/src/boringssl/crypto/fipsmodule/modes/internal.h
Line | Count | Source |
1 | | /* ==================================================================== |
2 | | * Copyright (c) 2008 The OpenSSL Project. All rights reserved. |
3 | | * |
4 | | * Redistribution and use in source and binary forms, with or without |
5 | | * modification, are permitted provided that the following conditions |
6 | | * are met: |
7 | | * |
8 | | * 1. Redistributions of source code must retain the above copyright |
9 | | * notice, this list of conditions and the following disclaimer. |
10 | | * |
11 | | * 2. Redistributions in binary form must reproduce the above copyright |
12 | | * notice, this list of conditions and the following disclaimer in |
13 | | * the documentation and/or other materials provided with the |
14 | | * distribution. |
15 | | * |
16 | | * 3. All advertising materials mentioning features or use of this |
17 | | * software must display the following acknowledgment: |
18 | | * "This product includes software developed by the OpenSSL Project |
19 | | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
20 | | * |
21 | | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
22 | | * endorse or promote products derived from this software without |
23 | | * prior written permission. For written permission, please contact |
24 | | * openssl-core@openssl.org. |
25 | | * |
26 | | * 5. Products derived from this software may not be called "OpenSSL" |
27 | | * nor may "OpenSSL" appear in their names without prior written |
28 | | * permission of the OpenSSL Project. |
29 | | * |
30 | | * 6. Redistributions of any form whatsoever must retain the following |
31 | | * acknowledgment: |
32 | | * "This product includes software developed by the OpenSSL Project |
33 | | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
34 | | * |
35 | | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
36 | | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
37 | | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
38 | | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
39 | | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
40 | | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
41 | | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
42 | | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
43 | | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
44 | | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
45 | | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
46 | | * OF THE POSSIBILITY OF SUCH DAMAGE. |
47 | | * ==================================================================== */ |
48 | | |
49 | | #ifndef OPENSSL_HEADER_MODES_INTERNAL_H |
50 | | #define OPENSSL_HEADER_MODES_INTERNAL_H |
51 | | |
52 | | #include <openssl/base.h> |
53 | | |
54 | | #include <openssl/aes.h> |
55 | | |
56 | | #include <assert.h> |
57 | | #include <stdlib.h> |
58 | | #include <string.h> |
59 | | |
60 | | #include "../../internal.h" |
61 | | |
62 | | #if defined(__cplusplus) |
63 | | extern "C" { |
64 | | #endif |
65 | | |
66 | | |
67 | | // block128_f is the type of an AES block cipher implementation. |
68 | | // |
69 | | // Unlike upstream OpenSSL, it and the other functions in this file hard-code |
70 | | // |AES_KEY|. It is undefined in C to call a function pointer with anything |
71 | | // other than the original type. Thus we either must match |block128_f| to the |
72 | | // type signature of |AES_encrypt| and friends or pass in |void*| wrapper |
73 | | // functions. |
74 | | // |
75 | | // These functions are called exclusively with AES, so we use the former. |
76 | | typedef void (*block128_f)(const uint8_t in[16], uint8_t out[16], |
