Coverage Report

Created: 2024-11-21 07:03

/src/boringssl/crypto/stack/stack.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2
 * All rights reserved.
3
 *
4
 * This package is an SSL implementation written
5
 * by Eric Young (eay@cryptsoft.com).
6
 * The implementation was written so as to conform with Netscapes SSL.
7
 *
8
 * This library is free for commercial and non-commercial use as long as
9
 * the following conditions are aheared to.  The following conditions
10
 * apply to all code found in this distribution, be it the RC4, RSA,
11
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12
 * included with this distribution is covered by the same copyright terms
13
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14
 *
15
 * Copyright remains Eric Young's, and as such any Copyright notices in
16
 * the code are not to be removed.
17
 * If this package is used in a product, Eric Young should be given attribution
18
 * as the author of the parts of the library used.
19
 * This can be in the form of a textual message at program startup or
20
 * in documentation (online or textual) provided with the package.
21
 *
22
 * Redistribution and use in source and binary forms, with or without
23
 * modification, are permitted provided that the following conditions
24
 * are met:
25
 * 1. Redistributions of source code must retain the copyright
26
 *    notice, this list of conditions and the following disclaimer.
27
 * 2. Redistributions in binary form must reproduce the above copyright
28
 *    notice, this list of conditions and the following disclaimer in the
29
 *    documentation and/or other materials provided with the distribution.
30
 * 3. All advertising materials mentioning features or use of this software
31
 *    must display the following acknowledgement:
32
 *    "This product includes cryptographic software written by
33
 *     Eric Young (eay@cryptsoft.com)"
34
 *    The word 'cryptographic' can be left out if the rouines from the library
35
 *    being used are not cryptographic related :-).
36
 * 4. If you include any Windows specific code (or a derivative thereof) from
37
 *    the apps directory (application code) you must include an acknowledgement:
38
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39
 *
40
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50
 * SUCH DAMAGE.
51
 *
52
 * The licence and distribution terms for any publically available version or
53
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
54
 * copied and put under another distribution licence
55
 * [including the GNU Public Licence.] */
56
57
#include <openssl/stack.h>
58
59
#include <assert.h>
60
#include <limits.h>
61
62
#include <openssl/err.h>
63
#include <openssl/mem.h>
64
65
#include "../internal.h"
66
67
68
struct stack_st {
69
  // num contains the number of valid pointers in |data|.
70
  size_t num;
71
  void **data;
72
  // sorted is non-zero if the values pointed to by |data| are in ascending
73
  // order, based on |comp|.
74
  int sorted;
75
  // num_alloc contains the number of pointers allocated in the buffer pointed
76
  // to by |data|, which may be larger than |num|.
77
  size_t num_alloc;
78
  // comp is an optional comparison function.
79
  OPENSSL_sk_cmp_func comp;
80
};
81
82
// kMinSize is the number of pointers that will be initially allocated in a new
83
// stack.
84
static const size_t kMinSize = 4;
85
86
