_felem(p224_felem out, const EC_FELEM *in) {
183
  // |p224_felem|'s minimal representation uses four 56-bit words. |EC_FELEM|
184
  // uses four 64-bit words. (The top-most word only has 32 bits.)
185
414
  out[0] = in->words[0] & 0x00ffffffffffffff;
186
414
  out[1] = ((in->words[0] >> 56) | (in->words[1] << 8)) & 0x00ffffffffffffff;
187
414
  out[2] = ((in->words[1] >> 48) | (in->words[2] << 16)) & 0x00ffffffffffffff;
188
414
  out[3] = ((in->words[2] >> 40) | (in->words[3] << 24)) & 0x00ffffffffffffff;
189
414
}
190
191
// Requires 0 <= in < 2*p (always call p224_felem_reduce first)
192
336
static void p224_felem_to_generic(EC_FELEM *out, const p224_felem in) {
193
  // Reduce to unique minimal representation.
194
336
  static const int64_t two56 = ((p224_limb)1) << 56;
195
  // 0 <= in < 2*p, p = 2^224 - 2^96 + 1
196
  // if in > p , reduce in = in - 2^224 + 2^96 - 1
197
336
  int64_t tmp[4], a;
198
336
  tmp[0] = in[0];
199
336
  tmp[1] = in[1];
200
336
  tmp[2] = in[2];
201
336
  tmp[3] = in[3];
202
  // Case 1: a = 1 iff in >= 2^224
203
336
  a = (in[3] >> 56);
204
336
  tmp[0] -= a;
205
336
  tmp[1] += a << 40;
206
336
  tmp[3] &= 0x00ffffffffffffff;
207
  // Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1 and
208
  // the lower part is non-zero
209
336
  a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
210
336
      (((int64_t)(in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
211
336
  a &= 0x00ffffffffffffff;
212
  // turn a into an all-one mask (if a = 0) or an all-zero mask
213
336
  a = (a - 1) >> 63;
214
  // subtract 2^224 - 2^96 + 1 if a is all-one
215
336
  tmp[3] &= a ^ 0xffffffffffffffff;
216
336
  tmp[2] &= a ^ 0xffffffffffffffff;
217
336
  tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
218
336
  tmp[0] -= 1 & a;
219
220
  // eliminate negative coefficients: if tmp[0] is negative, tmp[1] must
221
  // be non-zero, so we only need one step
222
336
  a = tmp[0] >> 63;
223
336
  tmp[0] += two56 & a;
224
336
  tmp[1] -= 1 & a;
225
226
  // carry 1 -> 2 -> 3
227
336
  tmp[2] += tmp[1] >> 56;
228
336
  tmp[1] &= 0x00ffffffffffffff;
229
230
336
  tmp[3] += tmp[2] >> 56;
231
336
  tmp[2] &= 0x00ffffffffffffff;
232
233
  // Now 0 <= tmp < p
234
336
  p224_felem tmp2;
235
336
  tmp2[0] = tmp[0];
236
336
  tmp2[1] = tmp[1];
237
336
  tmp2[2] = tmp[2];
238
336
  tmp2[3] = tmp[3];
239
240
  // |p224_felem|'s minimal representation uses four 56-bit words. |EC_FELEM|
241
  // uses four 64-bit words. (The top-most word only has 32 bits.)
242
336
  out->words[0] = tmp2[0] | (tmp2[1] << 56);
243
336
  out->words[1] = (tmp2[1] >> 8) | (tmp2[2] << 48);
244
336
  out->words[2] = (tmp2[2] >> 16) | (tmp2[3] << 40);
245
336
  out->words[3] = tmp2[3] >> 24;
246
336
}
247
248
249
// Field operations, using the internal representation of field elements.
250
// NB! These operations are specific to our point multiplication and cannot be
251
// expected to be correct in general - e.g., multiplication with a large scalar
252
// will cause an overflow.
253
254
13.5k
static void p224_felem_assign(p224_felem out, const p224_felem in) {
255
13.5k
  out[0] = in[0];
256
13.5k
  out[1] = in[1];
257
13.5k
  out[2] = in[2];
258
13.5k
  out[3] = in[3];
259
13.5k
}
260
261
// Sum two field elements: out += in
262
4.55k
static void p224_felem_sum(p224_felem out, const p224_felem in) {
263
4.55k
  out[0] += in[0];
264
4.55k
  out[1] += in[1];
265
4.55k
  out[2] += in[2];
266
4.55k
  out[3] += in[3];
267
4.55k
}
268
269
// Subtract field elements: out -= in
270
// Assumes in[i] < 2^57
271
4.06k
static void p224_felem_diff(p224_felem out, const p224_felem in) {
272
4.06k
  static const p224_limb two58p2 =
273
4.06k
      (((p224_limb)1) << 58) + (((p224_limb)1) << 2);
274
4.06k
  static const p224_limb two58m2 =
275
4.06k
      (((p224_limb)1) << 58) - (((p224_limb)1) << 2);
276
4.06k
  static const p224_limb two58m42m2 =
277
4.06k
      (((p224_limb)1) << 58) - (((p224_limb)1) << 42) - (((p224_limb)1) << 2);
278
279
  // Add 0 mod 2^224-2^96+1 to ensure out > in
280
4.06k
  out[0] += two58p2;
281
4.06k
  out[1] += two58m42m2;
282
4.06k
  out[2] += two58m2;
283
4.06k
  out[3] += two58m2;
284
285
4.06k
  out[0] -= in[0];
286
4.06k
  out[1] -= in[1];
287
4.06k
  out[2] -= in[2];
288
4.06k
  out[3] -= in[3];
289
4.06k
}
290
291
// Subtract in unreduced 128-bit mode: out -= in
292
// Assumes in[i] < 2^119
293
2.54k
static void p224_widefelem_diff(p224_widefelem out, const p224_widefelem in) {
294
2.54k
