Coverage Report

Created: 2024-11-21 07:03

/src/cryptopp/simon128_simd.cpp
Line
Count
Source (jump to first uncovered line)
1
// simon_simd.cpp - written and placed in the public domain by Jeffrey Walton
2
//
3
//    This source file uses intrinsics and built-ins to gain access to
4
//    SSSE3, ARM NEON and ARMv8a, and Altivec instructions. A separate
5
//    source file is needed because additional CXXFLAGS are required to enable
6
//    the appropriate instructions sets in some build configurations.
7
8
#include "pch.h"
9
#include "config.h"
10
11
#include "simon.h"
12
#include "misc.h"
13
14
// Uncomment for benchmarking C++ against SSE or NEON.
15
// Do so in both simon.cpp and simon_simd.cpp.
16
// #undef CRYPTOPP_SSSE3_AVAILABLE
17
// #undef CRYPTOPP_ARM_NEON_AVAILABLE
18
19
#if (CRYPTOPP_SSSE3_AVAILABLE)
20
# include "adv_simd.h"
21
# include <pmmintrin.h>
22
# include <tmmintrin.h>
23
#endif
24
25
#if defined(__XOP__)
26
# if defined(CRYPTOPP_GCC_COMPATIBLE)
27
#  include <x86intrin.h>
28
# endif
29
# include <ammintrin.h>
30
#endif  // XOP
31
32
#if (CRYPTOPP_ARM_NEON_HEADER)
33
# include "adv_simd.h"
34
# include <arm_neon.h>
35
#endif
36
37
#if (CRYPTOPP_ARM_ACLE_HEADER)
38
# include <stdint.h>
39
# include <arm_acle.h>
40
#endif
41
42
#if defined(_M_ARM64)
43
# include "adv_simd.h"
44
#endif
45
46
#if (CRYPTOPP_ALTIVEC_AVAILABLE)
47
# include "adv_simd.h"
48
# include "ppc_simd.h"
49
#endif
50
51
// Squash MS LNK4221 and libtool warnings
52
extern const char SIMON128_SIMD_FNAME[] = __FILE__;
53
54
ANONYMOUS_NAMESPACE_BEGIN
55
56
using CryptoPP::byte;
57
using CryptoPP::word32;
58
using CryptoPP::word64;
59
using CryptoPP::vec_swap;  // SunCC
60
61
// *************************** ARM NEON ************************** //
62
63
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
64
65
// Missing from Microsoft's ARM A-32 implementation
66
#if defined(CRYPTOPP_MSC_VERSION) && !defined(_M_ARM64)
67
inline uint64x2_t vld1q_dup_u64(const uint64_t* ptr)
68
{
69
    return vmovq_n_u64(*ptr);
70
}
71
#endif
72
73
template <class T>
74
inline T UnpackHigh64(const T& a, const T& b)
75
{
76
    const uint64x1_t x(vget_high_u64((uint64x2_t)a));
77
    const uint64x1_t y(vget_high_u64((uint64x2_t)b));
78
    return (T)vcombine_u64(x, y);
79
}
80
81
template <class T>
82
inline T UnpackLow64(const T& a, const T& b)
83
{
84
    const uint64x1_t x(vget_low_u64((uint64x2_t)a));
85
    const uint64x1_t y(vget_low_u64((uint64x2_t)b));
86
    return (T)vcombine_u64(x, y);
87
}
88
89
template <unsigned int R>
90
inline uint64x2_t RotateLeft64(const uint64x2_t& val)
91
{
92
    const uint64x2_t a(vshlq_n_u64(val, R));
93
    const uint64x2_t b(vshrq_n_u64(val, 64 - R));
94
    return vorrq_u64(a, b);
95
}
96
97
template <unsigned int R>
98
inline uint64x2_t RotateRight64(const uint64x2_t& val)
99
{
100
    const uint64x2_t a(vshlq_n_u64(val, 64 - R));
101
    const uint64x2_t b(vshrq_n_u64(val, R));
102
    return vorrq_u64(a, b);
103
}
104
105
#if defined(__aarch32__) || defined(__aarch64__)
106
// Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks.
107
template <>
108
inline uint64x2_t RotateLeft64<8>(const uint64x2_t& val)
109
{
110
    const uint8_t maskb[16] = { 7,0,1,2, 3,4,5,6, 15,8,9,10, 11,12,13,14 };
111
    const uint8x16_t mask = vld1q_u8(maskb);
112
113
    return vreinterpretq_u64_u8(
114
        vqtbl1q_u8(vreinterpretq_u8_u64(val), mask));
115
}
116
117
// Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks.
