/src/boringssl/crypto/fipsmodule/ec/simple_mul.c.inc
Line | Count | Source (jump to first uncovered line) |
1 | | /* Copyright (c) 2018, Google Inc. |
2 | | * |
3 | | * Permission to use, copy, modify, and/or distribute this software for any |
4 | | * purpose with or without fee is hereby granted, provided that the above |
5 | | * copyright notice and this permission notice appear in all copies. |
6 | | * |
7 | | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
8 | | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
9 | | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
10 | | * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
11 | | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
12 | | * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
13 | | * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
14 | | |
15 | | #include <openssl/ec.h> |
16 | | |
17 | | #include <assert.h> |
18 | | |
19 | | #include "internal.h" |
20 | | #include "../bn/internal.h" |
21 | | #include "../../internal.h" |
22 | | |
23 | | |
24 | | void ec_GFp_mont_mul(const EC_GROUP *group, EC_JACOBIAN *r, |
25 | 40 | const EC_JACOBIAN *p, const EC_SCALAR *scalar) { |
26 | | // This is a generic implementation for uncommon curves that not do not |
27 | | // warrant a tuned one. It uses unsigned digits so that the doubling case in |
28 | | // |ec_GFp_mont_add| is always unreachable, erring on safety and simplicity. |
29 | | |
30 | | // Compute a table of the first 32 multiples of |p| (including infinity). |
31 | 40 | EC_JACOBIAN precomp[32]; |
32 | 40 | ec_GFp_simple_point_set_to_infinity(group, &precomp[0]); |
33 | 40 | ec_GFp_simple_point_copy(&precomp[1], p); |
34 | 1.24k | for (size_t j = 2; j < OPENSSL_ARRAY_SIZE(precomp); j++) { |
35 | 1.20k | if (j & 1) { |
36 | 600 | ec_GFp_mont_add(group, &precomp[j], &precomp[1], &precomp[j - 1]); |
37 | 600 | } else { |
38 | 600 | ec_GFp_mont_dbl(group, &precomp[j], &precomp[j / 2]); |
39 | 600 | } |
40 | 1.20k | } |
41 | | |
42 | | // Divide bits in |scalar| into windows. |
43 | 40 | unsigned bits = EC_GROUP_order_bits(group); |
44 | 40 | int r_is_at_infinity = 1; |
45 | 18.1k | for (unsigned i = bits - 1; i < bits; i--) { |
46 | 18.1k | if (!r_is_at_infinity) { |
47 | 18.0k | ec_GFp_mont_dbl(group, r, r); |
48 | 18.0k | } |
49 | 18.1k | if (i % 5 == 0) { |
50 | | // Compute the next window value. |
51 | 3.64k | const size_t width = group->order.N.width; |
52 | 3.64k | uint8_t window = bn_is_bit_set_words(scalar->words, width, i + 4) << 4; |
53 | 3.64k | window |= bn_is_bit_set_words(scalar->words, width, i + 3) << 3; |
54 | 3.64k | window |= bn_is_bit_set_words(scalar->words, width, i + 2) << 2; |
55 | 3.64k | window |= bn_is_bit_set_words(scalar->words, width, i + 1) << 1; |
56 | 3.64k | window |= bn_is_bit_set_words(scalar->words, width, i); |
57 | | |
58 | | // Select the entry in constant-time. |
59 | 3.64k | EC_JACOBIAN tmp; |
60 | 3.64k | OPENSSL_memset(&tmp, 0, sizeof(EC_JACOBIAN)); |
61 | 120k | for (size_t j = 0; j < OPENSSL_ARRAY_SIZE(precomp); j++) { |