77 | | const AES_KEY *key); |
78 | | |
79 | | OPENSSL_INLINE void CRYPTO_xor16(uint8_t out[16], const uint8_t a[16], |
80 | 5.23k | const uint8_t b[16]) { |
81 | | // TODO(davidben): Ideally we'd leave this to the compiler, which could use |
82 | | // vector registers, etc. But the compiler doesn't know that |in| and |out| |
83 | | // cannot partially alias. |restrict| is slightly two strict (we allow exact |
84 | | // aliasing), but perhaps in-place could be a separate function? |
85 | 5.23k | static_assert(16 % sizeof(crypto_word_t) == 0, |
86 | 5.23k | "block cannot be evenly divided into words"); |
87 | 15.7k | for (size_t i = 0; i < 16; i += sizeof(crypto_word_t)) { |
88 | 10.4k | CRYPTO_store_word_le( |
89 | 10.4k | out + i, CRYPTO_load_word_le(a + i) ^ CRYPTO_load_word_le(b + i)); |
90 | 10.4k | } |
91 | 5.23k | } Line | Count | Source | 80 | 5.23k | const uint8_t b[16]) { | 81 | | // TODO(davidben): Ideally we'd leave this to the compiler, which could use | 82 | | // vector registers, etc. But the compiler doesn't know that |in| and |out| | 83 | | // cannot partially alias. |restrict| is slightly two strict (we allow exact | 84 | | // aliasing), but perhaps in-place could be a separate function? | 85 | 5.23k | static_assert(16 % sizeof(crypto_word_t) == 0, | 86 | 5.23k | "block cannot be evenly divided into words"); | 87 | 15.7k | for (size_t i = 0; i < 16; i += sizeof(crypto_word_t)) { | 88 | 10.4k | CRYPTO_store_word_le( | 89 | 10.4k | out + i, CRYPTO_load_word_le(a + i) ^ CRYPTO_load_word_le(b + i)); | 90 | 10.4k | } | 91 | 5.23k | } |
Unexecuted instantiation: crypto.c:CRYPTO_xor16 Unexecuted instantiation: e_aesctrhmac.c:CRYPTO_xor16 Unexecuted instantiation: e_aesgcmsiv.c:CRYPTO_xor16 Unexecuted instantiation: e_chacha20poly1305.c:CRYPTO_xor16 Unexecuted instantiation: e_des.c:CRYPTO_xor16 Unexecuted instantiation: e_rc2.c:CRYPTO_xor16 Unexecuted instantiation: e_rc4.c:CRYPTO_xor16 Unexecuted instantiation: e_tls.c:CRYPTO_xor16 Unexecuted instantiation: forkunsafe.c:CRYPTO_xor16 Unexecuted instantiation: tls_cbc.c:CRYPTO_xor16 |
92 | | |
93 | | |
94 | | // CTR. |
95 | | |
96 | | // ctr128_f is the type of a function that performs CTR-mode encryption. |
97 | | typedef void (*ctr128_f)(const uint8_t *in, uint8_t *out, size_t blocks, |
98 | | const AES_KEY *key, const uint8_t ivec[16]); |
99 | | |
100 | | // CRYPTO_ctr128_encrypt encrypts (or decrypts, it's the same in CTR mode) |
101 | | // |len| bytes from |in| to |out| using |block| in counter mode. There's no |
102 | | // requirement that |len| be a multiple of any value and any partial blocks are |
103 | | // stored in |ecount_buf| and |*num|, which must be zeroed before the initial |
104 | | // call. The counter is a 128-bit, big-endian value in |ivec| and is |
105 | | // incremented by this function. |
106 | | void CRYPTO_ctr128_encrypt(const uint8_t *in, uint8_t *out, size_t len, |
107 | | const AES_KEY *key, uint8_t ivec[16], |
108 | | uint8_t ecount_buf[16], unsigned *num, |
109 | | block128_f block); |
110 | | |
111 | | // CRYPTO_ctr128_encrypt_ctr32 acts like |CRYPTO_ctr128_encrypt| but takes |
112 | | // |ctr|, a function that performs CTR mode but only deals with the lower 32 |
113 | | // bits of the counter. This is useful when |ctr| can be an optimised |
114 | | // function. |
115 | | void CRYPTO_ctr128_encrypt_ctr32(const uint8_t *in, uint8_t *out, size_t len, |
116 | | const AES_KEY *key, uint8_t ivec[16], |
117 | | uint8_t ecount_buf[16], unsigned *num, |
118 | | ctr128_f ctr); |
119 | | |
120 | | |
121 | | // GCM. |
122 | | // |
123 | | // This API differs from the upstream API slightly. The |GCM128_CONTEXT| does |
