Coverage Report

Created: 2024-11-21 07:03

/src/boringssl/crypto/fipsmodule/sha/sha512.c.inc
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2
 * All rights reserved.
3
 *
4
 * This package is an SSL implementation written
5
 * by Eric Young (eay@cryptsoft.com).
6
 * The implementation was written so as to conform with Netscapes SSL.
7
 *
8
 * This library is free for commercial and non-commercial use as long as
9
 * the following conditions are aheared to.  The following conditions
10
 * apply to all code found in this distribution, be it the RC4, RSA,
11
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12
 * included with this distribution is covered by the same copyright terms
13
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14
 *
15
 * Copyright remains Eric Young's, and as such any Copyright notices in
16
 * the code are not to be removed.
17
 * If this package is used in a product, Eric Young should be given attribution
18
 * as the author of the parts of the library used.
19
 * This can be in the form of a textual message at program startup or
20
 * in documentation (online or textual) provided with the package.
21
 *
22
 * Redistribution and use in source and binary forms, with or without
23
 * modification, are permitted provided that the following conditions
24
 * are met:
25
 * 1. Redistributions of source code must retain the copyright
26
 *    notice, this list of conditions and the following disclaimer.
27
 * 2. Redistributions in binary form must reproduce the above copyright
28
 *    notice, this list of conditions and the following disclaimer in the
29
 *    documentation and/or other materials provided with the distribution.
30
 * 3. All advertising materials mentioning features or use of this software
31
 *    must display the following acknowledgement:
32
 *    "This product includes cryptographic software written by
33
 *     Eric Young (eay@cryptsoft.com)"
34
 *    The word 'cryptographic' can be left out if the rouines from the library
35
 *    being used are not cryptographic related :-).
36
 * 4. If you include any Windows specific code (or a derivative thereof) from
37
 *    the apps directory (application code) you must include an acknowledgement:
38
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39
 *
40
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50
 * SUCH DAMAGE.
51
 *
52
 * The licence and distribution terms for any publically available version or
53
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
54
 * copied and put under another distribution licence
55
 * [including the GNU Public Licence.] */
56
57
#include <string.h>
58
59
#include <openssl/mem.h>
60
61
#include "../../internal.h"
62
#include "../bcm_interface.h"
63
#include "../service_indicator/internal.h"
64
#include "internal.h"
65
66
67
// The 32-bit hash algorithms share a common byte-order neutral collector and
68
// padding function implementations that operate on unaligned data,
69
// ../digest/md32_common.h. SHA-512 is the only 64-bit hash algorithm, as of
70
// this writing, so there is no need for a common collector/padding
71
// implementation yet.
72
73
static void sha512_final_impl(uint8_t *out, size_t md_len, SHA512_CTX *sha);
74
75
277