118
template <>
119
inline uint64x2_t RotateRight64<8>(const uint64x2_t& val)
120
{
121
    const uint8_t maskb[16] = { 1,2,3,4, 5,6,7,0, 9,10,11,12, 13,14,15,8 };
122
    const uint8x16_t mask = vld1q_u8(maskb);
123
124
    return vreinterpretq_u64_u8(
125
        vqtbl1q_u8(vreinterpretq_u8_u64(val), mask));
126
}
127
#endif
128
129
inline uint64x2_t SIMON128_f(const uint64x2_t& val)
130
{
131
    return veorq_u64(RotateLeft64<2>(val),
132
        vandq_u64(RotateLeft64<1>(val), RotateLeft64<8>(val)));
133
}
134
135
inline void SIMON128_Enc_Block(uint64x2_t &block0, uint64x2_t &block1,
136
    const word64 *subkeys, unsigned int rounds)
137
{
138
    // [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
139
    uint64x2_t x1 = UnpackHigh64(block0, block1);
140
    uint64x2_t y1 = UnpackLow64(block0, block1);
141
142
    for (size_t i = 0; i < static_cast<size_t>(rounds & ~1)-1; i += 2)
143
    {
144
        const uint64x2_t rk1 = vld1q_dup_u64(subkeys+i);
145
        y1 = veorq_u64(veorq_u64(y1, SIMON128_f(x1)), rk1);
146
147
        const uint64x2_t rk2 = vld1q_dup_u64(subkeys+i+1);
148
        x1 = veorq_u64(veorq_u64(x1, SIMON128_f(y1)), rk2);
149
    }
150
151
    if (rounds & 1)
152
    {
153
        const uint64x2_t rk = vld1q_dup_u64(subkeys+rounds-1);
154
155
        y1 = veorq_u64(veorq_u64(y1, SIMON128_f(x1)), rk);
156
        std::swap(x1, y1);
157
    }
158
159
    // [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
160
    block0 = UnpackLow64(y1, x1);
161
    block1 = UnpackHigh64(y1, x1);
162
}
163
164
inline void SIMON128_Enc_6_Blocks(uint64x2_t &block0, uint64x2_t &block1,
165
    uint64x2_t &block2, uint64x2_t &block3, uint64x2_t &block4, uint64x2_t &block5,
166
    const word64 *subkeys, unsigned int rounds)
167
{
168
    // [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
169
    uint64x2_t x1 = UnpackHigh64(block0, block1);
170
    uint64x2_t y1 = UnpackLow64(block0, block1);
171
    uint64x2_t x2 = UnpackHigh64(block2, block3);
172
    uint64x2_t y2 = UnpackLow64(block2, block3);
173
    uint64x2_t x3 = UnpackHigh64(block4, block5);
174
    uint64x2_t y3 = UnpackLow64(block4, block5);
175
176
    for (size_t i = 0; i < static_cast<size_t>(rounds & ~1) - 1; i += 2)
177
    {
178
        const uint64x2_t rk1 = vld1q_dup_u64(subkeys+i);
179
        y1 = veorq_u64(veorq_u64(y1, SIMON128_f(x1)), rk1);
180
        y2 = veorq_u64(veorq_u64(y2, SIMON128_f(x2)), rk1);
181
        y3 = veorq_u64(veorq_u64(y3, SIMON128_f(x3)), rk1);
182
183
        const uint64x2_t rk2 = vld1q_dup_u64(subkeys+i+1);
184
        x1 = veorq_u64(veorq_u64(x1, SIMON128_f(y1)), rk2);
185
        x2 = veorq_u64(veorq_u64(x2, SIMON128_f(y2)), rk2);
186
        x3 = veorq_u64(veorq_u64(x3, SIMON128_f(y3)), rk2);
187
    }
188
189
    if (rounds & 1)
190
    {
191
        const uint64x2_t rk = vld1q_dup_u64(subkeys + rounds - 1);
192
193
        y1 = veorq_u64(veorq_u64(y1, SIMON128_f(x1)), rk);
194
        y2 = veorq_u64(veorq_u64(y2, SIMON128_f(x2)), rk);
195
        y3 = veorq_u64(veorq_u64(y3, SIMON128_f(x3)), rk);
196
        std::swap(x1, y1); std::swap(x2, y2); std::swap(x3, y3);
197
    }
198
199
    // [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
200
    block0 = UnpackLow64(y1, x1);
201
    block1 = UnpackHigh64(y1, x1);
202
    block2 = UnpackLow64(y2, x2);
203
    block3 = UnpackHigh64(y2, x2);
204
    block4 = UnpackLow64(y3, x3);
205
    block5 = UnpackHigh64(y3, x3);
206
}
207
208
inline void SIMON128_Dec_Block(uint64x2_t &block0, uint64x2_t &block1,
209
    const word64 *subkeys, unsigned int rounds)
210
{
211
    // [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
212
    uint64x2_t x1 = UnpackHigh64(block0, block1);
213
    uint64x2_t y1 = UnpackLow64(block0, block1);
214
215
    if (rounds & 1)
216
    {
217
        std::swap(x1, y1);
218
        const uint64x2_t rk = vld1q_dup_u64(subkeys + rounds - 1);
219
220
        y1 = veorq_u64(veorq_u64(y1, rk), SIMON128_f(x1));
221
        rounds--;
222
    }
223
224
    for (int i = static_cast<int>(rounds-2); i >= 0; i -= 2)
225
    {
226
        const uint64x2_t rk1 = vld1q_dup_u64(subkeys+i+1);
227
        x1 = veorq_u64(veorq_u64(x1, SIMON128_f(y1)), rk1);
228
229
        const uint64x2_t rk2 = vld1q_dup_u64(subkeys+i);
230
        y1 = veorq_u64(veorq_u64(y1, SIMON128_f(x1)), rk2);
231
    }
232
233
    // [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
234
    block0 = UnpackLow64(y1, x1);
235
    block1 = UnpackHigh64(y1, x1);
236
}
237