124 | | // not have a |key| pointer that points to the key as upstream's version does. |
125 | | // Instead, every function takes a |key| parameter. This way |GCM128_CONTEXT| |
126 | | // can be safely copied. Additionally, |gcm_key| is split into a separate |
127 | | // struct. |
128 | | |
129 | | typedef struct { uint64_t hi,lo; } u128; |
130 | | |
131 | | // gmult_func multiplies |Xi| by the GCM key and writes the result back to |
132 | | // |Xi|. |
133 | | typedef void (*gmult_func)(uint8_t Xi[16], const u128 Htable[16]); |
134 | | |
135 | | // ghash_func repeatedly multiplies |Xi| by the GCM key and adds in blocks from |
136 | | // |inp|. The result is written back to |Xi| and the |len| argument must be a |
137 | | // multiple of 16. |
138 | | typedef void (*ghash_func)(uint8_t Xi[16], const u128 Htable[16], |
139 | | const uint8_t *inp, size_t len); |
140 | | |
141 | | typedef struct gcm128_key_st { |
142 | | // |gcm_*_ssse3| require a 16-byte-aligned |Htable| when hashing data, but not |
143 | | // initialization. |GCM128_KEY| is not itself aligned to simplify embedding in |
144 | | // |EVP_AEAD_CTX|, but |Htable|'s offset must be a multiple of 16. |
145 | | // TODO(crbug.com/boringssl/604): Revisit this. |
146 | | u128 Htable[16]; |
147 | | gmult_func gmult; |
148 | | ghash_func ghash; |
149 | | |
150 | | block128_f block; |
151 | | |
152 | | // use_hw_gcm_crypt is true if this context should use platform-specific |
153 | | // assembly to process GCM data. |
154 | | unsigned use_hw_gcm_crypt:1; |
155 | | } GCM128_KEY; |
156 | | |
157 | | // GCM128_CONTEXT contains state for a single GCM operation. The structure |
158 | | // should be zero-initialized before use. |
159 | | typedef struct { |
160 | | // The following 5 names follow names in GCM specification |
161 | | uint8_t Yi[16]; |
162 | | uint8_t EKi[16]; |
163 | | uint8_t EK0[16]; |
164 | | struct { |
165 | | uint64_t aad; |
166 | | uint64_t msg; |
167 | | } len; |
168 | | uint8_t Xi[16]; |
169 | | |
170 | | // |gcm_*_ssse3| require |Htable| to be 16-byte-aligned. |
171 | | // TODO(crbug.com/boringssl/604): Revisit this. |
172 | | alignas(16) GCM128_KEY gcm_key; |
173 | | |
174 | | unsigned mres, ares; |
175 | | } GCM128_CONTEXT; |
176 | | |
177 | | #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) |
178 | | // crypto_gcm_clmul_enabled returns one if the CLMUL implementation of GCM is |
179 | | // used. |
180 | | int crypto_gcm_clmul_enabled(void); |
181 | | #endif |
182 | | |
183 | | // CRYPTO_ghash_init writes a precomputed table of powers of |gcm_key| to |
184 | | // |out_table| and sets |*out_mult| and |*out_hash| to (potentially hardware |
185 | | // accelerated) functions for performing operations in the GHASH field. If the |
186 | | // AVX implementation was used |*out_is_avx| will be true. |
187 | | void CRYPTO_ghash_init(gmult_func *out_mult, ghash_func *out_hash, |
188 | | u128 out_table[16], int *out_is_avx, |
189 | | const uint8_t gcm_key[16]); |
190 | | |
191 | | // CRYPTO_gcm128_init_key initialises |gcm_key| to use |block| (typically AES) |
192 | | // with the given key. |block_is_hwaes| is one if |block| is |aes_hw_encrypt|. |
193 | | OPENSSL_EXPORT void CRYPTO_gcm128_init_key(GCM128_KEY *gcm_key, |
194 | | const AES_KEY *key, block128_f block, |
195 | | int block_is_hwaes); |
196 | | |
197 | | // CRYPTO_gcm128_setiv sets the IV (nonce) for |ctx|. The |key| must be the |
198 | | // same key that was passed to |CRYPTO_gcm128_init|. |
199 | | OPENSSL_EXPORT void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const AES_KEY *key, |
200 | | const uint8_t *iv, size_t iv_len); |
201 | | |
202 | | // CRYPTO_gcm128_aad sets the authenticated data for an instance of GCM. |