  static const p224_widelimb two120 = ((p224_widelimb)1) << 120;
295
2.54k
  static const p224_widelimb two120m64 =
296
2.54k
      (((p224_widelimb)1) << 120) - (((p224_widelimb)1) << 64);
297
2.54k
  static const p224_widelimb two120m104m64 = (((p224_widelimb)1) << 120) -
298
2.54k
                                             (((p224_widelimb)1) << 104) -
299
2.54k
                                             (((p224_widelimb)1) << 64);
300
301
  // Add 0 mod 2^224-2^96+1 to ensure out > in
302
2.54k
  out[0] += two120;
303
2.54k
  out[1] += two120m64;
304
2.54k
  out[2] += two120m64;
305
2.54k
  out[3] += two120;
306
2.54k
  out[4] += two120m104m64;
307
2.54k
  out[5] += two120m64;
308
2.54k
  out[6] += two120m64;
309
310
2.54k
  out[0] -= in[0];
311
2.54k
  out[1] -= in[1];
312
2.54k
  out[2] -= in[2];
313
2.54k
  out[3] -= in[3];
314
2.54k
  out[4] -= in[4];
315
2.54k
  out[5] -= in[5];
316
2.54k
  out[6] -= in[6];
317
2.54k
}
318
319
// Subtract in mixed mode: out128 -= in64
320
// in[i] < 2^63
321
7.36k
static void p224_felem_diff_128_64(p224_widefelem out, const p224_felem in) {
322
7.36k
  static const p224_widelimb two64p8 =
323
7.36k
      (((p224_widelimb)1) << 64) + (((p224_widelimb)1) << 8);
324
7.36k
  static const p224_widelimb two64m8 =
325
7.36k
      (((p224_widelimb)1) << 64) - (((p224_widelimb)1) << 8);
326
7.36k
  static const p224_widelimb two64m48m8 = (((p224_widelimb)1) << 64) -
327
7.36k
                                          (((p224_widelimb)1) << 48) -
328
7.36k
                                          (((p224_widelimb)1) << 8);
329
330
  // Add 0 mod 2^224-2^96+1 to ensure out > in
331
7.36k
  out[0] += two64p8;
332
7.36k
  out[1] += two64m48m8;
333
7.36k
  out[2] += two64m8;
334
7.36k
  out[3] += two64m8;
335
336
7.36k
  out[0] -= in[0];
337
7.36k
  out[1] -= in[1];
338
7.36k
  out[2] -= in[2];
339
7.36k
  out[3] -= in[3];
340
7.36k
}
341
342
// Multiply a field element by a scalar: out = out * scalar
343
// The scalars we actually use are small, so results fit without overflow
344
5.58k
static void p224_felem_scalar(p224_felem out, const p224_limb scalar) {
345
5.58k
  out[0] *= scalar;
346
5.58k
  out[1] *= scalar;
347
5.58k
  out[2] *= scalar;
348
5.58k
  out[3] *= scalar;
349
5.58k
}
350
351
// Multiply an unreduced field element by a scalar: out = out * scalar
352
// The scalars we actually use are small, so results fit without overflow
353
static void p224_widefelem_scalar(p224_widefelem out,
354
1.51k
                                  const p224_widelimb scalar) {
355
1.51k
  out[0] *= scalar;
356
1.51k
  out[1] *= scalar;
357
1.51k
  out[2] *= scalar;
358
1.51k
  out[3] *= scalar;
359
1.51k
  out[4] *= scalar;
360
1.51k
  out[5] *= scalar;
361
1.51k
  out[6] *= scalar;
362
1.51k
}
363
364
// Square a field element: out = in^2
365
14.8k
static void p224_felem_square(p224_widefelem out, const p224_felem in) {
366
14.8k
  p224_limb tmp0, tmp1, tmp2;
367
14.8k
  tmp0 = 2 * in[0];
368
14.8k
  tmp1 = 2 * in[1];
369
14.8k
  tmp2 = 2 * in[2];
370
14.8k
  out[0] = ((p224_widelimb)in[0]) * in[0];
371
14.8k
  out[1] = ((p224_widelimb)in[0]) * tmp1;
372
14.8k
  out[2] = ((p224_widelimb)in[0]) * tmp2 + ((p224_widelimb)in[1]) * in[1];
373
14.8k
  out[3] = ((p224_widelimb)in[3]) * tmp0 + ((p224_widelimb)in[1]) * tmp2;
374
14.8k
  out[4] = ((p224_widelimb)in[3]) * tmp1 + ((p224_widelimb)in[2]) * in[2];
375
14.8k
  out[5] = ((p224_widelimb)in[3]) * tmp2;
376
14.8k
  out[6] = ((p224_widelimb)in[3]) * in[3];
377
14.8k
}
378
379
// Multiply two field elements: out = in1 * in2
380
static void p224_felem_mul(p224_widefelem out, const p224_felem in1,
381
14.1k
                           const p224_felem in2) {
382
14.1k
  out[0] = ((p224_widelimb)in1[0]) * in2[0];
383
14.1k
  out[1] = ((p224_widelimb)in1[0]) * in2[1] + ((p224_widelimb)in1[1]) * in2[0];
384
14.1k
  out[2] = ((p224_widelimb)in1[0]) * in2[2] + ((p224_widelimb)in1[1]) * in2[1] +
385
14.1k
           ((p224_widelimb)in1[2]) * in2[0];
386
14.1k
  out[3] = ((p224_widelimb)in1[0]) * in2[3] + ((p224_widelimb)in1[1]) * in2[2] +
387
14.1k
           ((p224_widelimb)in1[2]) * in2[1] + ((p224_widelimb)in1[3]) * in2[0];
388
14.1k
  out[4] = ((p224_widelimb)in1[1]) * in2[3] + ((p224_widelimb)in1[2]) * in2[2] +
389
14.1k
           ((p224_widelimb)in1[3]) * in2[1];
390
14.1k
  out[5] = ((p224_widelimb)in1[2]) * in2[3] + ((p224_widelimb)in1[3]) * in2[2];
391
14.1k
  out[6] = ((p224_widelimb)in1[3]) * in2[3];
392
14.1k
}
393
394
// Reduce seven 128-bit coefficients to four 64-bit coefficients.