238
inline void SIMON128_Dec_6_Blocks(uint64x2_t &block0, uint64x2_t &block1,
239
    uint64x2_t &block2, uint64x2_t &block3, uint64x2_t &block4, uint64x2_t &block5,
240
    const word64 *subkeys, unsigned int rounds)
241
{
242
    // [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
243
    uint64x2_t x1 = UnpackHigh64(block0, block1);
244
    uint64x2_t y1 = UnpackLow64(block0, block1);
245
    uint64x2_t x2 = UnpackHigh64(block2, block3);
246
    uint64x2_t y2 = UnpackLow64(block2, block3);
247
    uint64x2_t x3 = UnpackHigh64(block4, block5);
248
    uint64x2_t y3 = UnpackLow64(block4, block5);
249
250
    if (rounds & 1)
251
    {
252
        std::swap(x1, y1); std::swap(x2, y2); std::swap(x3, y3);
253
        const uint64x2_t rk = vld1q_dup_u64(subkeys + rounds - 1);
254
255
        y1 = veorq_u64(veorq_u64(y1, rk), SIMON128_f(x1));
256
        y2 = veorq_u64(veorq_u64(y2, rk), SIMON128_f(x2));
257
        y3 = veorq_u64(veorq_u64(y3, rk), SIMON128_f(x3));
258
        rounds--;
259
    }
260
261
    for (int i = static_cast<int>(rounds-2); i >= 0; i -= 2)
262
    {
263
        const uint64x2_t rk1 = vld1q_dup_u64(subkeys + i + 1);
264
        x1 = veorq_u64(veorq_u64(x1, SIMON128_f(y1)), rk1);
265
        x2 = veorq_u64(veorq_u64(x2, SIMON128_f(y2)), rk1);
266
        x3 = veorq_u64(veorq_u64(x3, SIMON128_f(y3)), rk1);
267
268
        const uint64x2_t rk2 = vld1q_dup_u64(subkeys + i);
269
        y1 = veorq_u64(veorq_u64(y1, SIMON128_f(x1)), rk2);
270
        y2 = veorq_u64(veorq_u64(y2, SIMON128_f(x2)), rk2);
271
        y3 = veorq_u64(veorq_u64(y3, SIMON128_f(x3)), rk2);
272
    }
273
274
    // [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
275
    block0 = UnpackLow64(y1, x1);
276
    block1 = UnpackHigh64(y1, x1);
277
    block2 = UnpackLow64(y2, x2);
278
    block3 = UnpackHigh64(y2, x2);
279
    block4 = UnpackLow64(y3, x3);
280
    block5 = UnpackHigh64(y3, x3);
281
}
282
283
#endif  // CRYPTOPP_ARM_NEON_AVAILABLE
284
285
// ***************************** IA-32 ***************************** //
286
287
#if (CRYPTOPP_SSSE3_AVAILABLE)
288
289
// GCC double casts, https://www.spinics.net/lists/gcchelp/msg47735.html
290
#ifndef DOUBLE_CAST
291
# define DOUBLE_CAST(x) ((double *)(void *)(x))
292
#endif
293
#ifndef CONST_DOUBLE_CAST
294
# define CONST_DOUBLE_CAST(x) ((const double *)(const void *)(x))
295
#endif
296
297
inline void Swap128(__m128i& a,__m128i& b)
298
32
{
299
#if defined(__SUNPRO_CC) && (__SUNPRO_CC <= 0x5120)
300
    // __m128i is an unsigned long long[2], and support for swapping it was not added until C++11.
301
    // SunCC 12.1 - 12.3 fail to consume the swap; while SunCC 12.4 consumes it without -std=c++11.
302
    vec_swap(a, b);
303
#else
304
32
    std::swap(a, b);
305
32
#endif
306
32
}
307
308
template <unsigned int R>
309
inline __m128i RotateLeft64(const __m128i& val)
310
6.32k
{
311
#if defined(__XOP__)
312
    return _mm_roti_epi64(val, R);
313
#else
314
6.32k
    return _mm_or_si128(
315
6.32k
        _mm_slli_epi64(val, R), _mm_srli_epi64(val, 64-R));
316
6.32k
#endif
317
6.32k
}
simon128_simd.cpp:long long __vector(2) (anonymous namespace)::RotateLeft64<2u>(long long __vector(2) const&)
Line
Count
Source
310
3.16k
{
311
#if defined(__XOP__)
312
    return _mm_roti_epi64(val, R);
313
#else
314
3.16k
    return _mm_or_si128(
315
3.16k
        _mm_slli_epi64(val, R), _mm_srli_epi64(val, 64-R));
316
3.16k
#endif
317
3.16k
}
simon128_simd.cpp:long long __vector(2) (anonymous namespace)::RotateLeft64<1u>(long long __vector(2) const&)
Line
Count
Source
310
3.16k
{
311
#if defined(__XOP__)
312
    return _mm_roti_epi64(val, R);
313
#else
314
3.16k
    return _mm_or_si128(
315
3.16k
        _mm_slli_epi64(val, R), _mm_srli_epi64(val, 64-R));
316
3.16k
#endif
317
3.16k
}
318
319
template <unsigned int R>
320
inline __m128i RotateRight64(const __m128i& val)
321
{
322
#if defined(__XOP__)
323
    return _mm_roti_epi64(val, 64-R);
324
#else
325
    return _mm_or_si128(
326
        _mm_slli_epi64(val, 64-R), _mm_srli_epi64(val, R));
327
#endif
328
}
329
330
// Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks.
331
template <>
332
__m128i RotateLeft64<8>(const __m128i& val)
333
3.16k
{
334
#if defined(__XOP__)
335
    return _mm_roti_epi64(val, 8);
336
#else
337
3.16k
    const __m128i mask = _mm_set_epi8(14,13,12,11, 10,9,8,15, 6,5,4,3, 2,1,0,7);
338
3.16k
    return _mm_shuffle_epi8(val, mask);
339
3.16k
#endif
340
3.16k
}
341
342
// Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks.
