Line | Count | Source (jump to first uncovered line) |
1 | | // chacha.cpp - written and placed in the public domain by Jeffrey Walton. |
2 | | // Based on Wei Dai's Salsa20, Botan's SSE2 implementation, |
3 | | // and Bernstein's reference ChaCha family implementation at |
4 | | // http://cr.yp.to/chacha.html. |
5 | | |
6 | | #include "pch.h" |
7 | | #include "config.h" |
8 | | #include "chacha.h" |
9 | | #include "argnames.h" |
10 | | #include "misc.h" |
11 | | #include "cpu.h" |
12 | | |
13 | | // Internal compiler error in GCC 3.3 and below |
14 | | #if defined(__GNUC__) && (__GNUC__ < 4) |
15 | | # undef CRYPTOPP_SSE2_INTRIN_AVAILABLE |
16 | | #endif |
17 | | |
18 | | NAMESPACE_BEGIN(CryptoPP) |
19 | | |
20 | | #if (CRYPTOPP_ARM_NEON_AVAILABLE) |
21 | | extern void ChaCha_OperateKeystream_NEON(const word32 *state, const byte* input, byte *output, unsigned int rounds); |
22 | | #endif |
23 | | |
24 | | #if (CRYPTOPP_AVX2_AVAILABLE) |
25 | | extern void ChaCha_OperateKeystream_AVX2(const word32 *state, const byte* input, byte *output, unsigned int rounds); |
26 | | #endif |
27 | | #if (CRYPTOPP_SSE2_INTRIN_AVAILABLE) |
28 | | extern void ChaCha_OperateKeystream_SSE2(const word32 *state, const byte* input, byte *output, unsigned int rounds); |
29 | | #endif |
30 | | |
31 | | #if (CRYPTOPP_ALTIVEC_AVAILABLE) |
32 | | extern void ChaCha_OperateKeystream_ALTIVEC(const word32 *state, const byte* input, byte *output, unsigned int rounds); |
33 | | #endif |
34 | | |
35 | | #if defined(CRYPTOPP_DEBUG) && !defined(CRYPTOPP_DOXYGEN_PROCESSING) |
36 | | void ChaCha_TestInstantiations() |
37 | | { |
38 | | ChaCha::Encryption x; |
39 | | ChaChaTLS::Encryption y; |
40 | | XChaCha20::Encryption z; |
41 | | } |
42 | | #endif |
43 | | |
44 | | NAMESPACE_END // CryptoPP |
45 | | |
46 | | ////////////////////////////// ChaCha Core ////////////////////////////// |
47 | | |
48 | | #define CHACHA_QUARTER_ROUND(a,b,c,d) \ |
49 | 3.92k | a += b; d ^= a; d = rotlConstant<16,word32>(d); \ |
50 | 3.92k | c += d; b ^= c; b = rotlConstant<12,word32>(b); \ |
51 | 3.92k | a += b; d ^= a; d = rotlConstant<8,word32>(d); \ |
52 | 3.92k | c += d; b ^= c; b = rotlConstant<7,word32>(b); |
53 | | |
54 | 49 | #define CHACHA_OUTPUT(x){\ |
55 | 49 | CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 0, x0 + state[0]);\ |
56 | 49 | CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 1, x1 + state[1]);\ |
57 | 49 | CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 2, x2 + state[2]);\ |
58 | 49 | CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 3, x3 + state[3]);\ |
59 | 49 | CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 4, x4 + state[4]);\ |
60 | 49 | CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 5, x5 + state[5]);\ |
61 | 49 | CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 6, x6 + state[6]);\ |
62 | 49 | CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 7, x7 + state[7]);\ |