395
// Requires in[i] < 2^126,
396
// ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
397
26.6k
static void p224_felem_reduce(p224_felem out, const p224_widefelem in) {
398
26.6k
  static const p224_widelimb two127p15 =
399
26.6k
      (((p224_widelimb)1) << 127) + (((p224_widelimb)1) << 15);
400
26.6k
  static const p224_widelimb two127m71 =
401
26.6k
      (((p224_widelimb)1) << 127) - (((p224_widelimb)1) << 71);
402
26.6k
  static const p224_widelimb two127m71m55 = (((p224_widelimb)1) << 127) -
403
26.6k
                                            (((p224_widelimb)1) << 71) -
404
26.6k
                                            (((p224_widelimb)1) << 55);
405
26.6k
  p224_widelimb output[5];
406
407
  // Add 0 mod 2^224-2^96+1 to ensure all differences are positive
408
26.6k
  output[0] = in[0] + two127p15;
409
26.6k
  output[1] = in[1] + two127m71m55;
410
26.6k
  output[2] = in[2] + two127m71;
411
26.6k
  output[3] = in[3];
412
26.6k
  output[4] = in[4];
413
414
  // Eliminate in[4], in[5], in[6]
415
26.6k
  output[4] += in[6] >> 16;
416
26.6k
  output[3] += (in[6] & 0xffff) << 40;
417
26.6k
  output[2] -= in[6];
418
419
26.6k
  output[3] += in[5] >> 16;
420
26.6k
  output[2] += (in[5] & 0xffff) << 40;
421
26.6k
  output[1] -= in[5];
422
423
26.6k
  output[2] += output[4] >> 16;
424
26.6k
  output[1] += (output[4] & 0xffff) << 40;
425
26.6k
  output[0] -= output[4];
426
427
  // Carry 2 -> 3 -> 4
428
26.6k
  output[3] += output[2] >> 56;
429
26.6k
  output[2] &= 0x00ffffffffffffff;
430
431
26.6k
  output[4] = output[3] >> 56;
432
26.6k
  output[3] &= 0x00ffffffffffffff;
433
434
  // Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72
435
436
  // Eliminate output[4]
437
26.6k
  output[2] += output[4] >> 16;
438
  // output[2] < 2^56 + 2^56 = 2^57
439
26.6k
  output[1] += (output[4] & 0xffff) << 40;
440
26.6k
  output[0] -= output[4];
441
442
  // Carry 0 -> 1 -> 2 -> 3
443
26.6k
  output[1] += output[0] >> 56;
444
26.6k
  out[0] = output[0] & 0x00ffffffffffffff;
445
446
26.6k
  output[2] += output[1] >> 56;
447
  // output[2] < 2^57 + 2^72
448
26.6k
  out[1] = output[1] & 0x00ffffffffffffff;
449
26.6k
  output[3] += output[2] >> 56;
450
  // output[3] <= 2^56 + 2^16
451
26.6k
  out[2] = output[2] & 0x00ffffffffffffff;
452
453
  // out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
454
  // out[3] <= 2^56 + 2^16 (due to final carry),
455
  // so out < 2*p
456
26.6k
  out[3] = output[3];
457
26.6k
}
458
459
// Get negative value: out = -in
460
// Requires in[i] < 2^63,
461
// ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
462
225
static void p224_felem_neg(p224_felem out, const p224_felem in) {
463
225
  p224_widefelem tmp = {0};
464
225
  p224_felem_diff_128_64(tmp, in);
465
225
  p224_felem_reduce(out, tmp);
466
225
}
467
468
// Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field
469
// elements are reduced to in < 2^225, so we only need to check three cases: 0,
470
// 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2
471
4.10k
static p224_limb p224_felem_is_zero(const p224_felem in) {
472
4.10k
  p224_limb zero = in[0] | in[1] | in[2] | in[3];
473
4.10k
  zero = (((int64_t)(zero)-1) >> 63) & 1;
474
475
4.10k
  p224_limb two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000) |
476
4.10k
                     (in[2] ^ 0x00ffffffffffffff) |
477
4.10k
                     (in[3] ^ 0x00ffffffffffffff);
478
4.10k
  two224m96p1 = (((int64_t)(two224m96p1)-1) >> 63) & 1;
479
4.10k
  p224_limb two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000) |
480
4.10k
                     (in[2] ^ 0x00ffffffffffffff) |
481
4.10k
                     (in[3] ^ 0x01ffffffffffffff);
482
4.10k
  two225m97p2 = (((int64_t)(two225m97p2)-1) >> 63) & 1;
483
4.10k
  return (zero | two224m96p1 | two225m97p2);
484
4.10k
}
485
486
// Invert a field element
487
// Computation chain copied from djb's code
488
17
static void p224_felem_inv(p224_felem out, const p224_felem in) {
489
17
  p224_felem ftmp, ftmp2, ftmp3, ftmp4;
490
17
  p224_widefelem tmp;
491
492
17
  p224_felem_square(tmp, in);
493
17
  p224_felem_reduce(ftmp, tmp);  // 2
494
17
  p224_felem_mul(tmp, in, ftmp);
495
17
  p224_felem_reduce(ftmp, tmp);  // 2^2 - 1
496
17
  p224_felem_square(tmp, ftmp);
497
17
  p224_felem_reduce(ftmp, tmp);  // 2^3 - 2
498
17
  p224_felem_mul(tmp, in, ftmp);
499
17
  p224_felem_reduce(ftmp, tmp);  // 2^3 - 1
500
17
  p224_felem_square(tmp, ftmp);
501
17
  p224_felem_reduce(ftmp2, tmp);  // 2^4 - 2
502
17
  p224_felem_square(tmp, ftmp2);
503
17
  p224_felem_reduce(ftmp2, tmp);  // 2^5 - 4
504
17
  p224_felem_square(tmp, ftmp2);
505
17
  p224_felem_reduce(ftmp2, tmp);  // 2^6 - 8
506
17
  p224_felem_mul(tmp, ftmp2, ftmp);
507
17
  p224_felem_reduce(ftmp, tmp);  // 2^6 - 1
508
17
  p224_felem_square(tmp, ftmp);
509
17
  p224_felem_reduce(ftmp2, tmp);  // 2^7 - 2
510
102
  for (size_t i = 0; i < 5; ++i) {  // 2^12 - 2^6
511
85
    p224_felem_square(tmp, ftmp2);
512
85
    p224_felem_reduce(ftmp2, tmp);
513
85
  }
514
17
  p224_felem_mul(tmp, ftmp2, ftmp);
515
17
  p224_felem_reduce(ftmp2, tmp);  // 2^12 - 1
516
17
  p224_felem_square(tmp, ftmp2);
517
17
  p224_felem_reduce(ftmp3, tmp);  // 2^13 - 2
518
204
  for (size_t i = 0; i < 11; ++i) {  // 2^24 - 2^12
519
187
    p224_felem_square(tmp, ftmp3);
520
187
    p224_felem_reduce(ftmp3, tmp);
521
187
  }
522
17
  p224_felem_mul(tmp, ftmp3, ftmp2);
523
17
  p224_felem_reduce(ftmp2, tmp);  // 2^24 - 1
524
17
  p224_felem_square(tmp, ftmp2);
525
17
  p224_felem_reduce(ftmp3, tmp);  // 2^25 - 2
526
408
  for (size_t i = 0; i < 23; ++i) {  // 2^48 - 2^24
527
391
    p224_felem_square(tmp, ftmp3);
528
391
    p224_felem_reduce(ftmp3, tmp);
529
391
  }
530
17
  p224_felem_mul(tmp, ftmp3, ftmp2);
531
17
  p224_felem_reduce(ftmp3, tmp);  // 2^48 - 1
532
17
  p224_felem_square(tmp, ftmp3);
533
17
  p224_felem_reduce(ftmp4, tmp);  // 2^49 - 2
534