1.39k
OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_cmp_func comp) {
87
1.39k
  OPENSSL_STACK *ret = OPENSSL_zalloc(sizeof(OPENSSL_STACK));
88
1.39k
  if (ret == NULL) {
89
0
    return NULL;
90
0
  }
91
92
1.39k
  ret->data = OPENSSL_calloc(kMinSize, sizeof(void *));
93
1.39k
  if (ret->data == NULL) {
94
0
    goto err;
95
0
  }
96
97
1.39k
  ret->comp = comp;
98
1.39k
  ret->num_alloc = kMinSize;
99
100
1.39k
  return ret;
101
102
0
err:
103
0
  OPENSSL_free(ret);
104
0
  return NULL;
105
1.39k
}
106
107
2.42k
OPENSSL_STACK *OPENSSL_sk_new_null(void) { return OPENSSL_sk_new(NULL); }
108
109
6.96M
size_t OPENSSL_sk_num(const OPENSSL_STACK *sk) {
110
6.96M
  if (sk == NULL) {
111
0
    return 0;
112
0
  }
113
6.96M
  return sk->num;
114
6.96M
}
115
116
0
void OPENSSL_sk_zero(OPENSSL_STACK *sk) {
117
0
  if (sk == NULL || sk->num == 0) {
118
0
    return;
119
0
  }
120
0
  OPENSSL_memset(sk->data, 0, sizeof(void*) * sk->num);
121
0
  sk->num = 0;
122
0
  sk->sorted = 0;
123
0
}
124
125
6.96M
void *OPENSSL_sk_value(const OPENSSL_STACK *sk, size_t i) {
126
6.96M
  if (!sk || i >= sk->num) {
127
0
    return NULL;
128
0
  }
129
6.96M
  return sk->data[i];
130
6.96M
}
131
132
0
void *OPENSSL_sk_set(OPENSSL_STACK *sk, size_t i, void *value) {
133
0
  if (!sk || i >= sk->num) {
134
0
    return NULL;
135
0
  }
136
0
  return sk->data[i] = value;
137
0
}
138
139
18.0k
void OPENSSL_sk_free(OPENSSL_STACK *sk) {
140
18.0k
  if (sk == NULL) {
141
8.47k
    return;
142
8.47k
  }
143
9.53k
  OPENSSL_free(sk->data);
144
9.53k
  OPENSSL_free(sk);
145
9.53k
}
146
147
void OPENSSL_sk_pop_free_ex(OPENSSL_STACK *sk,
148
                            OPENSSL_sk_call_free_func call_free_func,
149
3.12k
                            OPENSSL_sk_free_func free_func) {
150
3.12k
  if (sk == NULL) {
151
1.73k
    return;
152
1.73k
  }
153
154
13.5k
  for (size_t i = 0; i < sk->num; i++) {
155
12.1k
    if (sk->data[i] != NULL) {
156
12.1k
      call_free_func(free_func, sk->data[i]);
157
12.1k
    }
158
12.1k
  }
159
1.39k
  OPENSSL_sk_free(sk);
160
1.39k
}
161
162
// Historically, |sk_pop_free| called the function as |OPENSSL_sk_free_func|
163
// directly. This is undefined in C. Some callers called |sk_pop_free| directly,
164
// so we must maintain a compatibility version for now.
165
0
static void call_free_func_legacy(OPENSSL_sk_free_func func, void *ptr) {
166
0
  func(ptr);
167
0
}
168
169
0
void sk_pop_free(OPENSSL_STACK *sk, OPENSSL_sk_free_func free_func) {
170
0
  OPENSSL_sk_pop_free_ex(sk, call_free_func_legacy, free_func);
171
0
}
172
173
12.1k
size_t OPENSSL_sk_insert(OPENSSL_STACK *sk, void *p, size_t where) {
174
12.1k
  if (sk == NULL) {
175
0
    return 0;
176
0
  }
177
178
12.1k
  if (sk->num >= INT_MAX) {
179
0
    OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW);
180
0
    return 0;
181
0
  }
182
183
12.1k
  if (sk->num_alloc <= sk->num + 1) {
184
    // Attempt to double the size of the array.
185
1.83k
    size_t new_alloc = sk->num_alloc << 1;
186
1.83k
    size_t alloc_size = new_alloc * sizeof(void *);
187
1.83k
    void **data;
188
189
    // If the doubling overflowed, try to increment.
190
1.83k
    if (new_alloc < sk->num_alloc || alloc_size / sizeof(void *) != new_alloc) {
191
0
      new_alloc = sk->num_alloc + 1;
192
0
      alloc_size = new_alloc * sizeof(void *);
193
0
    }
194
195
    // If the increment also overflowed, fail.