203 | | // This must be called before and data is encrypted. It returns one on success |
204 | | // and zero otherwise. |
205 | | OPENSSL_EXPORT int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const uint8_t *aad, |
206 | | size_t len); |
207 | | |
208 | | // CRYPTO_gcm128_encrypt encrypts |len| bytes from |in| to |out|. The |key| |
209 | | // must be the same key that was passed to |CRYPTO_gcm128_init|. It returns one |
210 | | // on success and zero otherwise. |
211 | | OPENSSL_EXPORT int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, |
212 | | const AES_KEY *key, const uint8_t *in, |
213 | | uint8_t *out, size_t len); |
214 | | |
215 | | // CRYPTO_gcm128_decrypt decrypts |len| bytes from |in| to |out|. The |key| |
216 | | // must be the same key that was passed to |CRYPTO_gcm128_init|. It returns one |
217 | | // on success and zero otherwise. |
218 | | OPENSSL_EXPORT int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, |
219 | | const AES_KEY *key, const uint8_t *in, |
220 | | uint8_t *out, size_t len); |
221 | | |
222 | | // CRYPTO_gcm128_encrypt_ctr32 encrypts |len| bytes from |in| to |out| using |
223 | | // a CTR function that only handles the bottom 32 bits of the nonce, like |
224 | | // |CRYPTO_ctr128_encrypt_ctr32|. The |key| must be the same key that was |
225 | | // passed to |CRYPTO_gcm128_init|. It returns one on success and zero |
226 | | // otherwise. |
227 | | OPENSSL_EXPORT int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx, |
228 | | const AES_KEY *key, |
229 | | const uint8_t *in, uint8_t *out, |
230 | | size_t len, ctr128_f stream); |
231 | | |
232 | | // CRYPTO_gcm128_decrypt_ctr32 decrypts |len| bytes from |in| to |out| using |
233 | | // a CTR function that only handles the bottom 32 bits of the nonce, like |
234 | | // |CRYPTO_ctr128_encrypt_ctr32|. The |key| must be the same key that was |
235 | | // passed to |CRYPTO_gcm128_init|. It returns one on success and zero |
236 | | // otherwise. |
237 | | OPENSSL_EXPORT int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx, |
238 | | const AES_KEY *key, |
239 | | const uint8_t *in, uint8_t *out, |
240 | | size_t len, ctr128_f stream); |
241 | | |
242 | | // CRYPTO_gcm128_finish calculates the authenticator and compares it against |
243 | | // |len| bytes of |tag|. It returns one on success and zero otherwise. |
244 | | OPENSSL_EXPORT int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const uint8_t *tag, |
245 | | size_t len); |
246 | | |
247 | | // CRYPTO_gcm128_tag calculates the authenticator and copies it into |tag|. |
248 | | // The minimum of |len| and 16 bytes are copied into |tag|. |
249 | | OPENSSL_EXPORT void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, uint8_t *tag, |
250 | | size_t len); |
251 | | |
252 | | |
253 | | // GCM assembly. |
254 | | |
255 | | void gcm_init_nohw(u128 Htable[16], const uint64_t H[2]); |
256 | | void gcm_gmult_nohw(uint8_t Xi[16], const u128 Htable[16]); |
257 | | void gcm_ghash_nohw(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp, |
258 | | size_t len); |
259 | | |
260 | | #if !defined(OPENSSL_NO_ASM) |
261 | | |
262 | | #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) |
263 | | #define GCM_FUNCREF |
264 | | void gcm_init_clmul(u128 Htable[16], const uint64_t Xi[2]); |
265 | | void gcm_gmult_clmul(uint8_t Xi[16], const u128 Htable[16]); |
266 | | void gcm_ghash_clmul(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp, |
267 | | size_t len); |
268 | | |
269 | | // |gcm_gmult_ssse3| and |gcm_ghash_ssse3| require |Htable| to be |
270 | | // 16-byte-aligned, but |gcm_init_ssse3| does not. |