63 | 49 | CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 8, x8 + state[8]);\ |
64 | 49 | CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 9, x9 + state[9]);\ |
65 | 49 | CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 10, x10 + state[10]);\ |
66 | 49 | CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 11, x11 + state[11]);\ |
67 | 49 | CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 12, x12 + state[12]);\ |
68 | 49 | CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 13, x13 + state[13]);\ |
69 | 49 | CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 14, x14 + state[14]);\ |
70 | 49 | CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 15, x15 + state[15]);} |
71 | | |
72 | | ANONYMOUS_NAMESPACE_BEGIN |
73 | | |
74 | | // Hacks... Bring in all symbols, and supply |
75 | | // the stuff the templates normally provide. |
76 | | using namespace CryptoPP; |
77 | | typedef word32 WordType; |
78 | | enum {BYTES_PER_ITERATION=64}; |
79 | | |
80 | | // MultiBlockSafe detects a condition that can arise in the SIMD |
81 | | // implementations where we overflow one of the 32-bit state words during |
82 | | // addition in an intermediate result. Preconditions for the issue include |
83 | | // a user seeks to around 2^32 blocks (256 GB of data) for ChaCha; or a |
84 | | // user specifies an arbitrarily large initial counter block for ChaChaTLS. |
85 | | // Also see https://github.com/weidai11/cryptopp/issues/732. |
86 | | inline bool MultiBlockSafe(unsigned int ctrLow, unsigned int blocks) |
87 | 0 | { |
88 | 0 | return 0xffffffff - ctrLow > blocks; |
89 | 0 | } |
90 | | |
91 | | // OperateKeystream always produces a key stream. The key stream is written |
92 | | // to output. Optionally a message may be supplied to xor with the key stream. |
93 | | // The message is input, and output = output ^ input. |
94 | | void ChaCha_OperateKeystream(KeystreamOperation operation, |
95 | | word32 state[16], word32& ctrLow, word32& ctrHigh, word32 rounds, |
96 | | byte *output, const byte *input, size_t iterationCount) |
97 | 49 | { |
98 | 49 | do |
99 | 98 | { |
100 | 98 | #if (CRYPTOPP_AVX2_AVAILABLE) |
101 | 98 | if (HasAVX2()) |
102 | 98 | { |
103 | 98 | while (iterationCount >= 8 && MultiBlockSafe(state[12], 8)) |
104 | 0 | { |
105 | 0 | const bool xorInput = (operation & EnumToInt(INPUT_NULL)) != EnumToInt(INPUT_NULL); |
106 | 0 | ChaCha_OperateKeystream_AVX2(state, xorInput ? input : NULLPTR, output, rounds); |
107 | | |
108 | | // MultiBlockSafe avoids overflow on the counter words |
109 | 0 | state[12] += 8; |
110 | |
|
111 | 0 | input += (!!xorInput) * 8 * BYTES_PER_ITERATION; |
112 | 0 | output += 8 * BYTES_PER_ITERATION; |
113 | 0 | iterationCount -= 8; |
114 | 0 | } |
115 | 98 | } |
116 | 98 | #endif |
117 | | |
118 | 98 | #if (CRYPTOPP_SSE2_INTRIN_AVAILABLE) |
119 | 98 | if (HasSSE2()) |
120 | 98 | { |
121 | 98 | while (iterationCount >= 4 && MultiBlockSafe(state[12], 4)) |