343
template <>
344
__m128i RotateRight64<8>(const __m128i& val)
345
0
{
346
0
#if defined(__XOP__)
347
0
    return _mm_roti_epi64(val, 64-8);
348
0
#else
349
0
    const __m128i mask = _mm_set_epi8(8,15,14,13, 12,11,10,9, 0,7,6,5, 4,3,2,1);
350
0
    return _mm_shuffle_epi8(val, mask);
351
0
#endif
352
0
}
353
354
inline __m128i SIMON128_f(const __m128i& v)
355
3.16k
{
356
3.16k
    return _mm_xor_si128(RotateLeft64<2>(v),
357
3.16k
        _mm_and_si128(RotateLeft64<1>(v), RotateLeft64<8>(v)));
358
3.16k
}
359
360
inline void SIMON128_Enc_Block(__m128i &block0, __m128i &block1,
361
    const word64 *subkeys, unsigned int rounds)
362
8
{
363
    // [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
364
8
    __m128i x1 = _mm_unpackhi_epi64(block0, block1);
365
8
    __m128i y1 = _mm_unpacklo_epi64(block0, block1);
366
367
280
    for (size_t i = 0; i < static_cast<size_t>(rounds & ~1)-1; i += 2)
368
272
    {
369
        // Round keys are pre-splated in forward direction
370
272
        const __m128i rk1 = _mm_load_si128(CONST_M128_CAST(subkeys+i*2));
371
272
        y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON128_f(x1)), rk1);
372
373
272
        const __m128i rk2 = _mm_load_si128(CONST_M128_CAST(subkeys+(i+1)*2));
374
272
        x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON128_f(y1)), rk2);
375
272
    }
376
377
8
    if (rounds & 1)
378
1
    {
379
        // Round keys are pre-splated in forward direction
380
1
        const __m128i rk = _mm_load_si128(CONST_M128_CAST(subkeys+(rounds-1)*2));
381
382
1
        y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON128_f(x1)), rk);
383
1
        Swap128(x1, y1);
384
1
    }
385
386
    // [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
387
8
    block0 = _mm_unpacklo_epi64(y1, x1);
388
8
    block1 = _mm_unpackhi_epi64(y1, x1);
389
8
}
390
391
inline void SIMON128_Enc_6_Blocks(__m128i &block0, __m128i &block1,
392
    __m128i &block2, __m128i &block3, __m128i &block4, __m128i &block5,
393
    const word64 *subkeys, unsigned int rounds)
394
2
{
395
    // [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
396
2
    __m128i x1 = _mm_unpackhi_epi64(block0, block1);
397
2
    __m128i y1 = _mm_unpacklo_epi64(block0, block1);
398
2
    __m128i x2 = _mm_unpackhi_epi64(block2, block3);
399
2
    __m128i y2 = _mm_unpacklo_epi64(block2, block3);
400
2
    __m128i x3 = _mm_unpackhi_epi64(block4, block5);
401
2
    __m128i y3 = _mm_unpacklo_epi64(block4, block5);
402
403
70
    for (size_t i = 0; i < static_cast<size_t>(rounds & ~1) - 1; i += 2)
404
68
    {
405
        // Round keys are pre-splated in forward direction
406
68
        const __m128i rk1 = _mm_load_si128(CONST_M128_CAST(subkeys+i*2));
407
68
        y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON128_f(x1)), rk1);
408
68
        y2 = _mm_xor_si128(_mm_xor_si128(y2, SIMON128_f(x2)), rk1);
409
68
        y3 = _mm_xor_si128(_mm_xor_si128(y3, SIMON128_f(x3)), rk1);
410
411
        // Round keys are pre-splated in forward direction
412
68
        const __m128i rk2 = _mm_load_si128(CONST_M128_CAST(subkeys+(i+1)*2));
413
68
        x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON128_f(y1)), rk2);
414
68
        x2 = _mm_xor_si128(_mm_xor_si128(x2, SIMON128_f(y2)), rk2);
415
68
        x3 = _mm_xor_si128(_mm_xor_si128(x3, SIMON128_f(y3)), rk2);
416
68
    }
417
418
2
    if (rounds & 1)
419
0
    {
420
        // Round keys are pre-splated in forward direction
421
0
        const __m128i rk = _mm_load_si128(CONST_M128_CAST(subkeys+(rounds-1)*2));
422
0
        y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON128_f(x1)), rk);
423
0
        y2 = _mm_xor_si128(_mm_xor_si128(y2, SIMON128_f(x2)), rk);
424
0
        y3 = _mm_xor_si128(_mm_xor_si128(y3, SIMON128_f(x3)), rk);
425
0
        Swap128(x1, y1); Swap128(x2, y2); Swap128(x3, y3);
426
0
    }
427
428
    // [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
429
2
    block0 = _mm_unpacklo_epi64(y1, x1);
430
2
    block1 = _mm_unpackhi_epi64(y1, x1);
431
2
    block2 = _mm_unpacklo_epi64(y2, x2);
432
2
    block3 = _mm_unpackhi_epi64(y2, x2);
433
2
    block4 = _mm_unpacklo_epi64(y3, x3);
434
2
    block5 = _mm_unpackhi_epi64(y3, x3);
435
2
}
436
437
inline void SIMON128_Dec_Block(__m128i &block0, __m128i &block1,
438
    const word64 *subkeys, unsigned int rounds)
439
8
{
440
    // [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
441
8
    __m128i x1 = _mm_unpackhi_epi64(block0, block1);
442
8