bcm_infallible BCM_sha384_init(SHA512_CTX *sha) {
76
277
  sha->h[0] = UINT64_C(0xcbbb9d5dc1059ed8);
77
277
  sha->h[1] = UINT64_C(0x629a292a367cd507);
78
277
  sha->h[2] = UINT64_C(0x9159015a3070dd17);
79
277
  sha->h[3] = UINT64_C(0x152fecd8f70e5939);
80
277
  sha->h[4] = UINT64_C(0x67332667ffc00b31);
81
277
  sha->h[5] = UINT64_C(0x8eb44a8768581511);
82
277
  sha->h[6] = UINT64_C(0xdb0c2e0d64f98fa7);
83
277
  sha->h[7] = UINT64_C(0x47b5481dbefa4fa4);
84
85
277
  sha->Nl = 0;
86
277
  sha->Nh = 0;
87
277
  sha->num = 0;
88
277
  sha->md_len = BCM_SHA384_DIGEST_LENGTH;
89
277
  return bcm_infallible_approved;
90
277
}
91
92
93
345
bcm_infallible BCM_sha512_init(SHA512_CTX *sha) {
94
345
  sha->h[0] = UINT64_C(0x6a09e667f3bcc908);
95
345
  sha->h[1] = UINT64_C(0xbb67ae8584caa73b);
96
345
  sha->h[2] = UINT64_C(0x3c6ef372fe94f82b);
97
345
  sha->h[3] = UINT64_C(0xa54ff53a5f1d36f1);
98
345
  sha->h[4] = UINT64_C(0x510e527fade682d1);
99
345
  sha->h[5] = UINT64_C(0x9b05688c2b3e6c1f);
100
345
  sha->h[6] = UINT64_C(0x1f83d9abfb41bd6b);
101
345
  sha->h[7] = UINT64_C(0x5be0cd19137e2179);
102
103
345
  sha->Nl = 0;
104
345
  sha->Nh = 0;
105
345
  sha->num = 0;
106
345
  sha->md_len = BCM_SHA512_DIGEST_LENGTH;
107
345
  return bcm_infallible_approved;
108
345
}
109
110
77
bcm_infallible BCM_sha512_256_init(SHA512_CTX *sha) {
111
77
  sha->h[0] = UINT64_C(0x22312194fc2bf72c);
112
77
  sha->h[1] = UINT64_C(0x9f555fa3c84c64c2);
113
77
  sha->h[2] = UINT64_C(0x2393b86b6f53b151);
114
77
  sha->h[3] = UINT64_C(0x963877195940eabd);
115
77
  sha->h[4] = UINT64_C(0x96283ee2a88effe3);
116
77
  sha->h[5] = UINT64_C(0xbe5e1e2553863992);
117
77
  sha->h[6] = UINT64_C(0x2b0199fc2c85b8aa);
118
77
  sha->h[7] = UINT64_C(0x0eb72ddc81c52ca2);
119
120
77
  sha->Nl = 0;
121
77
  sha->Nh = 0;
122
77
  sha->num = 0;
123
77
  sha->md_len = BCM_SHA512_256_DIGEST_LENGTH;
124
77
  return bcm_infallible_approved;
125
77
}
126
127
#if !defined(SHA512_ASM)
128
static void sha512_block_data_order(uint64_t state[8], const uint8_t *in,
129
                                    size_t num_blocks);
130
#endif
131
132
133
bcm_infallible BCM_sha384_final(uint8_t out[BCM_SHA384_DIGEST_LENGTH],
134
2.13k
                                SHA512_CTX *sha) {
135
  // This function must be paired with |BCM_sha384_init|, which sets
136
  // |sha->md_len| to |BCM_SHA384_DIGEST_LENGTH|.
137
2.13k
  assert(sha->md_len == BCM_SHA384_DIGEST_LENGTH);
138
2.13k
  sha512_final_impl(out, BCM_SHA384_DIGEST_LENGTH, sha);
139
2.13k
  return bcm_infallible_approved;
140
2.13k
}
141
142
bcm_infallible BCM_sha384_update(SHA512_CTX *sha, const void *data,
143
7.65k
                                 size_t len) {
144
7.65k
  return BCM_sha512_update(sha, data, len);
145
7.65k
}
146
147
bcm_infallible BCM_sha512_256_update(SHA512_CTX *sha, const void *data,
148
7.42k
                                     size_t len) {
149
7.42k
  return BCM_sha512_update(sha, data, len);
150
7.42k
}
151
152
bcm_infallible BCM_sha512_256_final(uint8_t out[BCM_SHA512_256_DIGEST_LENGTH],
153
821
                                    SHA512_CTX *sha) {
154
  // This function must be paired with |BCM_sha512_256_init|, which sets
155
  // |sha->md_len| to |BCM_SHA512_256_DIGEST_LENGTH|.