816
  for (size_t i = 0; i < 47; ++i) {  // 2^96 - 2^48
535
799
    p224_felem_square(tmp, ftmp4);
536
799
    p224_felem_reduce(ftmp4, tmp);
537
799
  }
538
17
  p224_felem_mul(tmp, ftmp3, ftmp4);
539
17
  p224_felem_reduce(ftmp3, tmp);  // 2^96 - 1
540
17
  p224_felem_square(tmp, ftmp3);
541
17
  p224_felem_reduce(ftmp4, tmp);  // 2^97 - 2
542
408
  for (size_t i = 0; i < 23; ++i) {  // 2^120 - 2^24
543
391
    p224_felem_square(tmp, ftmp4);
544
391
    p224_felem_reduce(ftmp4, tmp);
545
391
  }
546
17
  p224_felem_mul(tmp, ftmp2, ftmp4);
547
17
  p224_felem_reduce(ftmp2, tmp);  // 2^120 - 1
548
119
  for (size_t i = 0; i < 6; ++i) {  // 2^126 - 2^6
549
102
    p224_felem_square(tmp, ftmp2);
550
102
    p224_felem_reduce(ftmp2, tmp);
551
102
  }
552
17
  p224_felem_mul(tmp, ftmp2, ftmp);
553
17
  p224_felem_reduce(ftmp, tmp);  // 2^126 - 1
554
17
  p224_felem_square(tmp, ftmp);
555
17
  p224_felem_reduce(ftmp, tmp);  // 2^127 - 2
556
17
  p224_felem_mul(tmp, ftmp, in);
557
17
  p224_felem_reduce(ftmp, tmp);  // 2^127 - 1
558
1.66k
  for (size_t i = 0; i < 97; ++i) {  // 2^224 - 2^97
559
1.64k
    p224_felem_square(tmp, ftmp);
560
1.64k
    p224_felem_reduce(ftmp, tmp);
561
1.64k
  }
562
17
  p224_felem_mul(tmp, ftmp, ftmp3);
563
17
  p224_felem_reduce(out, tmp);  // 2^224 - 2^96 - 1
564
17
}
565
566
// Copy in constant time:
567
// if icopy == 1, copy in to out,
568
// if icopy == 0, copy out to itself.
569
static void p224_copy_conditional(p224_felem out, const p224_felem in,
570
6.37k
                                  p224_limb icopy) {
571
  // icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one
572
6.37k
  const p224_limb copy = -icopy;
573
31.8k
  for (size_t i = 0; i < 4; ++i) {
574
25.5k
    const p224_limb tmp = copy & (in[i] ^ out[i]);
575
25.5k
    out[i] ^= tmp;
576
25.5k
  }
577
6.37k
}
578
579
// ELLIPTIC CURVE POINT OPERATIONS
580
//
581
// Points are represented in Jacobian projective coordinates:
582
// (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
583
// or to the point at infinity if Z == 0.
584
585
// Double an elliptic curve point:
586
// (X', Y', Z') = 2 * (X, Y, Z), where
587
// X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
588
// Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^2
589
// Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
590
// Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
591
// while x_out == y_in is not (maybe this works, but it's not tested).
592
static void p224_point_double(p224_felem x_out, p224_felem y_out,
593
                              p224_felem z_out, const p224_felem x_in,
594
1.51k
                              const p224_felem y_in, const p224_felem z_in) {
595
1.51k
  p224_widefelem tmp, tmp2;
596
1.51k
  p224_felem delta, gamma, beta, alpha, ftmp, ftmp2;
597
598
1.51k
  p224_felem_assign(ftmp, x_in);
599
1.51k
  p224_felem_assign(ftmp2, x_in);
600
601
  // delta = z^2
602
1.51k
  p224_felem_square(tmp, z_in);
603
1.51k
  p224_felem_reduce(delta, tmp);
604
605
  // gamma = y^2
606
1.51k
  p224_felem_square(tmp, y_in);
607
1.51k
  p224_felem_reduce(gamma, tmp);
608
609
  // beta = x*gamma
610
1.51k
  p224_felem_mul(tmp, x_in, gamma);
611
1.51k
  p224_felem_reduce(beta, tmp);
612
613
  // alpha = 3*(x-delta)*(x+delta)
614
1.51k
  p224_felem_diff(ftmp, delta);
615
  // ftmp[i] < 2^57 + 2^58 + 2 < 2^59
616
1.51k
  p224_felem_sum(ftmp2, delta);
617
  // ftmp2[i] < 2^57 + 2^57 = 2^58
618
1.51k
  p224_felem_scalar(ftmp2, 3);
619
  // ftmp2[i] < 3 * 2^58 < 2^60
620
1.51k
  p224_felem_mul(tmp, ftmp, ftmp2);
621
  // tmp[i] < 2^60 * 2^59 * 4 = 2^121
622
1.51k
  p224_felem_reduce(alpha, tmp);
623
624
  // x' = alpha^2 - 8*beta
625
1.51k
  p224_felem_square(tmp, alpha);
626
  // tmp[i] < 4 * 2^57 * 2^57 = 2^116
627
1.51k
  p224_felem_assign(ftmp, beta);
628
1.51k
  p224_felem_scalar(ftmp, 8);
629
  // ftmp[i] < 8 * 2^57 = 2^60
630
1.51k
  p224_felem_diff_128_64(tmp, ftmp);
631
  // tmp[i] < 2^116 + 2^64 + 8 < 2^117
632
1.51k
  p224_felem_reduce(x_out, tmp);
633
634
  // z' = (y + z)^2 - gamma - delta
635
1.51k
  p224_felem_sum(delta, gamma);
636
  // delta[i] < 2^57 + 2^57 = 2^58
637
1.51k
  p224_felem_assign(ftmp, y_in);
638
1.51k
  p224_felem_sum(ftmp, z_in);
639
  // ftmp[i] < 2^57 + 2^57 = 2^58
640
1.51k
  p224_felem_square(tmp, ftmp);
641
  // tmp[i] < 4 * 2^58 * 2^58 = 2^118
642
1.51k
  p224_felem_diff_128_64(tmp, delta);
643
  // tmp[i] < 2^118 + 2^64 + 8 < 2^119
644
1.51k
  p224_felem_reduce(z_out, tmp);
645
646
  // y' = alpha*(4*beta - x') - 8*gamma^2
647
1.51k
  p224_felem_scalar(beta, 4);
648
  // beta[i] < 4 * 2^57 = 2^59
649
1.51k
  p224_felem_diff(beta, x_out);
650
  // beta[i] < 2^59 + 2^58 + 2 < 2^60
651
1.51k
  p224_felem_mul(tmp, alpha, beta);
652
  // tmp[i] < 4 * 2^57 * 2^60 = 2^119
653
1.51k
  p224_felem_square(tmp2, gamma);
654
  // tmp2[i] < 4 * 2^57 * 2^57 = 2^116
655
1.51k
  p224_widefelem_scalar(tmp2, 8);
656
  // tmp2[i] < 8 * 2^116 = 2^119
657
1.51k
  p224_widefelem_diff(tmp, tmp2);
658
  // tmp[i] < 2^119 + 2^120 < 2^121
659
1.51k
  p224_felem_reduce(y_out, tmp);
660
1.51k
}
661
662
// Add two elliptic curve points:
663
// (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
664
// X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
665
// 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
666
// Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 *
667
// X_1)^2 - X_3) -
668
//        Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
669
// Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
670
//
671
// This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
672
673
// This function is not entirely constant-time: it includes a branch for
674
// checking whether the two input points are equal, (while not equal to the
675
// point at infinity). This case never happens during single point
676
// multiplication, so there is no timing leak for ECDH or ECDSA signing.