122 | 0 | { |
123 | 0 | const bool xorInput = (operation & EnumToInt(INPUT_NULL)) != EnumToInt(INPUT_NULL); |
124 | 0 | ChaCha_OperateKeystream_SSE2(state, xorInput ? input : NULLPTR, output, rounds); |
125 | | |
126 | | // MultiBlockSafe avoids overflow on the counter words |
127 | 0 | state[12] += 4; |
128 | |
|
129 | 0 | input += (!!xorInput)*4*BYTES_PER_ITERATION; |
130 | 0 | output += 4*BYTES_PER_ITERATION; |
131 | 0 | iterationCount -= 4; |
132 | 0 | } |
133 | 98 | } |
134 | 98 | #endif |
135 | | |
136 | | #if (CRYPTOPP_ARM_NEON_AVAILABLE) |
137 | | if (HasNEON()) |
138 | | { |
139 | | while (iterationCount >= 4 && MultiBlockSafe(state[12], 4)) |
140 | | { |
141 | | const bool xorInput = (operation & EnumToInt(INPUT_NULL)) != EnumToInt(INPUT_NULL); |
142 | | ChaCha_OperateKeystream_NEON(state, xorInput ? input : NULLPTR, output, rounds); |
143 | | |
144 | | // MultiBlockSafe avoids overflow on the counter words |
145 | | state[12] += 4; |
146 | | |
147 | | input += (!!xorInput)*4*BYTES_PER_ITERATION; |
148 | | output += 4*BYTES_PER_ITERATION; |
149 | | iterationCount -= 4; |
150 | | } |
151 | | } |
152 | | #endif |
153 | | |
154 | | #if (CRYPTOPP_ALTIVEC_AVAILABLE) |
155 | | if (HasAltivec()) |
156 | | { |
157 | | while (iterationCount >= 4 && MultiBlockSafe(state[12], 4)) |
158 | | { |
159 | | const bool xorInput = (operation & EnumToInt(INPUT_NULL)) != EnumToInt(INPUT_NULL); |
160 | | ChaCha_OperateKeystream_ALTIVEC(state, xorInput ? input : NULLPTR, output, rounds); |
161 | | |
162 | | // MultiBlockSafe avoids overflow on the counter words |
163 | | state[12] += 4; |
164 | | |
165 | | input += (!!xorInput)*4*BYTES_PER_ITERATION; |
166 | | output += 4*BYTES_PER_ITERATION; |
167 | | iterationCount -= 4; |
168 | | } |
169 | | } |
170 | | #endif |
171 | | |
172 | 98 | if (iterationCount) |
173 | 49 | { |
174 | 49 | word32 x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15; |
175 | | |
176 | 49 | x0 = state[0]; x1 = state[1]; x2 = state[2]; x3 = state[3]; |
177 | 49 | x4 = state[4]; x5 = state[5]; x6 = state[6]; x7 = state[7]; |
178 | 49 | x8 = state[8]; x9 = state[9]; x10 = state[10]; x11 = state[11]; |
179 | 49 | x12 = state[12]; x13 = state[13]; x14 = state[14]; x15 = state[15]; |
180 | | |
181 | 539 | for (int i = static_cast<int>(rounds); i > 0; i -= 2) |
182 | 490 | { |
183 | 490 | CHACHA_QUARTER_ROUND(x0, x4, x8, x12); |
184 | 490 | CHACHA_QUARTER_ROUND(x1, x5, x9, x13); |
185 | 490 | CHACHA_QUARTER_ROUND(x2, x6, x10, x14); |
186 | 490 | CHACHA_QUARTER_ROUND(x3, x7, x11, x15); |
187 | | |
188 | 490 | CHACHA_QUARTER_ROUND(x0, x5, x10, x15); |
189 | 490 | CHACHA_QUARTER_ROUND(x1, x6, x11, x12); |
190 | 490 | CHACHA_QUARTER_ROUND(x2, x7, x8, x13); |
191 | 490 | CHACHA_QUARTER_ROUND(x3, x4, x9, x14); |
192 | 490 | } |
193 | | |
194 | 49 | CRYPTOPP_KEYSTREAM_OUTPUT_SWITCH(CHACHA_OUTPUT, BYTES_PER_ITERATION); |
195 | | |