196
1.83k
    if (new_alloc < sk->num_alloc || alloc_size / sizeof(void *) != new_alloc) {
197
0
      return 0;
198
0
    }
199
200
1.83k
    data = OPENSSL_realloc(sk->data, alloc_size);
201
1.83k
    if (data == NULL) {
202
0
      return 0;
203
0
    }
204
205
1.83k
    sk->data = data;
206
1.83k
    sk->num_alloc = new_alloc;
207
1.83k
  }
208
209
12.1k
  if (where >= sk->num) {
210
12.1k
    sk->data[sk->num] = p;
211
12.1k
  } else {
212
0
    OPENSSL_memmove(&sk->data[where + 1], &sk->data[where],
213
0
                    sizeof(void *) * (sk->num - where));
214
0
    sk->data[where] = p;
215
0
  }
216
217
12.1k
  sk->num++;
218
12.1k
  sk->sorted = 0;
219
220
12.1k
  return sk->num;
221
12.1k
}
222
223
void *OPENSSL_sk_delete(OPENSSL_STACK *sk, size_t where) {
224
  void *ret;
225
226
  if (!sk || where >= sk->num) {
227
    return NULL;
228
  }
229
230
  ret = sk->data[where];
231
232
  if (where != sk->num - 1) {
233
    OPENSSL_memmove(&sk->data[where], &sk->data[where + 1],
234
                    sizeof(void *) * (sk->num - where - 1));
235
  }
236
237
  sk->num--;
238
  return ret;
239
}
240
241
0
void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *sk, const void *p) {
242
0
  if (sk == NULL) {
243
0
    return NULL;
244
0
  }
245
246
0
  for (size_t i = 0; i < sk->num; i++) {
247
0
    if (sk->data[i] == p) {
248
0
      return OPENSSL_sk_delete(sk, i);
249
0
    }
250
0
  }
251
252
0
  return NULL;
253
0
}
254
255
void OPENSSL_sk_delete_if(OPENSSL_STACK *sk,
256
                          OPENSSL_sk_call_delete_if_func call_func,
257
0
                          OPENSSL_sk_delete_if_func func, void *data) {
258
0
  if (sk == NULL) {
259
0
    return;
260
0
  }
261
262
0
  size_t new_num = 0;
263
0
  for (size_t i = 0; i < sk->num; i++) {
264
0
    if (!call_func(func, sk->data[i], data)) {
265
0
      sk->data[new_num] = sk->data[i];
266
0
      new_num++;
267
0
    }
268
0
  }
269
0
  sk->num = new_num;
270
0
}
271
272
int OPENSSL_sk_find(const OPENSSL_STACK *sk, size_t *out_index, const void *p,
273
0
                    OPENSSL_sk_call_cmp_func call_cmp_func) {
274
0
  if (sk == NULL) {
275
0
    return 0;
276
0
  }
277
278
0
  if (sk->comp == NULL) {
279
    // Use pointer equality when no comparison function has been set.
280
0
    for (size_t i = 0; i < sk->num; i++) {
281
0
      if (sk->data[i] == p) {
282
0
        if (out_index) {
283
0
          *out_index = i;
284
0
        }
285
0
        return 1;
286
0
      }
287
0
    }
288
0
    return 0;
289
0
  }
290
291
0
  if (p == NULL) {
292
0
    return 0;
293
0
  }
294
295
0
  if (!OPENSSL_sk_is_sorted(sk)) {
296
0
    for (size_t i = 0; i < sk->num; i++) {
297
0
      if (call_cmp_func(sk->comp, p, sk->data[i]) == 0) {
298
0
        if (out_index) {
299
0
          *out_index = i;
300
0
        }
301
0
        return 1;
302
0
      }
303
0
    }
304
0
    return 0;
305
0
  }
306
307
  // The stack is sorted, so binary search to find the element.
308
  //
309
  // |lo| and |hi| maintain a half-open interval of where the answer may be. All
310
  // indices such that |lo <= idx < hi| are candidates.
311
0
  size_t lo = 0, hi = sk->num;
312
0
  while (lo < hi) {
313
    // Bias |mid| towards |lo|. See the |r == 0| case below.
314
0
    size_t mid = lo + (hi - lo - 1) / 2;
315
0
    assert(lo <= mid && mid < hi);
316
0
    int r = call_cmp_func(sk->comp, p, sk->data[mid]);
317
0
    if (r > 0) {
318
0
      lo = mid + 1;  // |mid| is too low.
319
0
    } else if (r < 0) {
320
0
      hi = mid;  // |mid| is too high.
321
0
    } else {
322
      // |mid| matches. However, this function returns the earliest match, so we
323
      // can only return if the range has size one.
324
0
      if (hi - lo == 1) {
325
0
        if (out_index != NULL) {
326
0
          *out_index = mid;
327
0
        }
328
0
        return 1;
329
0
      }
330
      // The sample is biased towards |lo|. |mid| can only be |hi - 1| if
331
      // |hi - lo| was one, so this makes forward progress.