677
static void p224_point_add(p224_felem x3, p224_felem y3, p224_felem z3,
678
                           const p224_felem x1, const p224_felem y1,
679
                           const p224_felem z1, const int mixed,
680
                           const p224_felem x2, const p224_felem y2,
681
1.02k
                           const p224_felem z2) {
682
1.02k
  p224_felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
683
1.02k
  p224_widefelem tmp, tmp2;
684
1.02k
  p224_limb z1_is_zero, z2_is_zero, x_equal, y_equal;
685
686
1.02k
  if (!mixed) {
687
    // ftmp2 = z2^2
688
256
    p224_felem_square(tmp, z2);
689
256
    p224_felem_reduce(ftmp2, tmp);
690
691
    // ftmp4 = z2^3
692
256
    p224_felem_mul(tmp, ftmp2, z2);
693
256
    p224_felem_reduce(ftmp4, tmp);
694
695
    // ftmp4 = z2^3*y1
696
256
    p224_felem_mul(tmp2, ftmp4, y1);
697
256
    p224_felem_reduce(ftmp4, tmp2);
698
699
    // ftmp2 = z2^2*x1
700
256
    p224_felem_mul(tmp2, ftmp2, x1);
701
256
    p224_felem_reduce(ftmp2, tmp2);
702
770
  } else {
703
    // We'll assume z2 = 1 (special case z2 = 0 is handled later)
704
705
    // ftmp4 = z2^3*y1
706
770
    p224_felem_assign(ftmp4, y1);
707
708
    // ftmp2 = z2^2*x1
709
770
    p224_felem_assign(ftmp2, x1);
710
770
  }
711
712
  // ftmp = z1^2
713
1.02k
  p224_felem_square(tmp, z1);
714
1.02k
  p224_felem_reduce(ftmp, tmp);
715
716
  // ftmp3 = z1^3
717
1.02k
  p224_felem_mul(tmp, ftmp, z1);
718
1.02k
  p224_felem_reduce(ftmp3, tmp);
719
720
  // tmp = z1^3*y2
721
1.02k
  p224_felem_mul(tmp, ftmp3, y2);
722
  // tmp[i] < 4 * 2^57 * 2^57 = 2^116
723
724
  // ftmp3 = z1^3*y2 - z2^3*y1
725
1.02k
  p224_felem_diff_128_64(tmp, ftmp4);
726
  // tmp[i] < 2^116 + 2^64 + 8 < 2^117
727
1.02k
  p224_felem_reduce(ftmp3, tmp);
728
729
  // tmp = z1^2*x2
730
1.02k
  p224_felem_mul(tmp, ftmp, x2);
731
  // tmp[i] < 4 * 2^57 * 2^57 = 2^116
732
733
  // ftmp = z1^2*x2 - z2^2*x1
734
1.02k
  p224_felem_diff_128_64(tmp, ftmp2);
735
  // tmp[i] < 2^116 + 2^64 + 8 < 2^117
736
1.02k
  p224_felem_reduce(ftmp, tmp);
737
738
  // The formulae are incorrect if the points are equal, so we check for this
739
  // and do doubling if this happens.
740
1.02k
  x_equal = p224_felem_is_zero(ftmp);
741
1.02k
  y_equal = p224_felem_is_zero(ftmp3);
742
1.02k
  z1_is_zero = p224_felem_is_zero(z1);
743
1.02k
  z2_is_zero = p224_felem_is_zero(z2);
744
  // In affine coordinates, (X_1, Y_1) == (X_2, Y_2)
745
1.02k
  p224_limb is_nontrivial_double =
746
1.02k
      x_equal & y_equal & (1 - z1_is_zero) & (1 - z2_is_zero);
747
1.02k
  if (constant_time_declassify_w(is_nontrivial_double)) {
748
1
    p224_point_double(x3, y3, z3, x1, y1, z1);
749
1
    return;
750
1
  }
751
752
  // ftmp5 = z1*z2
753
1.02k
  if (!mixed) {
754
255
    p224_felem_mul(tmp, z1, z2);
755
255
    p224_felem_reduce(ftmp5, tmp);
756
770
  } else {
757
    // special case z2 = 0 is handled later
758
770
    p224_felem_assign(ftmp5, z1);
759
770
  }
760
761
  // z_out = (z1^2*x2 - z2^2*x1)*(z1*z2)
762
1.02k
  p224_felem_mul(tmp, ftmp, ftmp5);
763
1.02k
  p224_felem_reduce(z_out, tmp);
764
765
  // ftmp = (z1^2*x2 - z2^2*x1)^2
766
1.02k
  p224_felem_assign(ftmp5, ftmp);
767
1.02k
  p224_felem_square(tmp, ftmp);
768
1.02k
  p224_felem_reduce(ftmp, tmp);
769
770
  // ftmp5 = (z1^2*x2 - z2^2*x1)^3
771
1.02k
  p224_felem_mul(tmp, ftmp, ftmp5);
772
1.02k
  p224_felem_reduce(ftmp5, tmp);
773
774
  // ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2
775
1.02k
  p224_felem_mul(tmp, ftmp2, ftmp);
776
1.02k
  p224_felem_reduce(ftmp2, tmp);
777
778
  // tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3
779
1.02k
  p224_felem_mul(tmp, ftmp4, ftmp5);
780
  // tmp[i] < 4 * 2^57 * 2^57 = 2^116
781
782
  // tmp2 = (z1^3*y2 - z2^3*y1)^2
783
1.02k
  p224_felem_square(tmp2, ftmp3);
784
  // tmp2[i] < 4 * 2^57 * 2^57 < 2^116
785
786
  // tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3
787
1.02k
  p224_felem_diff_128_64(tmp2, ftmp5);
788
  // tmp2[i] < 2^116 + 2^64 + 8 < 2^117
789
790
  // ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2
791
1.02k
  p224_felem_assign(ftmp5, ftmp2);
792
1.02k
  p224_felem_scalar(ftmp5, 2);
793
  // ftmp5[i] < 2 * 2^57 = 2^58
794
795
  /* x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
796
     2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
797
1.02k
  p224_felem_diff_128_64(tmp2, ftmp5);
798
  // tmp2[i] < 2^117 + 2^64 + 8 < 2^118
799
1.02k
  p224_felem_reduce(x_out, tmp2);
800
801
  // ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out
802
1.02k