196 | | // This is state[12] and state[13] from ChaCha. In the case of |
197 | | // ChaChaTLS ctrHigh is a reference to a discard value. |
198 | 49 | if (++ctrLow == 0) |
199 | 0 | ctrHigh++; |
200 | 49 | } |
201 | | |
202 | | // We may re-enter a SIMD keystream operation from here. |
203 | 98 | } while (iterationCount--); |
204 | 49 | } |
205 | | |
206 | | // XChaCha key derivation |
207 | | void HChaCha_OperateKeystream(const word32 state[16], word32 output[8]) |
208 | 0 | { |
209 | 0 | word32 x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15; |
210 | |
|
211 | 0 | x0 = state[0]; x1 = state[1]; x2 = state[2]; x3 = state[3]; |
212 | 0 | x4 = state[4]; x5 = state[5]; x6 = state[6]; x7 = state[7]; |
213 | 0 | x8 = state[8]; x9 = state[9]; x10 = state[10]; x11 = state[11]; |
214 | 0 | x12 = state[12]; x13 = state[13]; x14 = state[14]; x15 = state[15]; |
215 | |
|
216 | 0 | for (int i = 20; i > 0; i -= 2) |
217 | 0 | { |
218 | 0 | CHACHA_QUARTER_ROUND(x0, x4, x8, x12); |
219 | 0 | CHACHA_QUARTER_ROUND(x1, x5, x9, x13); |
220 | 0 | CHACHA_QUARTER_ROUND(x2, x6, x10, x14); |
221 | 0 | CHACHA_QUARTER_ROUND(x3, x7, x11, x15); |
222 | |
|
223 | 0 | CHACHA_QUARTER_ROUND(x0, x5, x10, x15); |
224 | 0 | CHACHA_QUARTER_ROUND(x1, x6, x11, x12); |
225 | 0 | CHACHA_QUARTER_ROUND(x2, x7, x8, x13); |
226 | 0 | CHACHA_QUARTER_ROUND(x3, x4, x9, x14); |
227 | 0 | } |
228 | |
|
229 | 0 | output[0] = x0; output[1] = x1; |
230 | 0 | output[2] = x2; output[3] = x3; |
231 | 0 | output[4] = x12; output[5] = x13; |
232 | 0 | output[6] = x14; output[7] = x15; |
233 | 0 | } |
234 | | |
235 | | std::string ChaCha_AlgorithmProvider() |
236 | 0 | { |
237 | 0 | #if (CRYPTOPP_AVX2_AVAILABLE) |
238 | 0 | if (HasAVX2()) |
239 | 0 | return "AVX2"; |
240 | 0 | else |
241 | 0 | #endif |
242 | 0 | #if (CRYPTOPP_SSE2_INTRIN_AVAILABLE) |
243 | 0 | if (HasSSE2()) |
244 | 0 | return "SSE2"; |
245 | 0 | else |
246 | 0 | #endif |
247 | | #if (CRYPTOPP_ARM_NEON_AVAILABLE) |
248 | | if (HasNEON()) |
249 | | return "NEON"; |
250 | | else |
251 | | #endif |
252 | | #if (CRYPTOPP_ALTIVEC_AVAILABLE) |
253 | | if (HasAltivec()) |
254 | | return "Altivec"; |
255 | | else |
256 | | #endif |
257 | 0 | return "C++"; |
258 | 0 | } |
259 | | |
260 | | unsigned int ChaCha_GetAlignment() |
261 | 98 | { |
262 | 98 | #if (CRYPTOPP_AVX2_AVAILABLE) |
263 | 98 | if (HasAVX2()) |
264 | 98 | return 16; |
265 | 0 | else |
266 | 0 | #endif |
267 | 0 | #if (CRYPTOPP_SSE2_INTRIN_AVAILABLE) |
268 | 0 | if (HasSSE2()) |
269 | 0 | return 16; |
270 | 0 | else |
271 | 0 | #endif |
272 | | #if (CRYPTOPP_ALTIVEC_AVAILABLE) |
273 | | if (HasAltivec()) |
274 | | return 16; |
275 | | else |
276 | | #endif |
277 | 0 | return GetAlignmentOf<word32>(); |
278 | 98 | } |
279 | | |
280 | | unsigned int ChaCha_GetOptimalBlockSize() |
281 | 0 | { |
282 | 0 | #if (CRYPTOPP_AVX2_AVAILABLE) |
283 | 0 | if (HasAVX2()) |
284 | 0 | return 8 * BYTES_PER_ITERATION; |
285 | 0 | else |