    __m128i y1 = _mm_unpacklo_epi64(block0, block1);
443
444
8
    if (rounds & 1)
445
7
    {
446
7
        const __m128i rk = _mm_castpd_si128(
447
7
            _mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys + rounds - 1)));
448
449
7
        Swap128(x1, y1);
450
7
        y1 = _mm_xor_si128(_mm_xor_si128(y1, rk), SIMON128_f(x1));
451
7
        rounds--;
452
7
    }
453
454
280
    for (int i = static_cast<int>(rounds-2); i >= 0; i -= 2)
455
272
    {
456
272
        const __m128i rk1 = _mm_castpd_si128(
457
272
            _mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys+i+1)));
458
272
        x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON128_f(y1)), rk1);
459
460
272
        const __m128i rk2 = _mm_castpd_si128(
461
272
            _mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys+i)));
462
272
        y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON128_f(x1)), rk2);
463
272
    }
464
465
    // [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
466
8
    block0 = _mm_unpacklo_epi64(y1, x1);
467
8
    block1 = _mm_unpackhi_epi64(y1, x1);
468
8
}
469
470
inline void SIMON128_Dec_6_Blocks(__m128i &block0, __m128i &block1,
471
    __m128i &block2, __m128i &block3, __m128i &block4, __m128i &block5,
472
    const word64 *subkeys, unsigned int rounds)
473
8
{
474
    // [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
475
8
    __m128i x1 = _mm_unpackhi_epi64(block0, block1);
476
8
    __m128i y1 = _mm_unpacklo_epi64(block0, block1);
477
8
    __m128i x2 = _mm_unpackhi_epi64(block2, block3);
478
8
    __m128i y2 = _mm_unpacklo_epi64(block2, block3);
479
8
    __m128i x3 = _mm_unpackhi_epi64(block4, block5);
480
8
    __m128i y3 = _mm_unpacklo_epi64(block4, block5);
481
482
8
    if (rounds & 1)
483
8
    {
484
8
        const __m128i rk = _mm_castpd_si128(
485
8
            _mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys + rounds - 1)));
486
487
8
        Swap128(x1, y1); Swap128(x2, y2); Swap128(x3, y3);
488
8
        y1 = _mm_xor_si128(_mm_xor_si128(y1, rk), SIMON128_f(x1));
489
8
        y2 = _mm_xor_si128(_mm_xor_si128(y2, rk), SIMON128_f(x2));
490
8
        y3 = _mm_xor_si128(_mm_xor_si128(y3, rk), SIMON128_f(x3));
491
8
        rounds--;
492
8
    }
493
494
280
    for (int i = static_cast<int>(rounds-2); i >= 0; i -= 2)
495
272
    {
496
272
        const __m128i rk1 = _mm_castpd_si128(
497
272
            _mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys + i + 1)));
498
272
        x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON128_f(y1)), rk1);
499
272
        x2 = _mm_xor_si128(_mm_xor_si128(x2, SIMON128_f(y2)), rk1);
500
272
        x3 = _mm_xor_si128(_mm_xor_si128(x3, SIMON128_f(y3)), rk1);
501
502
272
        const __m128i rk2 = _mm_castpd_si128(
503
272
            _mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys + i)));
504
272
        y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON128_f(x1)), rk2);
505
272
        y2 = _mm_xor_si128(_mm_xor_si128(y2, SIMON128_f(x2)), rk2);
506
272
        y3 = _mm_xor_si128(_mm_xor_si128(y3, SIMON128_f(x3)), rk2);
507
272
    }
508
509
    // [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
510
8
    block0 = _mm_unpacklo_epi64(y1, x1);
511
8
    block1 = _mm_unpackhi_epi64(y1, x1);
512
8
    block2 = _mm_unpacklo_epi64(y2, x2);
513
8
    block3 = _mm_unpackhi_epi64(y2, x2);
514
8
    block4 = _mm_unpacklo_epi64(y3, x3);
515
8
    block5 = _mm_unpackhi_epi64(y3, x3);
516
8
}
517
518
#endif  // CRYPTOPP_SSSE3_AVAILABLE
519
520
// ***************************** Altivec ***************************** //
521
522
#if (CRYPTOPP_ALTIVEC_AVAILABLE)
523
524
// Altivec uses native 64-bit types on 64-bit environments, or 32-bit types
525
// in 32-bit environments. Speck128 will use the appropriate type for the
526
// environment. Functions like VecAdd64 have two overloads, one for each
527
// environment. The 32-bit overload treats uint32x4_p like a 64-bit type,
528
// and does things like perform a add with carry or subtract with borrow.
529
530
// Speck128 on Power8 performed as expected because of 64-bit environment.
531
// Performance sucked on old PowerPC machines because of 32-bit environments.
532
// At Crypto++ 8.3 we added an implementation that operated on 32-bit words.
533
// Native 64-bit Speck128 performance dropped from about 4.1 to 6.3 cpb, but
534
// 32-bit Speck128 improved from 66.5 cpb to 10.4 cpb. Overall it was a
535
// good win even though we lost some performance in 64-bit environments.