62 | 116k | BN_ULONG mask = constant_time_eq_w(j, window); |
63 | 116k | ec_point_select(group, &tmp, mask, &precomp[j], &tmp); |
64 | 116k | } |
65 | | |
66 | 3.64k | if (r_is_at_infinity) { |
67 | 40 | ec_GFp_simple_point_copy(r, &tmp); |
68 | 40 | r_is_at_infinity = 0; |
69 | 3.60k | } else { |
70 | 3.60k | ec_GFp_mont_add(group, r, r, &tmp); |
71 | 3.60k | } |
72 | 3.64k | } |
73 | 18.1k | } |
74 | 40 | if (r_is_at_infinity) { |
75 | 0 | ec_GFp_simple_point_set_to_infinity(group, r); |
76 | 0 | } |
77 | 40 | } |
78 | | |
79 | | void ec_GFp_mont_mul_base(const EC_GROUP *group, EC_JACOBIAN *r, |
80 | 16 | const EC_SCALAR *scalar) { |
81 | 16 | ec_GFp_mont_mul(group, r, &group->generator.raw, scalar); |
82 | 16 | } |
83 | | |
84 | | static void ec_GFp_mont_batch_precomp(const EC_GROUP *group, EC_JACOBIAN *out, |
85 | 0 | size_t num, const EC_JACOBIAN *p) { |
86 | 0 | assert(num > 1); |
87 | 0 | ec_GFp_simple_point_set_to_infinity(group, &out[0]); |
88 | 0 | ec_GFp_simple_point_copy(&out[1], p); |
89 | 0 | for (size_t j = 2; j < num; j++) { |
90 | 0 | if (j & 1) { |
91 | 0 | ec_GFp_mont_add(group, &out[j], &out[1], &out[j - 1]); |
92 | 0 | } else { |
93 | 0 | ec_GFp_mont_dbl(group, &out[j], &out[j / 2]); |
94 | 0 | } |
95 | 0 | } |
96 | 0 | } |
97 | | |
98 | | static void ec_GFp_mont_batch_get_window(const EC_GROUP *group, |
99 | | EC_JACOBIAN *out, |
100 | | const EC_JACOBIAN precomp[17], |
101 | 0 | const EC_SCALAR *scalar, unsigned i) { |
102 | 0 | const size_t width = group->order.N.width; |
103 | 0 | uint8_t window = bn_is_bit_set_words(scalar->words, width, i + 4) << 5; |
104 | 0 | window |= bn_is_bit_set_words(scalar->words, width, i + 3) << 4; |
105 | 0 | window |= bn_is_bit_set_words(scalar->words, width, i + 2) << 3; |
106 | 0 | window |= bn_is_bit_set_words(scalar->words, width, i + 1) << 2; |
107 | 0 | window |= bn_is_bit_set_words(scalar->words, width, i) << 1; |
108 | 0 | if (i > 0) { |
109 | 0 | window |= bn_is_bit_set_words(scalar->words, width, i - 1); |
110 | 0 | } |
111 | 0 | crypto_word_t sign, digit; |
112 | 0 | ec_GFp_nistp_recode_scalar_bits(&sign, &digit, window); |
113 | | |
114 | | // Select the entry in constant-time. |
115 | 0 | OPENSSL_memset(out, 0, sizeof(EC_JACOBIAN)); |
116 | 0 | for (size_t j = 0; j < 17; j++) { |
117 | 0 | BN_ULONG mask = constant_time_eq_w(j, digit); |
118 | 0 | ec_point_select(group, out, mask, &precomp[j], out); |
119 | 0 | } |
120 | | |
121 | | // Negate if necessary. |
122 | 0 | EC_FELEM neg_Y; |
123 | 0 | ec_felem_neg(group, &neg_Y, &out->Y); |
124 | 0 | crypto_word_t sign_mask = sign; |
125 | 0 | sign_mask = 0u - sign_mask; |
126 | 0 | ec_felem_select(group, &out->Y, sign_mask, &neg_Y, &out->Y); |
127 | 0 | } |
128 | | |
129 | | void ec_GFp_mont_mul_batch(const EC_GROUP *group, EC_JACOBIAN *r, |
130 | | const EC_JACOBIAN *p0, const EC_SCALAR *scalar0, |
131 | | const EC_JACOBIAN *p1, const EC_SCALAR *scalar1, |
132 | 0 | const EC_JACOBIAN *p2, const EC_SCALAR *scalar2) { |
133 | 0 | EC_JACOBIAN precomp[3][17]; |