286 | 0 | #endif |
287 | 0 | #if (CRYPTOPP_SSE2_INTRIN_AVAILABLE) |
288 | 0 | if (HasSSE2()) |
289 | 0 | return 4*BYTES_PER_ITERATION; |
290 | 0 | else |
291 | 0 | #endif |
292 | | #if (CRYPTOPP_ARM_NEON_AVAILABLE) |
293 | | if (HasNEON()) |
294 | | return 4*BYTES_PER_ITERATION; |
295 | | else |
296 | | #endif |
297 | | #if (CRYPTOPP_ALTIVEC_AVAILABLE) |
298 | | if (HasAltivec()) |
299 | | return 4*BYTES_PER_ITERATION; |
300 | | else |
301 | | #endif |
302 | 0 | return BYTES_PER_ITERATION; |
303 | 0 | } |
304 | | |
305 | | ANONYMOUS_NAMESPACE_END |
306 | | |
307 | | NAMESPACE_BEGIN(CryptoPP) |
308 | | |
309 | | ////////////////////////////// Bernstein ChaCha ////////////////////////////// |
310 | | |
311 | | std::string ChaCha_Policy::AlgorithmName() const |
312 | 0 | { |
313 | 0 | return std::string("ChaCha")+IntToString(m_rounds); |
314 | 0 | } |
315 | | |
316 | | std::string ChaCha_Policy::AlgorithmProvider() const |
317 | 0 | { |
318 | 0 | return ChaCha_AlgorithmProvider(); |
319 | 0 | } |
320 | | |
321 | | void ChaCha_Policy::CipherSetKey(const NameValuePairs ¶ms, const byte *key, size_t length) |
322 | 0 | { |
323 | 0 | CRYPTOPP_ASSERT(key); CRYPTOPP_ASSERT(length == 16 || length == 32); |
324 | 0 | CRYPTOPP_UNUSED(key); CRYPTOPP_UNUSED(length); |
325 | | |
326 | | // Use previous rounds as the default value |
327 | 0 | int rounds = params.GetIntValueWithDefault(Name::Rounds(), m_rounds); |
328 | 0 | if (rounds != 20 && rounds != 12 && rounds != 8) |
329 | 0 | throw InvalidRounds(ChaCha::StaticAlgorithmName(), rounds); |
330 | | |
331 | | // Latch a good value |
332 | 0 | m_rounds = rounds; |
333 | | |
334 | | // "expand 16-byte k" or "expand 32-byte k" |
335 | 0 | m_state[0] = 0x61707865; |
336 | 0 | m_state[1] = (length == 16) ? 0x3120646e : 0x3320646e; |
337 | 0 | m_state[2] = (length == 16) ? 0x79622d36 : 0x79622d32; |
338 | 0 | m_state[3] = 0x6b206574; |
339 | |
|
340 | 0 | GetBlock<word32, LittleEndian> get1(key); |
341 | 0 | get1(m_state[4])(m_state[5])(m_state[6])(m_state[7]); |
342 | |
|
343 | 0 | GetBlock<word32, LittleEndian> get2(key + ((length == 32) ? 16 : 0)); |
344 | 0 | get2(m_state[8])(m_state[9])(m_state[10])(m_state[11]); |
345 | 0 | } |
346 | | |
347 | | void ChaCha_Policy::CipherResynchronize(byte *keystreamBuffer, const byte *IV, size_t length) |
348 | 0 | { |
349 | 0 | CRYPTOPP_UNUSED(keystreamBuffer), CRYPTOPP_UNUSED(length); |
350 | 0 | CRYPTOPP_ASSERT(length==8); CRYPTOPP_UNUSED(length); |
351 | |
|
352 | 0 | GetBlock<word32, LittleEndian> get(IV); |
353 | 0 | m_state[12] = m_state[13] = 0; |
354 | 0 | get(m_state[14])(m_state[15]); |
355 | 0 | } |
356 | | |
357 | | void ChaCha_Policy::SeekToIteration(lword iterationCount) |
358 | 0 | { |
359 | 0 | m_state[12] = (word32)iterationCount; // low word |
360 | 0 | m_state[13] = (word32)SafeRightShift<32>(iterationCount); |
361 | 0 | } |
362 | | |
363 | | unsigned int ChaCha_Policy::GetAlignment() const |