  p224_felem_diff(ftmp2, x_out);
803
  // ftmp2[i] < 2^57 + 2^58 + 2 < 2^59
804
805
  // tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out)
806
1.02k
  p224_felem_mul(tmp2, ftmp3, ftmp2);
807
  // tmp2[i] < 4 * 2^57 * 2^59 = 2^118
808
809
  /* y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
810
     z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
811
1.02k
  p224_widefelem_diff(tmp2, tmp);
812
  // tmp2[i] < 2^118 + 2^120 < 2^121
813
1.02k
  p224_felem_reduce(y_out, tmp2);
814
815
  // the result (x_out, y_out, z_out) is incorrect if one of the inputs is
816
  // the point at infinity, so we need to check for this separately
817
818
  // if point 1 is at infinity, copy point 2 to output, and vice versa
819
1.02k
  p224_copy_conditional(x_out, x2, z1_is_zero);
820
1.02k
  p224_copy_conditional(x_out, x1, z2_is_zero);
821
1.02k
  p224_copy_conditional(y_out, y2, z1_is_zero);
822
1.02k
  p224_copy_conditional(y_out, y1, z2_is_zero);
823
1.02k
  p224_copy_conditional(z_out, z2, z1_is_zero);
824
1.02k
  p224_copy_conditional(z_out, z1, z2_is_zero);
825
1.02k
  p224_felem_assign(x3, x_out);
826
1.02k
  p224_felem_assign(y3, y_out);
827
1.02k
  p224_felem_assign(z3, z_out);
828
1.02k
}
829
830
// p224_select_point selects the |idx|th point from a precomputation table and
831
// copies it to out.
832
static void p224_select_point(const uint64_t idx, size_t size,
833
                              const p224_felem pre_comp[/*size*/][3],
834
1.00k
                              p224_felem out[3]) {
835
1.00k
  p224_limb *outlimbs = &out[0][0];
836
1.00k
  OPENSSL_memset(outlimbs, 0, 3 * sizeof(p224_felem));
837
838
17.3k
  for (size_t i = 0; i < size; i++) {
839
16.3k
    const p224_limb *inlimbs = &pre_comp[i][0][0];
840
16.3k
    static_assert(sizeof(uint64_t) <= sizeof(crypto_word_t),
841
16.3k
                  "crypto_word_t too small");
842
16.3k
    static_assert(sizeof(size_t) <= sizeof(crypto_word_t),
843
16.3k
                  "crypto_word_t too small");
844
    // Without a value barrier, Clang adds a branch here.
845
16.3k
    uint64_t mask = value_barrier_w(constant_time_eq_w(i, idx));
846
212k
    for (size_t j = 0; j < 4 * 3; j++) {
847
196k
      outlimbs[j] |= inlimbs[j] & mask;
848
196k
    }
849
16.3k
  }
850
1.00k
}
851
852
// p224_get_bit returns the |i|th bit in |in|.
853
4.48k
static crypto_word_t p224_get_bit(const EC_SCALAR *in, size_t i) {
854
4.48k
  if (i >= 224) {
855
10
    return 0;
856
10
  }
857
4.47k
  static_assert(sizeof(in->words[0]) == 8, "BN_ULONG is not 64-bit");
858
4.47k
  return (in->words[i >> 6] >> (i & 63)) & 1;
859
4.48k
}
860
861
// Takes the Jacobian coordinates (X, Y, Z) of a point and returns
862
// (X', Y') = (X/Z^2, Y/Z^3)
863
static int ec_GFp_nistp224_point_get_affine_coordinates(
864
    const EC_GROUP *group, const EC_JACOBIAN *point, EC_FELEM *x,
865
17
    EC_FELEM *y) {
866
17
  if (constant_time_declassify_int(
867
17
          ec_GFp_simple_is_at_infinity(group, point))) {
868
0
    OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
869
0
    return 0;
870
0
  }
871
872
17
  p224_felem z1, z2;
873
17
  p224_widefelem tmp;
874
17
  p224_generic_to_felem(z1, &point->Z);
875
17
  p224_felem_inv(z2, z1);
876
17
  p224_felem_square(tmp, z2);
877
17
  p224_felem_reduce(z1, tmp);
878
879
17
  if (x != NULL) {
880
17
    p224_felem x_in, x_out;
881
17
    p224_generic_to_felem(x_in, &point->X);
882
17
    p224_felem_mul(tmp, x_in, z1);
883
17
    p224_felem_reduce(x_out, tmp);
884
17
    p224_felem_to_generic(x, x_out);
885
17
  }
886
887
17
  if (y != NULL) {
888
17
    p224_felem y_in, y_out;
889
17
    p224_generic_to_felem(y_in, &point->Y);
890
17
    p224_felem_mul(tmp, z1, z2);
891
17
    p224_felem_reduce(z1, tmp);
892
17
    p224_felem_mul(tmp, y_in, z1);
893
17
    p224_felem_reduce(y_out, tmp);
894
17
    p224_felem_to_generic(y, y_out);
895
17
  }
896
897
17
  return 1;
898
17
}
899
900
static void ec_GFp_nistp224_add(const EC_GROUP *group, EC_JACOBIAN *r,
901
1
                                const EC_JACOBIAN *a, const EC_JACOBIAN *b) {
902
1
  p224_felem x1, y1, z1, x2, y2, z2;
903
1
  p224_generic_to_felem(x1, &a->X);
904
1
  p224_generic_to_felem(y1, &a->Y);
905
1
  p224_generic_to_felem(z1, &a->Z);
906
1
  p224_generic_to_felem(x2, &b->X);
907
1
  p224_generic_to_felem(y2, &b->Y);
908
1
  p224_generic_to_felem(z2, &b->Z);
909
1
  p224_point_add(x1, y1, z1, x1, y1, z1, 0 /* both Jacobian */, x2, y2, z2);
910
  // The outputs are already reduced, but still need to be contracted.