156
821
  assert(sha->md_len == BCM_SHA512_256_DIGEST_LENGTH);
157
821
  sha512_final_impl(out, BCM_SHA512_256_DIGEST_LENGTH, sha);
158
821
  return bcm_infallible_approved;
159
821
}
160
161
bcm_infallible BCM_sha512_transform(SHA512_CTX *c,
162
0
                                    const uint8_t block[SHA512_CBLOCK]) {
163
0
  sha512_block_data_order(c->h, block, 1);
164
0
  return bcm_infallible_approved;
165
0
}
166
167
bcm_infallible BCM_sha512_update(SHA512_CTX *c, const void *in_data,
168
34.0k
                                 size_t len) {
169
34.0k
  uint64_t l;
170
34.0k
  uint8_t *p = c->p;
171
34.0k
  const uint8_t *data = in_data;
172
173
34.0k
  if (len == 0) {
174
23.1k
    return bcm_infallible_approved;
175
23.1k
  }
176
177
10.8k
  l = (c->Nl + (((uint64_t)len) << 3)) & UINT64_C(0xffffffffffffffff);
178
10.8k
  if (l < c->Nl) {
179
0
    c->Nh++;
180
0
  }
181
10.8k
  if (sizeof(len) >= 8) {
182
10.8k
    c->Nh += (((uint64_t)len) >> 61);
183
10.8k
  }
184
10.8k
  c->Nl = l;
185
186
10.8k
  if (c->num != 0) {
187
4.91k
    size_t n = sizeof(c->p) - c->num;
188
189
4.91k
    if (len < n) {
190
2.91k
      OPENSSL_memcpy(p + c->num, data, len);
191
2.91k
      c->num += (unsigned int)len;
192
2.91k
      return 1;
193
2.91k
    } else {
194
1.99k
      OPENSSL_memcpy(p + c->num, data, n), c->num = 0;
195
1.99k
      len -= n;
196
1.99k
      data += n;
197
1.99k
      sha512_block_data_order(c->h, p, 1);
198
1.99k
    }
199
4.91k
  }
200
201
7.97k
  if (len >= sizeof(c->p)) {
202
2.81k
    sha512_block_data_order(c->h, data, len / sizeof(c->p));
203
2.81k
    data += len;
204
2.81k
    len %= sizeof(c->p);
205
2.81k
    data -= len;
206
2.81k
  }
207
208
7.97k
  if (len != 0) {
209
7.46k
    OPENSSL_memcpy(p, data, len);
210
7.46k
    c->num = (int)len;
211
7.46k
  }
212
213
7.97k
  return bcm_infallible_approved;
214
10.8k
}
215
216
bcm_infallible BCM_sha512_final(uint8_t out[BCM_SHA512_DIGEST_LENGTH],
217
2.66k
                                SHA512_CTX *sha) {
218
  // Ideally we would assert |sha->md_len| is |BCM_SHA512_DIGEST_LENGTH| to
219
  // match the size hint, but calling code often pairs |BCM_sha384_init| with
220
  // |BCM_sha512_final| and expects |sha->md_len| to carry the size over.
221
  //
222
  // TODO(davidben): Add an assert and fix code to match them up.
223
2.66k
  sha512_final_impl(out, sha->md_len, sha);
224
2.66k
  return bcm_infallible_approved;
225
2.66k
}
226
227
5.61k
static void sha512_final_impl(uint8_t *out, size_t md_len, SHA512_CTX *sha) {
228
5.61k
  uint8_t *p = sha->p;
229
5.61k
  size_t n = sha->num;
230
231
5.61k
  p[n] = 0x80;  // There always is a room for one
232
5.61k
  n++;
233
5.61k
  if (n > (sizeof(sha->p) - 16)) {
234
686
    OPENSSL_memset(p + n, 0, sizeof(sha->p) - n);
235
686
    n = 0;
236
686
    sha512_block_data_order(sha->h, p, 1);
237
686
  }
238
239
5.61k
  OPENSSL_memset(p + n, 0, sizeof(sha->p) - 16 - n);
240
5.61k
  CRYPTO_store_u64_be(p + sizeof(sha->p) - 16, sha->Nh);
241
5.61k
  CRYPTO_store_u64_be(p + sizeof(sha->p) - 8, sha->Nl);
242
243
5.61k
  sha512_block_data_order(sha->h, p, 1);
244
245
5.61k
  assert(md_len % 8 == 0);
246
5.61k
  const size_t out_words = md_len / 8;
247
43.0k
  for (size_t i = 0; i < out_words; i++) {
248
37.4k
    CRYPTO_store_u64_be(out, sha->h[i]);
249
37.4k
    out += 8;
250
37.4k
  }
251
252
5.61k
  FIPS_service_indicator_update_state();
253
5.61k
}
254
255
#if !defined(SHA512_ASM)
256
257
#if !defined(SHA512_ASM_NOHW)
258
static const uint64_t K512[80] = {
259
    UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd),
260
    UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc),
261
    UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019),
262
    UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118),
263
    UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe),
264
    UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2),
265
    UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1),
266
    UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694),
267
    UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3),
268
    UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65),
269
    UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483),
270
    UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5),
271
    UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210),
272
    UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4),
273
    UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725),
274
    UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70),
275
    UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926),
276
    UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df),
277
    UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8),
278
    UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b),
279
    UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001),
280
    UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30),
281
    UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910),
282
    UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8),
283
    UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53),
284
    UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8),
285
    UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb),
286
    UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3),
287
    UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60),
288
    UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec),
289
    UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9),
290
    UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b),
291
    UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207),
292
    UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178),
293
    UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6),
294
    UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b),
295
    UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493),
296
    UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c),
297
    UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a),
298
    UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817),
299
};
300
301
#define Sigma0(x)                                        \
302
10.4M
  (CRYPTO_rotr_u64((x), 28) ^ CRYPTO_rotr_u64((x), 34) ^ \
303
10.4M
   CRYPTO_rotr_u64((x), 39))
304
#define Sigma1(x)                                        \
305
10.4M
  (CRYPTO_rotr_u64((x), 14) ^ CRYPTO_rotr_u64((x), 18) ^ \
306
10.4M
   CRYPTO_rotr_u64((x), 41))
307
#define sigma0(x) \
308
8.34M
  (CRYPTO_rotr_u64((x), 1) ^ CRYPTO_rotr_u64((x), 8) ^ ((x) >> 7))
309
#define sigma1(x) \
310
8.34M
  (CRYPTO_rotr_u64((x), 19) ^ CRYPTO_rotr_u64((x), 61) ^ ((x) >> 6))
311
312
10.4M
#define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z)))
313
10.4M
#define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
314
315
316
#if defined(__i386) || defined(__i386__) || defined(_M_IX86)
317
// This code should give better results on 32-bit CPU with less than
318