332
0
      assert(mid + 1 < hi);
333
0
      hi = mid + 1;
334
0
    }
335
0
  }
336
337
0
  assert(lo == hi);
338
0
  return 0;  // Not found.
339
0
}
340
341
0
void *OPENSSL_sk_shift(OPENSSL_STACK *sk) {
342
0
  if (sk == NULL) {
343
0
    return NULL;
344
0
  }
345
0
  if (sk->num == 0) {
346
0
    return NULL;
347
0
  }
348
0
  return OPENSSL_sk_delete(sk, 0);
349
0
}
350
351
12.1k
size_t OPENSSL_sk_push(OPENSSL_STACK *sk, void *p) {
352
12.1k
  return OPENSSL_sk_insert(sk, p, sk->num);
353
12.1k
}
354
355
0
void *OPENSSL_sk_pop(OPENSSL_STACK *sk) {
356
0
  if (sk == NULL) {
357
0
    return NULL;
358
0
  }
359
0
  if (sk->num == 0) {
360
0
    return NULL;
361
0
  }
362
0
  return OPENSSL_sk_delete(sk, sk->num - 1);
363
0
}
364
365
0
OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk) {
366
0
  if (sk == NULL) {
367
0
    return NULL;
368
0
  }
369
370
0
  OPENSSL_STACK *ret = OPENSSL_zalloc(sizeof(OPENSSL_STACK));
371
0
  if (ret == NULL) {
372
0
    return NULL;
373
0
  }
374
375
0
  ret->data = OPENSSL_memdup(sk->data, sizeof(void *) * sk->num_alloc);
376
0
  if (ret->data == NULL) {
377
0
    goto err;
378
0
  }
379
380
0
  ret->num = sk->num;
381
0
  ret->sorted = sk->sorted;
382
0
  ret->num_alloc = sk->num_alloc;
383
0
  ret->comp = sk->comp;
384
0
  return ret;
385
386
0
err:
387
0
  OPENSSL_sk_free(ret);
388
0
  return NULL;
389
0
}
390
391
0
static size_t parent_idx(size_t idx) {
392
0
  assert(idx > 0);
393
0
  return (idx - 1) / 2;
394
0
}
395
396
0
static size_t left_idx(size_t idx) {
397
  // The largest possible index is |PTRDIFF_MAX|, not |SIZE_MAX|. If
398
  // |ptrdiff_t|, a signed type, is the same size as |size_t|, this cannot
399
  // overflow.
400
0
  assert(idx <= PTRDIFF_MAX);
401
0
  static_assert(PTRDIFF_MAX <= (SIZE_MAX - 1) / 2, "2 * idx + 1 may oveflow");
402
0
  return 2 * idx + 1;
403
0
}
404
405
// down_heap fixes the subtree rooted at |i|. |i|'s children must each satisfy
406
// the heap property. Only the first |num| elements of |sk| are considered.
407
static void down_heap(OPENSSL_STACK *sk, OPENSSL_sk_call_cmp_func call_cmp_func,
408
0
                      size_t i, size_t num) {
409
0
  assert(i < num && num <= sk->num);
410
0
  for (;;) {
411
0
    size_t left = left_idx(i);
412
0
    if (left >= num) {
413
0
      break;  // No left child.
414
0
    }
415
416
    // Swap |i| with the largest of its children.
417
0
    size_t next = i;
418
0
    if (call_cmp_func(sk->comp, sk->data[next], sk->data[left]) < 0) {
419
0
      next = left;
420
0
    }
421
0
    size_t right = left + 1;  // Cannot overflow because |left < num|.
422
0
    if (right < num &&
423
0
        call_cmp_func(sk->comp, sk->data[next], sk->data[right]) < 0) {
424
0
      next = right;
425
0
    }
426
427
0
    if (i == next) {
428
0
      break;  // |i| is already larger than its children.