911
1
  p224_felem_to_generic(&r->X, x1);
912
1
  p224_felem_to_generic(&r->Y, y1);
913
1
  p224_felem_to_generic(&r->Z, z1);
914
1
}
915
916
static void ec_GFp_nistp224_dbl(const EC_GROUP *group, EC_JACOBIAN *r,
917
0
                                const EC_JACOBIAN *a) {
918
0
  p224_felem x, y, z;
919
0
  p224_generic_to_felem(x, &a->X);
920
0
  p224_generic_to_felem(y, &a->Y);
921
0
  p224_generic_to_felem(z, &a->Z);
922
0
  p224_point_double(x, y, z, x, y, z);
923
  // The outputs are already reduced, but still need to be contracted.
924
0
  p224_felem_to_generic(&r->X, x);
925
0
  p224_felem_to_generic(&r->Y, y);
926
0
  p224_felem_to_generic(&r->Z, z);
927
0
}
928
929
static void ec_GFp_nistp224_make_precomp(p224_felem out[17][3],
930
5
                                         const EC_JACOBIAN *p) {
931
5
  OPENSSL_memset(out[0], 0, sizeof(p224_felem) * 3);
932
933
5
  p224_generic_to_felem(out[1][0], &p->X);
934
5
  p224_generic_to_felem(out[1][1], &p->Y);
935
5
  p224_generic_to_felem(out[1][2], &p->Z);
936
937
80
  for (size_t j = 2; j <= 16; ++j) {
938
75
    if (j & 1) {
939
35
      p224_point_add(out[j][0], out[j][1], out[j][2], out[1][0], out[1][1],
940
35
                     out[1][2], 0, out[j - 1][0], out[j - 1][1], out[j - 1][2]);
941
40
    } else {
942
40
      p224_point_double(out[j][0], out[j][1], out[j][2], out[j / 2][0],
943
40
                        out[j / 2][1], out[j / 2][2]);
944
40
    }
945
75
  }
946
5
}
947
948
static void ec_GFp_nistp224_point_mul(const EC_GROUP *group, EC_JACOBIAN *r,
949
                                      const EC_JACOBIAN *p,
950
5
                                      const EC_SCALAR *scalar) {
951
5
  p224_felem p_pre_comp[17][3];
952
5
  ec_GFp_nistp224_make_precomp(p_pre_comp, p);
953
954
  // Set nq to the point at infinity.
955
5
  p224_felem nq[3], tmp[4];
956
5
  OPENSSL_memset(nq, 0, 3 * sizeof(p224_felem));
957
958
5
  int skip = 1;  // Save two point operations in the first round.
959
1.11k
  for (size_t i = 220; i < 221; i--) {
960
1.10k
    if (!skip) {
961
1.10k
      p224_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
962
1.10k
    }
963
964
    // Add every 5 doublings.
965
1.10k
    if (i % 5 == 0) {
966
225
      crypto_word_t bits = p224_get_bit(scalar, i + 4) << 5;
967
225
      bits |= p224_get_bit(scalar, i + 3) << 4;
968
225
      bits |= p224_get_bit(scalar, i + 2) << 3;
969
225
      bits |= p224_get_bit(scalar, i + 1) << 2;
970
225
      bits |= p224_get_bit(scalar, i) << 1;
971
225
      bits |= p224_get_bit(scalar, i - 1);
972
225
      crypto_word_t sign, digit;
973
225
      ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
974
975
      // Select the point to add or subtract.
976
225
      p224_select_point(digit, 17, (const p224_felem(*)[3])p_pre_comp, tmp);
977
225
      p224_felem_neg(tmp[3], tmp[1]);  // (X, -Y, Z) is the negative point
978
225
      p224_copy_conditional(tmp[1], tmp[3], sign);
979
980
225
      if (!skip) {
981
220
        p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 0 /* mixed */,
982
220
                       tmp[0], tmp[1], tmp[2]);
983
220
      } else {
984
5
        OPENSSL_memcpy(nq, tmp, 3 * sizeof(p224_felem));
985
5
        skip = 0;
986
5
      }
987
225
    }
988
1.10k
  }
989
990
  // Reduce the output to its unique minimal representation.
991
5
  p224_felem_to_generic(&r->X, nq[0]);
992
5
  p224_felem_to_generic(&r->Y, nq[1]);
993
5
  p224_felem_to_generic(&r->Z, nq[2]);
994
5
}
995
996
static void ec_GFp_nistp224_point_mul_base(const EC_GROUP *group,
997
                                           EC_JACOBIAN *r,
998
14
                                           const EC_SCALAR *scalar) {
999
  // Set nq to the point at infinity.
1000
14
  p224_felem nq[3], tmp[3];
1001
14
  OPENSSL_memset(nq, 0, 3 * sizeof(p224_felem));
1002
1003
14
  int skip = 1;  // Save two point operations in the first round.
1004
406
  for (size_t i = 27; i < 28; i--) {
1005
    // double
1006
392
    if (!skip) {
1007
378
      p224_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1008
378
    }
1009
1010
    // First, look 28 bits upwards.
1011
392
    crypto_word_t bits = p224_get_bit(scalar, i + 196) << 3;
1012
392
    bits |= p224_get_bit(scalar, i + 140) << 2;
1013
392
    bits |= p224_get_bit(scalar, i + 84) << 1;
1014
392
    bits |= p224_get_bit(scalar, i + 28);
1015
    // Select the point to add, in constant time.
1016
392
    p224_select_point(bits, 16, g_p224_pre_comp[1], tmp);
1017
1018
392
    if (!skip) {
1019
378
      p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
1020
378
                     tmp[0], tmp[1], tmp[2]);
1021
378
    } else {
1022
14
      OPENSSL_memcpy(nq, tmp, 3 * sizeof(p224_felem));
1023
14
      skip = 0;
1024
14
    }
1025
1026
    // Second, look at the current position/
1027
392
    bits = p224_get_bit(scalar, i + 168) << 3;
1028
392
    bits |= p224_get_bit(scalar, i + 112) << 2;
1029
392
    bits |= p224_get_bit(scalar, i + 56) << 1;
1030
392
    bits |= p224_get_bit(scalar, i);
1031
    // Select the point to add, in constant time.
1032
392
    p224_select_point(bits, 16, g_p224_pre_comp[0], tmp);
1033
392
    p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
1034
392
                   tmp[0], tmp[1], tmp[2]);
1035
392
  }
1036
1037
  // Reduce the output to its unique minimal representation.
1038
14
  p224_felem_to_generic(&r->X, nq[0]);
1039
14
  p224_felem_to_generic(&r->Y, nq[1]);
1040
14
  p224_felem_to_generic(&r->Z, nq[2]);
1041
14
}
1042
1043
static void ec_GFp_nistp224_point_mul_public(const EC_GROUP *group,
1044
                                             EC_JACOBIAN *r,
1045
                                             const EC_SCALAR *g_scalar,
1046
                                             const EC_JACOBIAN *p,
1047
0
                                             const EC_SCALAR *p_scalar) {
1048
  // TODO(davidben): If P-224 ECDSA verify performance ever matters, using
1049
  // |ec_compute_wNAF| for |p_scalar| would likely be an easy improvement.