134 | 0 | ec_GFp_mont_batch_precomp(group, precomp[0], 17, p0); |
135 | 0 | ec_GFp_mont_batch_precomp(group, precomp[1], 17, p1); |
136 | 0 | if (p2 != NULL) { |
137 | 0 | ec_GFp_mont_batch_precomp(group, precomp[2], 17, p2); |
138 | 0 | } |
139 | | |
140 | | // Divide bits in |scalar| into windows. |
141 | 0 | unsigned bits = EC_GROUP_order_bits(group); |
142 | 0 | int r_is_at_infinity = 1; |
143 | 0 | for (unsigned i = bits; i <= bits; i--) { |
144 | 0 | if (!r_is_at_infinity) { |
145 | 0 | ec_GFp_mont_dbl(group, r, r); |
146 | 0 | } |
147 | 0 | if (i % 5 == 0) { |
148 | 0 | EC_JACOBIAN tmp; |
149 | 0 | ec_GFp_mont_batch_get_window(group, &tmp, precomp[0], scalar0, i); |
150 | 0 | if (r_is_at_infinity) { |
151 | 0 | ec_GFp_simple_point_copy(r, &tmp); |
152 | 0 | r_is_at_infinity = 0; |
153 | 0 | } else { |
154 | 0 | ec_GFp_mont_add(group, r, r, &tmp); |
155 | 0 | } |
156 | |
|
157 | 0 | ec_GFp_mont_batch_get_window(group, &tmp, precomp[1], scalar1, i); |
158 | 0 | ec_GFp_mont_add(group, r, r, &tmp); |
159 | |
|
160 | 0 | if (p2 != NULL) { |
161 | 0 | ec_GFp_mont_batch_get_window(group, &tmp, precomp[2], scalar2, i); |
162 | 0 | ec_GFp_mont_add(group, r, r, &tmp); |
163 | 0 | } |
164 | 0 | } |
165 | 0 | } |
166 | 0 | if (r_is_at_infinity) { |
167 | 0 | ec_GFp_simple_point_set_to_infinity(group, r); |
168 | 0 | } |
169 | 0 | } |
170 | | |
171 | 0 | static unsigned ec_GFp_mont_comb_stride(const EC_GROUP *group) { |
172 | 0 | return (EC_GROUP_get_degree(group) + EC_MONT_PRECOMP_COMB_SIZE - 1) / |
173 | 0 | EC_MONT_PRECOMP_COMB_SIZE; |
174 | 0 | } |
175 | | |
176 | | int ec_GFp_mont_init_precomp(const EC_GROUP *group, EC_PRECOMP *out, |
177 | 0 | const EC_JACOBIAN *p) { |
178 | | // comb[i - 1] stores the ith element of the comb. That is, if i is |
179 | | // b4 * 2^4 + b3 * 2^3 + ... + b0 * 2^0, it stores k * |p|, where k is |
180 | | // b4 * 2^(4*stride) + b3 * 2^(3*stride) + ... + b0 * 2^(0*stride). stride |
181 | | // here is |ec_GFp_mont_comb_stride|. We store at index i - 1 because the 0th |
182 | | // comb entry is always infinity. |
183 | 0 | EC_JACOBIAN comb[(1 << EC_MONT_PRECOMP_COMB_SIZE) - 1]; |
184 | 0 | unsigned stride = ec_GFp_mont_comb_stride(group); |
185 | | |
186 | | // We compute the comb sequentially by the highest set bit. Initially, all |
187 | | // entries up to 2^0 are filled. |
188 | 0 | comb[(1 << 0) - 1] = *p; |
189 | 0 | for (unsigned i = 1; i < EC_MONT_PRECOMP_COMB_SIZE; i++) { |
190 | | // Compute entry 2^i by doubling the entry for 2^(i-1) |stride| times. |
191 | 0 | unsigned bit = 1 << i; |
192 | 0 | ec_GFp_mont_dbl(group, &comb[bit - 1], &comb[bit / 2 - 1]); |
193 | 0 | for (unsigned j = 1; j < stride; j++) { |
194 | 0 | ec_GFp_mont_dbl(group, &comb[bit - 1], &comb[bit - 1]); |
195 | 0 | } |
196 | | // Compute entries from 2^i + 1 to 2^i + (2^i - 1) by adding entry 2^i to |
197 | | // a previous entry. |
198 | 0 | for (unsigned j = 1; j < bit; j++) { |
199 | 0 | ec_GFp_mont_add(group, &comb[bit + j - 1], &comb[bit - 1], &comb[j - 1]); |
200 | 0 | } |
201 | 0 | } |