364 | 0 | { |
365 | 0 | return ChaCha_GetAlignment(); |
366 | 0 | } |
367 | | |
368 | | unsigned int ChaCha_Policy::GetOptimalBlockSize() const |
369 | 0 | { |
370 | 0 | return ChaCha_GetOptimalBlockSize(); |
371 | 0 | } |
372 | | |
373 | | void ChaCha_Policy::OperateKeystream(KeystreamOperation operation, |
374 | | byte *output, const byte *input, size_t iterationCount) |
375 | 0 | { |
376 | 0 | ChaCha_OperateKeystream(operation, m_state, m_state[12], m_state[13], |
377 | 0 | m_rounds, output, input, iterationCount); |
378 | 0 | } |
379 | | |
380 | | ////////////////////////////// IETF ChaChaTLS ////////////////////////////// |
381 | | |
382 | | std::string ChaChaTLS_Policy::AlgorithmName() const |
383 | 0 | { |
384 | 0 | return std::string("ChaChaTLS"); |
385 | 0 | } |
386 | | |
387 | | std::string ChaChaTLS_Policy::AlgorithmProvider() const |
388 | 0 | { |
389 | 0 | return ChaCha_AlgorithmProvider(); |
390 | 0 | } |
391 | | |
392 | | void ChaChaTLS_Policy::CipherSetKey(const NameValuePairs ¶ms, const byte *key, size_t length) |
393 | 72 | { |
394 | 72 | CRYPTOPP_ASSERT(key); CRYPTOPP_ASSERT(length == 32); |
395 | 72 | CRYPTOPP_UNUSED(length); |
396 | | |
397 | | // ChaChaTLS is always 20 rounds. Fetch Rounds() to avoid a spurious failure. |
398 | 72 | int rounds = params.GetIntValueWithDefault(Name::Rounds(), ROUNDS); |
399 | 72 | if (rounds != 20) |
400 | 0 | throw InvalidRounds(ChaChaTLS::StaticAlgorithmName(), rounds); |
401 | | |
402 | | // RFC 8439 test vectors use an initial block counter. However, the counter |
403 | | // can be an arbitrary value per RFC 8439 Section 2.4. We stash the counter |
404 | | // away in state[16] and use it for a Resynchronize() operation. I think |
405 | | // the initial counter is used more like a Tweak when non-0, and it should |
406 | | // be provided in Resynchronize() (light-weight re-keying). However, |
407 | | // Resynchronize() does not have an overload that allows us to pass it into |
408 | | // the function, so we have to use the heavier-weight SetKey to change it. |
409 | 72 | word64 block; |
410 | 72 | if (params.GetValue("InitialBlock", block)) |
411 | 72 | m_counter = static_cast<word32>(block); |
412 | 0 | else |
413 | 0 | m_counter = 0; |
414 | | |
415 | | // State words are defined in RFC 8439, Section 2.3. Key is 32-bytes. |
416 | 72 | GetBlock<word32, LittleEndian> get(key); |
417 | 72 | get(m_state[KEY+0])(m_state[KEY+1])(m_state[KEY+2])(m_state[KEY+3]) |
418 | 72 | (m_state[KEY+4])(m_state[KEY+5])(m_state[KEY+6])(m_state[KEY+7]); |
419 | 72 | } |
420 | | |
421 | | void ChaChaTLS_Policy::CipherResynchronize(byte *keystreamBuffer, const byte *IV, size_t length) |
422 | 72 | { |
423 | 72 | CRYPTOPP_UNUSED(keystreamBuffer), CRYPTOPP_UNUSED(length); |
424 | 72 | CRYPTOPP_ASSERT(length==12); |
425 | | |
426 | | // State words are defined in RFC 8439, Section 2.3. |
427 | 72 | m_state[0] = 0x61707865; m_state[1] = 0x3320646e; |