536
537
using CryptoPP::uint8x16_p;
538
using CryptoPP::uint32x4_p;
539
#if defined(_ARCH_PWR8)
540
using CryptoPP::uint64x2_p;
541
#endif
542
543
using CryptoPP::VecAdd64;
544
using CryptoPP::VecSub64;
545
using CryptoPP::VecAnd64;
546
using CryptoPP::VecOr64;
547
using CryptoPP::VecXor64;
548
using CryptoPP::VecRotateLeft64;
549
using CryptoPP::VecRotateRight64;
550
using CryptoPP::VecSplatElement64;
551
using CryptoPP::VecLoad;
552
using CryptoPP::VecLoadAligned;
553
using CryptoPP::VecPermute;
554
555
#if defined(_ARCH_PWR8)
556
#define simon128_t uint64x2_p
557
#else
558
#define simon128_t uint32x4_p
559
#endif
560
561
inline simon128_t SIMON128_f(const simon128_t val)
562
{
563
    return (simon128_t)VecXor64(VecRotateLeft64<2>(val),
564
        VecAnd64(VecRotateLeft64<1>(val), VecRotateLeft64<8>(val)));
565
}
566
567
inline void SIMON128_Enc_Block(uint32x4_p &block, const word64 *subkeys, unsigned int rounds)
568
{
569
#if (CRYPTOPP_BIG_ENDIAN)
570
    const uint8x16_p m1 = {31,30,29,28,27,26,25,24, 15,14,13,12,11,10,9,8};
571
    const uint8x16_p m2 = {23,22,21,20,19,18,17,16, 7,6,5,4,3,2,1,0};
572
#else
573
    const uint8x16_p m1 = {7,6,5,4,3,2,1,0, 23,22,21,20,19,18,17,16};
574
    const uint8x16_p m2 = {15,14,13,12,11,10,9,8, 31,30,29,28,27,26,25,24};
575
#endif
576
577
    // [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
578
    simon128_t x1 = (simon128_t)VecPermute(block, block, m1);
579
    simon128_t y1 = (simon128_t)VecPermute(block, block, m2);
580
581
    for (size_t i = 0; i < static_cast<size_t>(rounds & ~1)-1; i += 2)
582
    {
583
        // Round keys are pre-splated in forward direction
584
        const word32* ptr1 = reinterpret_cast<const word32*>(subkeys+i*2);
585
        const simon128_t rk1 = (simon128_t)VecLoadAligned(ptr1);
586
        const word32* ptr2 = reinterpret_cast<const word32*>(subkeys+(i+1)*2);
587
        const simon128_t rk2 = (simon128_t)VecLoadAligned(ptr2);
588
589
        y1 = VecXor64(VecXor64(y1, SIMON128_f(x1)), rk1);
590
        x1 = VecXor64(VecXor64(x1, SIMON128_f(y1)), rk2);
591
    }
592
593
    if (rounds & 1)
594
    {
595
        // Round keys are pre-splated in forward direction
596
        const word32* ptr = reinterpret_cast<const word32*>(subkeys+(rounds-1)*2);
597
        const simon128_t rk = (simon128_t)VecLoadAligned(ptr);
598
599
        y1 = VecXor64(VecXor64(y1, SIMON128_f(x1)), rk);
600
601
        std::swap(x1, y1);
602
    }
603
604
#if (CRYPTOPP_BIG_ENDIAN)
605
    const uint8x16_p m3 = {31,30,29,28,27,26,25,24, 15,14,13,12,11,10,9,8};
606
    //const uint8x16_p m4 = {23,22,21,20,19,18,17,16, 7,6,5,4,3,2,1,0};
607
#else
608
    const uint8x16_p m3 = {7,6,5,4,3,2,1,0, 23,22,21,20,19,18,17,16};
609
    //const uint8x16_p m4 = {15,14,13,12,11,10,9,8, 31,30,29,28,27,26,25,24};
610
#endif
611
612
    // [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
613
    block = (uint32x4_p)VecPermute(x1, y1, m3);
614
}
615
616
inline void SIMON128_Dec_Block(uint32x4_p &block, const word64 *subkeys, unsigned int rounds)
617
{
618
#if (CRYPTOPP_BIG_ENDIAN)
619
    const uint8x16_p m1 = {31,30,29,28,27,26,25,24, 15,14,13,12,11,10,9,8};
620
    const uint8x16_p m2 = {23,22,21,20,19,18,17,16, 7,6,5,4,3,2,1,0};
621
#else
622
    const uint8x16_p m1 = {7,6,5,4,3,2,1,0, 23,22,21,20,19,18,17,16};
623
    const uint8x16_p m2 = {15,14,13,12,11,10,9,8, 31,30,29,28,27,26,25,24};
624
#endif
625
626
    // [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
627
    simon128_t x1 = (simon128_t)VecPermute(block, block, m1);
628
    simon128_t y1 = (simon128_t)VecPermute(block, block, m2);
629
630
    if (rounds & 1)
631
    {
632
        std::swap(x1, y1);
633
634
        const word32* ptr = reinterpret_cast<const word32*>(subkeys+rounds-1);
635
        const simon128_t tk = (simon128_t)VecLoad(ptr);
636
        const simon128_t rk = (simon128_t)VecSplatElement64<0>(tk);
637
638
        y1 = VecXor64(VecXor64(y1, rk), SIMON128_f(x1));
639
        rounds--;
640
    }
641
642
    for (int i = static_cast<int>(rounds-2); i >= 0; i -= 2)
643
    {
644
        const word32* ptr = reinterpret_cast<const word32*>(subkeys+i);
645
        const simon128_t tk = (simon128_t)VecLoad(ptr);
646
        const simon128_t rk1 = (simon128_t)VecSplatElement64<1>(tk);
647
        const simon128_t rk2 = (simon128_t)VecSplatElement64<0>(tk);
648
649
        x1 = VecXor64(VecXor64(x1, SIMON128_f(y1)), rk1);
650
        y1 = VecXor64(VecXor64(y1, SIMON128_f(x1)), rk2);
651
    }
652
653
#if (CRYPTOPP_BIG_ENDIAN)
654
    const uint8x16_p m3 = {31,30,29,28,27,26,25,24, 15,14,13,12,11,10,9,8};
655
    //const uint8x16_p m4 = {23,22,21,20,19,18,17,16, 7,6,5,4,3,2,1,0};