271 | | void gcm_init_ssse3(u128 Htable[16], const uint64_t Xi[2]); |
272 | | void gcm_gmult_ssse3(uint8_t Xi[16], const u128 Htable[16]); |
273 | | void gcm_ghash_ssse3(uint8_t Xi[16], const u128 Htable[16], const uint8_t *in, |
274 | | size_t len); |
275 | | |
276 | | #if defined(OPENSSL_X86_64) |
277 | | #define GHASH_ASM_X86_64 |
278 | | void gcm_init_avx(u128 Htable[16], const uint64_t Xi[2]); |
279 | | void gcm_gmult_avx(uint8_t Xi[16], const u128 Htable[16]); |
280 | | void gcm_ghash_avx(uint8_t Xi[16], const u128 Htable[16], const uint8_t *in, |
281 | | size_t len); |
282 | | |
283 | | #define HW_GCM |
284 | | size_t aesni_gcm_encrypt(const uint8_t *in, uint8_t *out, size_t len, |
285 | | const AES_KEY *key, uint8_t ivec[16], |
286 | | const u128 Htable[16], uint8_t Xi[16]); |
287 | | size_t aesni_gcm_decrypt(const uint8_t *in, uint8_t *out, size_t len, |
288 | | const AES_KEY *key, uint8_t ivec[16], |
289 | | const u128 Htable[16], uint8_t Xi[16]); |
290 | | #endif // OPENSSL_X86_64 |
291 | | |
292 | | #if defined(OPENSSL_X86) |
293 | | #define GHASH_ASM_X86 |
294 | | #endif // OPENSSL_X86 |
295 | | |
296 | | #elif defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64) |
297 | | |
298 | | #define GHASH_ASM_ARM |
299 | | #define GCM_FUNCREF |
300 | | |
301 | | OPENSSL_INLINE int gcm_pmull_capable(void) { |
302 | | return CRYPTO_is_ARMv8_PMULL_capable(); |
303 | | } |
304 | | |
305 | | void gcm_init_v8(u128 Htable[16], const uint64_t H[2]); |
306 | | void gcm_gmult_v8(uint8_t Xi[16], const u128 Htable[16]); |
307 | | void gcm_ghash_v8(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp, |
308 | | size_t len); |
309 | | |
310 | | OPENSSL_INLINE int gcm_neon_capable(void) { return CRYPTO_is_NEON_capable(); } |
311 | | |
312 | | void gcm_init_neon(u128 Htable[16], const uint64_t H[2]); |
313 | | void gcm_gmult_neon(uint8_t Xi[16], const u128 Htable[16]); |
314 | | void gcm_ghash_neon(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp, |
315 | | size_t len); |
316 | | |
317 | | #if defined(OPENSSL_AARCH64) |
318 | | #define HW_GCM |
319 | | // These functions are defined in aesv8-gcm-armv8.pl. |
320 | | void aes_gcm_enc_kernel(const uint8_t *in, uint64_t in_bits, void *out, |
321 | | void *Xi, uint8_t *ivec, const AES_KEY *key, |
322 | | const u128 Htable[16]); |
323 | | void aes_gcm_dec_kernel(const uint8_t *in, uint64_t in_bits, void *out, |
324 | | void *Xi, uint8_t *ivec, const AES_KEY *key, |
325 | | const u128 Htable[16]); |
326 | | #endif |
327 | | |
328 | | #endif |
329 | | #endif // OPENSSL_NO_ASM |
330 | | |
331 | | |
332 | | // CBC. |
333 | | |
334 | | // cbc128_f is the type of a function that performs CBC-mode encryption. |
335 | | typedef void (*cbc128_f)(const uint8_t *in, uint8_t *out, size_t len, |
336 | | const AES_KEY *key, uint8_t ivec[16], int enc); |
337 | | |
338 | | // CRYPTO_cbc128_encrypt encrypts |len| bytes from |in| to |out| using the |
339 | | // given IV and block cipher in CBC mode. The input need not be a multiple of |
340 | | // 128 bits long, but the output will round up to the nearest 128 bit multiple, |
341 | | // zero padding the input if needed. The IV will be updated on return. |
342 | | void CRYPTO_cbc128_encrypt(const uint8_t *in, uint8_t *out, size_t len, |
343 | | const AES_KEY *key, uint8_t ivec[16], |
344 | | block128_f block); |
345 | | |
346 | | // CRYPTO_cbc128_decrypt decrypts |len| bytes from |in| to |out| using the |
347 | | // given IV and block cipher in CBC mode. If |len| is not a multiple of 128 |
348 | | // bits then only that many bytes will be written, but a multiple of 128 bits |
349 | | // is always read from |in|. The IV will be updated on return. |