202 | | |
203 | | // Store the comb in affine coordinates to shrink the table. (This reduces |
204 | | // cache pressure and makes the constant-time selects faster.) |
205 | 0 | static_assert(OPENSSL_ARRAY_SIZE(comb) == OPENSSL_ARRAY_SIZE(out->comb), |
206 | 0 | "comb sizes did not match"); |
207 | 0 | return ec_jacobian_to_affine_batch(group, out->comb, comb, |
208 | 0 | OPENSSL_ARRAY_SIZE(comb)); |
209 | 0 | } |
210 | | |
211 | | static void ec_GFp_mont_get_comb_window(const EC_GROUP *group, |
212 | | EC_JACOBIAN *out, |
213 | | const EC_PRECOMP *precomp, |
214 | 0 | const EC_SCALAR *scalar, unsigned i) { |
215 | 0 | const size_t width = group->order.N.width; |
216 | 0 | unsigned stride = ec_GFp_mont_comb_stride(group); |
217 | | // Select the bits corresponding to the comb shifted up by |i|. |
218 | 0 | unsigned window = 0; |
219 | 0 | for (unsigned j = 0; j < EC_MONT_PRECOMP_COMB_SIZE; j++) { |
220 | 0 | window |= bn_is_bit_set_words(scalar->words, width, j * stride + i) |
221 | 0 | << j; |
222 | 0 | } |
223 | | |
224 | | // Select precomp->comb[window - 1]. If |window| is zero, |match| will always |
225 | | // be zero, which will leave |out| at infinity. |
226 | 0 | OPENSSL_memset(out, 0, sizeof(EC_JACOBIAN)); |
227 | 0 | for (unsigned j = 0; j < OPENSSL_ARRAY_SIZE(precomp->comb); j++) { |
228 | 0 | BN_ULONG match = constant_time_eq_w(window, j + 1); |
229 | 0 | ec_felem_select(group, &out->X, match, &precomp->comb[j].X, &out->X); |
230 | 0 | ec_felem_select(group, &out->Y, match, &precomp->comb[j].Y, &out->Y); |
231 | 0 | } |
232 | 0 | BN_ULONG is_infinity = constant_time_is_zero_w(window); |
233 | 0 | ec_felem_select(group, &out->Z, is_infinity, &out->Z, ec_felem_one(group)); |
234 | 0 | } |
235 | | |
236 | | void ec_GFp_mont_mul_precomp(const EC_GROUP *group, EC_JACOBIAN *r, |
237 | | const EC_PRECOMP *p0, const EC_SCALAR *scalar0, |
238 | | const EC_PRECOMP *p1, const EC_SCALAR *scalar1, |
239 | 0 | const EC_PRECOMP *p2, const EC_SCALAR *scalar2) { |
240 | 0 | unsigned stride = ec_GFp_mont_comb_stride(group); |
241 | 0 | int r_is_at_infinity = 1; |
242 | 0 | for (unsigned i = stride - 1; i < stride; i--) { |
243 | 0 | if (!r_is_at_infinity) { |
244 | 0 | ec_GFp_mont_dbl(group, r, r); |
245 | 0 | } |
246 | |
|
247 | 0 | EC_JACOBIAN tmp; |
248 | 0 | ec_GFp_mont_get_comb_window(group, &tmp, p0, scalar0, i); |
249 | 0 | if (r_is_at_infinity) { |
250 | 0 | ec_GFp_simple_point_copy(r, &tmp); |
251 | 0 | r_is_at_infinity = 0; |
252 | 0 | } else { |
253 | 0 | ec_GFp_mont_add(group, r, r, &tmp); |
254 | 0 | } |
255 | |
|
256 | 0 | if (p1 != NULL) { |
257 | 0 | ec_GFp_mont_get_comb_window(group, &tmp, p1, scalar1, i); |
258 | 0 | ec_GFp_mont_add(group, r, r, &tmp); |
259 | 0 | } |
260 | |
|
261 | 0 | if (p2 != NULL) { |
262 | 0 | ec_GFp_mont_get_comb_window(group, &tmp, p2, scalar2, i); |
263 | 0 | ec_GFp_mont_add(group, r, r, &tmp); |
264 | 0 | } |
265 | 0 | } |
266 | 0 | if (r_is_at_infinity) { |
267 | 0 | ec_GFp_simple_point_set_to_infinity(group, r); |
268 | 0 | } |
269 | 0 | } |