428 | 72 | m_state[2] = 0x79622d32; m_state[3] = 0x6b206574; |
429 | | |
430 | | // Copy saved key into state |
431 | 72 | std::memcpy(m_state+4, m_state+KEY, 8*sizeof(word32)); |
432 | | |
433 | | // State words are defined in RFC 8439, Section 2.3 |
434 | 72 | GetBlock<word32, LittleEndian> get(IV); |
435 | 72 | m_state[12] = m_counter; |
436 | 72 | get(m_state[13])(m_state[14])(m_state[15]); |
437 | 72 | } |
438 | | |
439 | | void ChaChaTLS_Policy::SeekToIteration(lword iterationCount) |
440 | 0 | { |
441 | | // Should we throw here??? If the initial block counter is |
442 | | // large then we can wrap and process more data as long as |
443 | | // data processed in the security context does not exceed |
444 | | // 2^32 blocks or approximately 256 GB of data. |
445 | 0 | CRYPTOPP_ASSERT(iterationCount <= (std::numeric_limits<word32>::max)()); |
446 | 0 | m_state[12] = (word32)iterationCount; // low word |
447 | 0 | } |
448 | | |
449 | | unsigned int ChaChaTLS_Policy::GetAlignment() const |
450 | 98 | { |
451 | 98 | return ChaCha_GetAlignment(); |
452 | 98 | } |
453 | | |
454 | | unsigned int ChaChaTLS_Policy::GetOptimalBlockSize() const |
455 | 0 | { |
456 | 0 | return ChaCha_GetOptimalBlockSize(); |
457 | 0 | } |
458 | | |
459 | | void ChaChaTLS_Policy::OperateKeystream(KeystreamOperation operation, |
460 | | byte *output, const byte *input, size_t iterationCount) |
461 | 49 | { |
462 | 49 | word32 discard=0; |
463 | 49 | ChaCha_OperateKeystream(operation, m_state, m_state[12], discard, |
464 | 49 | ROUNDS, output, input, iterationCount); |
465 | | |
466 | | // If this fires it means ChaCha_OperateKeystream generated a counter |
467 | | // block carry that was discarded. The problem is, the RFC does not |
468 | | // specify what should happen when the counter block wraps. All we can |
469 | | // do is inform the user that something bad may happen because we don't |
470 | | // know what we should do. |
471 | | // Also see https://github.com/weidai11/cryptopp/issues/790 and |
472 | | // https://mailarchive.ietf.org/arch/msg/cfrg/gsOnTJzcbgG6OqD8Sc0GO5aR_tU |
473 | | // CRYPTOPP_ASSERT(discard==0); |
474 | 49 | } |
475 | | |
476 | | ////////////////////////////// IETF XChaCha20 ////////////////////////////// |
477 | | |
478 | | std::string XChaCha20_Policy::AlgorithmName() const |
479 | 0 | { |
480 | 0 | return std::string("XChaCha20"); |
481 | 0 | } |
482 | | |
483 | | std::string XChaCha20_Policy::AlgorithmProvider() const |
484 | 0 | { |
485 | 0 | return ChaCha_AlgorithmProvider(); |
486 | 0 | } |
487 | | |
488 | | void XChaCha20_Policy::CipherSetKey(const NameValuePairs ¶ms, const byte *key, size_t length) |
489 | 0 | { |
490 | 0 | CRYPTOPP_ASSERT(key); CRYPTOPP_ASSERT(length == 32); |
491 | 0 | CRYPTOPP_UNUSED(length); |
492 | | |
493 | | // Use previous rounds as the default value |
494 | 0 | int rounds = params.GetIntValueWithDefault(Name::Rounds(), m_rounds); |