350 | | void CRYPTO_cbc128_decrypt(const uint8_t *in, uint8_t *out, size_t len, |
351 | | const AES_KEY *key, uint8_t ivec[16], |
352 | | block128_f block); |
353 | | |
354 | | |
355 | | // OFB. |
356 | | |
357 | | // CRYPTO_ofb128_encrypt encrypts (or decrypts, it's the same with OFB mode) |
358 | | // |len| bytes from |in| to |out| using |block| in OFB mode. There's no |
359 | | // requirement that |len| be a multiple of any value and any partial blocks are |
360 | | // stored in |ivec| and |*num|, the latter must be zero before the initial |
361 | | // call. |
362 | | void CRYPTO_ofb128_encrypt(const uint8_t *in, uint8_t *out, size_t len, |
363 | | const AES_KEY *key, uint8_t ivec[16], unsigned *num, |
364 | | block128_f block); |
365 | | |
366 | | |
367 | | // CFB. |
368 | | |
369 | | // CRYPTO_cfb128_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes |
370 | | // from |in| to |out| using |block| in CFB mode. There's no requirement that |
371 | | // |len| be a multiple of any value and any partial blocks are stored in |ivec| |
372 | | // and |*num|, the latter must be zero before the initial call. |
373 | | void CRYPTO_cfb128_encrypt(const uint8_t *in, uint8_t *out, size_t len, |
374 | | const AES_KEY *key, uint8_t ivec[16], unsigned *num, |
375 | | int enc, block128_f block); |
376 | | |
377 | | // CRYPTO_cfb128_8_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes |
378 | | // from |in| to |out| using |block| in CFB-8 mode. Prior to the first call |
379 | | // |num| should be set to zero. |
380 | | void CRYPTO_cfb128_8_encrypt(const uint8_t *in, uint8_t *out, size_t len, |
381 | | const AES_KEY *key, uint8_t ivec[16], |
382 | | unsigned *num, int enc, block128_f block); |
383 | | |
384 | | // CRYPTO_cfb128_1_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes |
385 | | // from |in| to |out| using |block| in CFB-1 mode. Prior to the first call |
386 | | // |num| should be set to zero. |
387 | | void CRYPTO_cfb128_1_encrypt(const uint8_t *in, uint8_t *out, size_t bits, |
388 | | const AES_KEY *key, uint8_t ivec[16], |
389 | | unsigned *num, int enc, block128_f block); |
390 | | |
391 | | size_t CRYPTO_cts128_encrypt_block(const uint8_t *in, uint8_t *out, size_t len, |
392 | | const AES_KEY *key, uint8_t ivec[16], |
393 | | block128_f block); |
394 | | |
395 | | |
396 | | // POLYVAL. |
397 | | // |
398 | | // POLYVAL is a polynomial authenticator that operates over a field very |
399 | | // similar to the one that GHASH uses. See |
400 | | // https://www.rfc-editor.org/rfc/rfc8452.html#section-3. |
401 | | |
402 | | struct polyval_ctx { |
403 | | uint8_t S[16]; |
404 | | // |gcm_*_ssse3| require |Htable| to be 16-byte-aligned. |
405 | | // TODO(crbug.com/boringssl/604): Revisit this. |
406 | | alignas(16) u128 Htable[16]; |
407 | | gmult_func gmult; |
408 | | ghash_func ghash; |
409 | | }; |
410 | | |
411 | | // CRYPTO_POLYVAL_init initialises |ctx| using |key|. |
412 | | void CRYPTO_POLYVAL_init(struct polyval_ctx *ctx, const uint8_t key[16]); |
413 | | |
414 | | // CRYPTO_POLYVAL_update_blocks updates the accumulator in |ctx| given the |
415 | | // blocks from |in|. Only a whole number of blocks can be processed so |in_len| |
416 | | // must be a multiple of 16. |
417 | | void CRYPTO_POLYVAL_update_blocks(struct polyval_ctx *ctx, const uint8_t *in, |
418 | | size_t in_len); |
419 | | |
420 | | // CRYPTO_POLYVAL_finish writes the accumulator from |ctx| to |out|. |
421 | | void CRYPTO_POLYVAL_finish(const struct polyval_ctx *ctx, uint8_t out[16]); |
422 | | |
423 | | |
424 | | #if defined(__cplusplus) |
425 | | } // extern C |
426 | | #endif |
427 | | |
428 | | #endif // OPENSSL_HEADER_MODES_INTERNAL_H |