656
#else
657
    const uint8x16_p m3 = {7,6,5,4,3,2,1,0, 23,22,21,20,19,18,17,16};
658
    //const uint8x16_p m4 = {15,14,13,12,11,10,9,8, 31,30,29,28,27,26,25,24};
659
#endif
660
661
    // [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
662
    block = (uint32x4_p)VecPermute(x1, y1, m3);
663
}
664
665
inline void SIMON128_Enc_6_Blocks(uint32x4_p &block0, uint32x4_p &block1,
666
            uint32x4_p &block2, uint32x4_p &block3, uint32x4_p &block4,
667
            uint32x4_p &block5, const word64 *subkeys, unsigned int rounds)
668
{
669
#if (CRYPTOPP_BIG_ENDIAN)
670
    const uint8x16_p m1 = {31,30,29,28,27,26,25,24, 15,14,13,12,11,10,9,8};
671
    const uint8x16_p m2 = {23,22,21,20,19,18,17,16, 7,6,5,4,3,2,1,0};
672
#else
673
    const uint8x16_p m1 = {7,6,5,4,3,2,1,0, 23,22,21,20,19,18,17,16};
674
    const uint8x16_p m2 = {15,14,13,12,11,10,9,8, 31,30,29,28,27,26,25,24};
675
#endif
676
677
    // [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
678
    simon128_t x1 = (simon128_t)VecPermute(block0, block1, m1);
679
    simon128_t y1 = (simon128_t)VecPermute(block0, block1, m2);
680
    simon128_t x2 = (simon128_t)VecPermute(block2, block3, m1);
681
    simon128_t y2 = (simon128_t)VecPermute(block2, block3, m2);
682
    simon128_t x3 = (simon128_t)VecPermute(block4, block5, m1);
683
    simon128_t y3 = (simon128_t)VecPermute(block4, block5, m2);
684
685
    for (size_t i = 0; i < static_cast<size_t>(rounds & ~1)-1; i += 2)
686
    {
687
        // Round keys are pre-splated in forward direction
688
        const word32* ptr1 = reinterpret_cast<const word32*>(subkeys+i*2);
689
        const simon128_t rk1 = (simon128_t)VecLoadAligned(ptr1);
690
691
        const word32* ptr2 = reinterpret_cast<const word32*>(subkeys+(i+1)*2);
692
        const simon128_t rk2 = (simon128_t)VecLoadAligned(ptr2);
693
694
        y1 = VecXor64(VecXor64(y1, SIMON128_f(x1)), rk1);
695
        y2 = VecXor64(VecXor64(y2, SIMON128_f(x2)), rk1);
696
        y3 = VecXor64(VecXor64(y3, SIMON128_f(x3)), rk1);
697
698
        x1 = VecXor64(VecXor64(x1, SIMON128_f(y1)), rk2);
699
        x2 = VecXor64(VecXor64(x2, SIMON128_f(y2)), rk2);
700
        x3 = VecXor64(VecXor64(x3, SIMON128_f(y3)), rk2);
701
    }
702
703
    if (rounds & 1)
704
    {
705
        // Round keys are pre-splated in forward direction
706
        const word32* ptr = reinterpret_cast<const word32*>(subkeys+(rounds-1)*2);
707
        const simon128_t rk = (simon128_t)VecLoadAligned(ptr);
708
709
        y1 = VecXor64(VecXor64(y1, SIMON128_f(x1)), rk);
710
        y2 = VecXor64(VecXor64(y2, SIMON128_f(x2)), rk);
711
        y3 = VecXor64(VecXor64(y3, SIMON128_f(x3)), rk);
712
713
        std::swap(x1, y1); std::swap(x2, y2); std::swap(x3, y3);
714
    }
715
716
#if (CRYPTOPP_BIG_ENDIAN)
717
    const uint8x16_p m3 = {31,30,29,28,27,26,25,24, 15,14,13,12,11,10,9,8};
718
    const uint8x16_p m4 = {23,22,21,20,19,18,17,16, 7,6,5,4,3,2,1,0};
719
#else
720
    const uint8x16_p m3 = {7,6,5,4,3,2,1,0, 23,22,21,20,19,18,17,16};
721
    const uint8x16_p m4 = {15,14,13,12,11,10,9,8, 31,30,29,28,27,26,25,24};
722
#endif
723
724
    // [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
725
    block0 = (uint32x4_p)VecPermute(x1, y1, m3);
726
    block1 = (uint32x4_p)VecPermute(x1, y1, m4);
727
    block2 = (uint32x4_p)VecPermute(x2, y2, m3);
728
    block3 = (uint32x4_p)VecPermute(x2, y2, m4);
729
    block4 = (uint32x4_p)VecPermute(x3, y3, m3);
730
    block5 = (uint32x4_p)VecPermute(x3, y3, m4);
731
}
732
733
inline void SIMON128_Dec_6_Blocks(uint32x4_p &block0, uint32x4_p &block1,
734
            uint32x4_p &block2, uint32x4_p &block3, uint32x4_p &block4,
735
            uint32x4_p &block5, const word64 *subkeys, unsigned int rounds)
736
{
737
#if (CRYPTOPP_BIG_ENDIAN)
738
    const uint8x16_p m1 = {31,30,29,28,27,26,25,24, 15,14,13,12,11,10,9,8};
739
    const uint8x16_p m2 = {23,22,21,20,19,18,17,16, 7,6,5,4,3,2,1,0};
740
#else
741
    const uint8x16_p m1 = {7,6,5,4,3,2,1,0, 23,22,21,20,19,18,17,16};
742
    const uint8x16_p m2 = {15,14,13,12,11,10,9,8, 31,30,29,28,27,26,25,24};
743
#endif
744
745
    // [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
746
    simon128_t x1 = (simon128_t)VecPermute(block0, block1, m1);
747
    simon128_t y1 = (simon128_t)VecPermute(block0, block1, m2);
748
    simon128_t x2 = (simon128_t)VecPermute(block2, block3, m1);
749
    simon128_t y2 = (simon128_t)VecPermute(block2, block3, m2);
750
    simon128_t x3 = (simon128_t)VecPermute(block4, block5, m1);
751
    simon128_t y3 = (simon128_t)VecPermute(block4, block5, m2);
752
753
    if (rounds & 1)
754
    {
755
        std::swap(x1, y1); std::swap(x2, y2); std::swap(x3, y3);