1050
0
  p224_felem p_pre_comp[17][3];
1051
0
  ec_GFp_nistp224_make_precomp(p_pre_comp, p);
1052
1053
  // Set nq to the point at infinity.
1054
0
  p224_felem nq[3], tmp[3];
1055
0
  OPENSSL_memset(nq, 0, 3 * sizeof(p224_felem));
1056
1057
  // Loop over both scalars msb-to-lsb, interleaving additions of multiples of
1058
  // the generator (two in each of the last 28 rounds) and additions of p (every
1059
  // 5th round).
1060
0
  int skip = 1;  // Save two point operations in the first round.
1061
0
  for (size_t i = 220; i < 221; i--) {
1062
0
    if (!skip) {
1063
0
      p224_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1064
0
    }
1065
1066
    // Add multiples of the generator.
1067
0
    if (i <= 27) {
1068
      // First, look 28 bits upwards.
1069
0
      crypto_word_t bits = p224_get_bit(g_scalar, i + 196) << 3;
1070
0
      bits |= p224_get_bit(g_scalar, i + 140) << 2;
1071
0
      bits |= p224_get_bit(g_scalar, i + 84) << 1;
1072
0
      bits |= p224_get_bit(g_scalar, i + 28);
1073
1074
0
      size_t index = (size_t)bits;
1075
0
      p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
1076
0
                     g_p224_pre_comp[1][index][0], g_p224_pre_comp[1][index][1],
1077
0
                     g_p224_pre_comp[1][index][2]);
1078
0
      assert(!skip);
1079
1080
      // Second, look at the current position.
1081
0
      bits = p224_get_bit(g_scalar, i + 168) << 3;
1082
0
      bits |= p224_get_bit(g_scalar, i + 112) << 2;
1083
0
      bits |= p224_get_bit(g_scalar, i + 56) << 1;
1084
0
      bits |= p224_get_bit(g_scalar, i);
1085
0
      index = (size_t)bits;
1086
0
      p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
1087
0
                     g_p224_pre_comp[0][index][0], g_p224_pre_comp[0][index][1],
1088
0
                     g_p224_pre_comp[0][index][2]);
1089
0
    }
1090
1091
    // Incorporate |p_scalar| every 5 doublings.
1092
0
    if (i % 5 == 0) {
1093
0
      crypto_word_t bits = p224_get_bit(p_scalar, i + 4) << 5;
1094
0
      bits |= p224_get_bit(p_scalar, i + 3) << 4;
1095
0
      bits |= p224_get_bit(p_scalar, i + 2) << 3;
1096
0
      bits |= p224_get_bit(p_scalar, i + 1) << 2;
1097
0
      bits |= p224_get_bit(p_scalar, i) << 1;
1098
0
      bits |= p224_get_bit(p_scalar, i - 1);
1099
0
      crypto_word_t sign, digit;
1100
0
      ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1101
1102
      // Select the point to add or subtract.
1103
0
      OPENSSL_memcpy(tmp, p_pre_comp[digit], 3 * sizeof(p224_felem));
1104
0
      if (sign) {
1105
0
        p224_felem_neg(tmp[1], tmp[1]);  // (X, -Y, Z) is the negative point
1106
0
      }
1107
1108
0
      if (!skip) {
1109
0
        p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 0 /* mixed */,
1110
0
                       tmp[0], tmp[1], tmp[2]);
1111
0
      } else {
1112
0
        OPENSSL_memcpy(nq, tmp, 3 * sizeof(p224_felem));
1113
0
        skip = 0;
1114
0
      }
1115
0
    }
1116
0
  }
1117
1118
  // Reduce the output to its unique minimal representation.
1119
0
  p224_felem_to_generic(&r->X, nq[0]);
1120
0
  p224_felem_to_generic(&r->Y, nq[1]);
1121
0
  p224_felem_to_generic(&r->Z, nq[2]);
1122
0
}
1123
1124
static void ec_GFp_nistp224_felem_mul(const EC_GROUP *group, EC_FELEM *r,
1125
100
                                      const EC_FELEM *a, const EC_FELEM *b) {
1126
100
  p224_felem felem1, felem2;
1127
100
  p224_widefelem wide;
1128
100
  p224_generic_to_felem(felem1, a);
1129
100
  p224_generic_to_felem(felem2, b);
1130
100
  p224_felem_mul(wide, felem1, felem2);
1131
100
  p224_felem_reduce(felem1, wide);
1132
100
  p224_felem_to_generic(r, felem1);
1133
100
}
1134
1135
static void ec_GFp_nistp224_felem_sqr(const EC_GROUP *group, EC_FELEM *r,
1136
142
                                      const EC_FELEM *a) {
1137
142
  p224_felem felem;
1138
142
  p224_generic_to_felem(felem, a);
1139
142
  p224_widefelem wide;
1140
142
  p224_felem_square(wide, felem);
1141
142
  p224_felem_reduce(felem, wide);
1142
142
  p224_felem_to_generic(r, felem);
1143
142
}
1144
1145
2
DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistp224_method) {
1146
2
  out->point_get_affine_coordinates =
1147
2
      ec_GFp_nistp224_point_get_affine_coordinates;
1148
2
  out->add = ec_GFp_nistp224_add;
1149
2
  out->dbl = ec_GFp_nistp224_dbl;
1150
2
  out->mul = ec_GFp_nistp224_point_mul;
1151
2
  out->mul_base = ec_GFp_nistp224_point_mul_base;
1152
2
  out->mul_public = ec_GFp_nistp224_point_mul_public;
1153
2
  out->felem_mul = ec_GFp_nistp224_felem_mul;
1154
2
  out->felem_sqr = ec_GFp_nistp224_felem_sqr;
1155
2
  out->felem_to_bytes = ec_GFp_simple_felem_to_bytes;
1156
2
  out->felem_from_bytes = ec_GFp_simple_felem_from_bytes;
1157
2
  out->scalar_inv0_montgomery = ec_simple_scalar_inv0_montgomery;
1158
2
  out->scalar_to_montgomery_inv_vartime =
1159
2
      ec_simple_scalar_to_montgomery_inv_vartime;
1160
2
  out->cmp_x_coordinate = ec_GFp_simple_cmp_x_coordinate;
1161
2
}
1162
1163
#endif  // BORINGSSL_HAS_UINT128 && !SMALL