495 | 0 | if (rounds != 20 && rounds != 12) |
496 | 0 | throw InvalidRounds(ChaCha::StaticAlgorithmName(), rounds); |
497 | | |
498 | | // Latch a good value |
499 | 0 | m_rounds = rounds; |
500 | |
|
501 | 0 | word64 block; |
502 | 0 | if (params.GetValue("InitialBlock", block)) |
503 | 0 | m_counter = static_cast<word32>(block); |
504 | 0 | else |
505 | 0 | m_counter = 1; |
506 | | |
507 | | // Stash key away for use in CipherResynchronize |
508 | 0 | GetBlock<word32, LittleEndian> get(key); |
509 | 0 | get(m_state[KEY+0])(m_state[KEY+1])(m_state[KEY+2])(m_state[KEY+3]) |
510 | 0 | (m_state[KEY+4])(m_state[KEY+5])(m_state[KEY+6])(m_state[KEY+7]); |
511 | 0 | } |
512 | | |
513 | | void XChaCha20_Policy::CipherResynchronize(byte *keystreamBuffer, const byte *iv, size_t length) |
514 | 0 | { |
515 | 0 | CRYPTOPP_UNUSED(keystreamBuffer), CRYPTOPP_UNUSED(length); |
516 | 0 | CRYPTOPP_ASSERT(length==24); |
517 | | |
518 | | // HChaCha derivation |
519 | 0 | m_state[0] = 0x61707865; m_state[1] = 0x3320646e; |
520 | 0 | m_state[2] = 0x79622d32; m_state[3] = 0x6b206574; |
521 | | |
522 | | // Copy saved key into state |
523 | 0 | std::memcpy(m_state+4, m_state+KEY, 8*sizeof(word32)); |
524 | |
|
525 | 0 | GetBlock<word32, LittleEndian> get(iv); |
526 | 0 | get(m_state[12])(m_state[13])(m_state[14])(m_state[15]); |
527 | | |
528 | | // Operate the keystream without adding state back in. |
529 | | // This function also gathers the key words into a |
530 | | // contiguous 8-word block. |
531 | 0 | HChaCha_OperateKeystream(m_state, m_state+4); |
532 | | |
533 | | // XChaCha state |
534 | 0 | m_state[0] = 0x61707865; m_state[1] = 0x3320646e; |
535 | 0 | m_state[2] = 0x79622d32; m_state[3] = 0x6b206574; |
536 | | |
537 | | // Setup new IV |
538 | 0 | m_state[12] = m_counter; |
539 | 0 | m_state[13] = 0; |
540 | 0 | m_state[14] = GetWord<word32>(false, LITTLE_ENDIAN_ORDER, iv+16); |
541 | 0 | m_state[15] = GetWord<word32>(false, LITTLE_ENDIAN_ORDER, iv+20); |
542 | 0 | } |
543 | | |
544 | | void XChaCha20_Policy::SeekToIteration(lword iterationCount) |
545 | 0 | { |
546 | | // Should we throw here??? XChaCha does not have a block |
547 | | // counter, so I'm not sure how to seek on it. |
548 | 0 | CRYPTOPP_ASSERT(0); CRYPTOPP_UNUSED(iterationCount); |
549 | 0 | } |
550 | | |
551 | | unsigned int XChaCha20_Policy::GetAlignment() const |
552 | 0 | { |
553 | 0 | return ChaCha_GetAlignment(); |
554 | 0 | } |
555 | | |
556 | | unsigned int XChaCha20_Policy::GetOptimalBlockSize() const |
557 | 0 | { |
558 | 0 | return ChaCha_GetOptimalBlockSize(); |
559 | 0 | } |
560 | | |
561 | | void XChaCha20_Policy::OperateKeystream(KeystreamOperation operation, |
562 | | byte *output, const byte *input, size_t iterationCount) |
563 | 0 | { |
564 | 0 | ChaCha_OperateKeystream(operation, m_state, m_state[12], m_state[13], |
565 | 0 | m_rounds, output, input, iterationCount); |
566 | 0 | } |
567 | | |
568 | | NAMESPACE_END |