756
757
        const word32* ptr = reinterpret_cast<const word32*>(subkeys+rounds-1);
758
        const simon128_t tk = (simon128_t)VecLoad(ptr);
759
        const simon128_t rk = (simon128_t)VecSplatElement64<0>(tk);
760
761
        y1 = VecXor64(VecXor64(y1, rk), SIMON128_f(x1));
762
        y2 = VecXor64(VecXor64(y2, rk), SIMON128_f(x2));
763
        y3 = VecXor64(VecXor64(y3, rk), SIMON128_f(x3));
764
        rounds--;
765
    }
766
767
    for (int i = static_cast<int>(rounds-2); i >= 0; i -= 2)
768
    {
769
        const word32* ptr = reinterpret_cast<const word32*>(subkeys+i);
770
        const simon128_t tk = (simon128_t)VecLoad(ptr);
771
        const simon128_t rk1 = (simon128_t)VecSplatElement64<1>(tk);
772
        const simon128_t rk2 = (simon128_t)VecSplatElement64<0>(tk);
773
774
        x1 = VecXor64(VecXor64(x1, SIMON128_f(y1)), rk1);
775
        x2 = VecXor64(VecXor64(x2, SIMON128_f(y2)), rk1);
776
        x3 = VecXor64(VecXor64(x3, SIMON128_f(y3)), rk1);
777
778
        y1 = VecXor64(VecXor64(y1, SIMON128_f(x1)), rk2);
779
        y2 = VecXor64(VecXor64(y2, SIMON128_f(x2)), rk2);
780
        y3 = VecXor64(VecXor64(y3, SIMON128_f(x3)), rk2);
781
    }
782
783
#if (CRYPTOPP_BIG_ENDIAN)
784
    const uint8x16_p m3 = {31,30,29,28,27,26,25,24, 15,14,13,12,11,10,9,8};
785
    const uint8x16_p m4 = {23,22,21,20,19,18,17,16, 7,6,5,4,3,2,1,0};
786
#else
787
    const uint8x16_p m3 = {7,6,5,4,3,2,1,0, 23,22,21,20,19,18,17,16};
788
    const uint8x16_p m4 = {15,14,13,12,11,10,9,8, 31,30,29,28,27,26,25,24};
789
#endif
790
791
    // [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
792
    block0 = (uint32x4_p)VecPermute(x1, y1, m3);
793
    block1 = (uint32x4_p)VecPermute(x1, y1, m4);
794
    block2 = (uint32x4_p)VecPermute(x2, y2, m3);
795
    block3 = (uint32x4_p)VecPermute(x2, y2, m4);
796
    block4 = (uint32x4_p)VecPermute(x3, y3, m3);
797
    block5 = (uint32x4_p)VecPermute(x3, y3, m4);
798
}
799
800
#endif  // CRYPTOPP_ALTIVEC_AVAILABLE
801
802
ANONYMOUS_NAMESPACE_END
803
804
///////////////////////////////////////////////////////////////////////
805
806
NAMESPACE_BEGIN(CryptoPP)
807
808
// *************************** ARM NEON **************************** //
809
810
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
811
size_t SIMON128_Enc_AdvancedProcessBlocks_NEON(const word64* subKeys, size_t rounds,
812
    const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
813
{
814
    return AdvancedProcessBlocks128_6x2_NEON(SIMON128_Enc_Block, SIMON128_Enc_6_Blocks,
815
        subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
816
}
817
818
size_t SIMON128_Dec_AdvancedProcessBlocks_NEON(const word64* subKeys, size_t rounds,
819
    const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
820
{
821
    return AdvancedProcessBlocks128_6x2_NEON(SIMON128_Dec_Block, SIMON128_Dec_6_Blocks,
822
        subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
823
}
824
#endif  // CRYPTOPP_ARM_NEON_AVAILABLE
825
826
// ***************************** IA-32 ***************************** //
827
828
#if (CRYPTOPP_SSSE3_AVAILABLE)
829
size_t SIMON128_Enc_AdvancedProcessBlocks_SSSE3(const word64* subKeys, size_t rounds,
830
    const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
831
7
{
832
7
    return AdvancedProcessBlocks128_6x2_SSE(SIMON128_Enc_Block, SIMON128_Enc_6_Blocks,
833
7
        subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
834
7
}
835
836
size_t SIMON128_Dec_AdvancedProcessBlocks_SSSE3(const word64* subKeys, size_t rounds,
837
    const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
838
7
{
839
7
    return AdvancedProcessBlocks128_6x2_SSE(SIMON128_Dec_Block, SIMON128_Dec_6_Blocks,
840
7
        subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
841
7
}
842
#endif  // CRYPTOPP_SSSE3_AVAILABLE
843
844
// ***************************** Altivec ***************************** //
845
846
#if (CRYPTOPP_ALTIVEC_AVAILABLE)
847
size_t SIMON128_Enc_AdvancedProcessBlocks_ALTIVEC(const word64* subKeys, size_t rounds,
848
    const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
849
{
850
    return AdvancedProcessBlocks128_6x1_ALTIVEC(SIMON128_Enc_Block, SIMON128_Enc_6_Blocks,
851
        subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
852
}
853
854
size_t SIMON128_Dec_AdvancedProcessBlocks_ALTIVEC(const word64* subKeys, size_t rounds,
855
    const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
856
{
857
    return AdvancedProcessBlocks128_6x1_ALTIVEC(SIMON128_Dec_Block, SIMON128_Dec_6_Blocks,
858
        subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
859
}
860
#endif  // CRYPTOPP_ALTIVEC_AVAILABLE
861
862
NAMESPACE_END