// ~24 registers, both size and performance wise...
319
static void sha512_block_data_order_nohw(uint64_t state[8], const uint8_t *in,
320
                                         size_t num) {
321
  uint64_t A, E, T;
322
  uint64_t X[9 + 80], *F;
323
  int i;
324
325
  while (num--) {
326
    F = X + 80;
327
    A = state[0];
328
    F[1] = state[1];
329
    F[2] = state[2];
330
    F[3] = state[3];
331
    E = state[4];
332
    F[5] = state[5];
333
    F[6] = state[6];
334
    F[7] = state[7];
335
336
    for (i = 0; i < 16; i++, F--) {
337
      T = CRYPTO_load_u64_be(in + i * 8);
338
      F[0] = A;
339
      F[4] = E;
340
      F[8] = T;
341
      T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
342
      E = F[3] + T;
343
      A = T + Sigma0(A) + Maj(A, F[1], F[2]);
344
    }
345
346
    for (; i < 80; i++, F--) {
347
      T = sigma0(F[8 + 16 - 1]);
348
      T += sigma1(F[8 + 16 - 14]);
349
      T += F[8 + 16] + F[8 + 16 - 9];
350
351
      F[0] = A;
352
      F[4] = E;
353
      F[8] = T;
354
      T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
355
      E = F[3] + T;
356
      A = T + Sigma0(A) + Maj(A, F[1], F[2]);
357
    }
358
359
    state[0] += A;
360
    state[1] += F[1];
361
    state[2] += F[2];
362
    state[3] += F[3];
363
    state[4] += E;
364
    state[5] += F[5];
365
    state[6] += F[6];
366
    state[7] += F[7];
367
368
    in += 16 * 8;
369
  }
370
}
371
372
#else
373
374
#define ROUND_00_15(i, a, b, c, d, e, f, g, h)   \
375
10.4M
  do {                                           \
376
10.4M
    T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i]; \
377
10.4M
    h = Sigma0(a) + Maj(a, b, c);                \
378
10.4M
    d += T1;                                     \
379
10.4M
    h += T1;                                     \
380
10.4M
  } while (0)
381
382
#define ROUND_16_80(i, j, a, b, c, d, e, f, g, h, X)   \
383
8.34M
  do {                                                 \
384
8.34M
    s0 = X[(j + 1) & 0x0f];                            \
385
8.34M
    s0 = sigma0(s0);                                   \
386
8.34M
    s1 = X[(j + 14) & 0x0f];                           \
387
8.34M
    s1 = sigma1(s1);                                   \
388
8.34M
    T1 = X[(j) & 0x0f] += s0 + s1 + X[(j + 9) & 0x0f]; \
389
8.34M
    ROUND_00_15(i + j, a, b, c, d, e, f, g, h);        \
390
8.34M
  } while (0)
391
392
static void sha512_block_data_order_nohw(uint64_t state[8], const uint8_t *in,
393
8.67k
                                         size_t num) {
394
8.67k
  uint64_t a, b, c, d, e, f, g, h, s0, s1, T1;
395
8.67k
  uint64_t X[16];
396
8.67k
  int i;
397
398
138k
  while (num--) {
399
130k
    a = state[0];
400
130k
    b = state[1];
401
130k
    c = state[2];
402
130k
    d = state[3];
403
130k
    e = state[4];
404
130k
    f = state[5];
405
130k
    g = state[6];
406
130k
    h = state[7];
407
408
130k
    T1 = X[0] = CRYPTO_load_u64_be(in);
409
130k
    ROUND_00_15(0, a, b, c, d, e, f, g, h);
410
130k
    T1 = X[1] = CRYPTO_load_u64_be(in + 8);
411
130k
    ROUND_00_15(1, h, a, b, c, d, e, f, g);
412
130k
    T1 = X[2] = CRYPTO_load_u64_be(in + 2 * 8);
413
130k
    ROUND_00_15(2, g, h, a, b, c, d, e, f);
414
130k
    T1 = X[3] = CRYPTO_load_u64_be(in + 3 * 8);
415
130k
    ROUND_00_15(3, f, g, h, a, b, c, d, e);
416
130k
    T1 = X[4] = CRYPTO_load_u64_be(in + 4 * 8);
417
130k
    ROUND_00_15(4, e, f, g, h, a, b, c, d);
418
130k
    T1 = X[5] = CRYPTO_load_u64_be(in + 5 * 8);
419
130k
    ROUND_00_15(5, d, e, f, g, h, a, b, c);