429
0
    }
430
431
0
    void *tmp = sk->data[i];
432
0
    sk->data[i] = sk->data[next];
433
0
    sk->data[next] = tmp;
434
0
    i = next;
435
0
  }
436
0
}
437
438
void OPENSSL_sk_sort(OPENSSL_STACK *sk,
439
0
                     OPENSSL_sk_call_cmp_func call_cmp_func) {
440
0
  if (sk == NULL || sk->comp == NULL || sk->sorted) {
441
0
    return;
442
0
  }
443
444
0
  if (sk->num >= 2) {
445
    // |qsort| lacks a context parameter in the comparison function for us to
446
    // pass in |call_cmp_func| and |sk->comp|. While we could cast |sk->comp| to
447
    // the expected type, it is undefined behavior in C can trip sanitizers.
448
    // |qsort_r| and |qsort_s| avoid this, but using them is impractical. See
449
    // https://stackoverflow.com/a/39561369
450
    //
451
    // Use our own heap sort instead. This is not performance-sensitive, so we
452
    // optimize for simplicity and size. First, build a max-heap in place.
453
0
    for (size_t i = parent_idx(sk->num - 1); i < sk->num; i--) {
454
0
      down_heap(sk, call_cmp_func, i, sk->num);
455
0
    }
456
457
    // Iteratively remove the maximum element to populate the result in reverse.
458
0
    for (size_t i = sk->num - 1; i > 0; i--) {
459
0
      void *tmp = sk->data[0];
460
0
      sk->data[0] = sk->data[i];
461
0
      sk->data[i] = tmp;
462
0
      down_heap(sk, call_cmp_func, 0, i);
463
0
    }
464
0
  }
465
0
  sk->sorted = 1;
466
0
}
467
468
0
int OPENSSL_sk_is_sorted(const OPENSSL_STACK *sk) {
469
0
  if (!sk) {
470
0
    return 1;
471
0
  }
472
  // Zero- and one-element lists are always sorted.
473
0
  return sk->sorted || (sk->comp != NULL && sk->num < 2);
474
0
}
475
476
OPENSSL_sk_cmp_func OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk,
477
0
                                            OPENSSL_sk_cmp_func comp) {
478
0
  OPENSSL_sk_cmp_func old = sk->comp;
479
480
0
  if (sk->comp != comp) {
481
0
    sk->sorted = 0;
482
0
  }
483
0
  sk->comp = comp;
484
485
0
  return old;
486
0
}
487
488
OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk,
489
                                    OPENSSL_sk_call_copy_func call_copy_func,
490
                                    OPENSSL_sk_copy_func copy_func,
491
                                    OPENSSL_sk_call_free_func call_free_func,
492
                                    OPENSSL_sk_free_func free_func) {
493
  OPENSSL_STACK *ret = OPENSSL_sk_dup(sk);
494
  if (ret == NULL) {
495
    return NULL;
496
  }
497
498
  for (size_t i = 0; i < ret->num; i++) {
499
    if (ret->data[i] == NULL) {
500
      continue;
501
    }
502
    ret->data[i] = call_copy_func(copy_func, ret->data[i]);
503
    if (ret->data[i] == NULL) {
504
      for (size_t j = 0; j < i; j++) {
505
        if (ret->data[j] != NULL) {
506
          call_free_func(free_func, ret->data[j]);
507
        }
508
      }
509
      OPENSSL_sk_free(ret);
510
      return NULL;
511
    }
512
  }
513
514
  return ret;
515
}
516
517
0
OPENSSL_STACK *sk_new_null(void) { return OPENSSL_sk_new_null(); }
518
519
0
size_t sk_num(const OPENSSL_STACK *sk) { return OPENSSL_sk_num(sk); }
520
521
0
void *sk_value(const OPENSSL_STACK *sk, size_t i) {
522
0
  return OPENSSL_sk_value(sk, i);
523
0
}
524
525
0
void sk_free(OPENSSL_STACK *sk) { OPENSSL_sk_free(sk); }
526
527
0
size_t sk_push(OPENSSL_STACK *sk, void *p) { return OPENSSL_sk_push(sk, p); }
528
529
0
void *sk_pop(OPENSSL_STACK *sk) { return OPENSSL_sk_pop(sk); }
530
531
void sk_pop_free_ex(OPENSSL_STACK *sk, OPENSSL_sk_call_free_func call_free_func,
532
0
                    OPENSSL_sk_free_func free_func) {
533
0
  OPENSSL_sk_pop_free_ex(sk, call_free_func, free_func);
534
0
}