420
130k
    T1 = X[6] = CRYPTO_load_u64_be(in + 6 * 8);
421
130k
    ROUND_00_15(6, c, d, e, f, g, h, a, b);
422
130k
    T1 = X[7] = CRYPTO_load_u64_be(in + 7 * 8);
423
130k
    ROUND_00_15(7, b, c, d, e, f, g, h, a);
424
130k
    T1 = X[8] = CRYPTO_load_u64_be(in + 8 * 8);
425
130k
    ROUND_00_15(8, a, b, c, d, e, f, g, h);
426
130k
    T1 = X[9] = CRYPTO_load_u64_be(in + 9 * 8);
427
130k
    ROUND_00_15(9, h, a, b, c, d, e, f, g);
428
130k
    T1 = X[10] = CRYPTO_load_u64_be(in + 10 * 8);
429
130k
    ROUND_00_15(10, g, h, a, b, c, d, e, f);
430
130k
    T1 = X[11] = CRYPTO_load_u64_be(in + 11 * 8);
431
130k
    ROUND_00_15(11, f, g, h, a, b, c, d, e);
432
130k
    T1 = X[12] = CRYPTO_load_u64_be(in + 12 * 8);
433
130k
    ROUND_00_15(12, e, f, g, h, a, b, c, d);
434
130k
    T1 = X[13] = CRYPTO_load_u64_be(in + 13 * 8);
435
130k
    ROUND_00_15(13, d, e, f, g, h, a, b, c);
436
130k
    T1 = X[14] = CRYPTO_load_u64_be(in + 14 * 8);
437
130k
    ROUND_00_15(14, c, d, e, f, g, h, a, b);
438
130k
    T1 = X[15] = CRYPTO_load_u64_be(in + 15 * 8);
439
130k
    ROUND_00_15(15, b, c, d, e, f, g, h, a);
440
441
651k
    for (i = 16; i < 80; i += 16) {
442
521k
      ROUND_16_80(i, 0, a, b, c, d, e, f, g, h, X);
443
521k
      ROUND_16_80(i, 1, h, a, b, c, d, e, f, g, X);
444
521k
      ROUND_16_80(i, 2, g, h, a, b, c, d, e, f, X);
445
521k
      ROUND_16_80(i, 3, f, g, h, a, b, c, d, e, X);
446
521k
      ROUND_16_80(i, 4, e, f, g, h, a, b, c, d, X);
447
521k
      ROUND_16_80(i, 5, d, e, f, g, h, a, b, c, X);
448
521k
      ROUND_16_80(i, 6, c, d, e, f, g, h, a, b, X);
449
521k
      ROUND_16_80(i, 7, b, c, d, e, f, g, h, a, X);
450
521k
      ROUND_16_80(i, 8, a, b, c, d, e, f, g, h, X);
451
521k
      ROUND_16_80(i, 9, h, a, b, c, d, e, f, g, X);
452
521k
      ROUND_16_80(i, 10, g, h, a, b, c, d, e, f, X);
453
521k
      ROUND_16_80(i, 11, f, g, h, a, b, c, d, e, X);
454
521k
      ROUND_16_80(i, 12, e, f, g, h, a, b, c, d, X);
455
521k
      ROUND_16_80(i, 13, d, e, f, g, h, a, b, c, X);
456
521k
      ROUND_16_80(i, 14, c, d, e, f, g, h, a, b, X);
457
521k
      ROUND_16_80(i, 15, b, c, d, e, f, g, h, a, X);
458
521k
    }
459
460
130k
    state[0] += a;
461
130k
    state[1] += b;
462
130k
    state[2] += c;
463
130k
    state[3] += d;
464
130k
    state[4] += e;
465
130k
    state[5] += f;
466
130k
    state[6] += g;
467
130k
    state[7] += h;
468
469
130k
    in += 16 * 8;
470
130k
  }
471
8.67k
}
472
473
#endif
474
475
#endif  // !SHA512_ASM_NOHW
476
477
static void sha512_block_data_order(uint64_t state[8], const uint8_t *data,
478
8.67k
                                    size_t num) {
479
#if defined(SHA512_ASM_HW)
480
  if (sha512_hw_capable()) {
481
    sha512_block_data_order_hw(state, data, num);
482
    return;
483
  }
484
#endif
485
#if defined(SHA512_ASM_AVX)
486
  if (sha512_avx_capable()) {
487
    sha512_block_data_order_avx(state, data, num);
488
    return;
489
  }
490
#endif
491
#if defined(SHA512_ASM_SSSE3)
492
  if (sha512_ssse3_capable()) {
493
    sha512_block_data_order_ssse3(state, data, num);
494
    return;
495
  }
496
#endif
497
#if defined(SHA512_ASM_NEON)
498
  if (CRYPTO_is_NEON_capable()) {
499
    sha512_block_data_order_neon(state, data, num);
500
    return;
501
  }
502
#endif
503
8.67k
  sha512_block_data_order_nohw(state, data, num);
504
8.67k
}
505
506
#endif  // !SHA512_ASM
507
508
#undef Sigma0
509
#undef Sigma1
510
#undef sigma0
511
#undef sigma1
512
#undef Ch
513
#undef Maj
514
#undef ROUND_00_15
515
#undef ROUND_16_80